WO2015022973A1 - 硬化性樹脂組成物、光学部品、レンズおよび光学部品の製造方法 - Google Patents

硬化性樹脂組成物、光学部品、レンズおよび光学部品の製造方法 Download PDF

Info

Publication number
WO2015022973A1
WO2015022973A1 PCT/JP2014/071371 JP2014071371W WO2015022973A1 WO 2015022973 A1 WO2015022973 A1 WO 2015022973A1 JP 2014071371 W JP2014071371 W JP 2014071371W WO 2015022973 A1 WO2015022973 A1 WO 2015022973A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
mass
meth
group
Prior art date
Application number
PCT/JP2014/071371
Other languages
English (en)
French (fr)
Inventor
直之 師岡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015022973A1 publication Critical patent/WO2015022973A1/ja
Priority to US15/019,064 priority Critical patent/US9714335B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • B29D11/00442Curing the lens material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters

Definitions

  • the present invention relates to a curable resin composition, an optical component, a lens, and a method for manufacturing the optical component. Specifically, the present invention relates to a curable resin composition that can be suitably used for mold molding, an optical component using the curable resin composition, a lens, and a method for manufacturing the optical component.
  • a glass material has been used as an optical system material of an imaging module such as a camera, a video camera, a camera-equipped mobile phone, a video phone, or a camera door phone.
  • an imaging module such as a camera, a video camera, a camera-equipped mobile phone, a video phone, or a camera door phone.
  • Glass materials have been used preferably because they have various optical properties and are excellent in environmental resistance. However, they have the disadvantages that weight reduction and size reduction are not easy, and workability and productivity are poor.
  • plastic materials can be mass-produced and are excellent in workability, so that they have recently been used for various optical materials.
  • attempts have been made to reduce physical properties and manufacturing costs that cannot be achieved by conventional materials by using a composite lens in which a resin composition is combined with an inorganic glass material.
  • Optical parts such as lenses using plastic materials are generally manufactured by putting a curable resin composition into a molding die and curing it. For this reason, the curable resin composition used for optical parts is required to have excellent optical properties and good moldability, and the material composition of the curable resin composition used for the optical parts. Various studies have been made.
  • Patent Document 1 discloses a curable resin composition containing a (meth) acrylate monomer, a non-conjugated vinylidene group-containing compound, and a thermal radical polymerization initiator.
  • an alicyclic (meth) acrylate monomer is mentioned as an example of the (meth) acrylate monomer, and it is described that a polymer having a non-conjugated vinyl group is used as an additive.
  • molding is suppressed by performing pressure molding and thermopolymerization, and molding. It is said that a cured product having a high yield rate afterwards and high heat resistance can be obtained.
  • Patent Document 2 discloses a polymer (A) having a main chain composed of carbon atoms, a side chain having a polymerizable unsaturated bond group, and having a cyclic structure in the main chain or side chain, and polymerization.
  • a curable resin composition containing a compound having a polymerizable unsaturated group is disclosed.
  • an alicyclic compound having two methacryloyl groups is described as an example of a compound having a polymerizable unsaturated group.
  • the curable resin composition which has an optical characteristic, heat resistance, and high moldability can be provided by setting it as such a material composition.
  • the curable resin composition described in Patent Document 1 has excellent mold transferability, but mold release. It was revealed that when the mold was separated from the cured product, cracks were easily generated in the cured product, and it was difficult to perform continuous molding.
  • the curable resin composition described in Patent Document 2 is excellent in mold releasability, but has poor mold transferability and is difficult to be precisely molded, as a result of examination by the present inventors. It became. That is, the conventional curable resin composition has a problem that mold transferability and mold releasability cannot be compatible, and high-quality optical components cannot be continuously produced.
  • the present inventors proceeded with studies for the purpose of providing a curable resin composition excellent in mold transferability and mold releasability.
  • the present inventors have found that an alicyclic (meth) acrylate monomer having two or more (meth) acryloyl groups in the molecule and a radical polymerizable group.
  • Heat having excellent mold transferability and mold releasability by using a polymer having a non-conjugated vinylidene group-containing compound and a phosphate ester as constituent materials and further defining the phosphate ester content It has been found that a curable resin composition can be obtained.
  • the present invention has the following configuration.
  • An alicyclic (meth) acrylate monomer having two or more (meth) acryloyl groups in the molecule, a polymer having a radical polymerizable group, a non-conjugated vinylidene group-containing compound, and a phosphate ester A curable resin composition comprising a phosphate ester in an amount of 0.02% by mass to 3% by mass with respect to the mass of the curable resin composition.
  • the curable resin composition according to [1] further including a non-alicyclic aliphatic (meth) acrylate monomer having two or more (meth) acryloyl groups in the molecule.
  • At least one of R 1 and R 2 is an alkyl residue, a polyoxyalkylene alkyl ether residue, an alkenyl residue, or a polyoxyalkylene alkenyl ether residue, and has 10 or more carbon atoms.
  • at least one of R 1 and R 2 is an alkyl residue containing a branched structure.
  • the aliphatic (meth) acrylate monomer is a curable resin composition according to any one of [2] to [8] represented by the following general formula (4);
  • R 1 represents a substituted or unsubstituted alkylene group, or a divalent group composed of a combination of a substituted or unsubstituted alkylene group, a carbonyl group, and an oxy group, and the carbon number of R 1 is 7 or more.
  • M represents a hydrogen atom or a methyl group.
  • R 1 is a group represented by the following general formula (5) in the general formula (4);
  • R 2 to R 5 each independently represents a substituted or unsubstituted alkylene group, and * represents a bonding site with the oxy group in general formula (4).
  • n 1, n 2 is an integer of 1 or more.
  • the content of the polymer having a radical polymerizable group is 10 to 50% by mass with respect to the mass of the curable resin composition, and the content of the non-conjugated vinylidene group-containing compound is curable resin composition.
  • the total content of the alicyclic (meth) acrylate monomer and the aliphatic (meth) acrylate monomer is 40 to 85 mass based on the mass of the curable resin composition. % Of the curable resin composition according to any one of [2] to [12].
  • the content of the polymer containing a radical polymerizable group is 10 to 50% by mass with respect to the mass of the curable resin composition, and the content of the non-conjugated vinylidene group-containing compound is curable resin composition. 2 to 10% by mass relative to the mass of the product, and the total of the alicyclic (meth) acrylate monomer and the aliphatic (meth) acrylate monomer is 40 to 85% by mass with respect to the mass of the curable resin composition
  • the curable resin composition according to any one of [2] to [13], wherein the mass mixing ratio of the alicyclic (meth) acrylate monomer and the aliphatic (meth) acrylate monomer is 90:10 to 40:60 object.
  • the present invention it is possible to obtain a curable resin composition excellent in mold transferability and mold releasability. Moreover, if the curable resin composition of the present invention is used, an optical component having excellent optical characteristics and high quality can be obtained with high production efficiency.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • (meth) acrylate means “acrylate” and “methacrylate”.
  • the notation that does not indicate substitution and non-substitution includes not only those having no substituent but also those having a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the curable resin composition of the present invention includes an alicyclic (meth) acrylate monomer having two or more (meth) acryloyl groups in a molecule, a polymer having a radical polymerizable group, and a non-conjugated vinylidene group-containing compound. And a phosphate ester, and the phosphate resin is contained in the curable resin composition in an amount of 0.02% by mass to 3% by mass. Furthermore, the curable resin composition of the present invention preferably further contains a non-alicyclic aliphatic (meth) acrylate monomer having two or more (meth) acryloyl groups in the molecule.
  • each material which comprises the curable resin composition of this invention is demonstrated.
  • the curable resin composition of the present invention contains a phosphate ester.
  • the phosphoric acid ester used in the present invention may be any of phosphoric acid monoester, phosphoric acid diester, and phosphoric acid triester, but is preferably phosphoric acid monoester or phosphoric acid diester.
  • the phosphate ester preferably has an aliphatic group having 10 or more carbon atoms.
  • the aliphatic group is an organic group having no aromatic ring, and may be any of linear, branched, and cyclic.
  • the aliphatic group may be composed only of carbon atoms and hydrogen atoms, or may contain heteroatoms such as oxygen atoms.
  • the aliphatic group possessed by the phosphoric ester preferably has 10 to 40 carbon atoms, more preferably 12 to 35 carbon atoms, and still more preferably 18 to 30 carbon atoms.
  • the curable resin composition of the present invention can exhibit excellent mold releasability and mold transferability by containing a phosphate ester as described above.
  • the phosphate ester used in the present invention is preferably represented by the following general formula (1).
  • R 1 and R 2 may be the same or different and each independently represents a hydrogen atom, an alkyl residue, a polyoxyalkylene alkyl ether residue, an alkenyl residue, or a polyoxyalkylene. Represents an alkenyl ether residue. At least one of R 1 and R 2 is an alkyl residue, a polyoxyalkylene alkyl ether residue, an alkenyl residue, or a polyoxyalkylene alkenyl ether residue, and these groups have 10 or more carbon atoms. is there. Among these, at least one of R 1 and R 2 is preferably an alkyl residue or a polyoxyalkylene alkenyl ether residue.
  • alkyl residues include ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, hexyl, octyl, 2-ethylhexyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, lauryl, stearyl, tetracosyl Isotridecyl and the like, and among them, an alkyl residue having 10 or more carbon atoms such as dodecyl, tetradecyl, hexadecyl, octadecyl, lauryl, stearyl, tetracosyl, and isotridecyl is preferable.
  • Examples of the polyoxyalkylene alkyl ether residue include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether and the like.
  • Examples of the alkenyl residue include tans-9-octadecel, oleyl, tan-2-decene, and the like.
  • Examples of the polyoxyalkylene alkenyl ether residue include polyoxyethylene oleyl ether.
  • R 1 and R 2 are preferably alkyl residues having 10 or more carbon atoms and having a branched structure, and specific examples include isotridecyl residues.
  • phosphate ester represented by the general formula (1) is shown.
  • the phosphate ester used by this invention is not limited to the following compounds.
  • n 3 is an integer of 1 to 10.
  • the content of the phosphate ester in the curable resin composition is more than 0.02% by mass and 3% by mass or less and 0.03 to 3% by mass with respect to the mass of the curable resin composition.
  • it is 0.05 to 3% by mass, more preferably 0.1 to 2.0% by mass, still more preferably 0.1 to 1.5% by mass, It is particularly preferably 1 to 1.0% by mass.
  • the phosphoric acid ester contained in the curable resin composition of the present invention may further contain an aromatic phosphoric acid ester represented by the general formula (1-2).
  • Ar 1 and Ar 2 may be the same or different, and each independently represents a hydrogen atom or an aryl residue which may have a substituent. At least one of Ar 1 and Ar 2 is an aryl residue which may have a substituent. Specific examples of the aryl residue represented by Ar 1 and Ar 2 include a phenyl residue, a cresyl residue, a xylenyl residue, etc. Among them, a phenyl residue is preferable.
  • the method for obtaining the aromatic phosphate represented by the general formula (1-2) is not particularly limited, and may be obtained commercially or may be produced by synthesis. When obtained commercially, for example, diphenyl phosphate (Tokyo Chemical Industry Co., Ltd., aromatic phosphate ester 1) can be preferably used.
  • the content of the aromatic phosphate ester in the curable resin composition is 10 to 120% by mass, and 20 to 100% by mass with respect to the phosphate ester represented by the general formula (1).
  • the content is preferably 20 to 80% by mass, more preferably 30 to 80% by mass.
  • the content of the aromatic phosphate is preferably 0.002 to 3% by mass, more preferably 0.004 to 2% by mass, with respect to the mass of the curable resin composition.
  • the content is more preferably 0.04 to 1% by mass, and particularly preferably 0.006 to 0.5% by mass.
  • the curable resin composition of the present invention contains an alicyclic (meth) acrylate monomer having two or more (meth) acryloyl groups in the molecule.
  • this alicyclic (meth) acrylate monomer two or more (meth) acryloyl groups are bonded to an aliphatic ring directly or via a divalent linking group.
  • the number of (meth) acryloyl groups bonded to the aliphatic ring is preferably 2 to 6, more preferably 2 to 4, and still more preferably 2.
  • the alicyclic (meth) acrylate monomer having two or more (meth) acryloyl groups in the molecule is preferably represented by the following general formula (2).
  • a 1 represents a substituted or unsubstituted aliphatic ring
  • R represents a single bond or a substituted or unsubstituted alkylene group
  • M represents a hydrogen atom or a methyl group
  • n represents 2 or more. Represents an integer.
  • a 1 represents a substituted or unsubstituted aliphatic ring.
  • the aliphatic ring may be a monocyclic structure, may be a polycyclic structure in which two or more aliphatic rings are connected or fused, and may contain a bridged ring hydrocarbon.
  • the aliphatic ring may be comprised only by the carbon atom and the hydrogen atom, and may contain hetero atoms other than a carbon atom and a hydrogen atom.
  • the number of carbon atoms in the aliphatic ring is not particularly limited, but is preferably 6 to 20, more preferably 7 to 15, and still more preferably 7 to 10.
  • aliphatic ring examples include tricyclodecane (aliphatic ring 1), adamantane (aliphatic ring 2), norbornane (aliphatic ring 3), cyclohexane (aliphatic ring 4), and norbornene (aliphatic ring). 5) is preferable, tricyclodecane, adamantane and norbornane are more preferable, and tricyclodecane is more preferable.
  • the substituted or unsubstituted aliphatic rings represented by A 1 may be the same as or different from each other.
  • the structures of the aliphatic rings 1 to 5 are shown below.
  • R represents a single bond or a substituted or unsubstituted alkylene group.
  • the alkylene group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • the substituted or unsubstituted alkylene groups represented by R may be the same as or different from each other.
  • M represents a hydrogen atom or a methyl group. Among these, M is preferably a hydrogen atom. M may be the same as or different from each other.
  • N represents an integer of 2 or more, preferably 2 to 6, more preferably 2 to 4, and still more preferably 2.
  • alicyclic (meth) acrylate monomer represented by the general formula (2) preferred specific examples of the alicyclic (meth) acrylate monomer represented by the general formula (2) are shown.
  • numerator used by this invention is not limited to the following compounds.
  • the curable resin composition of the present invention includes a polymer having a radical polymerizable group.
  • the polymer having a radical polymerizable group has a function of improving the mold transferability of the curable resin composition.
  • examples of the radical polymerizable group of the polymer having a radical polymerizable group include an acrylate group, a (meth) acrylate group, a vinyl group, a styryl group, and an allyl group.
  • the repeating unit having a radical polymerizable group is preferably 5 to 100% by mass, more preferably 10 to 90% by mass, and 20 to 80% by mass. Is more preferable.
  • the polymer having a radical polymerizable group may be a homopolymer or a copolymer, and in the case of being a copolymer, at least one of the copolymer components has a radical polymerizable group. Good.
  • the molecular weight of the polymer having a radical polymerizable group is preferably from 1,000 to 10,000,000, more preferably from 5,000 to 300,000, and particularly preferably from 10,000 to 200,000.
  • the glass transition temperature (hereinafter also referred to as Tg) of the polymer having a radical polymerizable group is preferably 50 to 400 ° C., more preferably 70 to 350 ° C., and preferably 100 to 300 ° C. Particularly preferred.
  • the repeating unit of the preferable example of the polymer which has a radically polymerizable group below is shown.
  • the polymer having a radical polymerizable group used in the present invention is not limited to a polymer having the following repeating units.
  • the curable resin composition of the present invention contains a non-conjugated vinylidene group-containing compound.
  • the non-conjugated vinylidene group-containing compound can adjust the curing rate when the curable resin composition is cured, and can make the thickness of the cured product more uniform. Thereby, the heat resistance of a hardened
  • the non-conjugated vinylidene group-containing compound that can be used in the present invention is preferably represented by the following general formula (3).
  • R 11 , R 12 , R 15 and R 16 each independently represent a substituent, and A represents an atomic group necessary for forming a cyclic structure.
  • the substituent represented by R 11 , R 12 , R 15 and R 16 is not particularly limited, and examples thereof include a hydrogen atom, a halogen atom, a halogenated alkyl group, an alkyl group, an alkenyl group, and an acyl. Group, hydroxyl group, hydroxyalkyl group, aromatic ring group, heteroaromatic ring group, and alicyclic group.
  • R 11 , R 12 , R 15 and R 16 are preferably each independently a substituent consisting of only a hydrogen atom, an oxygen atom and a carbon atom, and preferably a substituent consisting of only a hydrogen atom and a carbon atom. More preferred.
  • R 11 , R 12 , R 15 and R 16 are preferably a hydrogen atom, an alkyl group, or an alkenyl group, and are preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 2 to 5 carbon atoms. More preferred is an alkenyl group.
  • R 11 and R 12 , R 15 and R 16 may be further bonded to each other to form a ring, and the ring may further have a substituent.
  • R 11 and R 12 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, and it is preferable that the hydrocarbon group having 1 to 5 carbon atoms does not form a ring. It is preferable that only one of R 11 and R 12 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, and the hydrocarbon group having 1 to 5 carbon atoms does not form a ring.
  • A represents an atomic group necessary for forming a cyclic structure
  • the cyclic structure is not particularly limited and may be a known cyclic structure.
  • the cyclic structure include an alicyclic ring (non-aromatic hydrocarbon ring), an aromatic ring, a heterocyclic ring, and a lactone ring containing —CO—.
  • A is an atomic group necessary for forming an alicyclic ring having 4 to 10 carbon atoms including a carbon atom linked to A in the general formula (3) and a carbon atom constituting a non-conjugated vinylidene group.
  • the alicyclic ring is an atomic group necessary for forming an alicyclic ring having 5 to 9 carbon atoms including a carbon atom linked to A in the general formula (3) and a carbon atom constituting a non-conjugated vinylidene group. Particularly preferred.
  • the alicyclic ring may further have a substituent.
  • the substituent of the alicyclic ring an alkyl group having 1 to 5 carbon atoms is preferable, and a methyl group, an ethyl group, an n-propyl group, or an isopropyl group is preferable.
  • A may be an unsaturated alicyclic ring or a saturated alicyclic ring, but has at least one unsaturated bond as the whole non-conjugated vinylidene group-containing compound represented by the general formula (3). It is preferable. A may further form a condensed ring with the substituent represented by R 11 , R 12 , R 15 and R 16 .
  • R 11 , R 12 , R 15 and R 16 each independently represent a substituent consisting of only a hydrogen atom and a carbon atom, and A represents an alicyclic (non-aromatic carbonization). Hydrogen) structure is particularly preferred.
  • the non-conjugated vinylidene group-containing compound represented by the general formula (3) has another alkenyl group in addition to the vinylidene group (non-conjugated vinylidene group).
  • the non-conjugated vinylidene group-containing compound represented by the general formula (3) preferably has a vinylidene group other than the non-conjugated vinylidene group located in the ring formed by R 11 , R 12 , R 15 and R 16. .
  • the ring formed by the former R 11 , R 12 , R 15 and R 16 includes at least one unsaturated hydrocarbon ring, and the unsaturated hydrocarbon having only one double bond. It is more particularly preferable to include a ring.
  • non-conjugated vinylidene group-containing compound represented by the general formula (3) preferably used in the present invention are listed, but the present invention is not limited to the following compounds.
  • the molecular weight of the non-conjugated vinylidene group-containing compound represented by the general formula (3) is preferably 100 to 400, more preferably 120 to 350, and particularly preferably 130 to 300. preferable.
  • ⁇ -caryophyllene that can be preferably used in the present invention is synthesized by J. Org. Am. Chem. Soc. 85, 362 (1964), Tetrahedron Lette. , 24, 1885 (1983).
  • the content of the non-conjugated vinylidene group-containing compound in the curable resin composition is preferably 2 to 10% by mass, and preferably 2 to 8% by mass with respect to the mass of the curable resin composition. More preferably, it is 3 to 6% by mass.
  • the curable resin composition may contain additives such as a polymer, other monomers, a dispersing agent, a plasticizer, a heat stabilizer, and a release agent, as long as not departing from the spirit of the present invention. .
  • the curable resin composition may further include a non-alicyclic aliphatic (meth) acrylate monomer having two or more (meth) acryloyl groups in the molecule. Thereby, the mold release property of curable resin composition can further be improved.
  • This non-alicyclic aliphatic (meth) acrylate monomer is obtained by bonding two or more (meth) acryloyl groups to an aliphatic group that is not a cyclic structure.
  • the aliphatic group is an organic group having no aromatic ring, and may be linear or branched.
  • the aliphatic group may be composed only of carbon atoms and hydrogen atoms, or may contain heteroatoms such as oxygen atoms.
  • the number of acryloyl groups bonded to the aliphatic group is preferably 2 to 6, more preferably 2 to 4, and still more preferably 2.
  • the alicyclic (meth) acrylate monomer having two or more (meth) acryloyl groups in the molecule is preferably represented by the following general formula (4).
  • R 1 represents a substituted or unsubstituted alkylene group, or a divalent group composed of a combination of a substituted or unsubstituted alkylene group, a carbonyl group, and an oxy group, and the carbon number of R 1 is 7 or more.
  • M represents a hydrogen atom or a methyl group.
  • R 1 preferably has 7 to 100 carbon atoms, more preferably 9 to 85 carbon atoms, and still more preferably 10 to 40 carbon atoms.
  • Preferable examples of the divalent group comprising a combination of an alkylene group, a carbonyl group and an oxy group represented by R 1 include a group represented by the following general formula (5).
  • R 2 to R 5 each independently represents a substituted or unsubstituted alkylene group, and * represents a bonding site with the oxy group in the general formula (4).
  • n 1 and n 2 are each independently an integer of 1 or more.
  • the number of carbon atoms in the alkylene group portion of the substituted or unsubstituted alkylene group represented by R 2 to R 5 is not particularly limited, but is preferably 2 to 20, more preferably 2 to 10, and more preferably 4 to 6. More preferably it is.
  • the substituted or unsubstituted alkylene groups represented by R 2 to R 5 may be the same as or different from each other.
  • n 1 and n 2 are preferably 1 to 10, more preferably 1 to 8, and still more preferably 1 to 7.
  • n 1 and n 2 may be the same as or different from each other.
  • non-alicyclic aliphatic (meth) acrylate monomer having two or more (meth) acrylate groups in the molecule used in the present invention is not limited to the following compounds.
  • n and n are each an integer of 1 or more.
  • the curable resin composition contains a non-alicyclic aliphatic (meth) acrylate monomer having two or more (meth) acrylate groups, the alicyclic (meth) acrylate monomer and the aliphatic (meth) acrylate monomer
  • the total is preferably 40 to 85% by mass, more preferably 50 to 80% by mass, and still more preferably 55 to 75% by mass with respect to the mass of the curable resin composition.
  • the mass mixing ratio (w / w) of the alicyclic (meth) acrylate monomer and the aliphatic (meth) acrylate monomer is preferably 90:10 to 40:60, and 85:15 to 50:50. It is preferable that the ratio is 80:20 to 60:40.
  • the curable resin composition of the present invention may further contain at least one of a thermal radical polymerization initiator and a photo radical polymerization initiator.
  • a cured product having high heat resistance can be easily produced with good moldability by including at least one of a thermal radical polymerization initiator and a photo radical polymerization initiator.
  • thermal radical polymerization initiator Specific examples of the thermal radical polymerization initiator that can be used in the present invention include the following compounds. For example, 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-butylperoxy) cyclohexane, 2,2-di (4,4-di- (t-butylperoxy) cyclohexyl) propane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, dicumyl peroxide, di-t-butyl peroxide, t-butylperoxy-2-ethyl Examples include hexanoate, t-hexylperoxy-2-ethylhexanoate, cumene hydroperoxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3
  • a hydroperoxide thermal radical polymerization initiator having a hydroperoxide group in the molecule as the thermal radical polymerization initiator, and further, a hydroperoxide system having a hydroperoxide group in the molecule. It is more preferable to use at least one thermal radical polymerization initiator and a non-hydroperoxide thermal radical polymerization initiator having no hydroperoxide group in the molecule.
  • non-hydroperoxide thermal radical polymerization initiator manufactured by Nippon Oil & Fats Co., Ltd.
  • perbutyl O t-butylperoxy-2-ethylhexanoate
  • Permmill H cumene hydroperoxide
  • hydroperoxide thermal radical polymerization initiator having a hydroperoxide group in the molecule is that the hydroperoxide thermal radical polymerization initiator is used during the polymerization of a compound monomer containing a non-conjugated vinylidene group. This is because the controllability of the three-dimensional structure is further improved and the deformability of the semi-cured product can be imparted. Further, since the temperature at which thermal radical polymerization is initiated is generally high, the hydroperoxide thermal radical polymerization initiator is more preferably used in combination with a non-hydroperoxide thermal radical polymerization initiator having a low thermal polymerization initiation temperature.
  • the addition rate of the thermal radical polymerization initiator in the curable resin composition is not particularly limited, but is 0.01 to 5 with respect to the total of the polymers including the aromatic ring-containing compound represented by the general formula (1).
  • the content is preferably 0.0% by mass, more preferably 0.1 to 4.0% by mass, and particularly preferably 0.3 to 3.0% by mass.
  • the photo radical polymerization initiator specifically, the following compounds can be used.
  • IRGACURE 184 (1-hydroxycyclohexyl phenyl ketone), 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-, manufactured by BASF, as a photo radical polymerization initiator.
  • 1-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, and 2,2-dimethoxy-1,2-diphenylethane-1-one are preferably used. be able to.
  • the addition rate of the radical photopolymerization initiator in the curable resin composition is not particularly limited, but is preferably 0.01 to 5% by mass, and more preferably 0.05 to 1.0% by mass. 0.05 to 0.5% by mass is particularly preferable.
  • the method for producing an optical component of the present invention includes a step of pressing a mold against a curable resin composition to spread the resin composition, and a temperature of 150 ° C. or higher after the resin composition is semi-cured by irradiation with light. A step of curing, and a step of separating the mold from the cured resin in a temperature range of 150 to 250 ° C.
  • materials used in the production method of the present invention and each process will be described.
  • the curable resin composition used with the manufacturing method of the optical component of this invention is not specifically limited, It is preferable that it is the curable resin composition of this invention. Since the curable resin composition of the present invention is excellent in mold transferability, it can be used as an optical component material to obtain an optical component with excellent optical characteristics and high quality. Moreover, since the curable resin composition of the present invention is excellent in mold releasability, it is possible to adopt a continuous molding method. Thereby, the manufacturing efficiency of an optical component can be improved.
  • the curable resin composition used in the method for producing an optical component of the present invention preferably contains a radical photopolymerization initiator. Thereby, when irradiating light and semi-hardening a curable resin composition, the semi-hardened
  • the transfer step the other mold is pressed against the curable resin composition injected into one of the pair of molds to spread the resin composition. It is preferable that the metal mold used in the transfer process has been subjected to chromium nitride treatment. Thereby, it is possible to exhibit good mold releasability in a release step performed in a later step, and increase the manufacturing efficiency of the optical component.
  • Examples of the chromium nitride treatment include a method of forming a chromium nitride film on the mold surface.
  • a method of forming a chromium nitride film on the mold surface there are, for example, a CVD method and a PVD method.
  • the CVD method is a method of forming a chromium nitride film on a substrate surface by reacting a source gas containing chromium and a source gas containing nitrogen at a high temperature.
  • the PVD method is a method of forming a chromium nitride film on the surface of a substrate using arc discharge.
  • This arc-type vacuum deposition method is a method in which a compound is formed by reacting an ionized metal and a reactive gas on the surface of a substrate.
  • a cathode (evaporation source) made of, for example, chromium is disposed in a vacuum vessel, and an arc discharge is caused between the cathode and the wall surface of the vacuum vessel via a trigger to simultaneously evaporate the cathode and arc plasma.
  • the metal is ionized by the above, a negative voltage is applied to the substrate, and a reaction gas such as nitrogen gas is introduced into the vacuum vessel by about several tens of mm Torr.
  • the chromium nitride on the mold surface in the present invention is implemented by the CVD method or the PVD method.
  • the mold can generally be heated while pressing the contents by combining two molds.
  • a low-viscosity composition is injected into the mold, the mold leaks into the mold clearance.
  • the viscosity of the curable resin composition is adjusted by further adding a polymer having a radical polymerizable group as described above, and half of the resin is irradiated and / or heated in one mold. It is also preferable from the viewpoint of manufacturability to obtain a cured product by performing curing and thermal polymerization described later.
  • the curable resin composition is semi-cured by irradiating light to obtain a semi-cured product.
  • the “semi-cured product” is a product obtained by polymerizing a curable resin composition, which is not completely solid and has a certain degree of fluidity.
  • the light and / or heated polymer of the curable resin composition having a complex viscosity of 10 5 to 10 8 mPa ⁇ s at 25 ° C. and a frequency of 10 Hz is a semi-cured product.
  • the thing of 1.0x10 ⁇ 9 > mPa * s is considered as a semi-hardened
  • the “cured product” means a product obtained by polymerizing a curable resin composition and in a completely solid state.
  • Light irradiation conditions Preferred conditions for light irradiation in the method for producing an optical component of the present invention will be described below.
  • the light irradiation is preferably performed so that the complex viscosity of the semi-cured product after the light irradiation at 25 ° C. and a frequency of 10 Hz is 10 5 to 10 8 mPa ⁇ s, and is preferably 10 5 to 10 7.5 mPa ⁇ s. It is more preferable to carry out at a rate of 10 5.5 to 10 7.5 mPa ⁇ s.
  • the light used for light irradiation is preferably ultraviolet light or visible light, and more preferably ultraviolet light.
  • a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a sterilizing lamp, a xenon lamp, an LED light source lamp, or the like is preferably used.
  • the atmosphere at the time of light irradiation is preferably air or inert gas substitution, and more preferably nitrogen atmosphere until the oxygen concentration becomes 1% or less.
  • the semi-cured product obtained in this step preferably has the following characteristics. That is, the complex viscosity of the semi-cured product obtained in this step at 25 ° C. and a frequency of 10 Hz is preferably 10 5 to 10 8 mPa ⁇ s, more preferably 10 5 to 10 7.5 mPa ⁇ s. More preferably, it is 10 5.5 to 10 7.5 mPa ⁇ s.
  • the glass transition temperature (hereinafter also referred to as Tg) of the semi-cured product is preferably ⁇ 150 to 0 ° C., more preferably ⁇ 50 to 0 ° C., and ⁇ 20 to 0 ° C. Particularly preferred.
  • Tg glass transition temperature of the semi-cured product
  • the semi-cured product is heated and cured at a temperature of 150 ° C. or higher to obtain a cured product.
  • the heating temperature is 150 ° C. or higher, preferably 160 to 270 ° C., more preferably 165 to 250 ° C., and still more preferably 170 to 230 ° C.
  • Pressure deformation and heating may be performed at the same time, heating may be performed after pressure deformation, or pressure deformation may be performed after heating. Among them, pressure deformation and heating are performed simultaneously. Is preferred. Further, it is also preferable that the pressure deformation and the heating are performed at the same time and the heating is further performed at a higher temperature after the pressure is stabilized.
  • the pressure in the pressure deformation is preferably 1 kg / cm 2 to 100 kg / cm 2 , more preferably 3 kg / cm 2 to 50 kg / cm 2 , and 3 kg / cm 2 to 30 kg / cm 2. Is particularly preferred.
  • the time for the thermal polymerization is preferably 30 to 1000 seconds, more preferably 30 to 500 seconds, and particularly preferably 60 to 300 seconds.
  • the atmosphere at the time of thermal polymerization is preferably air or inert gas substitution, and more preferably nitrogen atmosphere until the oxygen concentration becomes 1% or less.
  • the optical component is obtained by separating the mold from the cured resin in a temperature range of 150 to 250 ° C.
  • the heating temperature in this step is 150 to 250 ° C., preferably 160 to 250 ° C., more preferably 165 to 250 ° C., and still more preferably 170 to 230 ° C.
  • the structure of this invention is not restricted to this, In the range which does not deviate from this invention, it can change suitably.
  • the mold used in the transfer process and the semi-curing process is also used as it is in the curing process, but after performing the semi-curing process, the mold is separated from the semi-cured product, You may make it harden
  • the above-described chromium nitride treatment is preferably performed on the thermoforming mold.
  • the curable resin composition in the mold may be irradiated with light and heated. Thereby, the semi-hardened material which has a desired degree of hardening can be obtained reliably.
  • the optical component of the present invention is obtained using the curable resin composition of the present invention.
  • the curable resin composition of the present invention includes an alicyclic (meth) acrylate monomer having two or more (meth) acryloyl groups in a molecule, a polymer having a radical polymerizable group, and a non-conjugated vinylidene group-containing compound. And a phosphate ester, and the content ratio of the phosphate ester to the mass of the curable resin composition is specified to be more than 0.02 mass% and 3 mass% or less. Thereby, this curable resin composition can exhibit excellent mold transferability and mold releasability.
  • the optical component using this curable resin composition has a precise shape, and can obtain excellent optical characteristics and quality. Moreover, this optical component can be manufactured by adopting a continuous molding method, and high manufacturing efficiency can be obtained. Hereinafter, preferable characteristics of the optical component will be described.
  • the optical component of the present invention preferably has a high refractive index from the viewpoint of use for lenses and the like among optical component applications.
  • the optical component preferably has a refractive index nD at a wavelength of 589 nm of 1.45 or more, more preferably 1.48 or more, and particularly preferably 1.51 or more.
  • the optical component of the present invention preferably has a high Abbe number from the viewpoint of reducing chromatic aberration when used for a lens or the like among optical component applications.
  • the Abbe number at a wavelength of 589 nm is preferably 40 or more, more preferably 45 or more, particularly preferably 50 or more, and particularly preferably 52 or more.
  • the Abbe number ⁇ D is calculated by the following formula (A) by measuring the respective refractive indexes nD, nF, and nC at wavelengths 589 nm, 486 nm, and 656 nm.
  • the optical component of the present invention preferably has a maximum thickness of 0.1 to 10 mm.
  • the maximum thickness is more preferably 0.1 to 5 mm, and particularly preferably 0.15 to 3 mm.
  • the optical component of the present invention preferably has a maximum diameter of 1 to 1000 mm.
  • the maximum diameter is more preferably 2 to 300 mm, and particularly preferably 2.5 to 100 mm.
  • a cured product of such a size is particularly useful for optical parts having a high refractive index.
  • the optical component of the present invention preferably has high refractive properties, light transmittance and light weight, and is excellent in optical properties.
  • the kind of the optical component of the present invention is not particularly limited. In particular, it can be suitably used as an optical component utilizing the excellent optical properties of the curable resin composition, particularly an optical component that transmits light (so-called passive optical component).
  • Examples of the optical functional device provided with such optical components include various display devices (liquid crystal display, plasma display, etc.), various projector devices (OHP, liquid crystal projector, etc.), optical fiber communication devices (optical waveguide, optical amplifier, etc.). And a photographing device such as a camera or a video.
  • passive optical component used for an optical functional device, for example, a lens, a prism, a prism sheet, a panel (plate-shaped molded body), a film, an optical waveguide (film-like or fiber-like), an optical disk, an LED sealing Examples thereof include agents.
  • Passive optical components absorb optional coating layers, for example, protective layers that prevent mechanical damage to the coated surface due to friction and wear, and absorb light of undesirable wavelengths that can cause degradation of inorganic particles and substrates. Multi-layered with optional additional function layers such as light absorbing layer, transmission blocking layer that suppresses or prevents the transmission of reactive low molecules such as moisture and oxygen gas, antiglare layer, antireflection layer, low refractive index layer, etc. It is good also as a structure.
  • an optional coating layer examples include a transparent conductive film and gas barrier film made of an inorganic oxide coating layer, a gas barrier film and hard coat made of an organic coating layer, and the like.
  • a known coating method such as a vacuum deposition method, a CVD method, a sputtering method, a dip coating method, or a spin coating method can be used.
  • a lens substrate manufactured using the curable resin composition of the present invention has a high Abbe number and a high refractive index, and thus has excellent optical characteristics. Moreover, in the manufacturing process of hardened
  • the “lens substrate” means a single member that can exhibit a lens function. A film or a member can be provided on the surface or the periphery of the lens substrate according to the use environment or application of the lens.
  • a protective film, an antireflection film, a hard coat film, or the like can be formed on the surface of the lens substrate.
  • the periphery of the lens base material can be fitted and fixed to a base material holding frame or the like.
  • these films and frames are members added to the lens base material, and are distinguished from the lens base material itself in this specification.
  • the lens substrate When the lens substrate is used as a lens, the lens substrate itself may be used alone as a lens, or may be used as a lens by adding a film or a frame as described above.
  • the type and shape of the lens using the lens base material are not particularly limited. Since the lens substrate has a high Abbe number, it can be preferably used for an aspheric lens for correcting spherical aberration.
  • the aspherical lens for correcting spherical aberration is preferably used for imaging lenses such as mobile phones and digital cameras, imaging lenses such as televisions and video cameras, and in-vehicle and endoscope lenses.
  • Example 1 to 20 Comparative Examples 1 to 4
  • the alicyclic (meth) acrylate monomers used in Examples and Comparative Examples are as follows.
  • A-DCP Shin-Nakamura Chemical Co., Ltd.
  • aliphatic (meth) acrylate monomers used in Examples and Comparative Examples are as follows.
  • the polymer having a radical polymerizable group used in Examples and Comparative Examples is a copolymer 1 of repeating unit 1 and repeating unit 2 shown below.
  • the copolymer 1 was obtained as follows. Reflux condenser, 1L three-necked flask equipped with a gas introduction cock, tricyclo [5,2,1,0 2,6] dec-8-yl acrylate (manufactured by Hitachi Chemical Co., Ltd., FA-513AS) 20.0g, Allyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 30.0 g and MEK 50.0 g were added, followed by nitrogen substitution twice. Next, 0.6 g of an initiator (V-65, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the atmosphere was further purged with nitrogen twice, followed by heating at 65 ° C. for 6 hours under a nitrogen stream.
  • V-65 an initiator
  • reaction solution was poured into 2 L of methanol, and the precipitated white solid was collected by suction filtration. It was dried under reduced pressure at 70 ° C. for 5 hours, and the solvent was distilled off (yield 60%, number average molecular weight 24,000, weight average molecular weight 58,000).
  • Non-conjugated vinylidene group-containing compounds used in Examples and Comparative Examples are as follows. ⁇ Caryophyllene: Tokyo Kasei Co., Ltd.
  • phosphate ester used in the Examples and Comparative Examples is as follows.
  • CRODAS O3A-LQ Coleda Japan-made oleyl phosphate: Tokyo Kasei Co., Ltd. dodecyl phosphate: Wako Pure Chemical Industries, Ltd.
  • JP-524R Johoku Chemical Co., Ltd.
  • JP-513 Johoku Chemical Industry Co., Ltd.
  • Diphenyl phosphate Tokyo Chemical Made by Kogyo
  • n 3 3.
  • the photopolymerization initiators used in the examples and comparative examples are as follows. IRGACURE651: manufactured by BASF
  • thermal polymerization initiators used in the examples and comparative examples are as follows.
  • thermosetting resins of Examples 7, 8 and 13 to 20 were able to exhibit good surface transferability and continuous moldability.
  • thermosetting resins of Examples 7, 8 and 13 to 20 in which each composition was contained at an appropriate content could exhibit excellent surface transfer properties and continuous moldability.
  • thermosetting resins of Examples 13 to 20 were excellent in appearance performance, and tended to be better than the thermosetting resins of Examples 1 to 12.
  • the curable resin composition of Comparative Example 1 to which no phosphate ester is added and the curable resin composition of Comparative Example 3 having a phosphate ester content of 0.02% by mass or less are continuously moldable. Was inferior.
  • the curable resin composition of Comparative Example 4 having a phosphate ester content greater than 3% by mass was excellent in continuous moldability but was inferior in surface transferability. Furthermore, the curable resin composition of Comparative Example 2 in which the radical polymerizable group-containing polymer and the non-conjugated vinylidene group-containing compound were not added was also excellent in continuous moldability but poor in surface transferability.
  • the present invention it is possible to obtain a curable resin composition excellent in mold transferability and mold releasability. For this reason, if the curable resin composition of the present invention is used, an optical component having excellent optical characteristics and high quality can be obtained. For this reason, this invention can use an optical component effectively for various apparatuses, and its industrial applicability is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

 本発明は、金型転写性および金型転写性に優れた硬化性樹脂組成物、光学部品およびレンズを提供することを課題とする。本発明は、分子中に2つ以上の(メタ)アクリロイル基を有する脂環式(メタ)アクリレートモノマーと、ラジカル重合性基を有する重合体と、非共役ビニリデン基含有化合物と、リン酸エステルとを含む硬化性樹脂組成物であって、リン酸エステルを、硬化性樹脂組成物の質量に対して0.02質量%より多く3質量%以下含む硬化性樹脂組成物、硬化性樹脂組成物を含む光学部品、レンズ、及び光学部品の製造方法に関する。

Description

硬化性樹脂組成物、光学部品、レンズおよび光学部品の製造方法
 本発明は、硬化性樹脂組成物、光学部品、レンズおよび光学部品の製造方法に関する。具体的には、本発明は、金型成形に好適に用いることができる硬化性樹脂組成物、硬化性樹脂組成物を用いた光学部品、レンズおよび光学部品の製造方法に関する。
 従来は、カメラ、ビデオカメラあるいはカメラ付携帯電話、テレビ電話あるいはカメラ付ドアホンなどの撮像モジュールの光学系材料としてはガラス材料が用いられていた。ガラス材料は様々な光学特性を備えており、環境耐性に優れるため好ましく用いられてきたが、軽量化や小型化が容易ではなく、加工性や生産性が悪いという欠点を有していた。これに対し、プラスチック素材は、大量生産が可能であり、加工性にも優れているため、近年、様々な光学系材料に用いられるようになってきている。加えて、無機ガラス材料に樹脂組成物を組み合わせた複合レンズとすることにより、従来の材料では到達できない物性や製造コストの低減を図ることが検討されてきている。
 プラスチック素材を用いたレンズ等の光学部品は、一般に、硬化性樹脂組成物を成形用の金型に投入し、硬化させることで製造される。このため、光学部品に用いられる硬化性樹脂組成物には、得られる光学部品が優れた光学特性を有するとともに、良好な成形性を有することが求められ、このような点から、その材料組成について様々な検討がなされている。
 例えば、特許文献1には、(メタ)アクリレートモノマー、非共役ビニリデン基含有化合物、および熱ラジカル重合開始剤を含有する硬化性樹脂組成物が開示されている。ここでは、(メタ)アクリレートモノマーの例として脂環式の(メタ)アクリレートモノマーが挙げられており、さらに添加剤として非共役ビニル基を有する重合体を用いることが記載されている。特許文献1では、このような硬化性樹脂組成物に対して所定の条件で光照射等を行った後、加圧成形および熱重合を行うことで、成形時のバリの発生が抑制され、成形後の良品率が高く、耐熱性が高い硬化物が得られるとされている。
 また、特許文献2には、炭素原子からなる主鎖と、重合性不飽和結合基を有する側鎖を有し、且つ、主鎖または側鎖に環状構造を有する重合体(A)と、重合性不飽和基を有する化合物を含む硬化性樹脂組成物が開示されている。ここでは、重合性不飽和基を有する化合物の例として、2つのメタクリロイル基を有する脂環式化合物が記載されている。特許文献2では、このような材料組成にすることにより、光学特性、耐熱性および高い成形性を有する硬化性樹脂組成物を提供できるとされている。
特開2012-107191号公報 特開2012-046726号公報
 しかしながら、本発明者らが従来の硬化性樹脂組成物の成形性について検討を行ったところ、特許文献1に記載の硬化性樹脂組成物は、金型転写性には優れるものの、金型離型性が悪く、金型を硬化物から引き離す際に硬化物にクラックが発生し易く、連続成形を行うことが難しいことが明らかとなった。
 一方、特許文献2に記載の硬化性樹脂組成物は、金型離型性には優れるが、金型転写性が悪く、精密に成形することが難しいということが本発明者からの検討により明らかとなった。
 すなわち、従来の硬化性樹脂組成物は、金型転写性と金型離型性とを両立させることができず、高品質な光学部品を連続生産することができないという問題があった。
 そこで本発明者らは、このような従来技術の課題を解決するために、金型転写性および金型離型性に優れた硬化性樹脂組成物を提供することを目的として検討を進めた。
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、分子中に2つ以上の(メタ)アクリロイル基を有する脂環式(メタ)アクリレートモノマーと、ラジカル重合性基を有する重合体と、非共役ビニリデン基含有化合物と、リン酸エステルとを構成材料として用い、さらにリン酸エステルの含有量を規定することにより、金型転写性および金型離型性に優れた熱硬化性樹脂組成物が得られることを見出した。具体的に、本発明は、以下の構成を有する。
[1]分子中に2つ以上の(メタ)アクリロイル基を有する脂環式(メタ)アクリレートモノマーと、ラジカル重合性基を有する重合体と、非共役ビニリデン基含有化合物と、リン酸エステルとを含む硬化性樹脂組成物であって、リン酸エステルを、硬化性樹脂組成物の質量に対して0.02質量%より多く3質量%以下含む硬化性樹脂組成物。
[2]分子中に2つ以上の(メタ)アクリロイル基を有する非脂環式の脂肪族(メタ)アクリレートモノマーをさらに含む[1]に記載の硬化性樹脂組成物。
[3]リン酸エステルは、炭素数が10以上の脂肪族基を有する[1]又は[2]に記載の硬化性樹脂組成物。
[4]リン酸エステルは、下記一般式(1)で表される[1]~[3]のいずれかに記載の硬化性樹脂組成物;
Figure JPOXMLDOC01-appb-C000007
 一般式(1)中、R1およびR2は同一でもそれぞれ異なっても良く、それぞれ独立に水素原子、又はアルキル残基、又はポリオキシアルキレンアルキルエーテル残基、又はアルケニル残基、又はポリオキシアルキレンアルケニルエーテル残基を表す。R1、R2の少なくとも1つは、アルキル残基、又はポリオキシアルキレンアルキルエーテル残基、又はアルケニル残基、又はポリオキシアルキレンアルケニルエーテル残基であり、炭素数が10以上である。
 [5]一般式(1)中、R1およびR2の少なくとも1つは、アルキル残基又はポリオキシアルキレンアルケニルエーテル残基である[4]に記載の硬化性樹脂組成物。
 [6] 一般式(1)中、R1およびR2の少なくとも1つは、分岐構造を含むアルキル残基である[4]に記載の硬化性樹脂組成物。
 [7] リン酸エステルが、一般式(1)で表されるリン酸エステルと、下記一般式(1-2)で表される芳香族リン酸エステルを少なくとも含む[4]~[6]のいずれかに記載の硬化性樹脂組成物;
Figure JPOXMLDOC01-appb-C000008
 一般式(1-2)中、Ar1およびAr2は同一でもそれぞれ異なっても良く、それぞれ独立に水素原子、または置換基を有してもよいアリール残基を表す。Ar1およびAr2の少なくとも1つは、置換基を有してもよいアリール残基である。
 [8]脂環式(メタ)アクリレートモノマーと、脂肪族(メタ)アクリレートモノマーの混合比が質量90:10~40:60である[2]~[7]のいずれかに記載の硬化性樹脂組成物。
[9]脂肪族(メタ)アクリレートモノマーは、下記一般式(4)で表される[2]~[8]のいずれかに記載の硬化性樹脂組成物;
Figure JPOXMLDOC01-appb-C000009
 一般式(4)中、R1は置換もしくは無置換のアルキレン基、又は置換もしくは無置換のアルキレン基とカルボニル基とオキシ基との組合せからなる2価の基を表し、R1の炭素数は7以上である。また、Mは水素原子又はメチル基を表す。
[10]一般式(4)中、R1は、下記一般式(5)で表される基である[9]に記載の硬化性樹脂組成物;
Figure JPOXMLDOC01-appb-C000010
 一般式(5)中、R2~R5は各々独立に置換もしくは無置換のアルキレン基を表し、*は一般式(4)のオキシ基との結合部位を表す。n1、n2は1以上の整数である。
[11]脂肪族(メタ)アクリレートモノマーは、下記化合物である[2]~[10]のいずれかに記載の硬化性樹脂組成物;
Figure JPOXMLDOC01-appb-C000011
 化合物中、mおよびnはそれぞれ独立に1~7の整数を表す。
[12]脂環式(メタ)アクリレートモノマーは、下記化合物である[1]~[11]のいずれかに記載の硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000012
[13]ラジカル重合性基を有する重合体の含有率が、硬化性樹脂組成物の質量に対して10~50質量%であり、非共役ビニリデン基含有化合物の含有率が、硬化性樹脂組成物の質量に対して2~10質量%であり、脂環式(メタ)アクリレートモノマーおよび脂肪族(メタ)アクリレートモノマーの含有率の合計が、硬化性樹脂組成物の質量に対して40~85質量%である[2]~[12]のいずれかに記載の硬化性樹脂組成物。
[14]ラジカル重合性基を含有する重合体の含有率が、硬化性樹脂組成物の質量に対して10~50質量%であり、非共役ビニリデン基含有化合物の含有率が、硬化性樹脂組成物の質量に対して2~10質量%であり、脂環式(メタ)アクリレートモノマーおよび脂肪族(メタ)アクリレートモノマーの合計が、硬化性樹脂組成物の質量に対して40~85質量であり、且つ脂環式(メタ)アクリレートモノマーと、脂肪族(メタ)アクリレートモノマーの質量混合比が90:10~40:60である[2]~[13]のいずれかに記載の硬化性樹脂組成物。
[15]熱ラジカル重合開始剤および光ラジカル重合開始剤の少なくとも一方をさらに含む[1]~[14]のいずれかに記載の硬化性樹脂組成物。
[16][1]~[15]のいずれかに記載の硬化性樹脂組成物を用いた光学部品。
[17][1]~[15]のいずれかに記載の硬化性樹脂組成物を用いたレンズ。
[18]硬化性樹脂組成物に金型を押し当てて硬化性樹脂組成物を押し広げる工程と、光を照射して硬化性樹脂組成物を半硬化させた後に150℃以上で熱硬化させる工程と、150~250℃の温度範囲で硬化性樹脂組成物の硬化物から金型を引き離す工程とを含む光学部品の製造方法。
[19]金型は、窒化クロム処理が施されている[18]に記載の光学部品の製造方法。
[20]硬化性樹脂組成物は、[1]~[15]のいずれかに記載の硬化性樹脂組成物である[18]又は[19]に記載の光学部品の製造方法。
 本発明によれば、金型転写性および金型離型性に優れた硬化性樹脂組成物を得ることができる。また、本発明の硬化性樹脂組成物を用いれば、優れた光学特性を有し、品質の高い光学部品を高い製造効率で得ることができる。
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明において、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」を意味するものとする
 また、本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
<硬化性樹脂組成物>
 本発明の硬化性樹脂組成物は、分子中に2つ以上の(メタ)アクリロイル基を有する脂環式(メタ)アクリレートモノマーと、ラジカル重合性基を有する重合体と、非共役ビニリデン基含有化合物と、リン酸エステルとを含む硬化性樹脂組成物であって、硬化性樹脂組成物中にリン酸エステルを0.02質量%より多く3質量%以下含む。
 さらに、本発明の硬化性樹脂組成物は、分子中に2つ以上の(メタ)アクリロイル基を有する非脂環式の脂肪族(メタ)アクリレートモノマーをさらに含むことが好ましい。以下、本発明の硬化性樹脂組成物を構成する各材料について説明する。
〔リン酸エステル〕
 本発明の硬化性樹脂組成物はリン酸エステルを含む。本発明で用いるリン酸エステルは、リン酸モノエステル、リン酸ジエステル、リン酸トリエステルのいずれであってもよいが、リン酸モノエステル、またはリン酸ジエステルであることが好ましい。
 また、リン酸エステルは、炭素数が10以上の脂肪族基を有することが好ましい。ここで、脂肪族基は、芳香環を有しない有機基であり、直鎖状、分枝状、環状のいずれであってもよい。また、脂肪族基は、炭素原子と水素原子のみから構成されていてもよいし、酸素原子等のヘテロ原子を含んでいてもよい。リン酸エステルが有する脂肪族基の炭素数は、10~40であることが好ましく、12~35であることがより好ましく、18~30であることがさらに好ましい。
 本発明の硬化性樹脂組成物は、上記のようなリン酸エステルを含有することで、優れた金型離型性と金型転写性を発揮することができる。
 本発明で用いるリン酸エステルは、下記一般式(1)で表されるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 一般式(1)中、R1およびR2は同一でもそれぞれ異なっても良く、それぞれ独立に水素原子、又はアルキル残基、又はポリオキシアルキレンアルキルエーテル残基、又はアルケニル残基、又はポリオキシアルキレンアルケニルエーテル残基を表す。R1およびR2の少なくとも1つは、アルキル残基、又はポリオキシアルキレンアルキルエーテル残基、又はアルケニル残基、又はポリオキシアルキレンアルケニルエーテル残基であり、これらの基の炭素数は10以上である。中でも、R1およびR2の少なくとも1つは、アルキル残基又はポリオキシアルキレンアルケニルエーテル残基であることが好ましい。
 具体的なアルキル残基としては、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ヘキシル、オクチル、2-エチルヘキシル、デシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル、ラウリル、ステアリル、テトラコシル、イソトリデシルなどがあげられ、このうちドデシル、テトラデシル、ヘキサデシル、オクタデシル、ラウリル、ステアリル、テトラコシル、イソトリデシルのような炭素数が10以上のアルキル残基であることが好ましい。
 ポリオキシアルキレンアルキルエーテル残基としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテルなどがあげられる。
 アルケニル残基としては、tans-9-オクタデセル、オレイル、tans-2-デセンなどがあげられる。
 ポリオキシアルキレンアルケニルエーテル残基としては、ポリオキシエチレンオレイルエーテルなどがあげられる。
このような中でも、一般式(1)中、R1およびR2は、炭素数が10以上であり、分岐構造を有するアルキル残基が好ましく、具体例としてイソトリデシル残基があげられる。
 以下に、一般式(1)で表されるリン酸エステルの好ましい具体例を示す。なお、本発明で用いるリン酸エステルは以下の化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000014
 上記化合物中、n3は1から10の整数である。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 これらの一般式(1)で表されるリン酸エステルの入手方法については特に制限は無く、商業的に入手してもよく、合成により製造してもよい。
 商業的に入手する場合は、例えば、CRODAS O3A-LQ(クローダジャパン社製、リン酸エステル1)、オレイルフォスフェート(東京化成社製、リン酸エステル2)、ドデシルリン酸(和光純薬工業社製、リン酸エステル3)、JP-524R(城北化学工業社製、テトラコシルアシッドフォスフェート、リン酸エステル4)、JP-513(城北化学工業社製、イソトリデシルアシッドフォスフェート、リン酸エステル5)などを好ましく用いることができる。
 硬化性樹脂組成物のリン酸エステルの含有率は、硬化性樹脂組成物の質量に対して、0.02質量%より多く3質量%以下であり、0.03~3質量%であることが好ましく、0.05~3質量%であることがより好ましく、0.1~2.0質量%であることがさらに好ましく、0.1~1.5質量%であることがよりさらに好ましく、0.1~1.0質量%であることが特に好ましい。リン酸エステルの含有量を上記範囲にすることにより、金型転写性および金型離型性の両方に優れた熱硬化性樹脂組成物を得ることができる。
 本発明の硬化性樹脂組成物に含まれるリン酸エステルは、一般式(1-2)で表される芳香族リン酸エステルをさらに含んでもよい。
Figure JPOXMLDOC01-appb-C000019
 一般式(1-2)中、Ar1およびAr2は同一でもそれぞれ異なっても良く、それぞれ独立に水素原子、または置換基を有してもよいアリール残基を表す。Ar1およびAr2の少なくとも1つは、置換基を有してもよいアリール残基である。
 Ar1およびAr2で表されるアリール残基の具体例としては、フェニル残基、クレジル残基、キリレニル残基などがあげられ、このうちフェニル残基であることが好ましい。
 以下に、一般式(1-2)で表されるリン酸エステルの好ましい具体例を示す。
Figure JPOXMLDOC01-appb-C000020
 一般式(1-2)で表される芳香族リン酸エステルの入手方法については特に制限はなく、商業的に入手してもよく、合成により製造してもよい。
 商業的に入手する場合は、例えば、ジフェニルフォスフェート(東京化成工業社製、芳香族リン酸エステル1)を好ましく用いることができる。
 硬化性樹脂組成物中の芳香族リン酸エステルの含有量は、一般式(1)で表されるリン酸エステルに対して、10~120質量%であり、20~100質量%であることが好ましく、20~80質量%であることがより好ましく、30~80質量%であることがさらに好ましい。また、芳香族リン酸エステルの含有量は、硬化性樹脂組成物の質量に対して、0.002~3質量%であることが好ましく、0.004~2質量%であることがより好ましく、0.04~1質量%であることがさらに好ましく、0.006~0.5質量%であることが特に好ましい。芳香族リン酸エステルの含有量を上記範囲にすることにより、金型転写性、金型離型性の両方に優れ、かつ硬化後の外観性能が良い(濁りの少ない)硬化性樹脂組成物を得ることができる。
〔脂環式(メタ)アクリレートモノマー〕
 本発明の硬化性樹脂組成物は、分子中に2つ以上の(メタ)アクリロイル基を有する脂環式(メタ)アクリレートモノマーを含む。この脂環式(メタ)アクリレートモノマーは、脂肪族環に2つ以上の(メタ)アクリロイル基が直接または2価の連結基を介して結合したものである。脂肪族環に結合する(メタ)アクリロイル基の数は、2~6であることが好ましく、2~4であることがより好ましく、2であることがさらに好ましい。
 分子中に2つ以上の(メタ)アクリロイル基を有する脂環式(メタ)アクリレートモノマーは、下記一般式(2)で表されるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 一般式(2)において、A1は置換もしくは無置換の脂肪族環を表し、Rは単結合又は置換もしくは無置換のアルキレン基を表し、Mは水素原子又はメチル基を表し、nは2以上の整数を表す。
 A1は置換もしくは無置換の脂肪族環を表す。脂肪族環は、単環構造であってもよいし、2以上の脂肪族環が連結または融合した多環構造であってもよいし、橋かけ環炭化水素を含んでいてもよい。また、脂肪族環は、炭素原子と水素原子のみで構成されていてもよいし、炭素原子および水素原子以外のヘテロ原子を含んでいてもよい。また、脂肪族環の炭素数は、特に制限されないが、6~20であることが好ましく、7~15であることがより好ましく、7~10であることがさらに好ましい。脂肪族環としては、具体的には、トリシクロデカン(脂肪族環1)、アダマンタン(脂肪族環2)、ノルボルナン(脂肪族環3)、シクロヘキサン(脂肪族環4)、ノルボルネン(脂肪族環5)が好ましく、トリシクロデカン、アダマンタン、ノルボルナンがより好ましく、トリシクロデカンがさらに好ましい。A1が表す置換もしくは無置換の脂肪族環は、互いに同一であっても異なっていてもよい。ここで、脂肪族環1~5の構造を下記に示す。
Figure JPOXMLDOC01-appb-C000022
 上記化合物中の*は一般式(2)のRとの結合部位を表す。
 Rは単結合又は置換もしくは無置換のアルキレン基を表す。Rが置換もしくは無置換のアルキレン基である場合、アルキレン基の炭素数は、1~10であることが好ましく、1~5であることがより好ましく、1~3であることがさらに好ましい。Rが表す置換もしくは無置換のアルキレン基は、互いに同一であっても異なっていてもよい。
 Mは水素原子又はメチル基を表す。中でも、Mは水素原子であることが好ましい。Mは、互いに同一であっても異なっていてもよい。
 nは2以上の整数を表し、2~6であることが好ましく、2~4であることがより好ましく、2であることがさらに好ましい。
 以下に、一般式(2)で表される脂環式(メタ)アクリレートモノマーの好ましい具体例を示す。なお、本発明で用いる分子中に2つ以上の(メタ)アクリロイル基を有する脂環式(メタ)アクリレートモノマーは以下の化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000023
 この一般式(2)で表される脂環式(メタ)アクリレートモノマーの入手方法については特に制限は無く、商業的に入手してもよく、合成により製造してもよい。
 商業的に入手する場合は、例えば、A-DCP(新中村化学社製、モノマー1)などを好ましく用いることができる。
〔ラジカル重合性基を有する重合体〕
 本発明の硬化性樹脂組成物は、ラジカル重合性基を有する重合体を含む。ラジカル重合性基を有する重合体は、硬化性樹脂組成物の金型転写性を高める機能を有する。
 ラジカル重合性基を有する重合体のラジカル重合性基としては、アクリレート基、(メタ)アクリレート基、ビニル基、スチリル基、アリル基等を挙げることができる。本発明に用いられる重合体は、ラジカル重合性基を有する繰り返し単位が、5~100質量%であることが好ましく、10~90質量%であることがより好ましく、20~80質量%であることがさらに好ましい。
 ラジカル重合性基を有する重合体は単独重合体であっても、共重合体であってもよく、共重合体である場合は少なくとも一方の共重合成分がラジカル重合性基を有していればよい。
 ラジカル重合性基を有する重合体の分子量は、1000~10000000であることが好ましく、5000~300000であることがより好ましく、10000~200000であることが特に好ましい。
 ラジカル重合性基を有する重合体のガラス転移温度(以下、Tgとも言う)は、50~400℃であることが好ましく、70~350℃であることがより好ましく、100~300℃であることが特に好ましい。
 以下に、ラジカル重合性基を有する重合体の好ましい例の繰り返し単位を示す。なお、本発明で用いるラジカル重合性基を有する重合体は以下の繰り返し単位を有する重合体に限定されるものではない。
Figure JPOXMLDOC01-appb-C000024
〔非共役ビニリデン基含有化合物〕
 本発明の硬化性樹脂組成物は、非共役ビニリデン基含有化合物を含む。本発明において、非共役ビニリデン基含有化合物は、硬化性樹脂組成物が硬化する際の硬化速度を調整することができ、硬化物の厚みをより均一にすることができる。これにより、硬化物の耐熱性および良品率を高めることができる。
 本発明で用いることができる非共役ビニリデン基含有化合物は、下記一般式(3)で表されるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 ここで、一般式(3)中、R11、R12、R15およびR16は、各々独立に置換基を表し、Aは環状構造を形成するために必要な原子団を表す。
 一般式(3)中、R11、R12、R15およびR16で表される置換基に特に制限はなく、例えば、水素原子、ハロゲン原子、ハロゲン化アルキル基、アルキル基、アルケニル基、アシル基、ヒドロキシル基、ヒドロキシアルキル基、芳香環基、複素芳香環基、脂環基とすることができる。中でもR11、R12、R15およびR16は、各々独立に水素原子、酸素原子および炭素原子のみからなる置換基であることが好ましく、水素原子および炭素原子のみからなる置換基であることがより好ましい。具体的には、R11、R12、R15およびR16は、水素原子、アルキル基、アルケニル基であることが好ましく、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基であることがより好ましい。
 また、R11およびR12、R15およびR16は、さらに互いに結合して環を形成していてもよく、その環はさらに置換基を有していてもよい。
 R11およびR12の組またはR15およびR16の組のうち、いずれか一方の組のみにおいて2つの置換基の少なくとも一方が水素原子であることが好ましく、いずれか一方の組のみにおいて2つの置換基の両方が水素原子であることがより好ましい。
 R11およびR12は各々独立に水素原子または炭素数1~5の炭化水素基を表し、かつ、炭素数1~5の炭化水素基が環を形成していないことが好ましい。R11およびR12のうち、一方のみが水素原子または炭素数1~5の炭化水素基を表し、かつ、炭素数1~5の炭化水素基が環を形成していないことが好ましい。
 一般式(3)中、Aは環状構造を形成するために必要な原子団を表し、その環状構造としては、特に制限はなく、公知の環状構造とすることができる。環状構造としては、例えば、脂環(非芳香性の炭化水素環)、芳香環、複素環、-CO-を含むラクトン環などを挙げることができる。
 その中でも、Aは、一般式(3)のAに連結する炭素原子および非共役ビニリデン基を構成する炭素原子を含めて炭素数4~10の脂環を形成するために必要な原子団であることが好ましく、一般式(3)のAに連結する炭素原子および非共役ビニリデン基を構成する炭素原子を含めて炭素数5~9の脂環を形成するために必要な原子団であることが特に好ましい。
 一般式(3)のAが脂環を形成する場合、この脂環はさらなる置換基を有していてもよい。脂環が有する置換基としては、炭素数1~5のアルキル基が好ましく、メチル基、エチル基、n-プロピル基またはイソプロピル基が好ましい。
 Aは、不飽和の脂環であっても、飽和の脂環であってもよいが、一般式(3)で表される非共役ビニリデン基含有化合物全体として、少なくとも1つの不飽和結合を有することが好ましい。また、AはR11、R12、R15およびR16が表す置換基とさらに縮合環を形成していてもよい。
 本発明では、一般式(3)中、R11、R12、R15およびR16は、各々独立に水素原子および炭素原子のみからなる置換基を表し、Aは脂環(非芳香性の炭化水素)構造であることが特に好ましい。
 本発明では、一般式(3)で表される非共役ビニリデン基含有化合物がビニリデン基(非共役ビニリデン基)以外にさらに別のアルケニル基を有することが好ましい。一般式(3)で表される非共役ビニリデン基含有化合物の有する非共役ビニリデン基以外のビニリデン基の位置としては特に制限はない。その中でも一般式(3)で表される非共役ビニリデン基含有化合物は、非共役ビニリデン基以外のビニリデン基が、R11、R12、R15およびR16が形成する環に位置することが好ましい。すなわち、前R11、R12、R15およびR16が形成する環は、少なくとも1つの不飽和炭化水素環を含むことが特に好ましく、少なくとも1つの二重結合を1つのみ有する不飽和炭化水素環を含むことがより特に好ましい。
 以下において、本発明に好ましく用いられる一般式(3)で表される非共役ビニリデン基含有化合物の具体例を列挙するが、本発明は以下の化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000026
 本発明では、一般式(3)で表される非共役ビニリデン基含有化合物の分子量は、100~400であることが好ましく、120~350であることがより好ましく、130~300であることが特に好ましい。
 これらの一般式(3)で表される非共役ビニリデン基含有化合物の入手方法については特に制限は無く、商業的に入手してもよく、合成により製造してもよい。
 商業的に入手する場合は、例えば、化合物(B-1)のβ-カリオフィレン(東京化成工業社製)などを好ましく用いることができる。
 合成により製造する場合は、一般式(3)で表される非共役ビニリデン基含有化合物の製造方法としては特に制限はなく、公知の方法で合成することができる。例えば、一般式(3)で表される非共役ビニリデン基含有化合物の中でも本発明に好ましく用いることができるβ-カリオフィレンを合成する場合は、J.Am.Chem.Soc.85,362(1964)、Tetrahedron Lette.,24,1885(1983)に記載の方法などで、合成することができる。
 硬化性樹脂組成物の非共役ビニリデン基含有化合物の含有率は、硬化性樹脂組成物の質量に対して、2~10質量%であることが好ましく、2~8質量%であることが好ましく、3~6質量%であることがさらに好ましい。
 <その他の添加剤>
 本発明では、本発明の趣旨に反しない限りにおいて、硬化性樹脂組成物が、ポリマー、その他のモノマー、分散剤、可塑剤、熱安定剤、離型剤等の添加剤を含んでいてもよい。
 〔非脂環式の脂肪族(メタ)アクリレートモノマー〕
 硬化性樹脂組成物は、分子中に2つ以上の(メタ)アクリロイル基を有する非脂環式の脂肪族(メタ)アクリレートモノマーをさらに含んでいてもよい。これにより、硬化性樹脂組成物の金型離型性をさらに高めることができる。
 この非脂環式の脂肪族(メタ)アクリレートモノマーは、環状構造ではない脂肪族基に、2つ以上の(メタ)アクリロイル基が結合したものである。脂肪族基は、芳香環を有しない有機基であり、直鎖状であってもよいし、分枝状であってもよい。また、脂肪族基は、炭素原子と水素原子のみから構成されていてもよいし、酸素原子等のヘテロ原子を含んでいてもよい。脂肪族基に結合するアクリロイル基の数は、2~6であることが好ましく、2~4であることがより好ましく、2であることがさらに好ましい。
 分子中に2つ以上の(メタ)アクリロイル基を有する脂環式(メタ)アクリレートモノマーは、下記一般式(4)で表されるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000027
 一般式(4)において、R1は置換もしくは無置換のアルキレン基、又は置換もしくは無置換のアルキレン基とカルボニル基とオキシ基との組合せからなる2価の基を表し、R1の炭素数は7以上である。また、Mは水素原子又はメチル基を表す。
 R1の炭素数は、7~100であることが好ましく、9~85であることがより好ましく、10~40であることがさらに好ましい。
 R1が表すアルキレン基とカルボニル基とオキシ基の組合せからなる2価の基の好ましい例としては、下記一般式(5)で表される基を挙げることができる。
Figure JPOXMLDOC01-appb-C000028
 一般式(5)において、R2~R5は各々独立に置換もしくは無置換のアルキレン基を表し、*は一般式(4)のオキシ基との結合部位を表す。n1及びn2はそれぞれ独立に1以上の整数である。
 R2~R5が表す置換もしくは無置換のアルキレン基のアルキレン基部分の炭素数は特に限定されないが、2~20であることが好ましく、2~10であることがより好ましく、4~6であることがさらに好ましい。R2~R5が表す置換もしくは無置換のアルキレン基は、互いに同一であっても異なっていてもよい。
 n1およびn2は、1~10であることが好ましく、1~8であることがより好ましく、1~7であることがさらに好ましい。n1およびn2は、互いに同じであっても異なっていてもよい。
 以下に、一般式(4)の好ましい具体例を示す。なお、本発明で用いる分子中に2つ以上の(メタ)アクリレート基を有する非脂環式の脂肪族(メタ)アクリレートモノマーは以下の化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000029
 上記化合物において、m、nはそれぞれ1以上の整数である。
Figure JPOXMLDOC01-appb-C000030
 硬化性樹脂組成物が2つ以上の(メタ)アクリレート基を有する非脂環式の脂肪族(メタ)アクリレートモノマーを含む場合、脂環式(メタ)アクリレートモノマーおよび脂肪族(メタ)アクリレートモノマーの合計は、硬化性樹脂組成物の質量に対して40~85質量%であることが好ましく、50~80質量%であることがより好ましく、55~75質量%であることがさらに好ましい。
 また、脂環式(メタ)アクリレートモノマーと、脂肪族(メタ)アクリレートモノマーの質量混合比(w/w)は、90:10~40:60であることが好ましく、85:15~50:50であることが好ましく、80:20~60:40であることがさらに好ましい。脂環式(メタ)アクリレートモノマーと、脂肪族(メタ)アクリレートモノマーとの合計量および混合比を上記範囲にすることにより、金型転写性および金型離型性に優れた硬化性樹脂組成物を得ることができる。
 これらの一般式(4)で表される脂環式(メタ)アクリレートモノマーの入手方法については特に制限は無く、商業的に入手してもよく、合成により製造してもよい。
 商業的に入手する場合は、例えば、KAYARAD HX-220(日本化薬社製、モノマー2、m+n=2)やライトアクリレート1.9ND-A(共栄社化学社製、モノマー3)などを好ましく用いることができる。
〔熱ラジカル重合開始剤/光ラジカル重合開始剤〕
 本発明の硬化性樹脂組成物は、熱ラジカル重合開始剤および光ラジカル重合開始剤の少なくとも一方をさらに含んでいてもよい。本発明では、熱ラジカル重合開始剤および光ラジカル重合開始剤の少なくとも一方を含むことにより、耐熱性が高い硬化物を成形性よく、容易に製造することができる。
(熱ラジカル重合開始剤)
 本発明で用いることができる熱ラジカル重合開始剤としては、具体的には以下の化合物を挙げることができる。例えば、1,1-ジ(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ジ(t-ブチルペルオキシ)シクロヘキサン、2,2-ジ(4,4-ジ-(t-ブチルペルオキシ)シクロヘキシル)プロパン、t-ヘキシルペルオキシイソプロピルモノカーボネート、t-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシラウレート、ジクミルペルオキシド、ジ-t-ブチルペルオキシド、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ヘキシルペルオキシ-2-エチルヘキサノエート、クメンヒドロペルオキシド、t-ブチルヒドロペルオキシド、2,3-ジメチル-2,3-ジフェニルブタン等を例示することができる。
 その中でも、本発明では、熱ラジカル重合開始剤として、分子内にヒドロペルオキシド基を有するヒドロペルオキシド系熱ラジカル重合開始剤を用いることが好ましく、更には、分子内にヒドロペルオキシド基を有するヒドロペルオキシド系熱ラジカル重合開始剤、および分子内にヒドロペルオキシド基を有さない非ヒドロペルオキシド系熱ラジカル重合開始剤を少なくとも1種用いることがより好ましい。
 また、本発明では、非ヒドロペルオキシド系熱ラジカル重合開始剤として日本油脂株式会社製、パーブチルO(t-ブチルペルオキシ-2-エチルヘキサノエート)およびヒドロペルオキシド系熱ラジカル重合開始剤として日本油脂株式会社製、パークミルH(クメンヒドロペルオキシド)を好ましく用いることができる。
 熱ラジカル重合開始剤として、分子内にヒドロペルオキシド基を有するヒドロペルオキシド系熱ラジカル重合開始剤を用いることが好ましい理由は、ヒドロペルオキシド系熱ラジカル重合開始剤が非共役ビニリデン基含有化合物モノマーの重合中の連鎖移動を促進する効果を有するため、3次元構造のコントロール性がより向上し、半硬化物の変形性を付与することができるからである。また、ヒドロペルオキシド系熱ラジカル重合開始剤は、熱ラジカル重合を開始する温度が一般に高いため、熱重合開始温度の低い非ヒドロペルオキシド系熱ラジカル重合開始剤を併用することがより好ましい。
 硬化性樹脂組成物における熱ラジカル重合開始剤の添加率は、特に制限はないが、一般式(1)で表される芳香環含有化合物を含む重合体の合計に対して、0.01~5.0質量%であることが好ましく、0.1~4.0質量%であることがより好ましく、0.3~3.0質量%であることが特に好ましい。
(光ラジカル重合開始剤)
 本発明で用いることができる光ラジカル重合開始剤としては、特に制限はなく、公知の光ラジカル重合開始剤を用いることができる。
 光ラジカル重合開始剤としては、具体的には以下の化合物を用いることができる。例えば、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルベンチルフォスフィンオキシド、ビス(2,6-ジメチルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、ビス(2,6-ジクロルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、1-フェニル2-ヒドロキシ-2メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)-2ヒドロキシ-2-メチルプロパン-1-オン、1,2-ジフェニルエタンジオン、メチルフェニルグリオキシレート、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等を例示することができる。中でも、本発明では、光ラジカル重合開始剤としてBASF社製、イルガキュア184(1-ヒドロキシシクロヘキシルフェニルケトン)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンを好ましく用いることができる。
 硬化性樹脂組成物における光ラジカル重合開始剤の添加率は、特に制限はないが、0.01~5質量%であることが好ましく、0.05~1.0質量%であることがより好ましく、0.05~0.5質量%であることが特に好ましい。
<光学部品の製造方法>
 本発明の光学部品の製造方法は、硬化性樹脂組成物に金型を押し当てて樹脂組成物を押し広げる工程と、光を照射して樹脂組成物を半硬化させた後に150℃以上で熱硬化させる工程と、150~250℃の温度範囲で硬化樹脂から金型を引き離す工程とを含む。以下、本発明の製造方法で用いる材料および各工程について説明する。
〔光学部品の製造に用いる硬化性樹脂組成物〕
 本発明の光学部品の製造方法で用いる硬化性樹脂組成物は、特に限定されないが、本発明の硬化性樹脂組成物であることが好ましい。本発明の硬化性樹脂組成物は、金型転写性に優れるため、これを光学部品の材料として用いることにより、光学特性に優れ、品質の高い光学部品を得ることができる。また、本発明の硬化性樹脂組成物は、金型離型性に優れるため、連続成形方式を採用することが可能である。これにより、光学部品の製造効率を高めることができる。
 本発明の光学部品の製造方法で用いる硬化性樹脂組成物は、光ラジカル重合開始剤を含むことが好ましい。これにより、光を照射して硬化性樹脂組成物を半硬化させる際、所望の硬化度を有する半硬化物を確実に得ることができる。
〔転写工程〕
 転写工程では、一対の金型の一方に注入された硬化性樹脂組成物に他方の金型を押し当てて樹脂組成物を押し広げる。
 転写工程で用いる金型は、窒化クロム処理が施されたものであることが好ましい。これにより、後工程で行う離型工程で、良好な金型離型性を発揮することができ、光学部品の製造効率を高めることができる。
 窒化クロム処理としては、例えば金型表面に窒化クロム膜を成膜する方法を挙げることができる。金型表面に窒化クロム膜を製膜する方法としては、例えばCVD法とPVD法がある。CVD法は、クロムを含む原料ガスと窒素を含む原料ガスとを高温で反応させて基体表面に窒化クロム膜を形成する方法である。また、PVD法は、アーク放電を利用して基体表面に窒化クロム膜を形成する方法である。このアーク式真空蒸着法は、イオン化した金属と反応ガスを基板の表面で反応させて化合物を作るという方法である。具体的には、真空容器内に例えばクロムよりなる陰極(蒸発源)を配置し、陰極と真空容器の壁面との間でトリガを介してアーク放電を起こさせ、陰極を蒸発させると同時にアークプラズマによる金属のイオン化を図り、基体に負の電圧をかけておき、かつ真空容器に反応ガス例えば窒素ガスを数10mmTorr程度入れる。本発明における金型表面の窒化クロムは、上記CVD法、またはPVD法により実施されている。
 ここで、金型は、一般に2つの金型を組み合わせて内容物に加圧しながら加熱することができるようになっており、金型に低粘度の組成物を注入すると、成形型クリアランスへの漏れの原因となる。そのため、本発明では、上述のようにラジカル重合性基を有する重合体をさらに添加することで硬化性樹脂組成物の粘度を調整して、一つの金型内で光照射および/または加熱による半硬化と後述する熱重合を行って、硬化物を得ることも製造性の観点からは好ましい。
〔半硬化工程〕
 半硬化工程では、光を照射して硬化性樹脂組成物を半硬化させ、半硬化物を得る。
 ここで、「半硬化物」とは、硬化性樹脂組成物を重合したものであり、完全に固体となっておらず、ある程度流動性を有する状態の物を意味する。例えば、25℃、周波数10Hzにおける複素粘度が105~108mPa・sの状態の硬化性樹脂組成物の光および/または加熱重合体は、半硬化物である。特に本発明を限定するものではないが、25℃、周波数10Hzにおける複素粘度の上限値として1.0×109mPa・sの物までを半硬化物と考えられる。一方、「硬化物」とは、硬化性樹脂組成物を重合したものであり、完全に固体となっている状態の物を意味する。
(光照射の条件)
 本発明の光学部品の製造方法における光照射の好ましい条件について、以下説明する。
 光照射は、光照射後の半硬化物の25℃、周波数10Hzにおける複素粘度は、105~108mPa・sとなるように行うことが好ましく、105~107.5mPa・sとなるように行うことがより好ましく、105.5~107.5mPa・sとなるように行うことが特に好ましい。
 光照射に用いられる光は、紫外線、可視光線であることが好ましく、紫外線であることがより好ましい。例えばメタルハライドランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、殺菌ランプ、キセノンランプ、LED光源ランプなどが好適に使用される。
 光照射時の雰囲気は、空気中または不活性ガス置換あることが好ましく、酸素濃度1%以下になるまで窒素置換した雰囲気であることがより好ましい。
(半硬化物)
 この工程で得られる半硬化物は、以下のような特性を有するものであることが好ましい。すなわち、この工程で得られる半硬化物の25℃、周波数10Hzにおける複素粘度は、105~108mPa・sであることが好ましく、105~107.5mPa・sであることがより好ましく、105.5~107.5mPa・sであることがさらに好ましい。
 また、半硬化物のガラス転移温度(以下、Tgとも言う)は、-150~0℃であることが好ましく、-50~0℃であることがより好ましく、-20~0℃であることが特に好ましい。
 なお、半硬化物は、光照射工程後において、光ラジカル重合開始剤が全て消費されていて全く含まれていなくてもよく、光ラジカル重合開始剤が残留していてもよい。
〔硬化工程〕
 硬化工程では、半硬化物を150℃以上の温度で加熱して硬化させ、硬化物を得る。
 加熱温度は、150℃以上であり、160~270℃であることが好ましく、165~250℃であることがより好ましく、170~230℃であることがさらに好ましい。
 この硬化工程では、加熱を行うとともに加圧変形を行うことが好ましい。これにより金型内面の反転形状を硬化物に精度よく転写することができる。
 加圧変形と加熱は同時に行ってもよく、加圧変形した後で加熱を行ってもよく、加熱した後で加圧変形を行ってもよいが、その中でも加圧変形と加熱を同時に行うことが好ましい。また、加圧変形と加熱を同時に行った上で、加圧が安定してからさらに高温に加熱することも好ましい。
 加圧変形における圧力は、1kg/cm2~100kg/cm2であることが好ましく、3kg/cm2~50kg/cm2であることがより好ましく、3kg/cm2~30kg/cm2であることが特に好ましい。
 熱重合の時間は、30~1000秒であることが好ましく、30~500秒であることがより好ましく、60~300秒であることが特に好ましい。
 熱重合時の雰囲気は、空気中または不活性ガス置換あることが好ましく、酸素濃度1%以下になるまで窒素置換した雰囲気であることがより好ましい。
(離型工程)
 離型工程では、150~250℃の温度範囲で硬化樹脂から金型を引き離して光学部品を得る。
 このとき、光学部品の材料として本発明の硬化性樹脂組成物を用いている場合には、光学部品から金型を容易に引き離すことができ、高い製造効率を得ることができる。
 この工程での加熱温度は、150~250℃であり、160~250℃であることが好ましく、165~250℃であることがより好ましく、170~230℃であることがさらに好ましい。
 以上、本発明の光学部品の製造方法の一例について説明したが、本発明の構成はこれに限るものではなく、本発明を逸脱しない範囲で適宜変更が可能である。例えば、前述の製造例では、転写工程と半硬化工程で用いた金型を、そのまま硬化工程にも供しているが、半硬化工程を行った後、半硬化物から金型を引き離し、この半硬化物を別の金型(熱成形用成形型)に投入して硬化工程を行うようにしてもよい。この場合、熱成形用成形型には前述の窒化クロム処理が施されていることが好ましい。窒化クロム処理の方法は、前述の転写工程で用いる金型に行う窒化クロム処理を参照することができる。
 また、半硬化工程で、金型内の硬化性樹脂組成物に光照射を行うとともに、加熱を行うようにしてもよい。これにより、所望の硬化度を有する半硬化物を確実に得ることができる。
<光学部品>
 本発明の光学部品は、本発明の硬化性樹脂組成物を用いて得られたものである。本発明の硬化性樹脂組成物は、分子中に2つ以上の(メタ)アクリロイル基を有する脂環式(メタ)アクリレートモノマーと、ラジカル重合性基を有する重合体と、非共役ビニリデン基含有化合物と、リン酸エステルとを含み、リン酸エステルの硬化性樹脂組成物の質量に対する含有率が 0.02質量%より多く3質量%以下となるように規定されている。これにより、この硬化性樹脂組成物は、優れた金型転写性および金型離型性を発揮することができる。このため、この硬化性樹脂組成物を用いる光学部品は、精密な形状を有し、優れた光学特性および品質を得ることができる。また、この光学部品は、連続成形方式を採用して製造することができ、高い製造効率を得ることができる。
 以下、光学部品の好ましい特性について説明する。
(屈折率)
 本発明の光学部品は、光学部品用途の中でもレンズなどに用いる観点から、屈折率が高いことが好ましい。具体的には、光学部品は、波長589nmにおける屈折率nDが1.45以上であることが好ましく、1.48以上であることがより好ましく、1.51以上であることがより特に好ましい。
(アッベ数)
 本発明の光学部品は、光学部品用途の中でもレンズなどに用いるときに色収差を低減する観点から、アッベ数が高いことが好ましい。本発明の光学部品は、波長589nmにおけるアッベ数が40以上であることが好ましく、45以上であることがより好ましく、50以上であることが特に好ましく、52以上であることがより特に好ましい。
 本明細書中、アッベ数νDは、波長589nm、486nm、656nmにおけるそれぞれの屈折率nD、nF、nCを測定することで、下記式(A)により算出される。
Figure JPOXMLDOC01-appb-M000031
(サイズ)
 本発明の光学部品は、最大厚みが0.1~10mmであることが好ましい。最大厚みは、より好ましくは0.1~5mmであり、特に好ましくは0.15~3mmである。本発明の光学部品は、最大直径が1~1000mmであることが好ましい。最大直径は、より好ましくは2~300mmであり、特に好ましくは2.5~100mmである。このようなサイズの硬化物は、高屈折率の光学部品用途として特に有用である。
 本発明の光学部品は、高屈折性、光線透過性、軽量性を併せ持ち、光学特性に優れることが好ましい。
 本発明の光学部品の種類は、特に制限されない。特に、硬化性樹脂組成物の優れた光学特性を利用した光学部品、特に光を透過する光学部品(いわゆるパッシブ光学部品)として好適に利用することができる。このような光学部品を備えた光学機能装置としては、例えば、各種ディスプレイ装置(液晶ディスプレイやプラズマディスプレイ等)、各種プロジェクタ装置(OHP、液晶プロジェクタ等)、光ファイバー通信装置(光導波路、光増幅器等)、カメラやビデオ等の撮影装置等を挙げることができる。
 また、光学機能装置に用いられるパッシブ光学部品としては、例えば、レンズ、プリズム、プリズムシート、パネル(板状成形体)、フィルム、光導波路(フィルム状やファイバー状等)、光ディスク、LEDの封止剤等が例示される。パッシブ光学部品には、必要に応じて任意の被覆層、例えば摩擦や摩耗による塗布面の機械的損傷を防止する保護層、無機粒子や基材等の劣化原因となる望ましくない波長の光線を吸収する光線吸収層、水分や酸素ガス等の反応性低分子の透過を抑制あるいは防止する透過遮蔽層、防眩層、反射防止層、低屈折率層等や、任意の付加機能層を設けて多層構造としてもよい。このような任意の被覆層の具体例としては、無機酸化物コーティング層からなる透明導電膜やガスバリア膜、有機物コーティング層からなるガスバリア膜やハードコート等が挙げられる。コーティング法としては真空蒸着法、CVD法、スパッタリング法、ディップコート法、スピンコート法等公知のコーティング法を用いることができる。
(応用例)
 本発明の硬化性樹脂組成物を用いて製造されたレンズ基材は高アッベ数を有し、高屈折性であるため、光学特性に優れている。また、硬化物の製造工程において、クラックが発生することが抑制されているため、耐久性に優れ、高品質化が実現されている。このため、本発明の硬化物を用いた光学部品は、特にレンズ基材として好ましく用いられる。
 なお、本明細書中において「レンズ基材」とは、レンズ機能を発揮することができる単一部材を意味する。レンズ基材の表面や周囲には、レンズの使用環境や用途に応じて膜や部材を設けることができる。例えば、レンズ基材の表面には、保護膜、反射防止膜、ハードコート膜等を形成することができる。また、レンズ基材の周囲を基材保持枠などに嵌入して固定することもできる。ただし、これらの膜や枠などは、レンズ基材に付加される部材であり、本明細書中でいうレンズ基材そのものとは区別される。
 レンズ基材をレンズとして利用するに際しては、レンズ基材そのものを単独でレンズとして用いてもよいし、上述したように膜や枠などを付加してレンズとして用いてもよい。なお、レンズ基材を用いたレンズの種類や形状は、特に制限されない。
 レンズ基材はアッベ数が高いため球面収差補正用非球面レンズに好ましく用いることができる。球面収差補正用非球面レンズとしては例えば、携帯やデジタルカメラ等の撮像用レンズやテレビ、ビデオカメラ等の撮映レンズ、さらには車載、内視鏡レンズに使用されることが好ましい。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(実施例1~20、比較例1~4)
 実施例および比較例で用いた脂環式(メタ)アクリレートモノマーは下記のものである。
 A-DCP:新中村化学社製
Figure JPOXMLDOC01-appb-C000032
 実施例および比較例で用いた脂肪族(メタ)アクリレートモノマーは下記のものである。
KAYARAD HX-220:日本化薬社製
ライトアクリレート1.9ND-A:共栄社化学社製
Figure JPOXMLDOC01-appb-C000033
 上記化合物において、m+n=2である。
Figure JPOXMLDOC01-appb-C000034
 実施例および比較例で用いたラジカル重合性基を有する重合体は、下記に示す繰り返し単位1と繰り返し単位2との共重合体1である。
Figure JPOXMLDOC01-appb-C000035
 上記共重合体1は、下記のようにして得た。還流冷却器、ガス導入コックを付した1L三口フラスコに、トリシクロ[5,2,1,02,6]デカ-8-イルアクリレート(日立化成工業株式会社製、FA-513AS)20.0g、アリルメタクリレート(和光純薬工業株式会社製)30.0g、MEK500.0gを添加し、2回窒素置換した。次いで、開始剤(和光純薬工業株式会社製、V-65)0.6gを添加し、さらに2回窒素置換した後、窒素気流下65℃で6時間加熱した。その後、メタノール2Lに反応液を注ぎ、析出した白色固体を吸引ろ過により回収した。70℃で5時間減圧乾燥を行い、溶媒を留去した(収率60%、数平均分子量24,000、重量平均分子量58,000)。
 実施例および比較例で用いた非共役ビニリデン基含有化合物は下記のものである。
 βカリオフィレン:東京化成社製
Figure JPOXMLDOC01-appb-C000036
 実施例および比較例で用いたリン酸エステルは下記のものである。
 CRODAS O3A-LQ:クローダジャパン社製
 オレイルフォスフェート  :東京化成社製
 ドデシルリン酸      :和光純薬工業社製
 JP-524R      :城北化学工業社製
 JP-513       :城北化学工業社製
 ジフェニルフォスフェート :東京化成工業社製
Figure JPOXMLDOC01-appb-C000037
 上記化合物において、n3=3である。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 実施例および比較例で用いた光重合開始剤は下記のものである。
  IRGACURE651:BASF社製
Figure JPOXMLDOC01-appb-C000043
 実施例および比較例で用いた熱重合開始剤は下記のものである。
  パーブチルO   :日油社製
  パークミルH-80:日油社製
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 [硬化性樹脂組成物の調製]
  下記表1に記載の組成となるように、上記の各成分を添加し、撹拌して均一にし、硬化性樹脂組成物を調製した。
 [複合レンズ(レンズ)の作製方法]
  表面がNiメッキ処理、または窒化クロム処理された成形金型(本金型は、硬化性樹脂組成物と接する面が非球面形状を有する)に硬化性樹脂組成物200mgを注入した。注入された硬化性樹脂組成物に、硬化性樹脂組成物の成形金型と接していない側のすべての表面上を覆うように透明なガラスレンズ(硝材=BK7、直径33mm、中心厚み3mm、硬化性樹脂組成物を接する面の曲率半径=44.3mm、硬化性樹脂組成物と接しない面の曲率半径=330.9mmである凸レンズ)を被せて、硬化性樹脂組成物の直径が30mmとなるように押し広げた。押し広げた後、ガラスレンズの上方から、Execure3000(HOYA(株)社製)を用いて300mJ/cm2の紫外線を照射した。次いで成形金型およびガラスレンズによって挟まれた状態を維持したまま、硬化性樹脂組成物に2kgf/cm2の圧力を印加しながら200℃まで昇温した後、硬化性樹脂組成物の硬化物と成形金型とを0.05mm/secの速度で引き離すことにより、複合レンズを作製した。
  上記操作を金型がNiメッキ表面および窒化クロム表面の場合でそれぞれ10回繰り返すことにより、面転写性評価用の複合レンズとした。
 上記操作を更に、金型がNiメッキ表面、および窒化クロム表面の場合で、それぞれ100回繰り返すことにより、連続成形性評価用の複合レンズとした。
 <複合レンズの評価>
 (面転写性)
 作製した複合レンズの外観をデジタルマイクロスクープ(キーエンス社製、VHX-1000)を用いて評価した。
 複合レンズ表面に、微細な凹凸(シワ)が発生しているものを不良品、発生していないものを良品とした。10個の複合レンズを評価し、そのうちの良品の割合を良品率とし、以下の基準で評価した。
 ランク3:良品率が90%以上であった。
 ランク2:良品率が50%以上90%未満であった。
 ランク1:良品率が50%未満であった。
 (連続成形性評価)
 作製した複合レンズの外観をデジタルマイクロスクープ(キーエンス社製、VHX-1000)を用いて評価した。
 複合レンズ表面に、レンズにクラックが発生しているものを不良品、発生していないものを良品とした。100個の複合レンズを評価し、そのうちの良品の割合を良品率とし、以下の基準で評価した。
 ランク5:良品率が90%以上であった。
 ランク4:良品率が70%以上90%未満であった。
 ランク3:良品率が50%以上70%未満であった。
 ランク2:良品率が20%以上50%未満であった。
 ランク1:良品率が20%未満であった。
Figure JPOXMLDOC01-appb-T000046
 さらに、実施例13~20については、複合レンズの外観性能(濁りの有無)についても下記のような評価を行った。
(外観性能(濁り))
 作製した複合レンズの外観を光学顕微鏡を用いて評価した。複合レンズのガラスレンズ側から光源を照射しながら、光学顕微鏡で硬化物面を観察し、以下の基準で評価した。なお、外観性能は、ランク2以上は実用可能なレベルである。
ランク4:濁りがほとんど見られない
ランク3:濁りが若干見られる
ランク2:濁りが見られる
ランク1:濁りがかなり見られる
Figure JPOXMLDOC01-appb-T000047
 実施例1~20の硬化性樹脂組成物は、いずれも良好な面転写性および連続成形性を発揮することができた。特に、各組成物が適正な含有率で含まれた実施例7、実施例8および実施例13~20の熱硬化性樹脂は、優れた面転写性および連続成形性を発揮することができた。さらに、実施例13~20の熱硬化性樹脂は、外観性能も優れており、実施例1~12の熱硬化性樹脂よりも良好な傾向であった。
 これに対してリン酸エステルが添加されていない比較例1の硬化性樹脂組成物およびリン酸エステルの含有率が0.02質量%以下の比較例3の硬化性樹脂組成物は、連続成形性が劣っていた。また、リン酸エステルの含有率が3質量%よりも大きい比較例4の硬化性樹脂組成物は、連続成形性には優れるものの面転写性が劣っていた。さらに、ラジカル重合性基含有重合体および非共役ビニリデン基含有化合物が添加されていない比較例2の硬化性樹脂組成物も、連続成形性には優れるものの面転写性が悪いものであった。
 本発明によれば、金型転写性および金型離型性に優れた硬化性樹脂組成物を得ることができる。このため、本発明の硬化性樹脂組成物を用いれば、優れた光学特性を有し、品質の高い光学部品を得ることができる。このため、本発明は光学部品を各種機器に効果的に利用することができ、産業上の利用可能性が高い。

Claims (20)

  1.  分子中に2つ以上の(メタ)アクリロイル基を有する脂環式(メタ)アクリレートモノマーと、ラジカル重合性基を有する重合体と、非共役ビニリデン基含有化合物と、リン酸エステルとを含む硬化性樹脂組成物であって、前記リン酸エステルを、前記硬化性樹脂組成物の質量に対して0.02質量%より多く3質量%以下含む硬化性樹脂組成物。
  2.  分子中に2つ以上の(メタ)アクリロイル基を有する非脂環式の脂肪族(メタ)アクリレートモノマーをさらに含む請求項1に記載の硬化性樹脂組成物。
  3.  前記リン酸エステルは、炭素数が10以上の脂肪族基を有する請求項1又は2に記載の硬化性樹脂組成物。
  4.  前記リン酸エステルは、下記一般式(1)で表される請求項1~3のいずれか1項に記載の硬化性樹脂組成物;
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、R1およびR2は同一でもそれぞれ異なっても良く、それぞれ独立に水素原子、又はアルキル残基、又はポリオキシアルキレンアルキルエーテル残基、又はアルケニル残基、又はポリオキシアルキレンアルケニルエーテル残基を表す。R1、R2の少なくとも1つは、アルキル残基、又はポリオキシアルキレンアルキルエーテル残基、又はアルケニル残基、又はポリオキシアルキレンアルケニルエーテル残基であり、炭素数が10以上である。
  5.  前記一般式(1)中、R1およびR2の少なくとも1つは、アルキル残基又はポリオキシアルキレンアルケニルエーテル残基である請求項4に記載の硬化性樹脂組成物。
  6.  前記一般式(1)中、R1およびR2の少なくとも1つは、分岐構造を含むアルキル残基である請求項4に記載の硬化性樹脂組成物。
  7.  前記リン酸エステルが、前記一般式(1)で表されるリン酸エステルと、下記一般式(1-2)で表される芳香族リン酸エステルを少なくとも含む請求項4~6のいずれか1項に記載の硬化性樹脂組成物;
    Figure JPOXMLDOC01-appb-C000002
     一般式(1-2)中、Ar1およびAr2は同一でもそれぞれ異なっても良く、それぞれ独立に水素原子、または置換基を有してもよいアリール残基を表す。Ar1およびAr2の少なくとも1つは、置換基を有してもよいアリール残基である。
  8.   前記脂環式(メタ)アクリレートモノマーと、前記脂肪族(メタ)アクリレートモノマーの質量混合比が90:10~40:60である請求項2~7のいずれか1項に記載の硬化性樹脂組成物。
  9.   前記脂肪族(メタ)アクリレートモノマーは、下記一般式(4)で表される請求項2~8のいずれか1項に記載の硬化性樹脂組成物;
    Figure JPOXMLDOC01-appb-C000003
      一般式(4)中、R1は置換もしくは無置換のアルキレン基、又は置換もしくは無置換のアルキレン基とカルボニル基とオキシ基との組合せからなる2価の基を表し、R1の炭素数は7以上である。また、Mは水素原子又はメチル基を表す。
  10.   前記一般式(4)中、R1は、下記一般式(5)で表される基である請求項9に記載の硬化性樹脂組成物;
    Figure JPOXMLDOC01-appb-C000004
      一般式(5)中、R2~R5は各々独立に置換もしくは無置換のアルキレン基を表し、*は一般式(4)のオキシ基との結合部位を表す。n1、n2は1以上の整数である。
  11.   前記脂肪族(メタ)アクリレートモノマーは、下記化合物である請求項2~10のいずれか1項に記載の硬化性樹脂組成物;
    Figure JPOXMLDOC01-appb-C000005
      化合物中、m及びnはそれぞれ独立に1~7の整数を表す。
  12.   前記脂環式(メタ)アクリレートモノマーは、下記化合物である請求項1~11のいずれか1項に記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
  13.   前記ラジカル重合性基を有する重合体の含有率が、前記硬化性樹脂組成物の質量に対して10~50質量%であり、
      前記非共役ビニリデン基含有化合物の含有率が、前記硬化性樹脂組成物の質量に対して2~10質量%であり、
      前記脂環式(メタ)アクリレートモノマーおよび前記脂肪族(メタ)アクリレートモノマーの含有率の合計が、前記硬化性樹脂組成物の質量に対して40~85質量%である請求項2~12のいずれか1項に記載の硬化性樹脂組成物。
  14.   前記ラジカル重合性基を含有する重合体の含有率が、前記硬化性樹脂組成物の質量に対して10~50質量%であり、
      前記非共役ビニリデン基含有化合物の含有率が、前記硬化性樹脂組成物の質量に対して2~10質量%であり、
      前記脂環式(メタ)アクリレートモノマーおよび脂肪族(メタ)アクリレートモノマー(B)の合計が、前記硬化性樹脂組成物の質量に対して40~85質量%であり、且つ前記脂環式(メタ)アクリレートモノマーと、前記脂肪族(メタ)アクリレートモノマーの質量混合比が90:10~40:60である請求項2~13のいずれか1項に記載の硬化性樹脂組成物。
  15.   熱ラジカル重合開始剤および光ラジカル重合開始剤の少なくとも一方をさらに含む請求項1~14のいずれか1項に記載の硬化性樹脂組成物。
  16.   請求項1~15のいずれか1項に記載の硬化性樹脂組成物を用いた光学部品。
  17.   請求項1~15のいずれか1項に記載の硬化性樹脂組成物を用いたレンズ。
  18.   硬化性樹脂組成物に金型を押し当てて前記硬化性樹脂組成物を押し広げる工程と、
      光を照射して前記硬化性樹脂組成物を半硬化させた後に150℃以上で熱硬化させる工程と、
      150~250℃の温度範囲で前記硬化性樹脂組成物の硬化物から前記金型を引き離す工程とを含む光学部品の製造方法。
  19.   前記金型は、窒化クロム処理が施されている請求項18に記載の光学部品の製造方法。
  20.   前記硬化性樹脂組成物は、請求項1~15のいずれか1項に記載の硬化性樹脂組成物である請求項18又は19に記載の光学部品の製造方法。
PCT/JP2014/071371 2013-08-13 2014-08-13 硬化性樹脂組成物、光学部品、レンズおよび光学部品の製造方法 WO2015022973A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/019,064 US9714335B2 (en) 2013-08-13 2016-02-09 Curable resin composition, optical component, lens, and method for manufacturing optical component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013168303 2013-08-13
JP2013-168303 2013-08-13
JP2014119620A JP6149004B2 (ja) 2013-08-13 2014-06-10 硬化性樹脂組成物、光学部品およびレンズ
JP2014-119620 2014-06-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/019,064 Continuation US9714335B2 (en) 2013-08-13 2016-02-09 Curable resin composition, optical component, lens, and method for manufacturing optical component

Publications (1)

Publication Number Publication Date
WO2015022973A1 true WO2015022973A1 (ja) 2015-02-19

Family

ID=52468358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071371 WO2015022973A1 (ja) 2013-08-13 2014-08-13 硬化性樹脂組成物、光学部品、レンズおよび光学部品の製造方法

Country Status (3)

Country Link
US (1) US9714335B2 (ja)
JP (1) JP6149004B2 (ja)
WO (1) WO2015022973A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066279A1 (ja) * 2016-10-03 2018-04-12 富士フイルム株式会社 硬化性組成物、硬化物、光学部材、レンズ及び硬化物の製造方法
CN109096929B (zh) * 2018-06-29 2021-07-16 新纶科技(常州)有限公司 一种多层构造的未完全固化型oca光学胶及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129337A (ja) * 1985-11-22 1987-06-11 ピ−ピ−ジ− インダストリ−ズ インコ−ポレ−テツド 高屈折率および低黄色度の重合体の製造用組成物
JPH03287641A (ja) * 1990-04-05 1991-12-18 Asahi Optical Co Ltd プラスチックレンズ成形用内部離型剤及びプラスチックレンズの製造方法
JPH04501130A (ja) * 1988-11-18 1992-02-27 キュー2100,インコーポレーテッド プラスチックレンズ組成物
JPH0616754A (ja) * 1992-07-02 1994-01-25 Nippon Kayaku Co Ltd 樹脂組成物、透過型スクリーン用樹脂組成物及びその硬化物
JP2003001643A (ja) * 2001-06-20 2003-01-08 Seiko Epson Corp プラスチックレンズの製造方法および当該製造方法によって製造されたプラスチックレンズ
JP2003313215A (ja) * 2002-02-20 2003-11-06 Dainippon Printing Co Ltd 樹脂組成物および光学素子
JP2005031282A (ja) * 2003-07-10 2005-02-03 Dainippon Printing Co Ltd 光学素子用樹脂組成物、光学素子用樹脂硬化物及び光学素子
WO2006046437A1 (ja) * 2004-10-29 2006-05-04 Konica Minolta Opto, Inc. 光学部品の製造装置
JP2006232626A (ja) * 2005-02-25 2006-09-07 Seiko Epson Corp 光学素子の製造方法および光学素子の製造装置
JP2012046726A (ja) * 2010-07-29 2012-03-08 Fujifilm Corp 硬化性樹脂組成物および成形体
JP2012107191A (ja) * 2010-10-25 2012-06-07 Fujifilm Corp 半硬化物、硬化物およびそれらの製造方法、光学部品、硬化樹脂組成物
WO2012161315A1 (ja) * 2011-05-26 2012-11-29 三菱レイヨン株式会社 微細凹凸構造を表面に有する物品の製造方法
JP2013008825A (ja) * 2011-06-24 2013-01-10 Mitsubishi Rayon Co Ltd ナノ凹凸構造用樹脂組成物、およびそれを用いた自動車メータカバー用透明部材とカーナビゲーション用透明部材
JP2013041228A (ja) * 2011-08-19 2013-02-28 Hoya Corp プラスチックレンズの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959429A (en) 1985-11-22 1990-09-25 Ppg Industries, Inc. Cyclohexenic additives for producing polycarbonate polymers of high refractive index and low yellowness
JP2003119207A (ja) * 2001-10-11 2003-04-23 Jsr Corp 光硬化性組成物、その硬化物、及び積層体
CN1310988C (zh) 2002-02-20 2007-04-18 大日本印刷株式会社 树脂组合物和光学元件
JP2009035627A (ja) * 2007-08-01 2009-02-19 Kansai Paint Co Ltd 塗料組成物及び塗膜形成方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129337A (ja) * 1985-11-22 1987-06-11 ピ−ピ−ジ− インダストリ−ズ インコ−ポレ−テツド 高屈折率および低黄色度の重合体の製造用組成物
JPH04501130A (ja) * 1988-11-18 1992-02-27 キュー2100,インコーポレーテッド プラスチックレンズ組成物
JPH03287641A (ja) * 1990-04-05 1991-12-18 Asahi Optical Co Ltd プラスチックレンズ成形用内部離型剤及びプラスチックレンズの製造方法
JPH0616754A (ja) * 1992-07-02 1994-01-25 Nippon Kayaku Co Ltd 樹脂組成物、透過型スクリーン用樹脂組成物及びその硬化物
JP2003001643A (ja) * 2001-06-20 2003-01-08 Seiko Epson Corp プラスチックレンズの製造方法および当該製造方法によって製造されたプラスチックレンズ
JP2003313215A (ja) * 2002-02-20 2003-11-06 Dainippon Printing Co Ltd 樹脂組成物および光学素子
JP2005031282A (ja) * 2003-07-10 2005-02-03 Dainippon Printing Co Ltd 光学素子用樹脂組成物、光学素子用樹脂硬化物及び光学素子
WO2006046437A1 (ja) * 2004-10-29 2006-05-04 Konica Minolta Opto, Inc. 光学部品の製造装置
JP2006232626A (ja) * 2005-02-25 2006-09-07 Seiko Epson Corp 光学素子の製造方法および光学素子の製造装置
JP2012046726A (ja) * 2010-07-29 2012-03-08 Fujifilm Corp 硬化性樹脂組成物および成形体
JP2012107191A (ja) * 2010-10-25 2012-06-07 Fujifilm Corp 半硬化物、硬化物およびそれらの製造方法、光学部品、硬化樹脂組成物
WO2012161315A1 (ja) * 2011-05-26 2012-11-29 三菱レイヨン株式会社 微細凹凸構造を表面に有する物品の製造方法
JP2013008825A (ja) * 2011-06-24 2013-01-10 Mitsubishi Rayon Co Ltd ナノ凹凸構造用樹脂組成物、およびそれを用いた自動車メータカバー用透明部材とカーナビゲーション用透明部材
JP2013041228A (ja) * 2011-08-19 2013-02-28 Hoya Corp プラスチックレンズの製造方法

Also Published As

Publication number Publication date
US20160160006A1 (en) 2016-06-09
US9714335B2 (en) 2017-07-25
JP6149004B2 (ja) 2017-06-14
JP2015057462A (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
US10370473B2 (en) Compound, curable composition, cured product, optical member, and lens
JP5940496B2 (ja) 半硬化物、硬化物およびそれらの製造方法、光学部品、硬化樹脂組成物ならびに化合物
JP6712341B2 (ja) 硬化性組成物、硬化物、光学部材、レンズ及び化合物
JP6743279B2 (ja) 硬化性組成物、硬化物、光学部材及びレンズ
JP5898551B2 (ja) 半硬化物、硬化物およびそれらの製造方法、光学部品、硬化樹脂組成物
US11370744B2 (en) Compound, curable composition, cured product, optical member, and lens
JP6149004B2 (ja) 硬化性樹脂組成物、光学部品およびレンズ
JP6923744B2 (ja) 硬化物、光学部材、レンズ、及び化合物
US11377545B2 (en) Curable resin composition, cured product, diffractive optical element, multilayer diffractive optical element, and method for producing curable resin composition
JP6763960B2 (ja) 硬化性組成物、硬化物、光学部材、レンズ及び硬化物の製造方法
US10604503B2 (en) Curable composition, cured product, optical member, lens, and compound
WO2014142047A1 (ja) 芳香環含有化合物、硬化性樹脂組成物、光学部品およびレンズ
CN114222769B (zh) 固化性组合物、固化物、光学部件及透镜
WO2018235688A1 (ja) 硬化性組成物、半硬化物、硬化物、光学部材、レンズ及び化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836474

Country of ref document: EP

Kind code of ref document: A1