WO2015023027A1 - 지방족 폴리카보네이트 및 이의 방향족 폴리에스터 공중합체로 구성된 매크로-폴리올 - Google Patents

지방족 폴리카보네이트 및 이의 방향족 폴리에스터 공중합체로 구성된 매크로-폴리올 Download PDF

Info

Publication number
WO2015023027A1
WO2015023027A1 PCT/KR2013/009222 KR2013009222W WO2015023027A1 WO 2015023027 A1 WO2015023027 A1 WO 2015023027A1 KR 2013009222 W KR2013009222 W KR 2013009222W WO 2015023027 A1 WO2015023027 A1 WO 2015023027A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeating unit
macro
formula
polyol
aliphatic polycarbonate
Prior art date
Application number
PCT/KR2013/009222
Other languages
English (en)
French (fr)
Inventor
이분열
전종엽
박지혜
이정재
황은영
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to ES13891408T priority Critical patent/ES2853930T3/es
Priority to US14/909,568 priority patent/US20160177027A1/en
Priority to JP2016533000A priority patent/JP6420833B2/ja
Priority to EP13891408.0A priority patent/EP3020745B1/en
Priority to CN201380078810.2A priority patent/CN105473636B/zh
Publication of WO2015023027A1 publication Critical patent/WO2015023027A1/ko
Priority to US15/891,644 priority patent/US20180179333A1/en
Priority to US15/891,642 priority patent/US10793671B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/42Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters

Definitions

  • the present invention relates to a macro-polyol composed of an aliphatic polycarbonate and an aromatic polyester copolymer thereof and a method for preparing the same, and more particularly, to an aliphatic polycarbonate which can be utilized as a polyurethane raw material, a coating material, a lubricant, and the like.
  • Aromatic polyester copolymer macro-polyols and methods for preparing the same are particularly preferred.
  • Aliphatic polycarbonates are biodegradable, environmentally friendly polymers.
  • the most suitable method for mass production of aliphatic polycarbonates is the condensation reaction of dimethyl carbonate (DMC) with various diols.
  • DMC dimethyl carbonate
  • DMC is a low cost compound that was previously manufactured from toxic phosgene, but is now being manufactured in large quantities due to the development of carbon monoxide or more environmentally friendly processes made from carbon dioxide.
  • Much literature has been reported on the condensation reaction of DMC with diols. However, there is usually a limitation in obtaining a polymer having a slow reaction rate and a high molecular weight. At present, an oligomeric macro-diol having a molecular weight of several thousand and a terminal of -OH has been prepared and used in a small amount as a polyurethane raw material.
  • Polyurethane is a material that has been manufactured and used in more than about 10 million tons of the world and can be used for various purposes such as thermoplastic or thermosetting plastics or elastomers.
  • the poly-ether compound obtained by ring-opening polymerization of ethylene oxide or propylene oxide is mainly used for the macro-polyol whose terminal used for polyurethane is -OH, and an aliphatic polyester-diol or polyol is partially used.
  • Aliphatic polycarbonate-diols or polyols are used in relatively small amounts and are known to be excellent in hydrolysis resistance and degradation resistance by light and oxygen (EP 302712).
  • the problem to be solved by the present invention is to develop a macro-polyol composed of an aliphatic polycarbonate and an aromatic polyester copolymer thereof and a preparation method thereof.
  • the repeating unit of -OAO- and the repeating unit of Z (O-) a are connected by carbonyl [-C (O)-] or combined with hydrogen to form an -OH terminal, and the number of moles of -OH terminals
  • An aliphatic polycarbonate macro-polyol having a value of aZ to aZ + 0.2Z when the molar number of repeating units of Z (O-) a is Z is provided.
  • A is one or two or more substituted or unsubstituted alkylenes having 3 to 60 carbon atoms; a is an integer of 2 to 4, when a is 2, Z is alkylene having 3 to 60 substituted or unsubstituted carbons, and when a is 3, Z is a tree having 3 to 60 substituted or unsubstituted carbons.
  • the term “macro-diol” means a linear polymer having a degree of polymerization of 5 to 25 in which all of the terminals are -OH, and the term “macro-polyol” refers to a branched polymer having a degree of polymerization of 5 to 25 in which all of the terminals are -OH. Unless otherwise specified, “macro-polyol” means “macro-diol”.
  • alkyl includes straight, branched or cyclic hydrocarbon radicals
  • alkylene refers to a divalent radical derived from alkyl.
  • alkylene includes methylene, ethylene, isobutylene, cyclohexylene, cyclopentylethylene, 2-propenylene, 3-butynylene and the like.
  • Alkylene includes the case containing -O- or phenylene in the main chain.
  • -NR c R c is meant to include -NH 2 , -NH-alkyl, N-pyrrolidinyl and N-morpholinyl.
  • substituted alkyl is -alkylene-O-alkyl, -alkylene-heteroaryl, -alkylene-cycloheteroalkyl, -alkylene-C (O) OR b , -alkylene-C (O ) NR b R b , and —CH 2 —CH 2 —C (O) —CH 3 .
  • the one or more substituents may be selected with the atoms to which they are attached to form a cyclic ring comprising cycloalkyl and cycloheteroalkyl.
  • Figure 1 shows a comparison between the conventional method for preparing aliphatic polycarbonate macro-diol and the method devised in the present invention.
  • HOAOH condensing diol
  • DMC base catalyst
  • removing methanol to prepare an aliphatic polycarbonate having a large molecular weight of 10,000 or more in number average molecular weight
  • the transesterification reaction of the second stage is caused by the mechanism of Scheme 1 by the catalyst used in the first stage and proceeds very quickly at the condensation reaction temperature (180-190 ° C.) to reach equilibrium within several hours. . Reaching equilibrium means that the -OAO- repeating unit of Scheme 1 and the repeating unit of Z (O-) a are randomly distributed in or between the polymer chains.
  • Figure 2 is a macro obtained when a -OAO- repeat unit and Z (O-) 2 repeat unit is randomly distributed by adding a diol [Z (OH) 2 ] compound as a cleavage material in a second step and transesterification Shows the chain distribution of the diol
  • the degree of polymerization (DP) of the resulting macro-diol is determined by the total number of moles ( N + Z ) of the -OAO- and Z (O-) 2 repeating units and the number of moles of the polymer chain formed in the first step. It is divided by the sum of the number of moles ( Z ) of Z (OH) 2 compound added in step 2 .
  • the number of moles (N / n) of the polymer chain formed in the first step was negligible compared to the number of moles of Z (OH) 2 compound ( Z ) introduced in the second step. So that DP becomes ( N + Z ) / Z.
  • the Z (O-) 2 repeating units when considering a statistical probability in a number of DP f k is the k chain may contain a [(N + Z) / Z closest to the value of the natural number] a C k ( 1-1 / a) ak (1 / a) k .
  • Examples 1-9 prepared by a macro in-look calculate f k, for the case of diols such as high as about 90% by introducing the HOAOH 111 mmol of yield because the obtained aliphatic polycarbonate with a molecular weight value of N At about 100 and 16.7 mmol of Z (OH) 2 compound was added as cleavage material in the second step, so the DP, a value, is about 7 [(100 + 16.7) /16.7].
  • f 0 probability of the number of chains with no Z (O-) 2 monomer
  • f 1 probability of the number of chains with one Z (O-) 2 monomer
  • f 2 [Z (O- ) the probability of two units of the chain can have two]
  • the probability of the number of chains is calculated as 35%, 40%, 19%, 5.3%, and 0.9%, respectively.
  • the total number of moles of -OH during the cleavage reaction remains unchanged.
  • a triol [Z (OH) 3 ] compound is introduced as a cleavage material and subjected to an ester exchange reaction to randomly distribute -OAO- repeating units and Z (O-) 3 repeating units within or between polymer chains.
  • the statistical chain distribution of the obtained macro-polyols can be deduced in the same way (FIG. 3).
  • This invention is based on the technique which can manufacture aliphatic polycarbonate with a large molecular weight using a base catalyst.
  • the development of technology capable of efficiently producing aliphatic polycarbonates having molecular weights of tens of thousands or more is still insignificant.
  • the calculation formulas shown in FIGS. 2 and 3 show that the number of moles of the polymer chain to be cleaved is very small compared to the number of moles of Z (OH) 2 compound ( Z ) introduced in the second step because the DP of the polymer formed in the first step is very large. It is assumed.
  • the number of moles of the polymer chain to be formed in the first step can not be ignored compared to the number of moles of Z (OH) 2 compound ( Z ) introduced as a cutting agent.
  • the number of chain moles of the resulting macro-polyol is the sum of the number of moles of the polymer chain to be cut in the first step (ie N / n) and the number of moles of Z (OH) 2 compound introduced in the second step This results in an increase in the number of chains ( x 0 ) having no Z (O-) a units in the finally obtained macro-polyol by the number of moles of the polymer chain to be cleaved.
  • macro-diol chains that do not contain any Z (O-) a unit have high crystallinity, causing the final material to be in waxy form or to precipitate and suspended in oil as crystals.
  • Macro-polyols in waxy or suspended oil form are not suitable for use as polyurethane raw materials, coatings or lubricants.
  • the linear polymer chain has a disadvantage that can not participate in the crosslinking reaction.
  • the molecular weight of the polymer to be cut in the first step is sufficiently large that the number of moles of the polymer chain (ie, N / n values in FIGS. 2 and 3) is the mole of the cutting agent introduced in the second step (ie, FIG. 2). And 3) less than 10% of the Z value).
  • N / n values in FIGS. 2 and 3 is the mole of the cutting agent introduced in the second step (ie, FIG. 2).
  • the following equation is derived.
  • the DP of the macro-polyol of interest ie a '
  • n 35, that is, 7 times that of DP of the macro-polyol obtained by cutting DP of the polymer to be cleaved
  • n' 20
  • DP of cutting polymer is cut. This is 8.5 times the DP of the final macro-polyol obtained.
  • the number of moles of the polymer chain to be cleaved formed in the first step (that is, the N / n value in FIGS. 2 and 3) becomes zero. It becomes less than 10% of the number of moles of the cutting agent introduced in step 2 (that is, Z value in FIGS. 2 and 3).
  • the characteristic conditions are sufficient if the molecular weight of the cleaved polymer is about 10 times or more of the molecular weight of the finally obtained macro-polyol.
  • the molecular weight of the polymer to be cut is 10 times or more of the molecular weight of the obtained macro-polyol.
  • the number of chain moles of the polymer to be cut is less than 5% relative to the number of moles of the cutting agent.
  • the molecular weight of the repeating unit of the cleaving agent and the polymer to be cleaved is approximated, it is sufficient that the molecular weight of the cleaved polymer is about 20 times or more of the molecular weight of the finally obtained macro-polyol. In the following Examples, the molecular weight of the polymer to be cleaved is most often 20 times or more the molecular weight of the obtained macro-polyol.
  • a polymer having a very high molecular weight which is a feature of the present invention, is Z (OH) a
  • Z (OH) inputs the number of moles of terminals contained in the cutting polymer. a It is not negligible compared to the number of moles of -OH, so that a large amount of terminals included in the polymer cut into the finally obtained macro-polyol is included.
  • the terminal is -OH and -C (O) OCH 3 Is possible.
  • the polymers prepared by this method are all -C (O) OCH 3 And thus, macromolecules can be prepared by cleaving these polymers, which are not significantly molecular weight, resulting in significant amounts of -C (O) OCH 3 Macro-polyols comprising the terminals are obtained and are not preferred for use as polyurethane raw materials.
  • the present invention is -OH and -OCH 3 Is characterized in that to obtain a macromolecular polymer having a very high molecular weight while removing methanol mainly in the state of ⁇ 1: 1 to prepare a macro-polyol (Fig. 1 (b)). By cutting a polymer having a very high molecular weight, it is possible to ignore the number of moles of the terminal included in the polymer to be cut, and thus the terminal may produce a macro-polyol of which -OH is mostly.
  • the reaction yields an aliphatic polycarbonate having a large molecular weight (Fig. 1 (b)).
  • the catalyst used for condensation is used as it is for the subsequent cutting reaction.
  • the catalyst may use a base catalyst composed of lithium, sodium, potassium cations 0.01 to 0.1 mol% compared to HOAOH, 0.02 to 0.05% is preferred.
  • the amount of the catalyst when the amount of the catalyst is too large, adverse effects may occur in increasing the molecular weight, and as the reaction proceeds, the shape of the catalyst may be precipitated, and the physical properties of the finally obtained macro-diol and polyol may be affected. If the amount of the catalyst is less than 0.01 mol%, the reaction rate is too slow to prepare a polymer having a large molecular weight. Most of the HO-A-OH added after the condensation reaction was incorporated into the polymer chain, so that the molar ratio of HOAOH to the initial catalyst was not significantly changed compared to the -OAO- monomer compared to the catalyst in the finally obtained macro-polyol.
  • the catalyst which acts in the present invention and the catalyst present in the last macro-polyol is a salt composed of an alkali cation and an alkoxy anion of the terminal. Even if the base catalyst is not removed or neutralized, the obtained macro-polyol has no change at room temperature, and thus the catalyst component may be used as a catalyst in preparing a polyurethane as it is.
  • the catalyst component can be reacted with dibutyltin dichloride or tertiary amine salt hydrochloride to convert it to a dibutyltin tin compound or tertiary amine, which is a catalyst commonly used in polyurethane production.
  • All of the base catalysts initially introduced may be used for the production of urethane, or may be partially neutralized and partly left as catalysts for the production of polyurethane.
  • As the neutralizing agent of the base catalyst melamine phenylphosphonate or acyl halide may be used.
  • a process for producing aliphatic polycarbonate macro-polyols directly by the conventional method of FIG. 1 (a) has been disclosed (EP 302712; EP 2,036,937; EP 798,328).
  • the polymer having a high molecular weight claimed in the present invention is prepared and then cut, the molar number of -OH terminal and the molar number of repeating units of Z (O-) a are Z, aZ to aZ It is not easy to produce the characteristic macro-polyol material having a value of + 0.2Z.
  • the reaction When preparing the macro-polyol by the conventional condensation method, the reaction must proceed while removing the by-product methanol, which has a problem in that the DMC participating in the condensation is distilled off together with methanol. In this case, it is not easy to control the molecular weight by the composition of the reactant initially added.
  • the initial mole number of -OH groups is the mole number Z of Z (OH) a multiplied by a and the HOAOH mole Number multiplied by two. As the condensation reaction proceeds, the -OH mole number decreases and the value approaches aZ.
  • the -OH mole number is lowered below aZ.
  • many branched polymer chains start to be connected, and the molecular weight rapidly increases to proceed to gelation. It is practically difficult to terminate the reaction by capturing the point at which the number of —OH terminals has a value from aZ to aZ + 0.2Z, more preferably aZ + 0.1Z during this series of condensation runs (see Comparative Example 1).
  • the macro-polyol obtained by the cleavage method by the transesterification reaction which is a characteristic of the present reaction, can accurately predict the distribution of the polymer chain by statistical analysis (Fig. 2-3), but the macro-prepared directly by condensation- Polyols are difficult to predict polymer chain structure distribution.
  • a method of preparing a polycarbonate-polyol by transesterification of polycarbonate-diol with trimethylolpropane (triol compound) or pentaerythritol (tetraol compound) has been patented [US 5,143,997 (1992.09) .01)].
  • disconnected at this time was a macro-diol whose molecular weight of the number average molecular weight 2000 is not large, and a terminal is -OH. That is, a macro-polyol having a molecular weight of 1,000 or less was prepared by cutting the macro-diol prepared according to FIG. 1 (a) with a polyurethane raw material.
  • poly (hexamethylene carbonate) -diol having a number average molecular weight of 2000 was converted to trimethylolpropane (CH 3 C (CH 2 OH) 3 ) or pentaerythritol (C (CH 2 OH) 4 ) and tetrabutyl tie.
  • the poly (hexamethylene carbonate) -polyol having a number average molecular weight of 500 to 1000 was prepared by ester-exchange reaction at 220 ° C. for 8 hours using stannate [(nBuO) 4 Ti] as a catalyst.
  • the present technology cuts a polymer having a large molecular weight, thereby widening the molecular weight range of the prepared macro-polyol, minimizing the number of chains containing no cleavage agent, and differentiating the used catalyst from the existing technology.
  • HOAOH which is a raw material of the repeating unit of -OAO- is selected from the group consisting of the following [Formula 1a] to [Formula 2c], and a of the repeating unit of Z (O-) a is 2, that is, Z (O -) 2 , Z (OH) 2 which is a raw material of Z (O-) 2 provides an aliphatic polycarbonate macro-diol selected from the group consisting of [Formula 1d] to [Formula 1h].
  • Formula 1a-1h is a material that is currently commercially produced in large quantities.
  • HOAOH which is a raw material of the repeating unit of -OAO-
  • [Formula 1a] that is, 1,4-butanediol
  • the remaining 5 to 20 mol% is [Formula 1b] or [Formula 1] 2c]
  • the repeating unit of Z (O-) 2 is 5 to 20 mol% of the repeating unit of -OAO- to provide an aliphatic polycarbonate macro-diol.
  • the 1,4-butanediol of the diol compound is low in unit cost, if the production of the macro-polyol containing a large amount of it is economical.
  • 1,4-butanediol is a compound essential for the production of biodegradable polymers. Recently, commercial processes for producing from coal have been expanded, and in recent years, the process for producing by fermentation from bio-mass is also very active. However, the use of aliphatic polycarbonate-polyols or diols based on 1,4-butanediol is minimal. This is because when the polycarbonate-diol is produced with 1,4-butanediol as a main component, it is obtained in waxy form with high crystallinity. When the macro-polyol is prepared by the conventional condensation of FIG.
  • methanol which is a by-product, needs to be removed, but in the case of 1,4-butanediol, since the break point is low and the polarity is high, it is not easy to selectively remove methanol.
  • the conventional condensation of Fig. 1 (a) is not easy to manufacture.
  • macro-polyols using 1,4-butanediol as the main material have been developed in spite of the low cost of 1,4-butanediol.
  • the main raw material of aliphatic polycarbonate-diol is 1,6-hexanediol, and its unit price is higher than that of 1,4-butanediol.
  • the aliphatic polycarbonate-diol obtained by DMC condensation of 1,6-hexanediol, 1,5-pentanediol, or 1,4-butanediol alone is a polyurethane raw material because it is a crystalline solid.
  • Undesirable [Journal of Applied Polymer Science, Vol. 111, 217-227 (2009). Macro-diols which are commonly used as raw materials for polyurethane production are mucus materials. Two or more diols are typically mixed and condensed with DMC to obtain a mucous material (EP 302712; US 2010/0292497 A1).
  • Aliphatic polycarbonate with high molecular weight was prepared by adding 5-20 mol% of other diols with 1,4-butanediol having a low unit price as a main component, followed by cutting by adding another diol, Z (OH) 2 .
  • Z (OH) 2 Another diol, Z (OH) 2 .
  • HOAOH which is a raw material of a repeating unit of -OAO-
  • Z (OH) is a raw material of a repeating unit of Z (O-) a
  • a provides a branched aliphatic polycarbonate macro-polyol selected from the group consisting of [Formula 2a] to [Formula 2d].
  • the branched macro-polyol is capable of crosslinking reaction in urethane production, which can be usefully used for rigid foams and coatings.
  • HOAOH which is a raw material of the repeating unit of -OAO-
  • 1,4-butanediol 80 to 95 mol% of HOAOH, which is a raw material of the repeating unit of -OAO-
  • 1,4-butanediol 80 to 95 mol% of HOAOH, which is a raw material of the repeating unit of -OAO-
  • the remaining 5 to 20 mol% are represented by [Formula 1b] to [1h].
  • Aliphatic polycarbonate macro-polyols selected from the group consisting of 5 to 20 mol% of repeating units of Z (O-) a relative to the repeating units of -OAO- are commercially attractive.
  • Z (OH) a is a cleaving material
  • Formula 2a is a material that is widely used for commercial use and commercially available when the cleavage using this compound is easy to obtain a mucus material is preferred as a cleavage material (Example 22-35).
  • Another embodiment of the present invention includes a repeating unit of -OAO- and a repeating unit of Z (O-) a , wherein the repeating unit of -OAO- and the repeating unit of Z (O-) a are carbonyl [- An aliphatic polycarbonate-aromatic polyester copolymer macro-polyol linked by a C (O)-] linker and a -C (O) YC (O)-linker or bonded with hydrogen to form an -OH terminal.
  • A is one or two or more substituted or unsubstituted alkylenes having 3 to 60 carbon atoms; a is an integer of 2 to 4, when a is 2, Z is alkylene having 3 to 60 substituted or unsubstituted carbons, and when a is 3, Z is a tree having 3 to 60 substituted or unsubstituted carbons.
  • the present invention is a similar method for producing a high molecular weight aliphatic polycarbonate, by adding a further aromatic diester to the aliphatic polycarbonate-aromatic polyester to prepare a random copolymer, which was cut by Z (OH) a macro Polyols were prepared.
  • the aliphatic polycarbonate-aromatic polyester macro-polyols thus obtained have the same chain structure distribution as analyzed in Figs.
  • HOAOH which is a raw material of the repeating unit of -OAO- is 1,4-butanediol
  • Z (OH) 2 which is a 2 of the repeating unit of Z (O-) a and a raw material of Z (O-) 2 .
  • the aliphatic polycarbonate-aromatic polyester copolymer macro-diol selected from is commercially economical given the cost of the raw materials.
  • the repeating unit of Z (O-) 2 is the repeating unit of -OAO- DPs of the macro-polyols obtained when compared to 5-20 mol% are preferred for application in polyurethane, coating, and lubricant applications.
  • HOC (O) YC (O) OH which is a raw material of the -C (O) YC (O)-linking group is isophthalic acid or phthalic acid, it is preferable to obtain a mucus material (Examples 37-39).
  • Z (OH) a which is a raw material of the repeating unit of Z (O-) a is selected from the group consisting of the above [Formula 2a] to [Formula 2d], a branched macro-polyol can be obtained and thus the poly-crosslinking poly It can be used as urethane raw material.
  • the present invention also provides a process for preparing aliphatic polycarbonate macro-polyols as described above. That is, the first step of preparing an aliphatic polycarbonate having a number average molecular weight of 10,000 or more by condensing HOAOH and DMC while removing methanol using a base catalyst, and adding Z (OH) a to the condensate formed in the first step. It provides a method for producing an aliphatic polycarbonate macro-polyol comprising a second step of the ester exchange reaction.
  • a process for the production of smaller molecular weight (Mn ⁇ 1000) macro-polyols by cleavage of a lower molecular weight (Mn 2000) aliphatic polycarbonate-diol with an ester exchange reaction with a triol or tetraol compound has been disclosed (US) 5,143,997; US 8,344,092).
  • a tetraalkoxy titanium compound was further added and used as a transesterification catalyst.
  • the present invention differs from the process disclosed above in terms of using a simple base catalyst, and also utilizes the catalyst used in the first step of preparing a high molecular weight aliphatic polycarbonate without further adding a base catalyst for the ester exchange reaction.
  • the upper limit of the number average molecular weight of the high molecular weight aliphatic polycarbonate of the present invention is not particularly limited, it may be, for example, 10000 or more and 200000 or less, preferably 10000 or more and 100,000 or less.
  • a lithium, sodium or potassium cation and an alkoxy anion formed by the HO-A-OH deprotonation reaction are used, and 0.01 mol% to 0.1 mol% of the injected HO-A-OH is economically used. It is suitable and suitable for obtaining a high molecular weight polymer in the first step.
  • the present invention is a agent for preparing an aliphatic polycarbonate-aromatic polyester copolymer having a number average molecular weight of 10,000 or more by condensing while removing methanol and a mixture of HOAOH and DMC and MeOC (O) YC (O) OMe using a base catalyst
  • a method for preparing an aliphatic polycarbonate-aromatic polyester copolymer macro-polyol comprising a first step and a second step of transesterifying Z (OH) a to the condensate formed in the first step.
  • the present invention is to prepare aliphatic polycarbonates or aromatic polyester copolymers having a molecular weight of 10,000 or more, and then various alcohol compounds [Z (OH) a ] are added as cutting agents to cleavage of polymer chains through ester-exchange reactions.
  • To produce a macro-polyol having a low molecular weight The macro-polyol prepared by this method has a precise molecular weight control, a polymer chain structure distribution is predictably unique, and the molar number of the -OH terminal is represented by Z as the molar number of the cutting agent Z (OH) a .
  • Z (OH) a the molar number of the cutting agent
  • This easy-to-control cutting method of the present invention enables the preparation of macro-polyols of various structures and compositions, which increases the possibility of use as polyurethane raw materials, coating materials, lubricants and the like.
  • Figure 1 shows a comparison of the traditional process (a) of preparing the aliphatic polycarbonate macro-diol with the process (b) provided by the present invention.
  • Figure 2 shows the statistical chain structure distribution of the macro-diol obtained by using the diol as a cleavage agent.
  • Figure 3 shows the statistical chain structure distribution of the macro-polyol obtained by using triol as a cleavage agent.
  • Example 1-9 After the condensation reaction of [Formula 1a] (+ [Formula 1c]) and DMC, cleavage reaction using [Formula 1d] to [Formula 1h]
  • Step 1 A total of 111 mmol of 1,4-butanediol [Formula 1a] and 1,6-hexanediol [Formula 1c] in the three-necked flask at a ratio (0 mol% or 10 mol%) recorded in Table 1 below was added. NaH (0.056 mmol, 0.05 mol%) was added thereto to form HO (CH 2 ) 4 O - Na +, and then 15.7 g (174 mmol) of dimethyl carbonate (DMC) was added thereto. The mechanical stirrer was connected through one inlet, the other inlet was connected to the manifold attached to the vacuum line and the nitrogen line, and the distillation unit was connected to the other inlet.
  • DMC dimethyl carbonate
  • the reaction vessel was immersed in a 120 ° C. bath and reacted for 1 hour while removing the generated methanol and some DMC at atmospheric pressure.
  • the temperature was increased to 190 ° C., 0.5 hour at 570 mmHg, 1 hour at 380 mmHg, and 2 hours at 190 mmHg to remove the volatiles and reacted for a total of 3.5 hours.
  • 0.3 mmHg of vacuum was continuously applied with a vacuum pump to further react for 2 hours while removing volatiles.
  • Step 2 As a cutting agent, 15 mol% (16.7 mmol) of the diol initially selected from [Formula 1b] to [Formula 1h] was added to the diol, and gradually lowered the temperature from 190 o C to 150 o C. The reaction was carried out for 3 hours so that the cleavage reaction occurred. It was observed that the viscosity dropped sharply within 10 minutes of the start of the reaction.
  • Table 1 The experimental results are summarized in Table 1 below.
  • Table 1 above demonstrates the preparation of aliphatic polycarbonate macro-diols.
  • the cleavage reaction characteristic of the invention shows that an oily (partially waxy) macro-diol having a molecular weight of at least 1/10, more preferably mostly 1/20, is obtained.
  • the HOAOH comprises some [Formula 1b] or [Formula 2c] rather than [Formula 1a] alone, oil-like compounds are obtained better.
  • Example 10-21 After the condensation reaction of [Formula 1a] (+ [Formula 1c]) and DMC, cleavage reaction using [Formula 2a] to [Formula 2d]
  • Second step It was carried out in the same manner as in Example 1-9 using one diol selected from [Formula 2a] to [Formula 2d] as the cutting agent.
  • the experimental results are summarized in Table 2 below.
  • the cleavage reaction of [Chemical Formulas 2a] to [Chemical Formula 2d] was carried out to confirm that a cleavage reaction occurred to form a macro-polyol having a small molecular weight.
  • the molecular weight of the cleaved polymer formed in the first step which is a feature of the present invention, is at least 10 times (mostly 20 times) or more of the molecular weight of the macro-polyol obtained by the final cleavage.
  • HOAOH contains some [Formula 1b] to [Formula 1h] rather than [Formula 1a] alone, it can be seen that an oily compound is better obtained.
  • Example 22-35 After the condensation reaction of [Formula 1a] (+ [Formula 1b] to [Formula 1h]) with DMC, a cleavage reaction using [Formula 2a]
  • Second step 15 mol% (4.43 g, 16.7 mmol) was added to the triol cleavage agent [Formula 2a] initially added, and the reaction was slowly lowered from 190 o C to 150 o C for 3 hours. The cleavage reaction was allowed to occur. It was observed that the viscosity dropped sharply within 10 minutes of the start of the reaction.
  • Table 3 The experimental results are summarized in Table 3 below.
  • Table 3 shows that when the macro-polyol was prepared using a large molecular weight aliphatic polycarbonate prepared using 1,4-butanediol as a main material as the cutting agent [Formula 2a], most oily compounds were obtained. have. Also in this case, it can be confirmed that the molecular weight of the polymer to be cleaved all is at least 10 times (mostly 20 times) or more of the molecular weight of the macro-polyol obtained by the final cleavage.
  • Example 36-39 Condensation reaction of [Formula 1a] with DMC and MeOC (O) YC (O) OMe, followed by cleavage reaction using [Formula 1a]
  • Step 1 1,4-butanediol [Formula 1a] (10.0 g, 111 mmol) was added to a three-necked flask, and NaH (0.111 mmol, 0.1 mol%) was added thereto to add HO (CH 2 ) 4 O - Na After forming + , dimethyl carbonate (DMC) and dimethyl phthalate (or dimethyl isophthalate to dimethyl terephthalate) were added at a ratio recorded in Table 4 below. DMC was added by the number of moles minus the number of moles of phthalate added at 1.57 equivalents to 1,4-butanediol.
  • DMC dimethyl carbonate
  • dimethyl phthalate or dimethyl isophthalate to dimethyl terephthalate
  • the mechanical stirrer was connected through one inlet, the other inlet was connected to the manifold attached to the vacuum line and the nitrogen line, and the distillation unit was connected to the other inlet.
  • the reaction vessel was immersed in a 120 ° C. bath and reacted for 1 hour while removing the generated methanol and some DMC at atmospheric pressure.
  • the reaction temperature was raised to 190 ° C., 0.5 hour at 570 mmHg, 1 hour at 380 mmHg, and 2 hours at 190 mmHg to remove the volatiles for 3.5 hours.
  • the temperature was then increased to 210 degrees and continuously vacuumed at 0.3 mmHg with a vacuum pump to remove the volatiles for further 2 hours.
  • Second step 15 mol% (1.50 g, 16.7 mmol) was added to the diol, which was initially added with 1,4-butanediol [Formula 1a] as a cutting agent, and then gradually decreased in temperature from 210 o C to 150 o C. The reaction was carried out for 3 hours so that the cleavage reaction occurred. It was observed that the viscosity dropped sharply within 10 minutes of the start of the reaction.
  • Table 4 The experimental results are summarized in Table 4 below.
  • Table 4 shows that the aliphatic polycarbonate-aromatic polyester copolymer macro-diol of the novel structure claimed in claims 8-10 is well prepared by the cleavage reaction which is a feature of the present invention. In particular, it can be confirmed that when the isophthalate or phthalate repeating unit is included, it is highly likely to be an oil compound.
  • Example 40-60 Condensation reaction of [Formula 1a] with DMC and MeOC (O) YC (O) OMe and then cleavage reaction using [Formula 2a] to [Formula 2d]
  • First step The same procedure as in Example 36-39 was carried out except that the ratio of the injected dimethylphthalate (or dimethylisophthalate to dimethylterephthalate) was adjusted in the range of 10 mol% to 50 mol%. However, when the ratio is 20 mol% or less, a final reaction of removing volatiles by continuously applying a vacuum of 0.3 mmHg with a vacuum pump was performed at 190 ° C instead of 210 ° C.
  • Second step It was carried out in the same manner as in Example 36-39 using one diol selected from [Formula 2a] to [Formula 2d] as the cutting agent.
  • the experimental results are summarized in Table 5 below.
  • Table 5 shows the preparation of aliphatic polycarbonate-aromatic polyester copolymer macro-diols of various compositions.
  • isophthaletite or phthalate repeating unit when is included, it is confirmed that the likelihood of becoming an oil compound is high.
  • Comparative Example 1 Attempt to prepare low molecular weight diol directly through condensation reaction of [Formula 1a] and DMC
  • 1,4-butanediol [Formula 1a] (10.0 g, 111 mmol) and NaH (0.222 mmol, 0.2 mol%) were added to a three neck flask to form HO (CH 2 ) 4 O - Na + , followed by dimethyl. 15.3 g (170 mmol) of carbonate (DMC) was further added. In order to synthesize the oligomer of the molecular weight thousands of all the terminal is -OH, the experiment was carried out by reducing the amount of DMC than the above example. The mechanical stirrer was connected through one inlet, the other inlet was connected to the manifold attached to the vacuum line and the nitrogen line, and the distillation unit was connected to the other inlet.
  • DMC carbonate
  • the reaction vessel was immersed in a 120 ° C. bath and reacted for 1 hour while removing the generated methanol and some DMC at atmospheric pressure. The temperature was raised to 180 ° C. and reacted at atmospheric pressure for 1 hour until the distilled volatiles (methanol or DMC) were insignificant. After the reaction was carried out at a pressure of 380 mmHg under reduced pressure for 1 hour, samples were taken and analyzed by 1 H NMR. The integrated values corresponding to CH 2 OC (O)-, -OCH 3 and -OH were 10.1: 0.71: 1.0. When the reaction was further performed for 1 hour under the same reduced pressure, it was observed that the reaction progress rate was very slow as the integral value was 11.5: 0.63: 1.0.
  • the reaction was continued for 2 hours under a continuous vacuum of 0.3 mmHg, and 1 H NMR analysis showed that all of the -OCH 3 functional groups disappeared and the terminals were all capped with -OH. , a molecular weight M n is greater than 20000 the polymer to the expected value was obtained.
  • the surrounding -OH functional group is hydrogen-bonded with the alkoxy anion, which is low in nucleophilic attack reactivity, and the reaction rate is also low due to the hydrogen bonding with the surrounding -OH functional group. It is interpreted as a slow reaction because it cannot be removed.
  • the pressure was further reduced to 0.3 mmHg, not only methanol but also butanediol, DMC, and HO (CH 2 ) 4 OC (O) OCH 3 were also removed. It was.
  • the number of linear polymer chains having a large crystallinity without Z (O-) 3 is relatively high.
  • the shape of the polyol was in wax form.
  • the shape of was in the form of a transparent oil suitable for polyurethane and lubricant utilization (Example 30).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

-OAO-의 반복 단위체 및 Z(O-)a의 반복 단위체를 포함하며; 상기 -OAO-의 반복 단위체 및 상기 Z(O-)a의 반복 단위체가 카보닐[-C(O)-]에 의하여 연결되거나 또는 수소와 결합하여 -OH 단말기를 형성하고; 상기 -OH 단말기 몰 수가, 상기 Z(O-)a의 반복 단위체 몰 수를 Z이라고 했을 때, aZ 내지 aZ+0.2Z의 값을 갖는 지방족 폴리카보네이트 매크로-폴리올이 제공된다. 또한, -OAO-의 반복 단위체 및 Z(O-)a의 반복 단위체를 포함하며, 상기 -OAO-의 반복 단위체 및 상기 Z(O-)a의 반복 단위체가 카보닐[-C(O)-] 연결기와 -C(O)YC(O)- 연결기에 의하여 연결되거나 또는 수소와 결합하여 -OH단말기를 형성한 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-폴리올이 제공된다.

Description

지방족 폴리카보네이트 및 이의 방향족 폴리에스터 공중합체로 구성된 매크로-폴리올
본 발명은 지방족 폴리카보네이트 및 이의 방향족 폴리에스터 공중합체로 구성된 매크로-폴리올 및 이의 제조방법에 관한 것으로, 보다 상세하게는, 폴리우레탄 원료 물질, 코팅 재료, 및 윤활제 등으로 활용될 수 있는 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-폴리올 및 이의 제조방법에 관한 것이다.
지방족 폴리카보네이트는 생분해성이 있는 친환경 고분자이다. 지방족 폴리카보네이트를 대량 생산하기에 가장 적합한 방법은 다이메틸카보네이트(DMC)와 다양한 다이올의 축합 반응이다. DMC는 이전에는 유독한 포스젠으로부터 제조되었으나 현재는 일산화탄소 또는 더욱 친환경적으로 이산화탄소로부터 제조되는 공정이 개발되어 대량으로 제조되고 있는 단가가 저렴한 화합물이다. DMC와 다이올의 축합 반응에 관한 많은 문헌이 보고되었다. 그러나, 통상적으로 반응 속도가 느리고 분자량이 큰 고분자를 얻는 데 한계가 있어, 현재 분자량이 수 천이고 단말기가 -OH인 올리고머 형태의 매크로-다이올이 제조되어 폴리우레탄 원료 물질로 소량 사용되고 있다.
폴리우레탄은 세계적으로 약 1천만톤 이상 제조되어 사용되고 있는 물질로 열가소성 또는 열경화성 플라스틱 또는 엘라스토머 등의 다양한 용도가 가능하다. 폴리우레탄에 사용되는 단말기가 -OH인 매크로-폴리올은 에틸렌 옥사이드 또는 프로필렌 옥사이드를 개환중합하여 얻어진 폴리-에테르계 화합물이 주로 사용되고 있고, 지방족 폴리에스터-다이올 또는 폴리올이 일부 사용되고 있다. 지방족 폴리카보네이트-다이올 또는 폴리올은 상대적으로 매우 소량 사용되고 있는데 가수 분해 저항성 및 빛과 산소에 의한 분해 저항성이 우수하다고 알려져 있다(EP 302712).
본 발명이 해결하려는 과제는 지방족 폴리카보네이트 및 이의 방향족 폴리에스터 공중합체로 구성된 매크로-폴리올 및 이의 제조방법을 개발하는 것이다.
본 발명의 과제를 달성하기 위하여,
-OAO-의 반복 단위체 및 Z(O-)a의 반복 단위체를 포함하며,
상기 -OAO-의 반복 단위체 및 상기 Z(O-)a의 반복 단위체가 카보닐[-C(O)-]에 의하여 연결되거나 또는 수소와 결합하여 -OH단말기를 형성하고, -OH 단말기 몰 수가 Z(O-)a의 반복 단위체 몰 수를 Z이라고 했을 때 aZ 내지 aZ+0.2Z의 값을 갖는 지방족 폴리카보네이트 매크로-폴리올을 제공한다.
여기서, A는 하나 또는 두 종 이상의 치환 또는 비치환된 탄소 수 3 내지 60의 알킬렌이고; a는 2 내지 4의 정수이고, a가 2일 경우 Z는 치환 또는 비치환된 탄소 수 3 내지 60의 알킬렌이며, a가 3일 경우 Z는 치환 또는 비치환된 탄소 수 3 내지 60의 트리알킬렌이며, a가 4일 경우 Z는 치환 또는 비치환된 탄소 수 4 내지 60의 또는 테트라알킬렌이다.
본 명세서에서 용어 "매크로-다이올"은 단말기가 모두 -OH인 중합도 5 내지 25의 선형 고분자를 의미하고, 용어 "매크로-폴리올"은 단말기가 모두 -OH인 중합도 5 내지 25의 가지형 고분자를 의미하며, 특별히 언급이 없는 한 "매크로-폴리올"은 "매크로-다이올"을 포함하는 의미이다.
본 명세서에서 용어 "알킬"은 직쇄, 분지쇄 또는 고리형의 탄화수소 라디칼을 포함하며, 용어 "알킬렌"은 알킬로부터 유도되는 2가(divalent) 라디칼을 말한다. 예를 들어 알킬렌은 메틸렌, 에틸렌, 이소부틸렌, 시클로헥실렌, 시클로펜틸에틸렌, 2-프로페닐렌, 3-부티닐렌 등을 포함한다. 알킬렌은 주 사슬 내에 -O- 또는 페닐렌을 함유하는 경우를 포함한다. 본 명세서에 기재된 "치환 또는 비치환된"이라는 표현에서 "치환"은 탄화수소 내의 수소 원자 하나 이상이 각각, 서로 독립적으로, 동일하거나 상이한 치환기로 대체되는 것을 의미한다. 유용한 치환기는 다음을 포함하지만 이에 제한되지 않는다: -Ra, -할로, -O-, =O, -ORb, -SRb, -S-, =S, -NRcRc, =NRb, =N-ORb, 트리할로메틸, -CF3, -CN, -OCN, -SCN, -NO, -NO2, =N2, -N3, -S(O)2Rb, -S(O)2NRb, -S(O)2O-, -S(O)2ORb, -OS(O)2Rb, -OS(O)2O-, -OS(O)2ORb, -P(O)(O-)2, -P(O)(ORb)(O-), -P(O)(ORb)(ORb), -C(O)Rb, -C(S)Rb, -C(NRb)Rb, -C(O)O-, -C(O)ORb, -C(S)ORb, -C(O)NRcRc, -C(NRb)NRcRc, -OC(O)Rb, -OC(S)Rb, -OC(O)O-, -OC(O)ORb, -OC(S)ORb, -NRbC(O)Rb, -NRbC(S)Rb, -NRbC(O)O-, -NRbC(O)ORb, -NRbC(S)ORb , -NRbC(O)NRcRc, -NRbC(NRb)Rb 및 -NRbC(NRb)NRcRc, 여기서 Ra 는 알킬, 시클로알킬, 헤테로알킬, 시클로헤테로알킬, 아릴, 아릴알킬, 헤테로아릴 및 헤테로아릴알킬로 이루어지는 군으로부터 선택되고; 각Rb 는 독립적으로 수소 또는 Ra 이고; 및 각 Rc는 독립적으로 Rb 이거나, 대안적으로 두 Rc는 이들이 결합된 질소 원자와 함께 4-, 5-, 6- 또는 7-원 시클로헤테로알킬을 형성하며 이는 임의로 O, N 및 S로 이루어진 군에서 선택되는 동일하거나 상이한 추가적인 헤테로원자 1 내지 4개를 포함할 수 있다. 구체적인 예로서, -NRcRc는 -NH2, -NH-알킬, N-피롤리디닐 및 N-모폴리닐을 포함하는 것을 의미한다. 또 다른 예로서, 치환된 알킬은 -알킬렌-O-알킬, -알킬렌-헤테로아릴, -알킬렌-시클로헤테로알킬, -알킬렌-C(O)ORb, -알킬렌-C(O)NRbRb, 및 -CH2-CH2-C(O)-CH3을 포함하는 것을 의미한다. 상기 하나 이상의 치환기는 이들이 결합된 원자와 함께 선택되어 시클로알킬 및 시클로헤테로알킬을 포함하는 시클릭 고리를 형성할 수 있다.
도 1은 지방족 폴리카보네이트 매크로-다이올을 제조하는 통상적인 방법과 본 발명에서 고안한 방법을 비교하여 보여준다. 본 발명이 주장하는 지방족 폴리카보네이트 매크로-폴리올은 염기 촉매를 이용하여 다이올(HOAOH)과 DMC를 메탄올을 제거하면서 축합하여 수 평균 분자량 1만 이상의 분자량이 큰 지방족 폴리카보네이트를 제조하는 제 1단계, 및 제 1단계에서 형성된 분자량이 큰 축합체에 다이올, 트리올 또는 테트라올 화합물[Z(OH)a, a = 2-4의 정수]을 투입하여 에스터 교환 반응시키는 제 2단계를 통하여 제조된다. 이 때 제 2단계의 에스터 교환 반응은 상기 제 1단계에서 사용하였던 촉매에 의하여 하기 반응식 1의 메카니즘에 의하여 일어나고 축합 반응 온도(180-190 oC)에서 매우 빨리 진행되어 수시간 내에 평형에 도달한다. 평형에 도달하였다 함은 하기 반응식 1의 -OAO- 반복 단위체와 Z(O-)a의 반복 단위체가 고분자 사슬 내에 또는 고분자 사슬 간에 무작위로 분포된다는 의미이다.
Figure PCTKR2013009222-appb-I000001
도 2는 제 2단계에서 다이올[Z(OH)2] 화합물을 절단 물질로 투입하여 에스터 교환 반응시켜 -OAO- 반복 단위체와 Z(O-)2의 반복 단위체가 무작위로 분포되었을 때 얻어지는 매크로-다이올의 사슬 분포를 보여준다. 최종 얻어지는 매크로-다이올의 중합도(degree of polymerization, DP)는 -OAO- 및 Z(O-)2 반복 단위체의 총 몰 수(N + Z) 를 제 1단계에서 형성된 고분자 사슬의 몰 수와 제 2단계에서 투입한 Z(OH)2 화합물 몰 수(Z)의 합으로 나눈 값이 된다. 이 때 제 1단계에서 충분히 분자량이 큰 고분자가 형성되었다면 제1단계에서 형성된 고분자 사슬의 몰 수(N/n)가 제2단계에서 투입한 Z(OH)2 화합물 몰 수(Z) 대비 미미하여 무시할 수 있어 DP는 (N + Z)/Z 가 된다. 통계학적으로 고려했을 때 Z(O-)2 반복 단위체를 k개 포함하고 있을 사슬 수의 확률 fk는 DP를 a[(N + Z)/Z의 값에 근접한 자연수]로 하면 aCk(1-1/a)a-k(1/a)k로 기술된다. 하기 실시예 1-9에서 의하여 제조된 매크로-다이올의 경우 예를 들어 fk 를 계산해 보면, 111 mmol의 HOAOH를 투입하여 약 90%의 수율로 고분자량의 지방족 폴리카보네이트를 얻었으므로 N값은 약 100이 되고 16.7 mmol의 Z(OH)2 화합물을 제2 단계에서 절단 물질로 투입하였으므로 DP 즉, a값은 약 7 [(100 + 16.7)/16.7]이 된다. 이 경우 f0[Z(O-)2 단위체를 하나도 안 가지고 있는 사슬 수의 확률], f1[Z(O-)2 단위체를 하나 가지고 있는 사슬 수의 확률], f2[Z(O-)2 단위체를 두 개 가지고 있는 사슬 수의 확률], f3[Z(O-)2 단위체를 세 개 가지고 있는 사슬 수의 확률], f4 [Z(O-)2 단위체를 네 개 가지고 있는 사슬 수의 확률]은 각 각 35%, 40%, 19%, 5.3%, 0.9%로 계산된다. 또 다른 방면에서 고려 했을 때 절단 반응 동안 총 -OH 몰 수는 변화가 없다. 즉, 제 2단계 초기에 투입한 Z(OH)2가 가지고 있던 총 -OH 수는 생성된 매크로-다이올이 가지고 있는 -OH 수와 동일하다 (즉, Σx k = Z). 또한 투입한 Z(OH)2의 몰 수와 생성된 매크로-다이올이 포함하고 있는 Z(O-)2 단위체 몰 수가 동일해야 한다(즉, Σk·x k) = Z). 상기 두 식으로부터 f0 = f2 + 2f3 + 3f4 + ...식이 유도되고, 이는 상기 예에서 구한 값을 대입하였을 때 일치함을 볼 수 있다.
제 2단계에서 트리올[Z(OH)3] 화합물을 절단 물질로 투입하여 에스터 교환 반응시켜 -OAO- 반복 단위체와 Z(O-)3의 반복 단위체가 고분자 사슬 내에 또는 고분자 사슬 간에 무작위로 분포되었을 때 얻어지는 매크로-폴리올의 통계학적 사슬 분포도 동일하게 유추될 수 있다(도 3).
본 발명은 염기 촉매를 사용하여 분자량이 큰 지방족 폴리카보네이트를 제조할 수 있는 기술을 근간으로 하고 있다. 분자량이 수 만 이상으로 큰 지방족 폴리카보네이트를 효율적으로 제조할 수 있는 기술 개발은 아직까지 미미하다. 상기 도 2 및 3에서 보여주는 계산식들은 제 1단계에서 형성되는 고분자의 DP가 매우 커서 절단되는 고분자 사슬의 몰 수가 제 2단계에서 투입한 Z(OH)2 화합물 몰 수(Z) 대비 무시할 정도로 미미한 경우를 상정한 것이다. 제 1단계에서 형성되는 고분자의 DP가 크지 않으면 제 1단계에서 형성된 절단되는 고분자 사슬의 몰 수가 절단제로 투입하는 Z(OH)2 화합물 몰 수(Z) 대비 무시할 수 없게 된다. 그리고 최종 생성되는 매크로-폴리올의 사슬 몰 수는 제1단계에서 형성된 절단되는 고분자 사슬의 몰 수(즉, N/n)와 제 2단계에서 투입한 Z(OH)2 화합물 몰 수의 합이 되고, 이는 절단되는 고분자 사슬의 몰 수만큼 최종 얻어진 매크로-폴리올에서 Z(O-)a 단위체를 하나도 안 가지고 있는 사슬 수(x 0)의 증가로 귀결된다. 통상적으로 Z(O-)a 단위체를 하나도 가지고 있지 않는 매크로-다이올 사슬은 결정성이 높아 최종 얻어진 물질이 왁스 형태가 되게 하거나 또는 오일에 결정으로 석출되어 현탁하게 하는 원인이 된다. 왁스 형태나 현탁 오일 형태의 매크로-폴리올은 폴리우레탄 원료 물질, 코팅제 또는 윤활제 등으로 사용하기에 바람직하지 않다. 또한 선형의 고분자 사슬은 가교 반응에 참여할 수 없는 단점이 있다.
본 발명은 제 1단계에서 형성된 절단되는 고분자의 분자량이 충분히 커서 고분자 사슬 몰 수(즉, 도 2 및 3에서 N/n값)가 제 2단계에서 투입하는 절단제의 몰 수 (즉, 도 2 및 3에서 Z값) 대비 10% 미만으로 미미한 것을 특징으로 한다. 이러한 특징적인 상황하에서 아래 수식이 유도된다.
1) DP가 무한대인 고분자를 절단하여 얻어진 매크로-폴리올의 DP, a = (Z + N)/Z
2) DP가 n인 고분자를 절단하여 얻어진 매크로-폴리올의 DP, a' = (Z + N)/(Z + N/n)
3) 고분자 사슬 몰 수(N/n)가 절단제의 몰 수(Z)의 1/10일 때, 즉 N/n = (1/10)Z 일 때 a' = (Z + N)/(Z + N/n) = (Z + N)/(Z + 0.1Z) = (10/11)a
4) 고분자 사슬 몰 수(N/n)가 절단제의 몰 수(Z)의 1/10일 때 즉 N/n = (1/10)Z 인 조건은 상기 수식 1)-3)을 이용하면 n = 10(N/Z) = 10(a-1) = 10[(10/11)a'-1]로 기술된다.
관심이 있는 매크로-폴리올의 DP, 즉 a'은 5-20이다(하기 참조). 상기 수식에서 a'가 5이면 n은 35, 즉 절단되는 고분자의 DP가 절단되어 최종 얻어지는 매크로-폴리올의 DP 대비 7배이고, a'가 20일 때 n = 171 즉, 절단되는 고분자의 DP가 절단되어 최종 얻어지는 매크로-폴리올의 DP 대비 8.5배이다. 즉, 절단되는 고분자의 DP가 절단되어 최종 얻어지는 매크로-폴리올의 DP 대비 7배 이상이 되면, 제 1단계에서 형성된 절단되는 고분자 사슬 몰 수(즉, 도 2 및 3에서 N/n값)가 제 2단계에서 투입하는 절단제의 몰 수(즉, 도 2 및 3에서 Z값) 대비 10% 미만으로 미미하게 된다. 절단제와 절단되는 고분자의 반복 단위체의 분자량이 어림하여 비슷하다고 가정하면 절단되는 고분자의 분자량이 최종 얻어지는 매크로-폴리올의 분자량의 약 10배 이상이면 상기 특징적인 조건이 충분하다. 하기 실시예 표 1-3을 보면 절단되는 고분자의 분자량이 얻어진 매크로-폴리올의 분자량의 모두 10배 이상이다.
절단되는 고분자의 사슬 몰 수가 절단제의 몰 수 대비 5% 미만이면 더 바람직하다. 이 경우 상기 수식과 같이 계산하면, 즉 N/n = (1/20)Z인 조건은 n = 20(N/Z) = 20(a-1) = 10[(20/21)a'-1]로 기술된다. a'가 5이면 n은 75, 즉 절단되는 고분자의 DP가 절단되어 최종 얻어지는 매크로-폴리올의 DP 대비 15배이고, a'가 20일 때 n = 360 즉, 절단되는 고분자의 DP가 절단되어 최종 얻어지는 매크로-폴리올의 DP 대비 18배이다. 절단제와 절단되는 고분자의 반복 단위체의 분자량이 어림하여 비슷하다고 가정하면 절단되는 고분자의 분자량이 최종 얻어지는 매크로-폴리올의 분자량의 약 20배 이상이면 충분하다. 하기 실시예를 보면 절단되는 고분자의 분자량이 얻어진 매크로-폴리올의 분자량의 20배 이상인 경우가 대부분이다.
본 발명의 특징인 분자량이 매우 큰 고분자를 Z(OH)a를 투입하여 절단하여 매크로-폴리올을 제조하면 단말기가 대부분 -OH인 장점이 있다. 분자량이 크지 않은 고분자를 절단할 경우 절단하는 고분자에 포함되어 있던 단말기 몰 수가 투입하는 Z(OH)a 의 -OH 몰수 대비 무시할 수 없는 수치가 되어 최종 얻어진 매크로-폴리올에 절단되는 고분자에 포함되어 있던 단말기가 상당량 포함되게 된다. 통상적으로 제 1단계에서 DMC와 다이올을 축합하여 지방족 폴리카보네이트를 제조할 때 단말기는 -OH와 -C(O)OCH3가 가능하다. -OH 단말기가 과량 존재한 상태에서 다이올(HOAOH)을 주로 제거하면서 축합할 때 반응 속도가 매우 느리고 수율도 낮아 분자량이 큰 고분자를 얻기가 용이하지 않다[도 1의 (a)]. 이와 같은 조건에서는 분자량이 큰 고분자를 얻기가 용이하지 않아 이 방법에 의하여 매크로-폴리올을 직접 제조했는데, 이때 반응 속도가 느린 이유로 많은 양(1 mol% Na)의 촉매를 투입하여 반응시켜 매크로-폴리올을 제조하였고 촉매 량이 상당한 이유로 반응 후 메틸렌클로라이드에 생성물을 용해시켜 묽은 산 수용액으로 세정하여 중화하는 단계를 거쳤다(EP0302712B1). -C(O)OCH3단말기가 과량으로 존재하는 상태에서 DMC를 제거하면서 분자량이 큰 고분자를 제조하려는 시도가 많이 있었는데 이때 분자량이 어느 정도 커진 이후에는 반응 속도가 매우 느리게 되어 분자량을 키우는 데 일정 한계가 있다. 이런 방법으로 Sivaram 등은 DMC와 다양한 다이올(l,4-butanediol, 1,6-hexanediol, l,8-octanediol, 1,4-bis(hydroxymethyl)cyclohexane)을 1,3-diphenoxytetra-n-butyldistannoxane을 촉매로 사용하여 축합 반응시켜 수평균 분자량 6,000-8,000수준의 폴리머를 제조함을 보고하였다 (Polymer Vol. 36, 4851-4854, 1995). 미국특허 5171830을 보면, 3차 아민 또는 알킬암모늄 염을 촉매로 사용하여 DMC와 다양한 다이올을 축합하여 분자량은 2,400 수준의 지방족 폴리카보네이트의 제조를 공개하고 있다. 최근에 1-n-butyl-3-methylimidazolium-2-carboxylate(1 mol%)을 촉매로 사용하여 다양한 다이올과 DMC의 축합에 의한 지방족 폴리카보네이트의 합성이 시도되어 보고되었는데, 수평균 분자량이 6700 이하로 크지 않았다(Polym. Chem., 2012, 3, 1475). Chuncheng Li 등은 TiO2/SiO2/poly(vinyl pyrrolidone) 혼합물 고체 촉매를 사용하여 DMC와 1,4-butanediol을 축합하여 수평균 분자량이 수 만인 지방족 폴리카보네이트를 제조할 수 있음을 보고하였다(Polym Int 2011; 60: 1060-1067; Journal of Macromolecular Science, Part A: Pure and Applied Chemistry (2011) 48, 583-594). 상기 공개된 기술에서 모두 상당량의 촉매를 사용하여 폴리머 제조 후 촉매를 제거하는 세척 공정을 하였다. 이러한 방법에 의하여 제조된 고분자는 단말기로 모두 -C(O)OCH3를 가지고 있고, 따라서 분자량이 상당히 크지 않은 이러한 고분자를 절단하여 매크로-폴리올을 제조하면 상당량 -C(O)OCH3 단말기를 포함하는 매크로-폴리올이 얻어져 폴리우레탄 원료 물질로 사용하기에 바람직하지 않다. 본 발명은 -OH와 -OCH3가 ~1:1로 있는 상태에서 주로 메탄올을 제거하면서 분자량이 매우 큰 고분자를 얻고 이를 절단하여 매크로-폴리올을 제조하는 것을 특징으로 한다[도 1 (b)]. 분자량이 매우 큰 고분자를 절단함에 의하여 절단되는 고분자가 포함하는 단말기 몰 수를 무시할 수 있어 단말기가 대부분 -OH인 매크로-폴리올을 제조할 수 있다.
단량체인 다이올을 철저히 탈수한 후 -OH와 -OCH3가 ~1:1인 올리고머를 제조하여 축합을 수행함에 의하여 반응 속도를 상당히 증진시킬 수 있고 이로 인해 적은 양의 염기 촉매를 사용하여 짧은 시간 반응시켜 분자량이 큰 지방족 폴리카보네이트를 제조한다[도 1 (b)]. 또한 축합에 사용된 촉매를 연이어 절단 반응에 그대로 사용한다. 촉매는 리튬, 나트륨, 칼륨 양이온으로 구성된 염기 촉매를 HOAOH 대비 0.01 내지 0.1 mol% 사용할 수 있고, 0.02 내지 0.05% 바람직하다. 통상적으로 촉매의 양이 너무 많으면 분자량 키우는데도 역효과가 나타날 수 있고 반응이 진행됨에 따라 촉매가 석출되는 형상이 나타나고 또한 최종 얻어지는 매크로-다이올 및 폴리올의 물성에 영향을 줄 수 있다. 촉매 양이 0.01 mol% 미만으로 작으면 반응 속도가 너무 느려 분자량이 큰 고분자를 제조하기가 용이하지 않다. 축합 반응 후 투입한 대부분의 HO-A-OH가 고분자 사슬에 편입되어 초기 투입한 촉매 대비 HOAOH의 몰 비가 최종 얻어진 매크로-폴리올에서의 촉매 대비 -OAO- 단위체 대비 크게 변화가 없다.
적은 양의 촉매를 사용함에 따라 반응 후 촉매 잔사를 제거하지 않은 채로 사용할 수도 있다. 본 발명에 투입하여 작용하는 촉매 및 최후 매크로-폴리올에 존재하는 촉매는 알칼리 양이온과 단말기의 알콕시 음이온으로 구성된 염이다. 이 염기 촉매를 제거하거나 중화하지 않더라도 얻어진 매크로-폴리올은 상온에서 변화가 없어 촉매 성분을 그대로 폴리우레탄 제조 시 촉매로 활용할 수 있다. 촉매 성분을 다이부틸틴 다이클로라이드 또는 삼차 아민 염산 솔트(salt)와 반응시켜 통상적으로 폴리우레탄 제조에 사용되는 촉매인 다이부틸틴 주석 화합물 또는 삼차아민으로 전환시킬 수 있다. 초기 투입한 모든 염기 촉매를 모두 우레탄 제조에 사용할 수도 있고 또는 일부 중화시키고 일부만 남겨 두어 폴리 우레탄 제조에 촉매로 활용할 수 있도다. 염기 촉매의 중화제로는 멜라민 페닐포스포네이트(melamine phenylphosphonate)나 아실할라이드 등을 사용할 수 있다.
상기 도 1 (a)의 통상적인 방법으로 지방족 폴리카보네이트 매크로-폴리올을 직접 제조하는 방법이 공개되었다(EP 302712; EP 2,036,937; EP 798,328). 그러나, 이 방법을 통하여, 본 발명이 주장하는 분자량이 큰 고분자를 제조한 후 절단하여 제조되어 -OH 단말기 몰 수가, Z(O-)a의 반복 단위체 몰 수를 Z이라고 했을 때, aZ 내지 aZ+0.2Z의 값을 갖는 특징적인 매크로-폴리올 물질을 제조하기가 용이하지 않다. 상기 통상적인 축합 방법으로 매크로-폴리올을 제조할 때는 부산물인 메탄올을 제거하면서 반응을 진행시켜야 하는데 축합에 참여하는 DMC가 메탄올과 함께 증류되어 제거되는 문제가 있다. 이럴 경우 초기 투입한 반응물의 조성으로 분자량 조절이 용이하지 않다. 통상적인 방법으로 HOAOH 및 Z(OH)a를 DMC와 축합시켜 매크로-폴리올을 제조할 때, 초기 -OH기 몰 수는 Z(OH)a의 몰 수(Z)에 a를 곱한 값과 HOAOH 몰 수에 2를 곱한 값이다. 축합 반응이 진행됨에 따라 -OH 몰 수가 감소하게 되고 그 값이 aZ에 근접하게 된다. 이 후 더 축합이 진행되면 -OH 몰 수가 aZ 이하로 작아지게 되고 이 때 가지형 고분자 사슬들이 많이 연결되기 시작하여 분자량이 급격히 증가하여 급기야 겔화 상태로 진행된다. 이러한 일련의 연속적인 축합 진행 중에 -OH 단말기 수가 aZ 내지 aZ+0.2Z 값, 더 바람직하게 aZ+0.1Z의 값을 갖는 시점을 잡아 반응을 종결시키기가 현실적으로 어렵다(비교예 1 참조). 또한 본 반응의 특징인 에스터 교환 반응에 의한 절단 방법으로 제조되어 얻어진 매크로-폴리올은 통계학적 해석에 의하여 고분자 사슬의 분포를 정확히 예측할 수 있으나(도 2-3), 축합에 의하여 직접 제조된 매크로-폴리올은 고분자 사슬 구조 분포를 예측하기가 쉽지 않다.
본 발명과 유사하게 폴리카보네이트-다이올을 트리메틸올프로판(트리올 화합물) 또는 펜타에리트리톨(테트라올 화합물)과 에스터 교환 반응시켜 폴리카보네이트-폴리올을 제조하는 방법이 특허 등록 되었다[US 5,143,997 (1992.09.01)]. 이 때 절단되는 고분자가 수평균 분자량 2000인 분자량이 크지 않고 단말기가 -OH인 매크로-다이올이었다. 즉 폴리우레탄 원료 물질로 상기 도1(a)에 의하여 제조된 매크로-다이올을 절단하여 분자량이 1000 이하로 더 작은 매크로-폴리올을 제조하였다. 구체적인 예를 보면 수평균 분자량 2000인 폴리(헥사메틸렌카보네이트)-다이올을 트리메틸올프로판(CH3C(CH2OH)3) 또는 펜타에리트리톨(C(CH2OH)4)과 테트라부틸타이타네이트[(nBuO)4Ti]를 촉매로 활용하여 220oC에서 8시간 에스터-교환 반응시켜 수평균 분자량 500 내지 1000인 폴리(헥사메틸렌카보네이트)-폴리올을 제조하였다. 분자량 1000인 매크로-폴리올을 제조하기 위해 절단되는 폴리카보네이트-다이올 대비 절단제 펜타에리트리톨(C(CH2OH)4)을 거의 동일 몰 수 투입했다. 이 때 -OH 단말기 몰 수는, 펜타에리트리톨 몰 수를 Z이라고 할 때, 4Z + 2Z으로 본 발명이 주장하는 값 범위(4Z + 0.2Z)를 크게 벗어난다. 이 경우 얻어진 매크로- 폴리올 사슬 중에 보다 Z(O-)a 단위체를 포함하지 않고 -OAO- 단위체만 포함하고 있는 고분자 사슬이 상당량 존재하게 되고 이는 최종 얻어진 물질에서 결정으로 석출되어 왁스 형 또는 현탁 오일 형의 최종 물질이 얻어지게 하는 원인이 된다(비교예 2). 분자량 500인 고분자를 얻기 위해서 분자량 2,000인 폴리카보네이트-다이올 1 몰과 펜타에리트리톨 4 몰을 에스터 교환 반응시켜 얻어진 매크로-폴리올의 경우도 -OH 단말기 몰 수가, 펜타에리트리톨 몰 수를 Z이라고 할 때, 4Z + 0.5Z으로 본 발명이 주장하는 값 범위(4Z + 0.2Z)를 벗어난다. 본 기술은 분자량이 큰 고분자를 절단하여, 제조된 매크로-폴리올의 분자량의 범위가 넓고, 절단제를 포함하지 않는 사슬 수의 숫자가 최소화 되고, 또한 사용한 촉매가 상기 기존 기술과 달라 차별화된다.
구체적으로 상기 -OAO-의 반복 단위체의 원료 물질인 HOAOH가 하기 [화학식 1a] 내지 [화학식2c] 로 이루어진 군 중에서 선택되고, Z(O-)a의 반복 단위체의 a가 2, 즉 Z(O-)2이고, 상기 Z(O-)2의 원료 물질인 Z(OH)2가 하기 [화학식 1d] 내지 [화학식1h] 로 이루어진 군 중에서 선택된 지방족 폴리카보네이트 매크로-다이올을 제공한다. 상기 화학식 1a-1h는 현재 상업적으로 대량으로 생산되어 사용되고 있는 물질이다.
Figure PCTKR2013009222-appb-I000002
더 구체적으로 상기 -OAO-의 반복 단위체의 원료 물질인 HOAOH가 80 내지 95 mol%는 [화학식 1a], 즉 1,4-부탄다이올이고 나머지 5 내지 20 mol%가 [화학식 1b] 또는 [화학식 2c]이고, Z(O-)2의 반복 단위체가 상기 -OAO-의 반복 단위체 대비 5 내지 20 mol%인 지방족 폴리카보네이트 매크로-다이올을 제공한다. 상기 다이올 화합물 중 1,4-부탄디올이 단가가 낮아 이를 많이 포함한 매크로-폴리올을 제조하여 사용하면 경제성이 높다. 1,4-부탄디올은 생분해성 고분자 제조에 요긴하게 필요한 화합물로 최근에 석탄으로부터 제조하는 상업 공정이 증설되고 있고, 또한 최근에 바이오-매스로부터 발효에 의하여 제조하는 공정 개발도 매우 활발하다. 그러나, 1,4-부탄디올을 근간으로 지방족 폴리카보네이트-폴리올 또는 다이올의 사용은 미미하다. 1,4-부탄디올을 주성분으로 하여 폴리카보네이트-다이올을 제조하면 결정성이 높아 왁스 형으로 얻어지기 때문이다. 상기 도 1의 (a)의 통상적인 축합에 의하여 매크로-폴리올을 제조할 때 부산물인 메탄올 제거해야 하는데 1,4-부탄다이올인 경우 끊는점이 낮고 극성이 높아 메탄올만 선택적으로 제거하기 용이하지 않아 상기 도 1의 (a)의 통상적인 축합에 의하여 제조가 용이하지 않은 면도 있다. 이러한 여러 가지 이유로 1,4-부탄다이올을 주요 물질로 사용하는 매크로-폴리올은 1,4-부탄다이올의 낮은 단가에도 불구하고 개발이 미미하다. 현재 사용되고 있는 지방족 폴리카보네이트-다이올의 주 원료 물질은1,6-헥산다이올인데, 이의 단가가 1,4-부탄다이올 대비 높다.
본 기술에 의하여 제조되는 매크로-폴리올의 분자량(즉, DP)는 투입한 절단제의 양에 의해 조절된다. Z(O-)2의 반복 단위체가 -OAO-의 반복 단위체 대비 5 mol%이면 얻어진 매크로- 다이올 또는 폴리올의 DP 는 21(=105/5)이고 20 mol%이면 DP가 6(=120/20)으로 폴리우레탄, 코팅용, 또는 윤활제 등으로 사용하기에 적당한 수치다.
1,6-헥산다이올, 1,5-펜탄다이올, 또는 1,4-부탄다이올을 단독으로 DMC 축합하여 얻어진 지방족 폴리카보네이트-다이올은 결정성이 있는 고체인 이유로 폴리우레탄 원료 물질로 바람직하지 않다[Journal of Applied Polymer Science, Vol. 111, 217-227 (2009)]. 통상적으로 폴리우레탄 제조의 원료 물질로 사용되는 매크로-다이올은 점액성의 물질이다. 점액성의 물질을 얻기 위해서 통상적으로 두 개 이상의 다이올 혼합하여 DMC와 축합하였다(EP 302712; US 2010/0292497 A1). 단가가 낮은 1,4-부탄다이올을 주성분으로 하여 여타 다이올을 5-20 mol% 투입하여 분자량이 큰 지방족 폴리카보네이트를 제조한 후 또 다른 다이올인 Z(OH)2를 투입하여 절단하여 결국 세 개의 반복 단위체가 있는 매크로-다이올을 얻어 점액성의 물질을 얻을 가능성이 높다(실시예 5, 6, 8, 9).
본 발명은 또한 -OAO-의 반복 단위체의 원료 물질인 HOAOH가 상기 [화학식 1a] 내지 [화학식 1h] 로 이루어진 군 중에서 선택되고, Z(O-)a의 반복 단위체의 원료 물질인 Z(OH)a 가 하기 [화학식 2a] 내지 [화학식 2d] 로 이루어진 군 중에서 선택된 가지형 지방족 폴리카보네이트 매크로-폴리올을 제공한다. 가지형 매크로-폴리올은 우레탄 제조시 가교 반응이 가능해 단단한 폼이나 코팅제 용도로 요긴하게 사용될 수 있다.
Figure PCTKR2013009222-appb-I000003
상기 기술한 이유와 같이, -OAO-의 반복 단위체의 원료 물질인 HOAOH가 80 내지 95 mol%는 1,4-부탄다이올이고 나머지 5내지 20 mol%가 [화학식 1b] 내지 [화학식1h]로 이루어진 군 중에서 선택되고, Z(O-)a의 반복 단위체가 상기 -OAO-의 반복 단위체 대비 5 내지 20 mol%인 지방족 폴리카보네이트 매크로-폴리올이 상업적으로 매력이 있다.
절단 물질인 Z(OH)a 가 상기 [화학식 2a]는 상업용으로 많이 사용되고 시중에서 구입할 수 있는 물지로 이 화합물을 사용하여 절단하였을 경우 점액성의 물질을 얻기가 용이하여 절단 물질로 바람직하다(실시예 22-35).
본 발명의 또 다른 양태로 -OAO-의 반복 단위체 및 Z(O-)a의 반복 단위체를 포함하며, 상기 -OAO-의 반복 단위체 및 상기 Z(O-)a의 반복 단위체가 카보닐[-C(O)-] 연결기와 -C(O)YC(O)- 연결기에 의하여 연결되거나 또는 수소와 결합하여 -OH 단말기를 형성한 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-폴리올을 제공한다.
여기서, A는 하나 또는 두 종 이상의 치환 또는 비치환된 탄소 수 3 내지 60의 알킬렌이고; a는 2 내지 4의 정수이고, a가 2일 경우 Z는 치환 또는 비치환된 탄소 수 3 내지 60의 알킬렌이며, a가 3일 경우 Z는 치환 또는 비치환된 탄소 수 3 내지 60의 트리알킬렌이며, a가 4일 경우 Z는 치환 또는 비치환된 탄소 수 4 내지 60의 또는 테트라알킬렌이고; Y는 하나 또는 두 종 이상의 치환 또는 비치환된 탄소수 5내지 20의 아릴렌, 또는 치환 또는 비치환된 탄소수 5 내지 20의 헤테로아릴렌이다.
-OAO-의 반복 단위체가 카보닐[-C(O)-] 과 -C(O)YC(O)-에 의하여 무작위로 연결된 지방족 폴리카보네이트-방향족 폴리에스터가 공중합체는 보고된 예가 없다. 본 발명은 분자량이 큰 지방족 폴리카보네이트를 제조하는 유사한 방법으로, 방향족 다이에스터를 추가로 투입하여 상기 지방족 폴리카보네이트-방향족 폴리에스터가 랜덤 공중합체를 제조하였고, 이를 Z(OH)a로 절단하여 매크로-폴리올을 제조하였다. 이렇게 얻어진 지방족 폴리카보네이트-방향족 폴리에스터 매크로-폴리올은 새로운 구조의 화합물로 상기 도 2 및 도 3에서 분석한 동일한 사슬 구조 분포를 갖는다.
상기 -OAO-의 반복 단위체의 원료 물질인 HOAOH가 1,4-부탄다올이고, Z(O-)a의 반복 단위체의 a가 2이고 Z(O-)2의 원료 물질인 Z(OH)2가 상기 [화학식 1a] 내지 [화학식 1h] 로 이루어진 군 중에서 선택되고, 연결기 -C(O)YC(O)-의 원료 물질인 HOC(O)YC(O)OH가 프탈산, 아이소프탈산, 또는 테레프탈산에서 선택된 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-다이올이 원료물질의 단가를 고려했을 때 상업적으로 경제성이 있다.
상기 -C(O)YC(O)- 연결기가 -OAO-의 반복 단위체 대비 5 내지 50 mol%일 경우 합성이 용이하고, 상기 Z(O-)2의 반복 단위체가 상기 -OAO-의 반복 단위체 대비 5 내지 20 mol%일 때 얻어지는 매크로-폴리올의 DP가 폴리우레탄, 코팅, 및 윤활제 용도로 적용하기에 바람직하다.
상기 -C(O)YC(O)- 연결기의 원료 물질인 HOC(O)YC(O)OH가 아이소프탈산 또는 프탈산인 경우 점액성의 물질을 얻기가 용이하여 바람직하다(실시예 37-39).
상기 Z(O-)a의 반복 단위체의 원료 물질인 Z(OH)a 가 상기 [화학식 2a] 내지 [화학식2d] 로 이루어진 군 중에서 선택될 때, 가지형 매크로-폴리올을 얻을 수 있어 가교용 폴리우레탄 원료 물질로 사용할 수 있다.
본 발명은 또한 상기 기술한 지방족 폴리카보네이트 매크로-폴리올 제조 공정을 제공한다. 즉, 염기 촉매를 이용하여 HOAOH 와 DMC를 메탄올을 제거하면서 축합하여 수 평균 분자량 1만 이상인 지방족 폴리카보네이트를 제조하는 제 1단계, 및 상기 제 1단계에서 형성된 축합체에 Z(OH)a를 투입하여 에스터 교환 반응시키는 제 2단계를 포함하는 지방족 폴리카보네이트 매크로-폴리올의 제조 방법을 제공한다. 분자량이 작은(Mn 2000) 지방족 폴리카보네이트-다이올을 트리올 또는 테트라올 화합물과 에스터 교환 반응에 의한 절단 반응으로 분자량이 더 작은 (Mn < 1000) 매크로-폴리올을 제조하는 방법이 공개되었다(US 5,143,997; US 8,344,092). 이 경우 에스터 교환 반응 촉매로 테트라알콕시티타늄 화합물을 추가로 투입하여 사용하였다.
본 발명은 단순한 염기 촉매를 사용한 면에서 상기 공개된 공정과 다르고 또한 에스터 교환 반응을 위해서 염기 촉매를 추가로 투입하지 않고 분자량이 큰 지방족 폴리카보네이트를 제조하는 제1단계에 사용되었던 촉매를 그대로 활용한 면에서 장점이 있다. 또한 분자량이 1만 이상인 고분자량의 지방족 폴리카보네이트를 에스터 교환 반응시킨 면에서 차이점이 있다. 본 발명의 고분자량의 지방족 폴리카보네이트는 수 평균 분자량의 상한이 특별히 제한되지 않지만, 예를 들어 10000 이상 내지 200000 이하, 바람직하게는 10000 이상 내지 100000이하일 수 있다.
염기 촉매로서 리튬, 나트륨, 또는 칼륨 양이온과 HO-A-OH 탈양성자 반응에 의하여 형성된 알콕시 음이온으로 구성된 것을 사용하되, 투입한 HO-A-OH 대비 0.01 mol% 내지 0.1 mol% 사용하는 것이 경제적으로 바람직하고 또한 제1단계에서 분자량이 큰 고분자를 얻기에 적당하다.
또한 본 발명은 염기 촉매를 이용하여 HOAOH 와 DMC 및 MeOC(O)YC(O)OMe의 혼합물과 메탄올을 제거하면서 축합하여 수 평균 분자량 1만 이상인 지방족 폴리카보네이트-방향족 폴리에스터 공중합체를 제조하는 제 1단계, 및 상기 제 1단계에서 형성된 축합체에 Z(OH)a를 투입하여 에스터 교환 반응시키는 제 2단계를 포함하는 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-폴리올의 제조방법을 제공한다.
본 발명은 분자량이 1만 이상으로 큰 지방족 폴리카보네이트 또는 이의 방향족 폴리에스터 공중합체를 제조한 후 다양한 알콜 화합물[Z(OH)a]을 절단제로 투입하여 에스터-교환 반응을 통한 고분자 사슬의 절단 반응을 유발하여 분자량이 작은 매크로-폴리올을 제조하였다. 이러한 방법에 의하여 제조되는 매크로-폴리올은 분자량이 정밀하게 조절되고 또한 고분자 사슬 구조 분포가 예측 가능하게 유니크하고 또한 -OH 단말기 몰 수가, 투입한 절단제Z(OH)a의 몰 수를 Z이라고 했을 때, aZ 내지 aZ+0.2Z의 유니크한 값을 갖는 특징이 있다. 이러한 조절이 용이한 본 발명의 절단 방법으로 다양한 구조 및 조성의 매크로-폴리올 제조가 가능하고 이는 폴리우레탄 원료 물질, 코팅 물질, 및 윤활제 등으로 활용 가능성을 높인다.
도 1은 지방족 폴리카보네이트 매크로-다이올을 제조하는 전통적인 방법(a)과 본 발명이 제공하는 방법(b)을 비교하여 보여 준다.
도 2는 다이올을 절단제로 활용하여 얻어지는 매크로-다이올의 통계학적 사슬 구조 분포를 보여 준다.
도 3은 트리올을 절단제로 활용하여 얻어지는 매크로-폴리올의 통계학적 사슬 구조 분포를 보여 준다.
하기 실시예 및 비교예는 본 발명의 효과를 구체적으로 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위를 한정하려는 것이 아니다. 무수 1,4-부탄다이올은 1,4-부탄다이올에 나트륨을 반응시켜 녹이고 여기에 프탈로일클로라이드를 나트륨 대비1/4당량 투입하여 80oC에서 밤샘 교반한 후 120oC 및 0.15 mmHg에서 진공 증류하여 얻었다.
실시예 1-9: [화학식 1a] (+[화학식 1c])과 DMC의 축합 반응 후 [화학식 1d] 내지 [화학식 1h]를 사용한 절단 반응
제 1단계: 3구 플라스크에 1,4-부탄디올[화학식 1a]과 1,6-헥산디올[화학식 1c]을 하기 표 1 에서 기록한 비율(0 mol% 또는 10 mol%)로 총 111 mmol가 되게 하여 투입하고 여기에 NaH (0.056 mmol, 0.05 mol%)를 투입하여 HO(CH2)4O-Na+를 형성시킨 후, 다이메틸카보네이트(DMC) 15.7 g(174 mmol)을 추가로 투입하였다. 한 입구를 통하여 메카니컬 교반기를 연결시키고, 다른 한 입구는 진공라인과 질소라인이 부착된 메니폴드에 연결하고 나머지 한 입구에는 증류장치를 연결시켰다. 반응 용기를 120oC 항온조에 담가 생성되는 메탄올과 일부 DMC를 상압에서 제거하면서 1시간 동안 반응시켰다. 온도를 190oC로 높이고 570 mmHg 에서 0.5시간, 380 mmHg 에서 1시간, 190 mmHg 에서 2시간 감압하여 휘발성 물질을 제거하면서 총 3.5시간 동안 반응시켰다. 이 후 진공 펌프로 연속적으로 0.3 mmHg의 진공을 걸어 휘발성 물질을 제거하면서 2시간 동안 더 반응시켰다.
제 2단계: 절단제로 [화학식 1b] 내지 [화학식 1h]에서 선택된 하나의 다이올을 초기에 넣어준 다이올 대비 15 mol%(16.7 mmol) 넣어 190 oC에서 150 oC로 온도를 서서히 내려가며 3시간 동안 반응시켜, 절단반응이 일어나도록 하였다. 반응시작 10분 이내에 점도가 급격히 낮아지는 것을 관찰하였다. 실험 결과는 하기 표 1에 정리하였다.
Figure PCTKR2013009222-appb-I000004
a축합 반응 단계에서 이론적 최대 질량대비 실제 얻어진 질량으로 계산된 값. bGPC를 이용하여 40oC, THF에서 폴리스타이렌 표준 물질로 측정된 값. cDSC에서 측정된 유리전이온도.
상기 표 1은 지방족 폴리카보네이트 매크로-다이올의 제조를 증명한다. 본 발명의 특징인 절단 반응에 의하여 분자량이 적어도 1/10, 더욱 바람직하게 대부분 1/20로 적어진 오일형의(일부는 왁스형) 매크로-다이올이 얻어졌음을 보여준다. 특히 HOAOH가 [화학식 1a] 단독인 것보다 일부 [화학식 1b] 또는 [화학식 2c]를 포함할 경우 오일형의 화합물이 더 잘 얻어짐을 볼 수 있다.
실시예 10-21: [화학식 1a] (+ [화학식 1c])과 DMC의 축합 반응 후 [화학식 2a] 내지 [화학식 2d]를 사용한 절단 반응
제 1단계: 상기 실시예 1-9와 동일한 방법으로 수행하였다.
제 2단계: 절단제로 [화학식 2a] 내지 [화학식 2d]에서 선택된 하나의 다이올을 사용하여 상기 실시예 1-9와 동일한 방법으로 수행하였다. 실험결과는 하기 표 2에 정리하였다.
Figure PCTKR2013009222-appb-I000005
a 축합 반응 단계에서 이론적 최대 질량대비 실제 얻어진 질량으로 계산된 값. bGPC를 이용하여 40oC, THF에서 폴리스타이렌 표준 물질로 측정된 값. cDSC에서 측정된 유리전이온도.
표 2의 결과로부터 분자량이 큰 지방족 폴리카보네이트를 제조한 후 상기 [화학식 2a] 내지 [화학식 2d]의 절단 물질을 투입하여 반응시키면 절단 반응이 일어나 분자량이 작은 매크로-폴리올이 형성됨을 확인할 수 있다. 본 발명의 특징인 제1단계에서 형성된 절단되는 고분자의 분자량이 최종 절단되어 얻어진 매크로-폴리올의 분자량의 적어도 10배(대부분 20배) 이상임을 확인할 수 있다. HOAOH가 [화학식 1a] 단독인 것보다 일부 [화학식 1b] 내지 [화학식 1h]를 일부 포함할 경우 오일형의 화합물이 더 잘 얻어짐을 볼 수 있다.
실시예 22-35: [화학식 1a] (+ [화학식 1b] 내지 [화학식 1h])와 DMC의 축합 반응 후 [화학식 2a]를 사용한 절단 반응
제 1단계: 3구 플라스크에 1,4-부탄다이올[화학식 1a]과 추가로 투입하는 [화학식 1b] 내지 [화학식 1h]에서 선택된 하나의 다이올을 하기 표 3 에서 기록한 비율(5 mol% 또는 10 mol%)로 총 111 mmol가 되게 하여 투입하고 여기에 NaH (0.056 mmol, 0.05 mol%)를 투입하여 HO(CH2)4O-Na+를 형성시킨 후, 다이메틸카보네이트(DMC) 15.7 g (174 mmol)을 추가로 투입하였다. 이후 방법은 상기 실시예 1-9 와 동일하다.
제 2단계: 트리올 절단제 [화학식 2a]을 초기에 넣어준 다이올 대비15 mol%(4.43 g, 16.7 mmol) 넣어 190 oC에서 150 oC로 온도를 서서히 내려가며3시간 동안 반응시켜, 절단반응이 일어나도록 하였다. 반응시작 10분 이내에 점도가 급격히 낮아지는 것을 관찰하였다. 실험결과는 하기 표 3에 정리하였다.
Figure PCTKR2013009222-appb-I000006
a 축합 반응 단계에서 이론적 최대 질량 대비 실제 얻어진 질량으로 계산된 값. bGPC를 이용하여 40oC, THF에서 폴리스타이렌 표준 물질로 측정된 값. cDSC에서 측정된 유리전이온도.
표 3은 1,4-부탄다이올을 주요 물질로 사용하여 제조된 분자량이 큰 지방족 폴리카보네이트를 [화학식 2a]를 절단제로 사용하여 매크로-폴리올을 제조하였을 때 대부분 오일형의 화합물이 얻어짐을 보여주고 있다. 이 경우도 모두 절단되는 고분자의 분자량이 최종 절단되어 얻어진 매크로-폴리올의 분자량의 적어도 10배(대부분 20배) 이상임을 확인할 수 있다.
실시예 36-39: [화학식 1a]와 DMC 및 MeOC(O)YC(O)OMe를 축합 반응 후 [화학식 1a] 를 사용한 절단 반응
제 1 단계: 3구 플라스크에 1,4-부탄디올 [화학식 1a](10.0 g, 111 mmol)을 투입하고 여기에 NaH (0.111 mmol, 0.1 mol%)를 투입하여 HO(CH2)4O-Na+를 형성시킨 후, 다이메틸카보네이트(DMC)와 다이메틸프탈레이트 (또는 다이메틸아이소프탈레이트 내지 다이메틸테레프탈레이트)를 하기 표 4에서 기록한 비율로 투입하였다. DMC는 1,4-부탄디올 대비 1.57 당량에서 투입한 프탈레이트 몰 수를 뺀 몰 수만큼 투입하였다. 한 입구를 통하여 메카니컬 교반기를 연결시키고, 다른 한 입구는 진공라인과 질소라인이 부착된 메니폴드에 연결하고 나머지 한 입구에는 증류장치를 연결시켰다. 반응 용기를 120 oC 항온조에 담가 생성되는 메탄올과 일부 DMC를 상압에서 제거하면서 1시간 동안 반응시켰다. 온도를 190 oC로 높이고 570 mmHg 에서 0.5 시간, 380 mmHg 에서 1 시간, 190 mmHg 에서 2 시간 감압하여 휘발성 물질을 제거하면서 총 3.5 시간 동안 반응시켰다. 이후 온도를 210 도로 높이고 진공 펌프로 연속적으로 0.3 mmHg의 진공을 걸어 휘발성 물질을 제거하면서 2 시간 동안 더 반응시켰다.
제 2단계: 절단제로 1,4-부탄디올[화학식 1a]을 초기에 넣어준 다이올 대비15 mol%(1.50 g, 16.7 mmol)를 넣어준 뒤 210 oC에서 150 oC로 온도를 서서히 내려가며 3시간 동안 반응시켜, 절단반응이 일어나도록 하였다. 반응시작 10분 이내에 점도가 급격히 낮아지는 것을 관찰하였다. 실험결과는 하기 표 4에 정리하였다.
Figure PCTKR2013009222-appb-I000007
a축합 반응 단계에서 이론적 최대 질량대비 실제 얻어진 질량으로 계산된 값. bGPC를 이용하여 40oC, 테트라하이드로퓨란(THF)에서 폴리스타이렌 표준 물질로 측정된 값. cDSC에서 측정된 유리전이온도.
표 4는 청구항 8-10에서 주장하는 새로운 구조의 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-다이올이 본 발명의 특징인 절단반응에 의하여 잘 제조됨을 보여 준다. 특히 아이소프탈레이트 또는 프탈레이트 반복 단위체를 포함한 경우 오일형의 화합물이 될 가능성이 높음을 확인할 수 있다.
실시예 40-60: [화학식 1a]와 DMC 및 MeOC(O)YC(O)OMe를 축합 반응 후 [화학식 2a] 내지 [화학식 2d]를 사용한 절단 반응
제 1 단계: 투입한 다이메틸프탈레이트 (또는 다이메틸아이소프탈레이트 내지 다이메틸테레프탈레이트)의 비율이 10 mol% 내지 50mol% 범위에서 조절된 것 이외에는 상기 실시예 36-39와 동일한 방법으로 수행하였다. 단, 비율이 20 mol% 이하의 경우 진공펌프로 연속적으로 0.3 mmHg의 진공을 걸어 휘발성 물질을 제거하는 마지막 반응을 210 oC 대신 190 oC에서 수행하였다.
제 2단계: 절단제로 [화학식 2a] 내지 [화학식 2d]에서 선택된 하나의 다이올을 사용하여 실시예 36-39와 동일한 방법으로 수행하였다. 실험결과는 하기 표 5에 정리하였다.
Figure PCTKR2013009222-appb-I000008
a축합 반응 단계에서 이론적 최대 질량대비 실제 얻어진 질량으로 계산된 값. bGPC를 이용하여40oC, THF에서 폴리스타이렌 표준 물질로 측정된 값. cDSC에서 측정된 유리전이온도.
표 5는 다양한 조성의 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-다이올의 제조를 보여 준다. 특히 아이소프탈레티트 또는 프탈레이트 반복 단위체를 포함한 경우 오일형의 화합물이 될 가능성이 높음을 확인할 수 있다.
비교예 1: [화학식 1a]와 DMC의 축합 반응 통해 직접 저분자량 다이올 제조 시도
3구 플라스크에 1,4-부탄디올[화학식 1a](10.0 g, 111 mmol)과 NaH(0.222 mmol, 0.2 mol%)를 투입하여 HO(CH2)4O-Na+를 형성시킨 후, 다이메틸카보네이트(DMC) 15.3 g(170 mmol)을 추가로 투입하였다. 단말기가 모두 -OH인 분자량 수 천의 올리고머를 합성하기 위해 DMC 양을 상기 실시예보다 줄여서 실험을 하였다. 한 입구를 통하여 메카니컬 교반기를 연결시키고, 다른 한 입구는 진공라인과 질소라인이 부착된 메니폴드에 연결하고 나머지 한 입구에는 증류장치를 연결시켰다. 반응 용기를 120 oC 항온조에 담가 생성되는 메탄올과 일부 DMC를 상압에서 제거하면서 1시간 동안 반응시켰다. 온도를 180 oC 로 올리고 증류되어 나오는 휘발성 물질(메탄올 또는 DMC)이 미미할 때까지 1시간 더 상압에서 반응시켰다. 압력을 380 mmHg로 감압하여 1시간 반응시킨 후 샘플을 취해 1H NMR 분석을 하였을 때 CH2OC(O)-, -OCH3 그리고 -OH에 해당하는 적분값이 10.1 : 0.71 : 1.0이었다. 동일 감압 하에 1시간 더 반응을 시켰을 때 그 적분값이 11.5 : 0.63 : 1.0로 반응 진행속도가 매우 느림을 관찰하였다. 부산물을 더 효과적으로 제거하여 반응을 진행시키기 위해 연속적으로 0.3 mmHg의 진공을 걸어 2시간 동안 더 반응시켰을 때 1H NMR 분석 결과 -OCH3 작용기는 모두 사라지고 단말기가 모두 -OH로 캡핑된 화합물이 얻어졌으나, 분자량이 기대치 이상으로 큰 Mn 20000인 고분자가 얻어졌다. 380 mmHg로 감압하여 반응을 진행시키는 단계에서는 주변의 -OH 작용기가 알콕시 음이온과 수소결합을 하여 친핵체 공격 반응성이 낮아서 반응속도가 느리고 또한 생선되는 메탄올도 주변의 -OH 작용기와의 수소결합으로 인하여 효과적으로 제거되지 못해 반응속도가 느린 것으로 해석된다. 압력을 0.3 mmHg로 더 감압하였을 때 메탄올 뿐만 아니라 부탄디올, DMC, HO(CH2)4OC(O)OCH3 역시 제거되면서 사슬 연결 반응이 진해되어 분자량이 급격히 증가해 분자량 조절이 용이하지 않음을 확인하였다.
비교예 2: 분자량이 작은 축합물을 [화학식 2a]로 절단한 실험 결과
3구 플라스크에 1,4-부탄다이올[화학식 1a]과 [화학식 1e] 10 mol %로 총 111 mmol가 되게 하여 투입하고 여기에 NaH (0.056 mmol, 0.05 mol%)를 투입하여 HO(CH2)4O-Na+를 형성시킨 후, 다이메틸카보네이트(DMC) 14.5 g (161 mmol)을 추가로 투입하였다. 이후 방법은 상기 실시예 22-35와 동일한 방법으로 수행하였다. 제1단계에서 수평균 분자량이 5000인 고분자가 얻어졌고 절단 반응 후 수평균 분자량이 1900인 매크로-폴리올이 얻어졌다. 분자량이 작은 고분자를 절단함에 의하여(절단되는 고분자의 분자량이 얻어진 매크로-폴리올 분자량의 2.5배 수준) Z(O-)3을 포함하지 않는 결정성이 큰 선형의 고분자 사슬 수가 상대적 많아 최종 얻어진 매크로-폴리올의 형상이 왁스 형태였다. 동일한 조성으로 제1 단계에서 분자량이 큰 고분자(Mn 51000)를 동일한 절단물질(화학식 2a)로 절단하여 동일한 수준의 수평균 분자량을 갖는 매크로-폴리올(Mn 2000)을 제조하였을 때 최종 얻어진 매크로-폴리올의 형상이 폴리우레판 및 윤활제 활용에 적합한 투명 오일 형태였다(실시예 30).

Claims (17)

  1. -OAO-의 반복 단위체 및 Z(O-)a의 반복 단위체를 포함하며;
    상기 -OAO-의 반복 단위체 및 상기 Z(O-)a의 반복 단위체가 카보닐[-C(O)-]에 의하여 연결되거나 또는 수소와 결합하여 -OH 단말기를 형성하고;
    상기 -OH 단말기 몰 수가, 상기 Z(O-)a의 반복 단위체 몰 수를 Z이라고 했을 때, aZ 내지 aZ+0.2Z의 값을 갖는 지방족 폴리카보네이트 매크로-폴리올.
    [여기서, A는 하나 또는 두 종 이상의 치환 또는 비치환된 탄소 수 3 내지 60의 알킬렌이고; a는 2 내지 4의 정수이고, a가 2일 경우 Z는 치환 또는 비치환된 탄소 수 3 내지 60의 알킬렌이며, a가 3일 경우 Z는 치환 또는 비치환된 탄소 수 3 내지 60의 트리알킬렌이며, a가 4일 경우 Z는 치환 또는 비치환된 탄소 수 4 내지 60의 또는 테트라알킬렌이다.]
  2. 청구항 1에서,
    상기 -OAO-의 반복 단위체의 원료 물질인 HOAOH가 하기 [화학식 1a] 내지 [화학식2c] 로 이루어진 군 중에서 선택되고;
    상기 Z(O-)a의 반복 단위체의 a가 2이고 상기 Z(O-)2의 원료 물질인 Z(OH)2가 하기 [화학식 1d] 내지 [화학식1h] 로 이루어진 군 중에서 선택된 지방족 폴리카보네이트 매크로-폴리올.
  3. 청구항 2에서,
    상기 -OAO-의 반복 단위체의 원료 물질인 HOAOH가 80 내지 95 mol%는 [화학식 1a]이고, 나머지 5 내지 20 mol%가 [화학식 1b] 또는 [화학식2c]이고;
    상기 Z(O-)2의 반복 단위체가 상기 -OAO-의 반복 단위체 대비 5 내지 20 mol%인 지방족 폴리카보네이트 매크로-폴리올.
    Figure PCTKR2013009222-appb-I000009
  4. 청구항 1에서,
    상기 -OAO-의 반복 단위체의 원료 물질인 HOAOH가 상기 [화학식 1a] 내지 [화학식 1h]로 이루어진 군 중에서 선택되고;
    상기 Z(O-)a의 반복 단위체의 원료 물질인 Z(OH)a가 하기 [화학식 2a] 내지 [화학식 2d]로 이루어진 군 중에서 선택된 지방족 폴리카보네이트 매크로-폴리올.
    Figure PCTKR2013009222-appb-I000010
  5. 청구항 4에서,
    상기 -OAO-의 반복 단위체의 원료 물질인 HOAOH가 80 내지 95 mol%는 [화학식 1a]이고, 나머지 5내지 20 mol%가 [화학식 1b] 내지 [화학식1h]로 이루어진 군 중에서 선택되고;
    상기 Z(O-)a의 반복 단위체가 상기 -OAO-의 반복 단위체 대비 5 내지 20 mol%인 지방족 폴리카보네이트 매크로-폴리올.
  6. 청구항 5에서,
    상기 Z(O-)a의 반복 단위체의 원료 물질인 상기 Z(OH)a 가 상기 [화학식 2a]인 지방족 폴리카보네이트 매크로-폴리올.
  7. -OAO-의 반복 단위체 및 Z(O-)a의 반복 단위체를 포함하며,
    상기 -OAO-의 반복 단위체 및 상기 Z(O-)a의 반복 단위체가 카보닐[-C(O)-] 연결기와 -C(O)YC(O)- 연결기에 의하여 연결되거나 또는 수소와 결합하여 -OH 단말기를 형성한 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-폴리올.
    [여기서, A는 하나 또는 두 종 이상의 치환 또는 비치환된 탄소 수 3 내지 60의 알킬렌이고; a는 2 내지 4의 정수이고, a가 2일 경우 Z는 치환 또는 비치환된 탄소 수 3 내지 60의 알킬렌이며, a가 3일 경우 Z는 치환 또는 비치환된 탄소 수 3 내지 60의 트리알킬렌이며, a가 4일 경우 Z는 치환 또는 비치환된 탄소 수 4 내지 60의 또는 테트라알킬렌이고; Y는 하나 또는 두 종 이상의 치환 또는 비치환된 탄소수 5내지 20의 아릴렌, 또는 치환 또는 비치환된 탄소수 5 내지 20의 헤테로아릴렌이다.]
  8. 청구항 7에서,
    상기 -OAO-의 반복 단위체의 원료 물질인 HOAOH가 상기 [화학식 1a]이고;
    상기 Z(O-)a가 Z(O-)2이고, 상기 Z(O-)2의 원료 물질인 Z(OH)2가 상기 [화학식 1a] 내지 [화학식1h] 로 이루어진 군 중에서 선택되고;
    상기 -C(O)YC(O)- 연결기의 원료 물질인 HOC(O)YC(O)OH가 프탈산, 아이소프탈산, 또는 테레프탈산에서 선택된 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-폴리올.
  9. 청구항 8에서,
    상기 -C(O)YC(O)- 연결기가 -OAO-의 반복 단위체 대비 5 내지 50 mol%이고;
    상기 Z(O-)2의 반복 단위체가 상기 -OAO-의 반복 단위체 대비 5 내지 20 mol%인 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-폴리올.
  10. 청구항 9에서,
    상기 -C(O)YC(O)- 연결기의 원료 물질인 HOC(O)YC(O)OH가 아이소프탈산 또는 프탈산인 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-폴리올.
  11. 청구항 7에서,
    상기 -OAO-의 반복 단위체의 원료 물질인 HOAOH가 상기 [화학식 1a]이고;
    상기 Z(O-)a의 반복 단위체의 원료 물질인 Z(OH)a 가 상기 [화학식 2a] 내지 [화학식2d] 로 이루어진 군 중에서 선택되고;
    상기 -C(O)YC(O)- 연결기의 원료 물질인 HOC(O)YC(O)OH가 프탈산, 아이소프탈산, 또는 테레프탈산에서 선택된 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-폴리올.
  12. 청구항 11에서,
    상기 -C(O)YC(O)- 연결기가 상기 -OAO-의 반복 단위체 대비 5 내지 50 mol%이고;
    상기 Z(O-)a의 반복 단위체가 상기 -OAO-의 반복 단위체 대비 5 내지 20 mol%인 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-폴리올.
  13. 청구항 12에서,
    상기 -C(O)YC(O)- 연결기의 원료 물질인 상기 HOC(O)YC(O)OH가 아이소프탈산 또는 프탈산이고;
    상기 Z(O-)a의 반복 단위체의 원료 물질인 상기 Z(OH)a 가 상기 [화학식 2a]인 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-폴리올.
  14. 염기 촉매를 이용하여 HOAOH 와 다이메틸카보네이트를 메탄올을 제거하면서 축합하여 수 평균 분자량 1만 이상인 지방족 폴리카보네이트를 제조하는 제 1단계; 및
    상기 제 1단계에서 형성된 축합체에 Z(OH)a를 투입하여 에스터 교환 반응시키는 제 2단계를 포함하는 지방족 폴리카보네이트 매크로-폴리올의 제조방법.
    [여기서, A는 하나 또는 두 종 이상의 치환 또는 비치환된 탄소 수 3 내지 60의 알킬렌이고; a는 2 내지 4의 정수이고, a가 2일 경우 Z는 치환 또는 비치환된 탄소 수 3 내지 60의 알킬렌이며, a가 3일 경우 Z는 치환 또는 비치환된 탄소 수 3 내지 60의 트리알킬렌이며, a가 4일 경우 Z는 치환 또는 비치환된 탄소 수 4 내지 60의 또는 테트라알킬렌이다.]
  15. 청구항 14에서,
    상기 염기 촉매가 리튬, 나트륨, 또는 칼륨 양이온과 상기 HOAOH의 탈양성자 반응에 의하여 형성된 알콕시 음이온으로 구성된 것이고, 상기 염기 촉매의 양이 투입한 상기 HOAOH대비 0.01 mol% 내지 0.1 mol%인 지방족 폴리카보네이트 매크로-폴리올의 제조방법.
  16. 염기 촉매를 이용하여 HOAOH 와 다이메틸카보네이트 및 MeOC(O)YC(O)OMe의 혼합물과 메탄올을 제거하면서 축합하여 수 평균 분자량 1만 이상인 지방족 폴리카보네이트-방향족 폴리에스터 공중합체를 제조하는 제 1단계; 및
    상기 제 1단계에서 형성된 축합체에 Z(OH)a를 투입하여 에스터 교환 반응시키는 제 2단계를 포함하는 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-폴리올의 제조방법.
    [여기서, A는 하나 또는 두 종 이상의 치환 또는 비치환된 탄소 수 3 내지 60의 알킬렌이고; a는 2 내지 4의 정수이고, a가 2일 경우 Z는 치환 또는 비치환된 탄소 수 3 내지 60의 알킬렌이며, a가 3일 경우 Z는 치환 또는 비치환된 탄소 수 3 내지 60의 트리알킬렌이며, a가 4일 경우 Z는 치환 또는 비치환된 탄소 수 4 내지 60의 또는 테트라알킬렌이고; Y는 하나 또는 두 종 이상의 치환 또는 비치환된 탄소수 5내지 20의 아릴렌, 또는 치환 또는 비치환된 탄소수 5 내지 20의 헤테로아릴렌이다.]
  17. 청구항 16에서,
    상기 염기 촉매가 리튬, 나트륨, 또는 칼륨 양이온과 상기 HO-A-OH의 탈양성자 반응에 의하여 형성된 알콕시 음이온으로 구성된 것이고, 상기 염기 촉매의 양이 투입한 상기 HO-A-OH 대비 0.01 mol% 내지 0.1 mol%인 지방족 폴리카보네이트-방향족 폴리에스터 공중합체 매크로-폴리올의 제조방법.
PCT/KR2013/009222 2013-08-13 2013-10-16 지방족 폴리카보네이트 및 이의 방향족 폴리에스터 공중합체로 구성된 매크로-폴리올 WO2015023027A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES13891408T ES2853930T3 (es) 2013-08-13 2013-10-16 Macropoliol de policarbonato alifático y macropoliol de policarbonato alifático-co-poliéster aromático
US14/909,568 US20160177027A1 (en) 2013-08-13 2013-10-16 Aliphatic polycarbonate macropolyol and aliphatic polycarbonate-co-aromatic polyester macropolyol
JP2016533000A JP6420833B2 (ja) 2013-08-13 2013-10-16 脂肪族ポリカーボネート及びその芳香族ポリエステル共重合体で構成されたマクロポリオール
EP13891408.0A EP3020745B1 (en) 2013-08-13 2013-10-16 Aliphatic polycarbonate macropolyol and aliphatic polycarbonate-co-aromatic polyester macropolyol
CN201380078810.2A CN105473636B (zh) 2013-08-13 2013-10-16 脂肪族聚碳酸酯大分子多元醇和脂肪族聚碳酸酯‑co‑芳香族聚酯大分子多元醇
US15/891,644 US20180179333A1 (en) 2013-08-13 2018-02-08 Aliphatic polycarbonate macropolyol and aliphatic polycarbonate-coaromatic polyester macropolyol
US15/891,642 US10793671B2 (en) 2013-08-13 2018-02-08 Aliphatic polycarbonate macropolyol and aliphatic polycarbonate-coaromatic polyester macropolyol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130096100 2013-08-13
KR10-2013-0096100 2013-08-13

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/909,568 A-371-Of-International US20160177027A1 (en) 2013-08-13 2013-10-16 Aliphatic polycarbonate macropolyol and aliphatic polycarbonate-co-aromatic polyester macropolyol
US15/891,642 Division US10793671B2 (en) 2013-08-13 2018-02-08 Aliphatic polycarbonate macropolyol and aliphatic polycarbonate-coaromatic polyester macropolyol
US15/891,644 Continuation-In-Part US20180179333A1 (en) 2013-08-13 2018-02-08 Aliphatic polycarbonate macropolyol and aliphatic polycarbonate-coaromatic polyester macropolyol

Publications (1)

Publication Number Publication Date
WO2015023027A1 true WO2015023027A1 (ko) 2015-02-19

Family

ID=51996277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009222 WO2015023027A1 (ko) 2013-08-13 2013-10-16 지방족 폴리카보네이트 및 이의 방향족 폴리에스터 공중합체로 구성된 매크로-폴리올

Country Status (7)

Country Link
US (2) US20160177027A1 (ko)
EP (1) EP3020745B1 (ko)
JP (1) JP6420833B2 (ko)
KR (1) KR101446443B1 (ko)
CN (1) CN105473636B (ko)
ES (1) ES2853930T3 (ko)
WO (1) WO2015023027A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396110B1 (ko) * 2013-10-30 2014-05-16 아주대학교산학협력단 장쇄 분지를 갖는 지방족 폴리카보네이트 및 이의 방향족 폴리에스터 공중합체
KR101657261B1 (ko) * 2014-10-22 2016-09-13 롯데케미칼 주식회사 공중합 폴리카보네이트 수지 및 그 제조방법
KR101768324B1 (ko) * 2015-09-17 2017-08-16 롯데케미칼 주식회사 이차 알코올을 함유하는 폴리카보네이트 폴리올 제조방법
WO2018117219A1 (ja) 2016-12-22 2018-06-28 三菱ケミカル株式会社 ポリカーボネートポリオール及びポリウレタン
TWI673298B (zh) * 2018-06-19 2019-10-01 財團法人工業技術研究院 聚碳酸酯二醇及其形成之聚氨酯
JP7326743B2 (ja) * 2019-01-11 2023-08-16 東ソー株式会社 ポリカーボネートポリオール及びその製造方法
WO2020203882A1 (ja) * 2019-03-29 2020-10-08 帝人株式会社 高分子バインダー及び全固体二次電池
JP7442276B2 (ja) * 2019-08-01 2024-03-04 東ソー株式会社 ポリカーボネートポリオールの製造方法
KR102347830B1 (ko) * 2019-10-31 2022-01-05 롯데케미칼 주식회사 열가소성 수지 조성물 및 이로부터 제조된 성형품

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302712A2 (en) 1987-08-04 1989-02-08 Asahi Kasei Kogyo Kabushiki Kaisha Novel copolycarbonate
US5143997A (en) 1989-10-11 1992-09-01 Daicel Chemical Industries, Ltd. Polycarbonate-polyol composition and polycarbonate(meth) acrylate compositions and urethane(meth) acrylate compositions prepared therefrom
US5171830A (en) 1991-08-16 1992-12-15 Arco Chemical Technology, L.P. Catalytic process for the preparation of polyalkylene carbonates
EP0798328A2 (en) 1996-03-28 1997-10-01 ENICHEM S.p.A. Process for the preparation of polycarbonate copolyether polyols
JP3033778B2 (ja) * 1989-10-11 2000-04-17 ダイセル化学工業株式会社 ポリカーボネートポリオール
EP2036937A1 (en) 2007-09-13 2009-03-18 Stichting Dutch Polymer Institute Polycarbonate and process for producing the same
JP2009235291A (ja) * 2008-03-28 2009-10-15 Ube Ind Ltd ポリカ−ボネートポリオール及びその製造方法
US20100292497A1 (en) 2007-11-16 2010-11-18 Asahi Kasei Chemicals Corporation Polycarbonate diol with ease of reaction stabilization
KR20110030660A (ko) * 2008-08-01 2011-03-23 우베 고산 가부시키가이샤 폴리카보네이트 다이올 및 폴리카보네이트 다이올 공중합체
WO2012019979A2 (de) * 2010-08-09 2012-02-16 Bayer Materialscience Ag Elektromechanischer wandler, umfassend ein polyurethanpolymer mit polyester-und/oder polycarbonat einheiten
US8344092B2 (en) 2009-06-26 2013-01-01 Idemitsu Kosan Co., Ltd. Method for producing bischloroformate compound, polycarbonate oligomer having small number of monomers and solution containing bischloroformate compound

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647616B2 (ja) * 1985-05-28 1994-06-22 ダイセル化学工業株式会社 ポリカ−ボネ−トの製造方法
JP3078644B2 (ja) * 1992-04-17 2000-08-21 帝人株式会社 ポリエステルブロック共重合体およびその製造法
JP3474300B2 (ja) * 1995-03-03 2003-12-08 株式会社クラレ ポリウレタンおよびそれに用いるポリエステルポリカーボネートジオール
US6255437B1 (en) * 1996-12-28 2001-07-03 Eastman Chemical Company Process for preparing poly (2,2,4,4-tetramethyl-1,3-cyclobutylene carbonate)
JP4734696B2 (ja) * 2000-08-29 2011-07-27 宇部興産株式会社 ポリカーボネートジオール共重合体及びその製造法
DE60310616T2 (de) * 2003-07-03 2007-09-27 Universiteit Twente Biokompatible polymernetzwerke
JP4605491B2 (ja) * 2003-07-31 2011-01-05 日本ポリウレタン工業株式会社 1,4−ブタンジオールを主剤とするコポリカーボネートジオールの製造方法、およびそのコポリカーボネートジオールを用いたポリウレタン樹脂。
DE102004031900A1 (de) * 2004-07-01 2006-02-16 Bayer Materialscience Ag Oligocarbonatpolyole mit endständig sekundären Hydroxylgruppen
DE102005009166A1 (de) * 2005-02-25 2006-08-31 Basf Ag Hochfunktionelle, hoch- oder hyperverzweigte Polycarbonate sowie deren Herstellung und Verwendung
EP2213696B1 (en) * 2007-11-16 2016-10-19 Asahi Kasei Kabushiki Kaisha Polycarbonate diol
WO2011005664A2 (en) * 2009-07-05 2011-01-13 Novomer, Inc. Structurally precise poly(propylene carbonate) compositions
CN102241815A (zh) * 2010-05-10 2011-11-16 江苏中科金龙化工股份有限公司 脂肪族聚碳酸亚酯-芳香族聚酯共聚物及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302712A2 (en) 1987-08-04 1989-02-08 Asahi Kasei Kogyo Kabushiki Kaisha Novel copolycarbonate
US5143997A (en) 1989-10-11 1992-09-01 Daicel Chemical Industries, Ltd. Polycarbonate-polyol composition and polycarbonate(meth) acrylate compositions and urethane(meth) acrylate compositions prepared therefrom
JP3033778B2 (ja) * 1989-10-11 2000-04-17 ダイセル化学工業株式会社 ポリカーボネートポリオール
US5171830A (en) 1991-08-16 1992-12-15 Arco Chemical Technology, L.P. Catalytic process for the preparation of polyalkylene carbonates
EP0798328A2 (en) 1996-03-28 1997-10-01 ENICHEM S.p.A. Process for the preparation of polycarbonate copolyether polyols
EP2036937A1 (en) 2007-09-13 2009-03-18 Stichting Dutch Polymer Institute Polycarbonate and process for producing the same
US20100292497A1 (en) 2007-11-16 2010-11-18 Asahi Kasei Chemicals Corporation Polycarbonate diol with ease of reaction stabilization
JP2009235291A (ja) * 2008-03-28 2009-10-15 Ube Ind Ltd ポリカ−ボネートポリオール及びその製造方法
KR20110030660A (ko) * 2008-08-01 2011-03-23 우베 고산 가부시키가이샤 폴리카보네이트 다이올 및 폴리카보네이트 다이올 공중합체
US8344092B2 (en) 2009-06-26 2013-01-01 Idemitsu Kosan Co., Ltd. Method for producing bischloroformate compound, polycarbonate oligomer having small number of monomers and solution containing bischloroformate compound
WO2012019979A2 (de) * 2010-08-09 2012-02-16 Bayer Materialscience Ag Elektromechanischer wandler, umfassend ein polyurethanpolymer mit polyester-und/oder polycarbonat einheiten

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED POLYMER SCIENCE, vol. 111, 2009, pages 217 - 227
JOURNAL OF MACROMOLECULAR SCIENCE, PART A: PURE AND APPLIED CHEMISTRY, vol. 48, 2011, pages 583 - 594
POLYM INT, vol. 60, 2011, pages 1060 - 1067
POLYM. CHEM., vol. 3, 2012, pages 1475
POLYMER, vol. 36, 1995, pages 4851 - 4854
See also references of EP3020745A4 *

Also Published As

Publication number Publication date
ES2853930T3 (es) 2021-09-20
CN105473636B (zh) 2017-09-08
US20160177027A1 (en) 2016-06-23
US10793671B2 (en) 2020-10-06
CN105473636A (zh) 2016-04-06
EP3020745A4 (en) 2017-02-15
JP6420833B2 (ja) 2018-11-07
KR101446443B1 (ko) 2014-10-07
US20180186929A1 (en) 2018-07-05
EP3020745B1 (en) 2021-01-20
EP3020745A1 (en) 2016-05-18
JP2016527376A (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
WO2015023027A1 (ko) 지방족 폴리카보네이트 및 이의 방향족 폴리에스터 공중합체로 구성된 매크로-폴리올
WO2014073764A1 (ko) 고분자량의 지방족 폴리카보네이트 공중합체 및 이의 제조 방법
JPH0529648B2 (ko)
WO2015065050A1 (ko) 장쇄 분지를 갖는 지방족 폴리카보네이트 및 이의 방향족 폴리에스터 공중합체
US3639503A (en) Block copolycarbonates containing polylactone blocks and cyclobutylene polycarbonate blocks
SU878193A3 (ru) Способ получени эфиров акриловой или метакриловой кислоты
JPH02247220A (ja) イソブチレンオキシドポリオール
KR20100099712A (ko) 트라이메틸렌 카르보네이트 및 폴리(트라이메틸렌 에테르) 글리콜을 포함하는 공중합체
Hardy et al. Variations around the presence and position of sulfur in sugar-derived cyclic monomers: influence on polymerisation thermodynamics, polymer sequence and thermal properties
JP3985264B2 (ja) 高官能ポリカーボネートポリオールの製造方法
MX2012010629A (es) Nuevos eteres de poliester derivados de monomeros asimetricos en base a bisanhidrohexitoles.
WO2016186470A1 (ko) 신축성이 현저히 개선된 폴리락트산 공중합체 및 그 제조방법
KR101346516B1 (ko) 염기 촉매를 이용하여 제조된 고분자량의 지방족 폴리카보네이트
JP2005307083A (ja) リサイクル性ポリウレタンおよびその製造法
US20180179333A1 (en) Aliphatic polycarbonate macropolyol and aliphatic polycarbonate-coaromatic polyester macropolyol
US3432473A (en) Process for the production of aliphatic or cycloaliphatic polyesters of carbonic acid
KR101715220B1 (ko) 퓨란계 폴리에스터 및 이의 제조방법
JPH10139866A (ja) 側鎖にヒドロキシメチル基を有する新規なポリエステルおよびその製造方法
KR20140104211A (ko) 폴리에스터(Polyester), 폴리우레탄(Polyurethane)의 물성 개선을 위한 카보네이트 디올 단량체, 이의 합성 방법 및 이를 이용한 중합체
JPH07258361A (ja) カップリング型ブロック共重合体
EP0494925A4 (en) Polymerizable (functionally-substituted phenylene) semi-rigid crowns

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380078810.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891408

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14909568

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016533000

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013891408

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE