WO2016021556A1 - 伸線加工性に優れた高炭素鋼線材 - Google Patents

伸線加工性に優れた高炭素鋼線材 Download PDF

Info

Publication number
WO2016021556A1
WO2016021556A1 PCT/JP2015/071969 JP2015071969W WO2016021556A1 WO 2016021556 A1 WO2016021556 A1 WO 2016021556A1 JP 2015071969 W JP2015071969 W JP 2015071969W WO 2016021556 A1 WO2016021556 A1 WO 2016021556A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
pearlite
ceq
content
high carbon
Prior art date
Application number
PCT/JP2015/071969
Other languages
English (en)
French (fr)
Inventor
真 小此木
大輔 平上
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201580042546.6A priority Critical patent/CN106574343B/zh
Priority to US15/329,455 priority patent/US10487379B2/en
Priority to EP15830061.6A priority patent/EP3165626B1/en
Priority to JP2016540222A priority patent/JP6264461B2/ja
Priority to KR1020177002972A priority patent/KR101913048B1/ko
Publication of WO2016021556A1 publication Critical patent/WO2016021556A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a high-carbon steel wire rod having excellent wire drawing workability suitable for applications such as radial tires for automobiles, steel cords used as reinforcing materials for various industrial belts and hoses, and sawing wires.
  • steel cord steel wires used as reinforcing materials for automobile radial tires, various belts and hoses, or steel wires for sawing wires have a diameter of 4 to 4 mm after adjustment and cooling after hot rolling.
  • a 6 mm wire is used as the material.
  • This wire is formed into a steel wire having a diameter of 3 to 4 mm by primary wire drawing.
  • an intermediate patenting treatment is performed on the steel wire, and the diameter of the steel wire is reduced to 1 to 2 mm by secondary wire drawing.
  • the steel wire is subjected to a final patenting treatment and then subjected to brass plating.
  • the steel wire having a diameter of 0.15 to 0.40 mm is obtained by final wet drawing.
  • a steel cord is manufactured by twisting a plurality of high carbon steel wires obtained in this way into a twisted steel wire by twisting.
  • Patent Document 1 discloses a high carbon wire having a pearlite structure with an area ratio of 95% or more, an average nodule diameter in the pearlite structure of 30 ⁇ m or less, and an average lamella spacing of 100 nm or more.
  • Patent Document 4 discloses a high-strength wire material to which B is added.
  • the present invention provides a high carbon steel wire rod excellent in wire drawing workability suitable for uses such as a steel cord and a sawing wire at a low yield with high productivity under high productivity. Objective.
  • the tensile strength and ductility of a high carbon steel wire mainly composed of a pearlite structure depend on the pearlite transformation temperature.
  • the pearlite structure is a structure in which cementite and ferrite are arranged in layers, and the lamellar spacing which is the layer spacing greatly affects the tensile strength.
  • the lamella spacing of the pearlite structure is determined by the transformation temperature when transforming from austenite to pearlite.
  • the pearlite transformation temperature When the pearlite transformation temperature is high, the lamella spacing of the pearlite structure is large and the tensile strength of the wire is low. On the other hand, when the pearlite transformation temperature is low, the lamella spacing of the pearlite structure is small and the tensile strength of the wire is high.
  • the ductility of the wire is affected by the particle size of the pearlite block (pearlite block particle size) in the pearlite structure.
  • the pearlite block particle size is also affected by the pearlite transformation temperature as well as the lamella spacing. For example, when the pearlite transformation temperature is high, the pearlite block particle size is large and the ductility is low. On the other hand, when the pearlite transformation temperature is low, the pearlite block is small and the ductility is also improved.
  • the pearlite transformation temperature when the pearlite transformation temperature is high, the tensile strength and ductility of the wire are low. On the other hand, when the pearlite transformation temperature is lowered, the tensile strength and ductility of the wire are increased. In order to improve the wire drawing workability of the wire, it is effective to reduce the tensile strength of the wire and increase the ductility. However, as described above, it is difficult to achieve both the tensile strength and the ductility of the wire regardless of whether the transformation temperature is high or low.
  • a region having a depth of 50 ⁇ m or less from the surface of the wire toward the center is defined as a surface layer portion.
  • A In order to reduce the disconnection frequency, it is effective to set the average block particle size of the pearlite block in the cross section of the wire to 10 ⁇ m to 30 ⁇ m. Further, when the standard deviation of the block particle size exceeds 20 ⁇ m and the variation in the particle size increases, the frequency of disconnection increases.
  • the tensile strength of the wire is 760 ⁇ Ceq.
  • the drawing value in the tensile test of the wire is -65 ⁇ Ceq. It is effective for improving the wire drawing workability of the wire to be +96 (%) or more.
  • D Reducing the variation in the drawing value in the tensile test of the wire is effective for improving the wire drawing workability of the wire. In particular, by setting the standard deviation of the drawing value of the wire to 6% or less, the disconnection frequency decreases.
  • the high carbon steel wire according to the present invention has, as chemical components, mass%, C: 0.70% to 1.20%, Si: 0.10% to 1.2%, Mn: 0.10. % To 1.0%, P: 0.001% to 0.012%, S: 0.001% to 0.010%, N: 0.001% to 0.005%, the balance being Fe and
  • the area ratio of pearlite is 95% to 100%
  • the average block particle size of the pearlite is 10 ⁇ m to 30 ⁇ m
  • the standard deviation of block particle size is 20 ⁇ m or less.
  • C 0.70% to 1.20%
  • C is an element necessary for increasing the strength of the wire.
  • the C content is less than 0.70%, it is difficult to stably impart strength to the final product, and at the same time, precipitation of pro-eutectoid ferrite is promoted at the austenite grain boundaries, and a uniform pearlite structure is formed. It becomes difficult to obtain. Therefore, the lower limit of the C content is set to 0.70%.
  • the C content is preferably 0.80% or more.
  • the C content exceeds 1.20%, net-form pro-eutectoid cementite is generated at the austenite grain boundaries and breakage is likely to occur during wire drawing, and the high carbon steel after the final wire drawing is also generated.
  • the toughness and ductility of the wire is significantly degraded. Therefore, the upper limit of C content is 1.20%.
  • the C content is preferably 1.10% or less.
  • Si 0.10% to 1.2%
  • Si is an element necessary for increasing the strength of the wire. Furthermore, it is an element that is useful as a deoxidizer, and is also an element that is necessary when targeting a wire that does not contain Al.
  • the Si content is less than 0.10%, the deoxidation action is too small. Therefore, the lower limit for the Si content is 0.10%.
  • the Si content exceeds 1.2%, precipitation of proeutectoid ferrite is promoted in the hypereutectoid steel. Furthermore, the limit working degree in wire drawing processing is lowered. Further, mechanical descaling, that is, wire drawing by MD becomes difficult. Therefore, the upper limit of Si content is 1.2%.
  • the Si content is preferably 0.8% or less.
  • Mn 0.10% to 1.0%
  • Mn is an element necessary as a deoxidizer. It is also effective in improving the hardenability and increasing the strength of the wire. Furthermore, Mn has an effect of preventing hot embrittlement by fixing S in steel as MnS. If the Mn content is less than 0.10%, it is difficult to obtain the above effect. Therefore, the lower limit of the Mn content is 0.10%.
  • Mn is an element that easily segregates. When the Mn content exceeds 1.0%, particularly, Mn is segregated in the central portion of the wire, and martensite and bainite are generated in the segregated portion, so that the wire drawing workability is lowered. Therefore, the upper limit of the Mn content is 1.0%. In order to prevent deterioration of wire drawing workability more reliably, the Mn content is preferably 0.7% or less.
  • P 0.001% to 0.012% P is an element that segregates at the grain boundaries and lowers the toughness of the wire. If the P content exceeds 0.012%, the ductility of the wire material is significantly deteriorated. Therefore, the upper limit of the P content is 0.012%. In addition, the lower limit of the P content is set to 0.001% in consideration of the current refining technology and manufacturing cost.
  • S 0.001% to 0.010% S forms Mn and sulfide MnS to prevent hot embrittlement. If the S content exceeds 0.010%, the ductility of the wire material is significantly deteriorated. Therefore, the upper limit of the S content is set to 0.010%. Note that the lower limit of the S content is set to 0.001% in consideration of the current refining technology and manufacturing cost.
  • N 0.0010% to 0.0050%
  • N is an element which, as solid solution N, promotes aging during wire drawing and deteriorates wire drawing workability. Therefore, the upper limit of N content is set to 0.0050%. The lower limit of the N content is set to 0.0010% in consideration of the current refining technology and manufacturing cost.
  • the above elements are the basic components of the high carbon steel wire in the present embodiment, and the balance other than the above elements is Fe and impurities.
  • Fe the balance other than the above elements
  • this basic component instead of a part of the remaining Fe, in the high carbon steel wire in the present embodiment, for the purpose of improving the mechanical properties of the wire such as deoxidation effect, strength, toughness, and ductility.
  • Al, Ti, B, Cr, Ni, V, Cu, Mo, Nb, Ca, Mg, or Zr may be contained within a range described later.
  • Al 0.0001% to 0.010%
  • Al is an element that functions as a deoxidizing element and generates hard non-deformable alumina-based nonmetallic inclusions to deteriorate the ductility of the wire. Therefore, the upper limit of the Al content is set to 0.010%. Note that the lower limit of the Al content is set to 0.0001% in consideration of the current refining technology and manufacturing cost.
  • Ti 0.001% to 0.010%
  • Ti is an element having a deoxidizing action. Moreover, it has the effect of forming nitrides and suppressing coarsening of the austenite grain size.
  • the amount of Ti is less than 0.001%, the above-described effect becomes insufficient.
  • the Ti content exceeds 0.010%, there is a possibility that workability may be lowered by coarse carbonitride (TiCN or the like).
  • B 0.0001% to 0.0015%
  • the content of 0.0001% or more is preferable.
  • the content exceeds 0.0015%, coarse boron carbide such as Fe 23 (CB) 6 is generated, and the wire drawing workability of the wire is deteriorated. Therefore, the upper limit of the B content is preferably 0.0015%.
  • Cr 0.05% to 0.50% Cr is an element effective for reducing the lamella spacing of pearlite and improving the strength of the wire and the wire drawing workability. In order to effectively exhibit such an action, the content is preferably 0.05% or more. On the other hand, if the Cr content exceeds 0.50%, the time until the pearlite transformation is completed becomes long, and a supercooled structure such as martensite or bainite may be generated in the wire. Furthermore, the mechanical descaling property is also deteriorated. Therefore, it is preferable that the upper limit of the Cr content is 0.50%.
  • Ni 0.05 to 0.50% Ni does not contribute much to increasing the strength of the wire, but is an element that increases the toughness of the high carbon steel wire. In order to effectively exhibit such an action, the content is preferably 0.05% or more. On the other hand, when Ni is contained in excess of 0.50%, the time until the pearlite transformation is completed becomes long. For this reason, the upper limit of the Ni content is preferably 0.50%.
  • V 0.01% to 0.20%
  • V forms fine carbonitrides in the ferrite, thereby preventing the austenite grains from coarsening during heating and improving the ductility of the wire. It also contributes to an increase in strength after hot rolling.
  • the content is preferably 0.01% or more.
  • the upper limit of V content is preferably 0.20%.
  • Cu 0.05% to 0.20%
  • the content is preferably 0.05% or more.
  • the upper limit of the Cu content is preferably 0.20%.
  • Mo 0.05% to 0.20%
  • Mo has the effect of increasing the corrosion resistance of the high carbon steel wire.
  • the content is preferably 0.05% or more.
  • the upper limit of the Mo content is 0.20%.
  • Nb 0.01% to 0.10%
  • Nb has the effect of increasing the corrosion resistance of the high carbon steel wire.
  • the content is preferably 0.01% or more.
  • the upper limit of Nb content is preferably 0.10%.
  • Ca 0.0005% to 0.0050%
  • Ca is an element that reduces hard alumina inclusions.
  • Ca is an element generated as a fine oxide.
  • the Ca content is preferably 0.0005% to 0.0050%. More preferably, the Ca content is 0.0005% to 0.0040%. If the Ca content exceeds 0.0050%, a coarse oxide is formed, which may cause disconnection during wire drawing.
  • Mg 0.0005% to 0.0050%
  • Mg is an element generated as a fine oxide.
  • the pearlite block size of the steel wire becomes finer, and the ductility of the steel wire is improved.
  • the Mg content is preferably 0.0005% to 0.0050%. More preferably, the Mg content is 0.0005% to 0.0040%. If the Mg content exceeds 0.0050%, a coarse oxide is formed, which may cause disconnection during wire drawing.
  • Zr 0.0005% to 0.010%
  • Zr is an element that increases the equiaxed ratio of austenite and refines the austenite grains because it crystallizes as ZrO and becomes the crystallization nucleus of austenite.
  • the pearlite block size of the steel wire becomes finer, and the ductility of the steel wire is improved.
  • the Zr content is preferably 0.0005% to 0.010%. More preferably, the Zr content is 0.0005% to 0.0050%. If the Zr content exceeds 0.010%, a coarse oxide is formed, which may cause disconnection during wire drawing.
  • the area ratio of non-pearlite structures such as pro-eutectoid ferrite, bainite, pseudo pearlite, and pro-eutectoid cementite in a cross section perpendicular to the longitudinal direction exceeds 5%. Then, cracks are likely to occur during wire drawing and wire drawing workability deteriorates. For this reason, the area ratio of a pearlite structure shall be 95% or more. Since the generation of cracks can be suppressed when the non-perlite structure is smaller, the upper limit is made 100%.
  • the pearlite area ratio of the high carbon steel wire according to the present embodiment indicates the average area ratio of the pearlite area ratio in each of the surface layer portion, 1 / 2D portion, and 1 / 4D portion, where D is the wire diameter.
  • the C cross section of the high carbon steel wire that is, the cross section perpendicular to the longitudinal direction is embedded with resin, then polished with alumina, corroded with saturated picral, and SEM observation is performed.
  • the range from the surface of the wire to 50 ⁇ m toward the center is defined as the surface layer portion.
  • the observation regions in SEM observation are the surface layer portion, 1 / 4D portion, and 1 / 2D portion, where D is the wire diameter.
  • a photograph is image
  • the pseudo-pearlite part in which cementite is dispersed in granular form which is a non-pearlite structure
  • the bainite part in which plate-like cementite is dispersed at a coarse lamellar spacing of 3 times or more from the surroundings and the primary precipitation precipitated along the prior austenite grain boundaries
  • the ferrite part and the pro-eutectoid cementite part are visually coated separately, and the respective area ratios are measured by image analysis. And the area ratio of each measured non-pearlite structure is totaled, and it is set as a non-pearlite area ratio.
  • the area ratio of the pearlite structure is obtained by subtracting the non-pearlite area ratio from 100%.
  • the pearlite block is an area where the crystal orientation of the ferrite can be regarded as the same, and the ductility of the wire improves as the average block grain size becomes finer.
  • the average block particle size exceeds 30 ⁇ m, the ductility of the wire is lowered, and disconnection is likely to occur during wire drawing.
  • the average block particle size is less than 10 ⁇ m, the tensile strength is increased and the deformation resistance is increased during wire drawing, which increases the processing cost.
  • the standard deviation of the block particle size exceeds 20 ⁇ m, the variation of the block particle size increases and the frequency of disconnection increases during wire drawing.
  • the block particle diameter is a diameter of a circle having the same area as that occupied by the pearlite block.
  • the block particle size of the pearlite block can be obtained by the following method.
  • the C cross section of the wire is embedded in resin and then cut and polished.
  • an area of 500 ⁇ m ⁇ 500 ⁇ m is analyzed by EBSD at the center of the C cross section.
  • the measurement step is 1 ⁇ m, and the interface having an orientation difference of 9 ° or more in this region is defined as the pearlite block interface.
  • an area surrounded by the interface and having 5 pixels or more and not including the measurement boundary of 500 ⁇ m ⁇ 500 ⁇ m is analyzed as one pearlite block.
  • the average value of the equivalent circle diameters of the pearlite blocks is defined as the average block particle size.
  • the tensile strength of the wire rod is 760 ⁇ Ceq. If it exceeds +325 MPa, the deformation resistance increases during wire drawing. As a result, the drawing force at the time of wire drawing increases, and the processing cost increases. Further, the tensile strength of the wire rod is 760 ⁇ Ceq. If it is less than +255 MPa, the disconnection rate becomes high and the wire drawing workability deteriorates.
  • the drawing value in the tensile test of the wire is ⁇ 65 ⁇ Ceq. When it is less than +96 (%), the disconnection rate increases and the wire drawing workability deteriorates. In addition, when the standard deviation of the drawing value in the tensile test exceeds 6%, the variation of the drawing value increases and the wire drawing workability deteriorates. Ceq. Is obtained by the following formula (1).
  • the standard deviation of the aperture value in the tensile test is obtained from the data of 16 aperture values.
  • the manufacturing method is not particularly limited in the present embodiment, the high carbon steel wire having the characteristics of the present embodiment can be manufactured by the following method as an example.
  • the steel slab comprising the above-described chemical components is heated to 1000 ° C. to 1100 ° C. and hot-rolled to obtain a wire, and the wire is wound at 800 ° C. to 900 ° C.
  • First cooling is performed at a primary cooling rate of 40 ° C./second to 60 ° C./second for 3 seconds to 7 seconds, and primary cooling is performed to 600 ° C. to 630 ° C.
  • it is effective to control the primary cooling rate.
  • the sample is kept in a temperature range of 630 ° C. to 600 ° C. for 15 seconds to 50 seconds.
  • the retention treatment in the temperature range is effective. Thereafter, secondary cooling is performed to 300 ° C. or lower at a secondary cooling rate of 5 ° C./second to 30 ° C./second. In this case, the lower limit of the end point temperature of the secondary cooling may be normal temperature (25 ° C.).
  • the high carbon steel wire according to the present embodiment can be manufactured by the above-described method. This manufacturing method eliminates the need for re-heating in the cooling process after wire rod rolling, and can produce a high carbon steel wire rod at a low cost.
  • the conditions in the examples are condition examples adopted for confirming the feasibility and effects of the present invention, and the present invention is not limited to these condition examples.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • the steel billet having the chemical composition shown in Table 1 was heated, then hot rolled into a wire having a diameter of 5.5 mm, wound at a predetermined temperature, and then cooled by a stealmore facility.
  • the wire drawing workability is obtained by removing the scale of the wire by pickling, preparing 10 4m long wires with a zinc phosphate coating by bondage treatment, and using a die with an approach angle of 10 degrees. Single-head drawing was performed with a reduction in area per pass of 16% to 20%. And the average value of the true strain of the limit which draws and breaks was calculated
  • Table 2 shows manufacturing conditions, structure and mechanical properties. “Residence time” in Table 2 represents the residence time in the temperature range of 630 ° C. to 600 ° C.
  • Example No. 1 3, 5, 8, 10, 13, 15, and 20 did not satisfy the claims of the present invention.
  • Example No. 3 the area ratio of the pearlite structure, the average block particle size, the tensile strength, and the drawing value did not satisfy the scope of the present invention.
  • Example No. 1 satisfying the scope of the present invention with the same components.
  • Example No. 1 satisfying the scope of the present invention with the same components.
  • the wire breaking strain was low.
  • Example No. No. 8 is an example No. 8 in which the area ratio of the pearlite structure and the tensile strength are out of the scope of the present invention, and the same components satisfy the scope of the present invention.
  • the wire breaking strain was low.
  • Example No. No. 10 is an example in which the standard deviation of the block particle size and the standard deviation of the aperture value are out of the scope of the present invention, and Example No. 10 satisfying the scope of the present invention with the same components.
  • Example No. No. 13 is an Example No. 13 in which the average block particle size and the aperture value are out of the range of the present invention, and the same component satisfies the range of the present invention.
  • Example No. No. 15 is an example block No. 15 in which the average block particle size, the standard deviation of the block particle size, and the aperture value are out of the range of the present invention, and the same component satisfies the range of the present invention.
  • the wire breaking strain was low.
  • Example No. In No. 20 the amount of C exceeded the upper limit of the present invention, and the strain at which the wire was disconnected was lower than that in the example satisfying the scope of the present invention.
  • the present invention it is possible to provide a high-strength, high-carbon steel wire rod excellent in wire drawing workability and suitable for uses such as a steel cord and a sawing wire at a low yield with a high productivity. Therefore, the present invention has sufficient industrial applicability in the wire manufacturing industry.

Abstract

 この伸線加工性に優れた高炭素鋼線材は、所定の化学成分を含有し、残部がFe及び不純物からなり、長手方向に垂直な断面において、パーライトの面積率が95%以上100%以下であり、前記パーライトの平均ブロック粒径が10μm~30μmであり、ブロック粒径の標準偏差が20μm以下であり、Ceq.=C(%)+Si(%)/24+Mn(%)/6としたとき、引張強さが760×Ceq.+255MPa以上760×Ceq.+325MPa以下であり、かつ、引張試験での絞り値が-65×Ceq.+96(%)以上であり、かつ、前記絞り値の標準偏差が6%以下である。

Description

伸線加工性に優れた高炭素鋼線材
 本発明は、自動車のラジアルタイヤや、各種産業用ベルトやホースの補強材として用いられるスチールコード、更には、ソーイングワイヤなどの用途に好適な伸線加工性に優れた高炭素鋼線材に関する。
 自動車のラジアルタイヤや、各種のベルト、ホースの補強材として用いられるスチールコード用鋼線、あるいは、ソーイングワイヤ用の鋼線は、一般に、熱間圧延後調整冷却した線径、即ち直径が4~6mmの線材を素材とする。この線材を、1次伸線加工により直径3~4mmの鋼線にする。次いで、鋼線に中間パテンティング処理を行い、さらに2次伸線加工により、鋼線の直径を1~2mmにする。この後、鋼線に最終パテンティング処理を行い、次いで、ブラスメッキを施す。そして、最終湿式伸線加工により、直径が0.15~0.40mmの鋼線にする。このようにして得られた高炭素鋼線を、さらに撚り加工により、複数本撚り合わせて撚鋼線とすることでスチールコードが製造される。
 近年、鋼線の製造コスト低減の目的から、上記の中間パテンティングを省略し、調整冷却した線材から、最終パテンティング処理後の線径である1~2mmまで、ダイレクトに伸線する例が多くなってきた。このため、調整冷却した線材に対して、線材からのダイレクト伸線特性、いわゆる生引性が要求されるようになり、線材の高延性および高加工性に対する要求が極めて大きくなっている。
 例えば特許文献1~7に記載されているように、パテンティング処理を行った線材の伸線加工性を改善する手法は、これまで多くの提案がなされている。例えば、特許文献1には面積率で95%以上のパーライト組織を有し、そのパーライト組織における平均ノジュール径を30μm以下、平均ラメラ間隔を100nm以上とした高炭素線材が開示されている。また、特許文献4にはBを添加した高強度線材が開示されている。しかし、これらの従来技術によっても、伸線速度の高速化や伸線加工度の増大に伴って発生する断線の低減や、伸線時の加工コストに影響するほどの伸線加工性の改善効果が得られていない。
日本国特開2003-082434号公報 日本国特開2005-206853号公報 日本国特開2006-200039号公報 日本国特開2007-131944号公報 日本国特開2012-126954号公報 国際公開公報WO2008/044356号 日本国特開2004-137597号公報
 本発明は、従来技術の現状に鑑み、高い生産性の下に歩留りよく廉価に、スチールコードやソーイングワイヤなどの用途に好適な、伸線加工性に優れた高炭素鋼線材を提供することを目的とする。
 高炭素鋼線材の伸線加工性を向上させるためには、線材の引張強さを低減させることと、パーライト組織のパーライトブロックを細粒化して線材の延性を向上させることとが有効である。通常、パーライト組織を主体とする高炭素鋼線材の、引張強さと延性とはパーライト変態温度に依存する。パーライト組織は、セメンタイトとフェライトとが層状に並んだ組織であり、その層間隔であるラメラ間隔が引張強さに大きく影響する。また、パーライト組織のラメラ間隔は、オーステナイトからパーライトに変態する際の変態温度で決定される。パーライト変態温度が高い場合には、パーライト組織のラメラ間隔が大きく、線材の引張強さが低くなる。一方、パーライト変態温度が低い場合には、パーライト組織のラメラ間隔が小さく、線材の引張強さが高くなる。
 また、線材の延性は、パーライト組織におけるパーライトブロックの粒径(パーライトブロック粒径)に影響される。また、このパーライトブロック粒径も、ラメラ間隔と同様にパーライト変態温度に影響される。例えば、パーライト変態温度が高い場合にはパーライトブロック粒径が大きく、延性が低くなる。一方、パーライト変態温度が低い場合にはパーライトブロックが小さく、延性も向上する。
 即ち、パーライト変態温度が高い場合は、線材の引張強さ及び延性が低い。一方、パーライト変態温度が低くなると、線材の引張強さ及び延性が高くなる。線材の伸線加工性の向上には、線材の引張強さを低くして、延性を高くすることが有効である。しかしながら、上述の通り、変態温度が高い場合であっても、低い場合であっても、線材の引張強さと延性との両立は困難であった。
 本発明者らは、上記課題を解決するため、線材の組織と機械的特性とが伸線加工性に及ぼす影響について詳細に調査し、その結果、以下の知見を見出した。以下、線材の表面から中心に向けて深さ50μm以下までの領域を表層部とする。
(a)断線頻度を低減するためには、線材の断面におけるパーライトブロックの平均ブロック粒径を10μm~30μmとすることが有効である。また、ブロック粒径の標準偏差が20μmを超え、粒径のバラツキが大きくなると、断線する頻度が高くなる。
(b)線材の引張強さを760×Ceq.+255MPa以上760×Ceq.+325MPa以下とすることが、線材の伸線加工性の向上に有効である。
(c)線材の引張試験での絞り値を-65×Ceq.+96(%)以上とすることが、線材の伸線加工性の向上に有効である。
(d)線材の引張試験での絞り値のバラツキを低下させることが、線材の伸線加工性の向上に有効である。特に、線材の絞り値の標準偏差を6%以下とすることで、断線頻度が低下する。
 本発明は、上記知見に基づいてなされたものであり、その要旨は以下のとおりである。
[1]本発明に係る高炭素鋼線材は、化学成分として、質量%で、C:0.70%~1.20%、Si:0.10%~1.2%、Mn:0.10%~1.0%、P:0.001%~0.012%、S:0.001%~0.010%、N:0.001%~0.005%を含有し、残部がFe及び不純物からなり、長手方向に垂直な断面において、パーライトの面積率が95%以上100%以下であり、前記パーライトの平均ブロック粒径が10μm~30μmであり、ブロック粒径の標準偏差が20μm以下であり、C(%)、Si(%)及びMn(%)をそれぞれ、C、Si、Mnの質量%での含有量として、Ceq.を下記式(1)により求めたとき、引張強さが760×Ceq.+255MPa以上760×Ceq.+325MPa以下であり、かつ、引張試験での絞り値が-65×Ceq.+96(%)以上であり、かつ、前記絞り値の標準偏差が6%以下である。
Ceq.=C(%)+Si(%)/24+Mn(%)/6 ・・・ 式(1)
[2]上記[1]に記載の高炭素鋼線材では、前記化学成分として、質量%で、Al:0.0001%~0.010%、Ti:0.001%~0.010%、B:0.0001%~0.0015%、Cr:0.05%~0.50%、Ni:0.05%~0.50%、V:0.01%~0.20%、Cu:0.05%~0.20%、Mo:0.05%~0.20%、Nb:0.01%~0.10%、Ca:0.0005%~0.0050%、Mg:0.0005%~0.0050%、Zr:0.0005%~0.010%からなる群から選択される1種または2種以上をさらに含有してもよい。
 上記[1]、[2]の各態様によれば、伸線加工性に優れた高炭素鋼線材を安価に提供できる。
 まず、本実施形態における、高炭素鋼線材の化学成分の限定理由について説明する。なお、以下の説明における%は、質量%を意味する。
 C:0.70%~1.20%
 Cは、線材の強度を高めるのに必要な元素である。C含有量が0.70%未満の場合には、強度を安定して最終製品に付与させることが困難であると同時に、オーステナイト粒界に初析フェライトの析出が促進され、均一なパーライト組織を得ることが困難となる。そのため、C含有量の下限を0.70%とする。より均一なパーライト組織を得るためには、C含有量は0.80%以上が好ましい。一方、C含有量が1.20%を超えると、オーステナイト粒界にネット状の初析セメンタイトが生成して伸線加工時に断線が発生しやすくなるだけでなく、最終伸線後における高炭素鋼線の靱性・延性が著しく劣化する。そのため、C含有量の上限を1.20%とする。より確実に線材の靱性・延性の劣化を防ぐためには、C含有量は1.10%以下が好ましい。
 Si:0.10%~1.2%
 Siは、線材の強度を高めるのに必要な元素である。さらに、脱酸剤として有用な元素であり、Alを含有しない線材を対象とする際にも必要な元素である。Si含有量が0.10%未満では、脱酸作用が過少である。そのため、Si含有量の下限を0.10%とする。一方、Si含有量が1.2%を超えると、過共析鋼において、初析フェライトの析出が促進する。さらに、伸線加工での限界加工度が低下する。また、メカニカルデスケーリング、即ちMDによる伸線加工が困難になる。そのため、Si含有量の上限を1.2%とする。より確実に伸線加工性の劣化を防ぐためには、Si含有量は0.8%以下が好ましい。
 Mn:0.10%~1.0%
 MnもSiと同様、脱酸剤として必要な元素である。また、焼き入れ性を向上させ、線材の強度を高めるのにも有効である。さらにMnは、鋼中のSをMnSとして固定して熱間脆化を防止する効果を有する。Mn含有量が0.10%未満では前記の効果が得難い。そのため、Mn含有量の下限を0.10%とする。一方、Mnは偏析しやすい元素である。Mn含有量が1.0%を超えると、特に、線材の中心部にMnが偏析し、その偏析部にはマルテンサイトやベイナイトが生成するので、伸線加工性が低下する。そのため、Mn含有量の上限を1.0%とする。より確実に伸線加工性の劣化を防ぐためには、Mn含有量は0.7%以下が好ましい。
 P:0.001%~0.012%
 Pは、粒界に偏析して線材の靱性を低下させる元素である。P含有量が0.012%を超えると、線材の延性が著しく劣化する。そのため、P含有量の上限を0.012%とする。なお、P含有量の下限は、現状の精錬技術と製造コストとを考慮し、0.001%とする。
 S:0.001%~0.010%
 Sは、Mnと硫化物MnSを形成して熱間脆化を防止する。S含有量が0.010%を超えると、線材の延性が著しく劣化する。そのため、S含有量の上限を0.010%とした。なお、S含有量の下限は、現状の精錬技術と製造コストとを考慮し、0.001%とする。
 N:0.0010%~0.0050%
 Nは、固溶Nとして、伸線中の時効を促進させ、伸線加工性を劣化させる元素である。そのため、N含有量の上限を0.0050%とした。なお、N含有量の下限は、現状の精錬技術と製造コストを考慮し、0.0010%とする。
 以上の元素が、本実施形態における高炭素鋼線材の基本成分であり、上記元素以外の残部は、Fe及び不純物である。しかしながら、この基本成分に加え、残部のFeの一部の代わりに、本実施形態における高炭素鋼線材では、脱酸効果や、強度、靭性、延性等の線材の機械的特性の向上を目的として、Al、Ti、B、Cr、Ni、V、Cu、Mo、Nb、Ca、Mg、Zrの1種または2種以上の元素を後述する範囲内で含有してもよい。
 Al:0.0001%~0.010%
 Alは、脱酸元素として機能するとともに、硬質非変形のアルミナ系非金属介在物を生成して、線材の延性を劣化させる元素である。そのため、Al含有量の上限を0.010%とした。なお、Al含有量の下限は、現状の精錬技術と製造コストとを考慮し、0.0001%とする。
 Ti:0.001%~0.010%
 Tiは、脱酸作用を有する元素である。また、窒化物を形成し、オーステナイト粒径の粗大化を抑制する効果を有する。ここで、Ti量が0.001%未満では、上述した効果が不十分となる。一方、Ti量が0.010%を超えると、粗大な炭窒化物(TiCN等)によって加工性が低下するおそれがある。
 B:0.0001%~0.0015%
 Bは、固溶状態でオーステナイト中に存在する場合、粒界に濃化してフェライト、擬似パーライト、ベイナイト等の非パーライト析出の生成を抑制し伸線加工性を向上させる。そのため、0.0001%以上の含有が好ましい。一方、0.0015%を超えて含有させると、粗大なFe23(CB)などのボロン炭化物が生成し、線材の伸線加工性が劣化する。そのため、B含有量の上限を0.0015%とすることが好ましい。
 Cr:0.05%~0.50%
 Crは、パーライトのラメラ間隔を微細化し、線材の強度や伸線加工性等を向上させるのに有効な元素である。この様な作用を有効に発揮させるには0.05%以上の含有が好ましい。一方、Cr含有量が0.50%を超えると、パーライト変態が終了するまでの時間が長くなり、線材中にマルテンサイトやベイナイトなどの過冷組織が生じる恐れがある。さらに、メカニカルデスケーリング性も悪くなる。そのため、Cr含有量の上限を0.50%とすることが好ましい。
 Ni:0.05~0.50%
 Niは、線材の強度上昇にはあまり寄与しないが、高炭素鋼線材の靭性を高める元素である。この様な作用を有効に発揮させるには0.05%以上の含有が好ましい。一方、Niを0.50%を超えて含有させるとパーライト変態が終了するまでの時間が長くなる。そのため、Ni含有量の上限を0.50%とすることが好ましい。
 V:0.01%~0.20%
 Vは、フェライト中に微細な炭窒化物を形成することにより、加熱時のオーステナイト粒の粗大化を防止して、線材の延性を向上させる。また、熱間圧延後の強度上昇にも寄与する。この様な作用を有効に発揮させるには、0.01%以上の含有が好ましい。しかし、Vを0.20%を超えて含有させると、炭窒化物の形成量が多くなり過ぎ、かつ、炭窒化物の粒子径も大きくなる。そのため、V含有量の上限を0.20%とすることが好ましい。
 Cu:0.05%~0.20%
 Cuは、高炭素鋼線の耐食性を高める効果がある。この様な作用を有効に発揮させるには0.05%以上の含有が好ましい。しかし、Cuを0.20%を超えて含有させると、Sと反応して粒界中にCuSを偏析して、線材の製造工程において、鋼塊や線材などに疵を発生させる。この様な悪影響を防止するためには、Cu含有量の上限を0.20%とすることが好ましい。
 Mo:0.05%~0.20%
 Moは、高炭素鋼線の耐食性を高める効果がある。この様な作用を有効に発揮させるには0.05%以上の含有が好ましい。一方、Moを0.20%を超えて含有させるとパーライト変態が終了するまでの時間が長くなる。そのため、Mo含有量の上限を0.20%とすることが好ましい。
 Nb:0.01%~0.10%
 Nbは、高炭素鋼線の耐食性を高める効果がある。この様な作用を有効に発揮させるには0.01%以上の含有が好ましい。一方、Nbを0.10%を超えて含有させるとパーライト変態が終了するまでの時間が長くなる。そのため、Nb含有量の上限を0.10%とすることが好ましい。
 Ca:0.0005%~0.0050%
 Caは、硬質なアルミナ系介在物を低減する元素である。また、Caは、微細な酸化物として生成する元素である。その結果、鋼線材のパーライトブロックサイズが微細化し、鋼線材の延性が向上する。これら効果を得るためには、Ca含有量が0.0005%~0.0050%であることが好ましい。より好ましくは、Ca含有量が0.0005%~0.0040%である。Ca含有量が0.0050%を超えると、粗大な酸化物が形成されて、伸線時の断線を引き起こす場合がある。
 Mg:0.0005%~0.0050%
 Mgは、微細な酸化物として生成する元素である。その結果、鋼線材のパーライトブロックサイズが微細化し、鋼線材の延性が向上する。この効果を得るためには、Mg含有量が0.0005%~0.0050%であることが好ましい。より好ましくは、Mg含有量が0.0005%~0.0040%である。Mg含有量が0.0050%を超えると、粗大な酸化物が形成されて、伸線時の断線を引き起こす場合がある。
 Zr:0.0005%~0.010%
 Zrは、ZrOとして晶出してオーステナイトの晶出核となるため、オーステナイトの等軸率を高め、オーステナイト粒を微細化する元素である。その結果、鋼線材のパーライトブロックサイズが微細化し、鋼線材の延性が向上する。この効果を得るためには、Zr含有量が0.0005%~0.010%であることが好ましい。より好ましくは、Zr含有量が0.0005%~0.0050%である。Zr含有量が0.010%を超えると、粗大な酸化物が形成されて、伸線時の断線を引き起こす場合がある。
 次に、本実施形態に係る高炭素鋼線材の組織と機械的特性とについて説明する。
 パーライト組織を主要組織とする本実施形態に係る高炭素鋼線材において、長手方向に垂直な断面における初析フェライトやベイナイト、疑似パーライト、初析セメンタイトなどの非パーライト組織の面積率が5%を超えると、伸線加工時に亀裂が発生しやすくなり伸線加工性が劣化する。このためパーライト組織の面積率を95%以上とする。非パーライト組織は少ない方が亀裂の発生を抑制できるため、上限を100%とする。
 本実施形態に係る高炭素鋼線材のパーライト面積率とは、Dを線径としたとき、表層部、1/2D部、1/4D部のそれぞれにおけるパーライトの面積率の平均面積率を示す。
 パーライト面積率の測定は以下の方法で行えばよい。すなわち、高炭素鋼線材のC断面、即ち長手方向に垂直な断面を樹脂埋め込み後、アルミナ研磨し、飽和ピクラールにて腐食し、SEM観察を実施する。以下、線材の表面から中心に向けて50μmまでの範囲を表層部とする。SEM観察における観察領域は、Dを線径としたとき、表層部、1/4D部、1/2D部とする。そして、各領域にて、倍率3000にて写真を45°おきに8箇所で撮影する。そして、非パーライト組織である、セメンタイトが粒状に分散した擬似パーライト部、板状セメンタイトが周囲より3倍以上の粗いラメラ間隔で分散しているベイナイト部、旧オーステナイト粒界に沿って析出した初析フェライト部、及び初析セメンタイト部を目視により塗り分け、それぞれの面積率を、画像解析により測定する。そして測定した非パーライト組織それぞれの面積率を合計し、非パーライト面積率とする。パーライト組織の面積率は、100%から非パーライト面積率を減じて求める。
 パーライトブロックはフェライトの結晶方位が同じと見なせる領域であり、平均ブロック粒径が微細になるほど線材の延性が向上する。平均ブロック粒径が30μmを超えると線材の延性が低下し、伸線加工の際に断線が発生しやすくなる。一方、平均ブロック粒径を10μm未満とすると、引張強さが上昇し伸線加工の際に変形抵抗が大きくなるので、加工コストが増加する。また、ブロック粒径の標準偏差が20μmを超えると、ブロック粒径のバラツキが大きくなり伸線加工の際に断線頻度が増加する。なお、ブロック粒径とは、パーライトブロックが占める面積と同じ面積となる円の直径である。
 パーライトブロックのブロック粒径は次の方法で得られる。線材のC断面を、樹脂に埋め込み後、切断研磨する。そして、C断面中心部において、500μm×500μmの領域をEBSDにより解析する。測定ステップは1μmとして、この領域における方位差9°以上となる界面をパーライトブロックの界面とする。そして、その界面で囲まれた5ピクセル以上、かつ前記500μm×500μmの測定境界を含まない領域を、一つのパーライトブロックとして解析する。このパーライトブロックの円相当径の平均値を平均ブロック粒径とする。
 線材の引張強さが760×Ceq.+325MPaを超えると、伸線加工の際に変形抵抗が大きくなる。その結果、伸線加工の際の引抜き力が大きくなり、加工コストが増加する。また、線材の引張強さが760×Ceq.+255MPa未満では、断線率が高くなり、伸線加工性が劣化する。線材の引張試験での絞り値が-65×Ceq.+96(%)未満になると、断線率が高くなり、伸線加工性が劣化する。また、引張試験での絞り値の標準偏差が6%を超えると、絞り値のバラつきが大きくなり、伸線加工性が劣化する。なお、Ceq.は下記式(1)により得られる。
 Ceq.=C(%)+Si(%)/24+Mn(%)/6 ・・・ 式(1)
 線材の引張強さ、及び絞り値を求めるための引張試験は、JIS Z 2241に準拠して行う。線材の長手方向から9B号試験片を連続して16本採取した。試験片の長さは400mmとして、リング状に巻き取った線材の少なくも2リング分を含むように試験片を採取した。この試験片を用いて、平均の引張強さ、及び平均の絞り値を求める。
 引張試験での絞り値の標準偏差は16本の絞り値のデータより求める。
 次に、本実施形態に係る高炭素鋼線材の製造方法について説明する。
 本実施形態では製造方法を特に限定しないが、例として以下のような方法で、本実施形態の特徴を有する高炭素鋼線材を製造することができる。
 本実施形態では、上述の化学成分からなる鋼片に対して、1000℃~1100℃に加熱して熱間圧延を行って線材とし、前記線材を800℃~900℃で巻き取り、巻き取り後、40℃/秒~60℃/秒の1次冷却速度で3秒以上7秒以下の1次冷却を行い、600℃~630℃まで1次冷却する。パーライトの平均ブロック粒径を本発明の範囲とし、かつ平均引張強さを本発明の範囲とするためには1次冷却速度の制御が有効である。その後、630℃~600℃の温度域に15秒~50秒間滞留させる。パーライトブロック粒径の標準偏差を小さくするためには、前記温度域での滞留処理が有効である。その後、5℃/秒~30℃/秒の2次冷却速度で300℃以下まで2次冷却を行う。この場合、2次冷却の終点温度の下限は、常温(25℃)として良い。本実施形態に係る高炭素鋼線材は、上述の方法により製造可能となる。この製造方法によって、線材圧延後の冷却過程での再昇温は不要となり、高炭素鋼線材を安価に製造できる。
 次に、本発明の実施例を挙げながら、本発明の技術的内容について説明する。しかしながら、実施例における条件は、本発明の実施可能性及び効果を確認するために採用した条件例であり、本発明は、この条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1に示す化学成分を有する鋼のビレットを加熱後、熱間圧延により直径5.5mmの線材とし、所定の温度にて巻き取り後、ステルモア設備により冷却を行った。
 冷却後の線材を用いて、線材のC断面の組織観察及び引張試験を行った。伸線加工性は線材のスケールを酸洗にて除去した後、ボンデ処理によりリン酸亜鉛皮膜を付与した長さ4mの線材を10本用意し、アプローチ角10度のダイスを使用して、1パス当たりの減面率を16%~20%とする単頭式伸線を行った。そして、伸線破断する限界の真ひずみの平均値を求めた。
 表2に製造条件、組織及び機械的特性を示す。表2中の「滞留時間」は、630℃~600℃の温度域での滞留時間を示す。表2において、実施例No.1、3、5、8、10、13、15、20は本発明の請求範囲を満たしていなかった。実施例No.1は成分、パーライト組織の面積率、及び引張強さが本発明の範囲を満たしていなかった。伸線断線する歪みが、本発明の範囲を満たす実施例と比べ低くなっていた。実施例No.3は、パーライト組織の面積率、平均ブロック粒径、引張強さ、及び絞り値が本発明の範囲を満たしていなかった。同一成分で本発明の範囲を満たす実施例No.2と比べ、伸線断線するひずみが低くなっていた。実施例No.5は平均ブロック粒径、ブロック粒径の標準偏差、及び絞り値が本発明の範囲を満たしていなかった。同一成分で本発明の範囲を満たす実施例No.4と比べ、伸線断線するひずみが低くなっていた。実施例No.8はパーライト組織の面積率、及び引張強さが本発明の範囲を外れており、同一成分で本発明の範囲を満たす実施例No.7と比べ、伸線断線するひずみが低くなっていた。実施例No.10はブロック粒径の標準偏差、及び絞り値の標準偏差が本発明の範囲を外れており、同一成分で本発明の範囲を満たす実施例No.9と比べ、伸線断線するひずみが低くなっていた。実施例No.13は平均ブロック粒径、及び絞り値が本発明の範囲を外れており、同一成分で本発明の範囲を満たす実施例No.12と比べ、伸線断線するひずみが低くなっていた。実施例No.15は平均ブロック粒径、ブロック粒径の標準偏差、絞り値が本発明の範囲を外れており、同一成分で本発明の範囲を満たす実施例No.14と比べ、伸線断線するひずみが低くなっていた。実施例No.20は、C量が本発明の上限を超えており、伸線断線する歪みが、本発明の範囲を満たす実施例と比べ低くなっていた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、高い生産性の下に歩留りよく廉価に、スチールコードやソーイングワイヤなどの用途に好適な、伸線加工性に優れた高強度の高炭素鋼線材を提供することができる。よって、本発明は、線材製造産業において、産業上の利用可能性を充分に有する。

Claims (2)

  1.  化学成分として、質量%で、
    C:0.70%~1.20%、
    Si:0.10%~1.2%、
    Mn:0.10%~1.0%、
    P:0.001%~0.012%、
    S:0.001%~0.010%、
    N:0.0010%~0.0050%
    を含有し、残部がFe及び不純物からなり、
     長手方向に垂直な断面において、パーライトの面積率が95%以上100%以下であり、
     前記パーライトの平均ブロック粒径が10μm~30μmであり、ブロック粒径の標準偏差が20μm以下であり、
     C(%)、Si(%)及びMn(%)をそれぞれ、C、Si、Mnの質量%での含有量として、Ceq.を下記式(1)により求めたとき、引張強さが760×Ceq.+255MPa以上760×Ceq.+325MPa以下であり、かつ、引張試験での絞り値が-65×Ceq.+96(%)以上であり、かつ、前記絞り値の標準偏差が6%以下であることを特徴とする伸線加工性に優れた高炭素鋼線材。
    Ceq.=C(%)+Si(%)/24+Mn(%)/6 ・・・ 式(1)
  2.  前記化学成分として、質量%で、
    Al:0.0001%~0.010%、
    Ti:0.001%~0.010%、
    B:0.0001%~0.0015%、
    Cr:0.05%~0.50%、
    Ni:0.05%~0.50%、
    V:0.01%~0.20%、
    Cu:0.05%~0.20%、
    Mo:0.05%~0.20%、
    Nb:0.01%~0.10%、
    Ca:0.0005%~0.0050%、
    Mg:0.0005%~0.0050%、
    Zr:0.0005%~0.010%
    からなる群から選択される1種または2種以上をさらに含有することを特徴とする請求項1に記載の伸線加工性に優れた高炭素線材。
PCT/JP2015/071969 2014-08-08 2015-08-03 伸線加工性に優れた高炭素鋼線材 WO2016021556A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580042546.6A CN106574343B (zh) 2014-08-08 2015-08-03 拉丝加工性优异的高碳钢线材
US15/329,455 US10487379B2 (en) 2014-08-08 2015-08-03 High-carbon steel wire rod with excellent wire drawability
EP15830061.6A EP3165626B1 (en) 2014-08-08 2015-08-03 High carbon steel wire having excellent drawability
JP2016540222A JP6264461B2 (ja) 2014-08-08 2015-08-03 伸線加工性に優れた高炭素鋼線材
KR1020177002972A KR101913048B1 (ko) 2014-08-08 2015-08-03 신선 가공성이 우수한 고탄소강 선재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-162373 2014-08-08
JP2014162373 2014-08-08

Publications (1)

Publication Number Publication Date
WO2016021556A1 true WO2016021556A1 (ja) 2016-02-11

Family

ID=55263821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071969 WO2016021556A1 (ja) 2014-08-08 2015-08-03 伸線加工性に優れた高炭素鋼線材

Country Status (6)

Country Link
US (1) US10487379B2 (ja)
EP (1) EP3165626B1 (ja)
JP (1) JP6264461B2 (ja)
KR (1) KR101913048B1 (ja)
CN (1) CN106574343B (ja)
WO (1) WO2016021556A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021574A1 (ja) * 2016-07-29 2018-02-01 新日鐵住金株式会社 高強度鋼線
EP3527682A4 (en) * 2016-10-11 2020-03-11 Nippon Steel Corporation STEEL WIRE AND COATED STEEL WIRE

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108193017B (zh) * 2017-12-08 2020-08-11 安泰科技股份有限公司 一种加锆高碳、微合金化的高强度碳素纯净钢及制备方法
CN108149133B (zh) * 2017-12-08 2020-12-18 安泰科技股份有限公司 一种加硼高碳、微合金化的高强度碳素纯净钢及制备方法
KR101987670B1 (ko) * 2017-12-22 2019-09-27 주식회사 포스코 내부 재질이 균일한 고탄소 선재 및 그 제조 방법
JP7063394B2 (ja) * 2018-10-16 2022-05-09 日本製鉄株式会社 熱間圧延線材
JP7131687B2 (ja) * 2019-03-06 2022-09-06 日本製鉄株式会社 熱間圧延鋼板およびその製造方法
CN114182164A (zh) * 2021-10-26 2022-03-15 南京钢铁股份有限公司 一种抗拉强度≥4000MPa钢帘线用钢及生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295448A (ja) * 1992-04-21 1993-11-09 Nippon Steel Corp 過共析鋼線材の製造方法
JP2004137597A (ja) * 2002-09-26 2004-05-13 Kobe Steel Ltd 伸線前の熱処理が省略可能な伸線加工性に優れた熱間圧延線材
WO2007139234A1 (ja) * 2006-06-01 2007-12-06 Nippon Steel Corporation 高延性の高炭素鋼線材
WO2010066708A1 (en) * 2008-12-09 2010-06-17 Nv Bekaert Sa Patenting of steel wire in tin, and the steel wire resulting therefrom
JP2012072492A (ja) * 2010-08-30 2012-04-12 Kobe Steel Ltd 伸線性に優れた高強度ばね用鋼線材およびその製造方法、並びに高強度ばね

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562143A (en) * 1978-10-30 1980-05-10 Nippon Steel Corp Steel bar for forward extrusion and drawing
JP3061977B2 (ja) 1992-11-16 2000-07-10 日立金属株式会社 高強度低熱膨張合金
JP3536684B2 (ja) * 1998-08-12 2004-06-14 住友金属工業株式会社 伸線加工性に優れた鋼線材
JP3681712B2 (ja) * 2001-06-28 2005-08-10 株式会社神戸製鋼所 伸線性に優れた高炭素鋼線材およびその製造方法
JP2005206853A (ja) 2004-01-20 2005-08-04 Kobe Steel Ltd 伸線加工性に優れた高炭素鋼線材およびその製造方法
JP4621133B2 (ja) 2004-12-22 2011-01-26 株式会社神戸製鋼所 伸線性に優れた高炭素鋼線材およびその製法
JP5162875B2 (ja) 2005-10-12 2013-03-13 新日鐵住金株式会社 伸線特性に優れた高強度線材およびその製造方法
WO2008044356A1 (fr) 2006-10-12 2008-04-17 Nippon Steel Corporation Fil d'acier à résistance élevée présentant une excellente ductilité et son procédé de fabrication
FR2921256B1 (fr) 2007-09-24 2009-12-04 Oreal Composition pour la coloration de fibres keratiniques comprenant au moins un colorant direct a fonction disulfure/thiol et au moins un polymere a fonction thiol et procede utilisant la composition
JP5503516B2 (ja) 2010-12-15 2014-05-28 株式会社神戸製鋼所 乾式伸線性に優れた高炭素鋼線材およびその製造方法
JP5503515B2 (ja) 2010-12-15 2014-05-28 株式会社神戸製鋼所 乾式伸線性に優れた高炭素鋼線材およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295448A (ja) * 1992-04-21 1993-11-09 Nippon Steel Corp 過共析鋼線材の製造方法
JP2004137597A (ja) * 2002-09-26 2004-05-13 Kobe Steel Ltd 伸線前の熱処理が省略可能な伸線加工性に優れた熱間圧延線材
WO2007139234A1 (ja) * 2006-06-01 2007-12-06 Nippon Steel Corporation 高延性の高炭素鋼線材
WO2010066708A1 (en) * 2008-12-09 2010-06-17 Nv Bekaert Sa Patenting of steel wire in tin, and the steel wire resulting therefrom
JP2012072492A (ja) * 2010-08-30 2012-04-12 Kobe Steel Ltd 伸線性に優れた高強度ばね用鋼線材およびその製造方法、並びに高強度ばね

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021574A1 (ja) * 2016-07-29 2018-02-01 新日鐵住金株式会社 高強度鋼線
EP3527682A4 (en) * 2016-10-11 2020-03-11 Nippon Steel Corporation STEEL WIRE AND COATED STEEL WIRE

Also Published As

Publication number Publication date
JPWO2016021556A1 (ja) 2017-05-25
CN106574343B (zh) 2019-06-25
EP3165626A1 (en) 2017-05-10
US10487379B2 (en) 2019-11-26
EP3165626B1 (en) 2021-10-06
KR101913048B1 (ko) 2018-10-29
US20170321309A1 (en) 2017-11-09
CN106574343A (zh) 2017-04-19
KR20170028396A (ko) 2017-03-13
JP6264461B2 (ja) 2018-01-24
EP3165626A4 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP5939359B2 (ja) 高炭素鋼線材及びその製造方法
JP5114684B2 (ja) 延性に優れた線材及び高強度鋼線並びにそれらの製造方法
JP5162875B2 (ja) 伸線特性に優れた高強度線材およびその製造方法
JP5233281B2 (ja) 延性に優れた高強度鋼線およびその製造方法
JP6264461B2 (ja) 伸線加工性に優れた高炭素鋼線材
JP6264462B2 (ja) 伸線加工用鋼線
WO2012124679A1 (ja) 鋼線材及びその製造方法
JP6229792B2 (ja) 高強度スチールコード用線材
JP2010270391A (ja) 延性に優れた高強度鋼線用線材及び鋼線並びにその製造方法
JP6229793B2 (ja) 高強度スチールコード用フィラメント
JP2007131945A (ja) 延性に優れた高強度鋼線およびその製造方法
WO2020080415A1 (ja) 熱間圧延線材
JP2018197375A (ja) 伸線加工用熱間圧延線材
JP6648516B2 (ja) 伸線加工用熱間圧延線材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540222

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15329455

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177002972

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015830061

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015830061

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE