WO2015021714A1 - 一种阵列基板及其制备方法、显示装置 - Google Patents

一种阵列基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2015021714A1
WO2015021714A1 PCT/CN2013/089498 CN2013089498W WO2015021714A1 WO 2015021714 A1 WO2015021714 A1 WO 2015021714A1 CN 2013089498 W CN2013089498 W CN 2013089498W WO 2015021714 A1 WO2015021714 A1 WO 2015021714A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
array substrate
metal micro
nanoparticles
Prior art date
Application number
PCT/CN2013/089498
Other languages
English (en)
French (fr)
Inventor
代青
刘则
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/362,117 priority Critical patent/US9847382B2/en
Publication of WO2015021714A1 publication Critical patent/WO2015021714A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present invention relates to the field of organic electroluminescence display technologies, and in particular, to an array substrate, a preparation method thereof, and a display device. Background technique
  • OLED organic electroluminescent device
  • the basic structure of an organic electroluminescent device includes: an anode layer, a cathode layer, and a "light-emitting layer" sandwiched between the anode layer and the cathode layer, wherein the light-emitting layer is one or more organic layers.
  • the applied voltage electrons and holes are injected into the organic layer from the cathode direction and the anode direction, respectively, and then migrate and collide in the "light-emitting layer" to generate excitons, and the energy of the excitons is attenuated in the form of light, that is, Radiation is emitted.
  • the organic electroluminescent device generally includes a first electrode layer (ie, an anode layer or a cathode layer), a second electrode layer (ie, a cathode layer or an anode layer), and a light emitting layer disposed between the first electrode layer and the second electrode layer
  • a light-emitting surface side of the first electrode layer is provided with a flat protective layer and a TFT (Thin Film Transistor).
  • a light emitted from a side of the first electrode layer facing the planarization layer is a Bottom emission organic electroluminescent device, and the first electrode layer should be transparent (eg, ITO, ie, indium tin oxide)
  • An electrode layer, and the second electrode layer is generally an opaque electrode layer.
  • the bottom emission type organic electroluminescent device since it is blocked by the TFT, it generally has a small aperture ratio, and in order to achieve a useful luminance, although it can be improved by increasing the voltage or the like.
  • the brightness of a bottom emission type organic electroluminescent device but this often has a negative impact on the lifetime of devices and materials. Therefore, the performance requirements for the preparation of the bottom emission type organic electroluminescent device, the life of the material, and the light extraction efficiency are higher.
  • organic electroluminescent devices also have energy loss during the luminescence process, which is mainly reflected in the following two aspects:
  • the injected carriers when the injected carriers are coupled to emit light in the light-emitting layer, not all The injected energy is converted into photons, and a part of the exciton energy is lost through the non-radiative transition process such as lattice vibration and deep level impurity transition.
  • the process can be described by internal quantum efficiency
  • the interface between the anode layer of the organic electroluminescent device and the substrate, the substrate and the air is totally reflected, the waveguide mode occurs at the interface between the anode layer and the light-emitting layer of the organic electroluminescent device, and the surface plasma near the metal electrode Loss, etc., causes the light emitted from the luminescent layer to pass through the above-mentioned multilayer structure, only about 20% can penetrate the organic electroluminescent device into the air, and about 80% are lost, and the external quantum can be used.
  • Efficiency describes this process, which is the efficiency with which light is extracted from an organic electroluminescent device, ie, light extraction efficiency or light extraction efficiency.
  • the organic electroluminescent device with an internal quantum efficiency close to 100% can be theoretically realized, but the material type is very limited; the waveguide mode loss is reduced by fabricating the surface microstructure on the transparent electrode layer, by Photonic crystals or microlens arrays are applied to glass substrates to reduce total internal reflection, to produce pleated cathodes to reduce surface plasma loss and to utilize optical microcavity structures, etc., which can greatly increase the light extraction efficiency of organic electroluminescent devices.
  • An object of the present invention is to provide an array substrate, a method for fabricating the same, and a display device which can improve the light extraction efficiency of an organic electroluminescence device, in view of the above disadvantages of the conventional organic electroluminescence device.
  • the present invention provides an array substrate comprising an organic electroluminescent device and a planar protective layer disposed thereunder, the organic electroluminescent device comprising: a first electrode layer, a second electrode layer, and a light emitting layer disposed between the first electrode layer and the second electrode layer, the first electrode layer being a transparent electrode layer disposed on the planarization layer, and the planarization layer is doped with metal micro/nano Particles.
  • the planarization layer of the array substrate of the present invention is doped with metal micro/nano particles, so It enhances the light extraction efficiency of the organic electroluminescent device, thereby improving the light extraction efficiency of the array substrate.
  • the metal micro-nanoparticle material is any one of gold, silver and aluminum, or any combination of gold, silver and aluminum.
  • the form of the metal micro-nanoparticles is any one of a spherical shape, a prismatic shape, a cubic shape, a cage shape, and a core-shell structure.
  • the metal micro-nanoparticles have a particle size between 1 nm and 100 nm.
  • the metal micro-nanoparticles have particle size sizes of various sizes.
  • the metal micro-nanoparticles have a mass concentration in the planarization layer of greater than or equal to 1% and less than or equal to 5%.
  • the material of the first electrode layer is any one of indium tin oxide, zinc oxide, indium gallium zinc oxide, and/or the material of the second electrode layer is any one of silver, copper and aluminum.
  • the material of the first electrode layer is any one of indium tin oxide, zinc oxide, indium gallium zinc oxide, and/or the material of the second electrode layer is any one of silver, copper and aluminum.
  • the array substrate further includes a thin film transistor, and the planarization layer covers the thin film transistor, and the drain of the thin film transistor passes through a contact via penetrating the upper planarization layer thereof and the organic electroluminescent device An electrode layer is connected.
  • the second electrode layer is a reflective layer.
  • the technical solution adopted to solve the technical problem of the present invention is a display device including the above array substrate.
  • the display device of the present invention includes the above array substrate, the light extraction efficiency is remarkably improved.
  • the technical solution adopted to solve the technical problem of the present invention is a method for preparing an array substrate, comprising the following steps:
  • the planarization layer is doped with metal micro-nanoparticles
  • the granules greatly increase the light extraction efficiency of the organic electroluminescent device disposed above the planarization layer, thereby improving the light extraction efficiency of the array substrate.
  • the forming a planarization layer doped with metal micro-nanoparticles comprises:
  • Example 1 is a schematic view showing surface plasmon resonance of metal micro/nanoparticles of Example 1 of the present invention
  • Example 2 is a schematic view showing light scattering and absorption by the metal micro/nanoparticles of Example 1 of the present invention
  • FIG. 3 is a structural view of an array substrate according to Embodiment 1 of the present invention.
  • FIG. 4 is a view showing a comparison between the light extraction efficiency of the organic electroluminescence device in the array substrate doped with the metal micro/nanoparticles of the first embodiment of the invention and the light extraction efficiency of the organic electroluminescence device in the conventional array substrate;
  • Fig. 5 is a structural view showing an array substrate finally formed in Embodiment 3 of the present invention.
  • the reference numerals are: 101, a substrate; 102, a thin film transistor; 103, a planarization layer; 1031, a first planarization layer; 1032, a second planarization layer; 104, a first electrode layer; 105, a pixel defining layer; 106, the light-emitting layer; 107, the second electrode layer; q, the metal micro-nanoparticle; Sl, the light-emitting efficiency curve of the organic electroluminescent device in the existing array substrate; S2, the organic electroluminescence in the array substrate provided by the invention The light output efficiency curve of the device.
  • the reference numerals are: 101, a substrate; 102, a thin film transistor; 103, a planarization layer; 1031, a first planarization layer; 1032, a second planarization layer; 104, a first electrode layer; 105, a
  • the embodiment provides an array substrate including an organic electroluminescent device and a planar protective layer 103 disposed under the substrate, the organic electroluminescent device comprising: a first electrode layer 104, a second An electrode layer 107, and a light-emitting layer 106 disposed between the first electrode layer 104 and the second electrode layer 107, wherein the first electrode layer 104 is a transparent electrode layer disposed on the planarization layer 103, and the planarization layer 103 It is doped with metal micro-nanoparticles q.
  • the planarization layer 103 under the transparent electrode layer ie, the first electrode layer 104 is doped with the metal micro/nanoparticles q, and the surface of the metal micro-nanoparticles q is utilized.
  • the plasmon resonance effect can enhance the light extraction efficiency of the organic electroluminescent device, thereby enhancing the light extraction efficiency of the array substrate.
  • SPs surface plasmons
  • Electron-dense waves are an electromagnetic The surface wave can laterally limit the light wave to the sub-wavelength scale, and near the resonance frequency, its dispersion curve is flat, the photon state density is large, and the surface plasma spontaneous radiation can be enhanced when interacting with the active medium.
  • the surface plasmon has the largest field strength at the surface of the metal thin film and an exponential decay field perpendicular to the interface direction, which can be excited by electrons or excited by light waves.
  • the plasma on the surface cannot propagate along the interface in the form of waves, but is locally localized near the surface of these structures, ie Localization of surface plasmons.
  • the oscillating electric field causes the electron cloud of the metal micro-nanoparticles q to be displaced relative to the core, and the restoring force is generated by the action of the coulomb force between the electron cloud and the core, Causes the oscillation of the electron cloud around the core.
  • the collective oscillation of this electron cloud is called surface plasmon resonance, as shown in Figure 1.
  • the electromagnetic field around the metal micro/nanoparticles q is greatly enhanced.
  • the metal micro-nanoparticle q can be considered to be a nano-lens, and the oscillating plasma is a photon that is strongly confined within one nano-sized particle.
  • a very important effect of surface plasmon resonance is metal The scattering and absorption cross sections of the micro-nanoparticles q are greatly enhanced, as shown in Figure 2.
  • the frequency of oscillation is mainly determined by the electron density (determined by the metal species) of the metal micro-nanoparticles q, the effective electron mass, the size and shape of the particles, and the surrounding medium.
  • the frequency of surface plasmon resonance Q) sp can be obtained according to the following formula: ⁇
  • ⁇ ⁇ is the frequency of the surface plasmon
  • s m is the dielectric constant of the surrounding medium.
  • the external quantum effect (T! ext ) of an organic light-emitting device can be obtained as follows: In the formula (2), C' ext is the light extraction efficiency (ie, light extraction efficiency), and Tlint is the internal quantum efficiency.
  • the internal quantum efficiency (Tl int ) is determined by the ratio of the rate of radiation deactivation (K rad ) to the rate of non-radiative deactivation ( ⁇ ⁇ ⁇ ).
  • the rate of radiation deactivation (K rad ) of an organic electroluminescent device is generally faster than the rate of non-radiative deactivation ( ⁇ ⁇ ⁇ ) at room temperature, resulting in a moderate internal quantum efficiency (T! int ).
  • the surface plasmon can increase the internal quantum efficiency (T!
  • the use of surface plasmon to improve the internal quantum efficiency (T! int ) of organic electroluminescent devices is based on the principle of exciton spontaneous emission deactivation rate (K rad ) and state density, when the illuminating center is at the wavelength level.
  • the density of states of the photons increases, causing the exciton spontaneous radiation deactivation rate (K rad ) to increase, thereby increasing the proportion of radiation deactivation, that is, the internal quantum efficiency ( ⁇ ⁇ ) is improved;
  • Plasma-enhanced organic electroluminescent device light-emitting efficiency (C' ext ) is based on light that is larger than the total internal reflection angle and cannot be radiated to excite the surface plasmon, which is then radiated out by light, thereby improving organic electroluminescence.
  • the principle of the external quantum efficiency (Tl ext ) of the device is based on light that is larger than the total internal reflection angle and cannot be radiated to excite the surface plasmon, which is then radiated out by light, thereby improving organic electroluminescence.
  • the transparent electrode layer (ie, the first electrode layer 104) of the organic electroluminescent device of the array substrate is disposed above the planarization layer 103 doped with the metal micro/nanoparticles q, so that the array substrate The light-emitting efficiency of the organic electroluminescent device is greatly improved, thereby improving the light-emitting efficiency of the array substrate.
  • the material of the metal micro-nanoparticles q may be any one of gold, silver, and aluminum, or may be an alloy of any of a variety of metals such as gold, silver, and aluminum.
  • the shape of the metal micro/nanoparticles q may be any of a spherical shape, a prismatic shape, a square shape, a cage shape, and a core-shell structure, and has a particle diameter of from 1 nm to 100 nm.
  • the metal micro-nanoparticles q doped in the planarization layer 103 have a plurality of particle sizes of different specifications, that is, the particle size of the doped metal micro-nanoparticles q is different, and the metal micro-nanoparticles that resonate in such a manner
  • the energy of the surface plasmon of q can correspond to different wavelengths, thereby more effectively improving the light extraction efficiency of the organic electroluminescent device.
  • the mass concentration ratio of the metal micro/nanoparticles q to the planarization layer 103 is controlled within a range of 1% or more and 5% or less to ensure that the electrical properties of the planarization layer 103 are not greatly affected.
  • the metal micro-nanoparticles q doped in the planarization layer 103 may be uniformly doped or non-uniformly doped; the planarization layer 103 may be doped with metal micro-nanoparticles q of the same shape, such as doped spheres, prisms Metal micro-nanoparticles q of a shape, a square shape, a cage or a core-shell structure may also be doped with metal micro-nanoparticles q of different shapes, such as doped spheres, prisms, cubes, cages and nuclei - Any two or more shapes of metal micro-nanoparticles 4 in the shell structure.
  • the first electrode layer 104 may be an anode layer
  • the second electrode layer 107 may be a cathode layer
  • the first electrode layer 104 may be a cathode layer
  • the second electrode layer 107 may be an anode layer, as long as the metal micro-doping is ensured.
  • the planarization layer 103 of the nanoparticles q may be light-transmitted.
  • the material thereof may be any one of indium tin oxide, zinc oxide, and indium gallium zinc oxide.
  • the second electrode layer 107 is a reflective layer, that is, a cathode layer.
  • the material may be selected from a metal material such as silver, copper or aluminum.
  • the light irradiated on the second electrode layer 107 may be reflected by the first electrode layer 104 and emitted through the first electrode layer 104;
  • the electrode layer 104 is a cathode layer, and the material thereof may also be a metal material such as silver, copper or aluminum, and the thickness of the layer. It should be set to be thin to ensure that light can pass through the first electrode layer 104.
  • a reflective layer is disposed on the light-emitting surface side of the second electrode layer 107 (that is, the anode layer), and the reflective layer can be made of, for example, aluminum. A reflective material such as silver is used.
  • the light irradiated on the second electrode layer 107 can be reflected by the reflective layer provided on the light-emitting surface side to the first electrode layer 104 and transmitted through the first electrode layer 104.
  • the thin film transistor 102 may be further included on the array substrate, and the planarization layer 103 covers the thin film transistor.
  • the drain of the thin film transistor 102 is connected to the first electrode layer 104 of the organic electroluminescent device by a contact via penetrating through the upper planarization layer 103 thereof.
  • the organic electroluminescent device is driven to emit light by the thin film transistor 102, so that the light of the organic electroluminescent device is emitted through the transparent substrate 101 (i.e., the bottom emission type organic electroluminescent device).
  • FIG. 4 is a comparison diagram of the light-emitting efficiency of the organic electroluminescent device in the array substrate doped with the metal micro-nanoparticles q and the light-emitting efficiency of the organic electroluminescent device in the existing array substrate, as shown in FIG. 4,
  • X The axial direction is the wavelength
  • the Y direction is the luminous intensity
  • S1 is the light emission efficiency curve of the organic electroluminescent device in the array substrate including the existing planarization layer
  • S2 is a planarization layer including the metal micro-nanoparticles q doped.
  • the light-emitting efficiency curve of the organic electroluminescent device in the array substrate of 103 it is easy to see that the organic electro-optic in the array substrate including the planarization layer 103 doped with the metal micro-nanoparticles q is compared with the prior art.
  • the light-emitting efficiency of the light-emitting device is significantly higher.
  • the embodiment provides a display device, which includes the array substrate described in Embodiment 1, and the display device can be: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigation device, etc., having any display function. Product or part.
  • the display device provided in this embodiment has the array substrate in the first embodiment, so that it has better light extraction efficiency and better visual effect.
  • the embodiment provides a method for preparing an array substrate, which comprises the following steps: Step 1. Form a thin film transistor 102 on a substrate 101 by a patterning process.
  • the thin film transistor 102 may be of a top gate type or a bottom gate type.
  • signal lines such as gate lines and data lines can also be formed at the same time.
  • the thin film transistor can be driven by an existing 2T1C circuit.
  • Step 2 a planarization layer 103 doped with metal micro-nanoparticles q is formed on the substrate 101 on which the thin film transistor 102 is formed, so that the planarization layer 103 covers the thin film transistor 102 and extends onto the substrate 101.
  • the material of the metal micro-nanoparticles q may be any one of gold, silver, and aluminum, or may be an alloy of any of a variety of metals such as gold, silver, and aluminum. Of course, other metal composite structures can also be used.
  • a specific method of forming the planarization layer 103 doped with the metal ( Au ) micro-nanoparticles q will be described by taking the material of the metal micro-nanoparticles q as gold as an example. Referring to Figure 5, the method includes:
  • S101 depositing a first planarization layer 1031 on the substrate 101 on which the thin film transistor 102 is formed;
  • S103 depositing a second planarization layer 1032 on the metal micro-nanoparticle q layer by electron beam evaporation or vapor deposition to cover the metal micro-nanoparticle q layer, thereby obtaining a flat inner metal (A) micro-nanoparticle q embedded therein
  • the layer 103 is composed of a first planarization layer 1031, a second planarization layer 1032, and a metal micro-nanoparticle q layer.
  • the sputtering method used in the above manufacturing process can also be replaced with other dry film forming processes such as vacuum evaporation, chemical vapor deposition, and the like.
  • a planarization layer doped with metal (Au) micro-nanoparticles q may also be formed by sputtering.
  • the method comprises: preparing a metal micro-nanoparticle q-dispersed oxide gold (A)-silica (SiO 2 ) composite film by using a multi-target magnetron sputtering technique. Specifically, in a dual target magnetron sputtering chamber, one target is placed with high purity silica and the other target is placed with high purity gold.
  • the sputtering gas is high purity argon (purity is
  • the vacuum of the chamber before sputtering is less than 5xl (T 5 Pa, the sputtering pressure is 1.6x10.
  • the flow rates of argon and oxygen are 8.3xl0_ 8 m 3 /s and 5.8x10" 8 m 3 /s respectively.
  • the RF power of silicon dioxide and gold is 200 W and 50 W.
  • the ratio of the materials deposited on the substrate 101 is selected by turning on the adjustable shielding plate before the sputtering target, thereby obtaining gold of different doping ratios (ie, Metal micro-nanoparticles) - a silica composite film, finally resulting in a planarization layer 103 which is doped with metal micro-nanoparticles q.
  • the shape of the metal micro/nanoparticles q may be any of a spherical shape, a prismatic shape, a square shape, a cage shape, and a core-shell structure.
  • a specific method of forming the planarization layer 103 doped with the metal micro/nanoparticles q will be described below by taking a core-shell structure as an example.
  • Ag@Si0 2 with core-shell structure ie, silver (Ag) as the core and silicon dioxide (Si0 2 ) as the shell
  • a specific method of the planarization layer 103 of the Si0 2 particles will be described. The method includes:
  • S201 preparing a colloidal aqueous solution of Ag@Si0 2 having a core-shell structure, and the specific steps include:
  • hydrazine hydrate and silver nitrate were combined into a dilute solution; 72.89 mg of cetyltridecyl ammonium bromide (CTAB) was weighed and dissolved in 200 mL of deionized water while 2.5 mL of 0.1 M hydrate was added. ⁇ , using a magnetic stirrer to stir at room temperature, about 2 minutes, 5mL of silver nitrate with a concentration of 0.05M was added dropwise, the color of the solution gradually changed from colorless and transparent to reddish brown, and the reaction was continued for 7-10 minutes to obtain a nano silver colloid; Subsequently, 50 mL of absolute ethanol and 2 mL of ammonia water having a mass concentration of 25% were added, and after about 1 minute, 0.25 m of LTEOS was added dropwise, and stirring was continued for 2 hours to obtain a monodisperse core-shell structured nano-Ag@Si0 2 colloidal aqueous solution.
  • CAB cetyltridecyl
  • S202 preparing a planarization layer 103 of Au@Si0 2 particles (ie, metal micro-nanoparticles q) doped with a core-shell structure by a sol-gel method, and the specific steps include:
  • the Ag@SiO 2 colloidal aqueous solution prepared above was dispersed in a mixed solution of tetraethyl orthosilicate, absolute ethanol, and dilute hydrochloric acid to form a silica sol at room temperature.
  • a planarization layer 103 is prepared by spin coating, and after drying, a silicon dioxide film embedded with Au@Si0 2 particles, that is, Au@Si0 2 particles doped with a core-shell structure (ie, metal micro/nano) is obtained.
  • planarization layer 103 of the Au@polystyrene particles doped with the core-shell structure will be described by taking the core-shell structure of 11@polystyrene as an example.
  • the method specifically includes:
  • S301 preparing a core-shell structure of 11@polystyrene particles, the specific steps are as follows: taking l.Og nano gold powder, l.Og polyvinylpyrrolidone into 80mL of water, and then ultrasonically dispersed for 0.5h by ultrasonic generator (ultrasonic generation The power of the device is 500W), then add 1.0g of emulsifier, and use ultrasonic wave generator to continuously ultrasonically disperse for 0.5h to obtain a homogenous dispersion system; then, transfer it to an electric stirrer, serpentine condenser, N 2 Tube inside the four-necked flask.
  • the above device is placed in a constant temperature water tank, stirring is maintained for about 10 minutes, and the temperature is lowered to 30 ° C to avoid premature decomposition after the potassium sulfate is added due to excessive temperature; the initiator potassium persulfate (KPS) is added, and stirring is maintained for 20 minutes. 2 rows of 0 2 ; Then, the purified styrene monomer was placed in the dropping funnel and added dropwise to the reaction system, and the dropping was completed in about 10 minutes; then, the temperature was raised to 70 ° C, and the stirring rate and the N 2 rate during the reaction were increased. keep constant. After 5 hours, the reaction was terminated and the mixture was naturally cooled to a temperature below 40 ° C under stirring to obtain a composite latex.
  • KPS initiator potassium persulfate
  • a certain amount of the composite latex is demulsified with sodium chloride (NaCl), filtered, washed and dried to obtain Au@polystyrene particles having a core-shell structure (ie, gold nanoparticles as a core, polystyrene) Metal micro-nanoparticles for the shell layer).
  • NaCl sodium chloride
  • S302 forming a planarization layer 103 of Au@polystyrene particles doped with a core-shell structure, and the specific steps include:
  • the Au@polystyrene particles of the core-shell structure prepared above are dispersed in an organic solvent, and then mixed with a photoresist (such as a polyimide solution) which is prepared to form a flat layer, and light is obtained by a process such as spin coating.
  • a photoresist such as a polyimide solution
  • the engraved film, after drying, is a planarization layer 103 of Au@polystyrene particles doped with a core-shell structure.
  • the above is only the material of the metal micro-nanoparticles q is gold or silver, and/or the shape of the metal micro-nanoparticles q is a core-shell structure, the formation of the metal-doped nanoparticles q is flat.
  • the method of layer 103 is described, however, Those skilled in the art can also form the planarization layer 103 doped with metal micro-nanoparticles q of other materials and/or other shapes without departing from the above teachings, and will not be described one by one.
  • Step 3 sequentially forming a first electrode layer 104, a pixel defining layer 105, a light emitting layer 106 of the organic electroluminescent device, above the planarization layer 103 doped with the metal micro-nanoparticles q prepared by the above method, by a patterning process, The second electrode layer 107.
  • an array substrate as shown in Fig. 5 is formed, in which the first electrode layer 104 is a transparent electrode layer. Since the methods of forming the first electrode layer 104, the pixel defining layer 105, the light emitting layer 106, or the second electrode layer 107 are all prior art, they are not described herein.
  • the planarization layer 103 of the array substrate prepared by the above method is doped with metal micro/nanoparticles q, which can effectively improve the light extraction efficiency of the organic electroluminescence device, thereby improving the light extraction efficiency of the array substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种阵列基板及其制备方法、显示装置,属于有机电致发光显示技术领域,其可解决现有的阵列基板的出光效率低的问题。该阵列基板包括有机电致发光器件和设置于其下方的平坦化层(103),该有机电致发光器件包括:第一电极层(104)、第二电极层(107)、以及设置在第一电极层(104)和第二电极层(107)之间的发光层(106),第一电极层(104)为透明电极层,其设置在平坦化层(103)上,并且平坦化层(103)掺杂有金属微纳米颗粒。

Description

一种阵列基板及其制备方法、 显示装置 技术领域
本发明涉及有机电致发光显示技术领域, 具体涉及一种阵列 基板及其制备方法、 显示装置。 背景技术
有机电致发光器件(OLED )的基本结构包括: 阳极层、 阴极 层、 以及夹在阳极层和阴极层之间的 "发光层" , 其中, 发光层 为一层或多层有机层。 在外加电压的作用下, 电子和空穴分别从 阴极方向和阳极方向注入到有机层中, 然后迁移并在 "发光层" 中相遇复合产生激子, 激子的能量以光的形式衰减, 即辐射出光。
有机电致发光器件一般包括第一电极层 (即阳极层或阴极 层) 、 第二电极层 (即阴极层或阳极层) 、 以及设置在第一电极 层和第二电极层之间的发光层; 第一电极层的出光面侧设置有平 坦保护层和 TFT (薄膜晶体管) 。 其中, 光从第一电极层面向平 坦化层的一侧出射的为底发射型(Bottom emission)有机电致发光 器件, 所述第一电极层应是透明的 (如 ITO, 即铟锡氧化物) 电 极层, 而所述第二电极层一般为不透明的电极层。 从底发射型有 机电致发光器件的结构来看, 由于受到 TFT的遮挡, 其一般具有 较小的开口率, 而为使其达到具备使用价值的发光亮度, 虽然可 以通过提高电压等方式来提高底发射型有机电致发光器件的亮 度, 但是这往往对器件和材料的寿命造成负面影响。 因此对于底 发射型有机电致发光器件的制备、 其材料的寿命和出光效率等性 能指标的要求就会更高。
此外, 有机电致发光器件在发光过程中还存在能量损耗, 主 要体现在以下两个方面:
第一方面, 注入载流子在发光层中耦合发光时, 并不是所有 的注入能量都转变为光子, 一部分激子能量经过晶格振动、 深能 级杂质跃迁等非辐射跃迁过程被损耗掉, 可以用内量子效率描述 这个过程;
第二方面, 发生在有机电致发光器件的阳极层与基底、 基底 与空气等界面全反射, 发生在有机电致发光器件的阳极层与发光 层界面的波导模式, 以及金属电极附近的表面等离子损失等, 导 致从发光层发出的光在经历上述多层结构之后, 仅有大约 20%能 透出有机电致发光器件进入到空气中, 而大约 80%都被损耗掉了, 可以用外量子效率来描述这个过程, 体现的是光从有机电致发光 器件中被提取出来的效率, 即光提取效率或出光效率。
其中, 通过材料的性能改善, 目前内量子效率接近 100%的有 机电致发光器件理论上可以实现, 但是材料种类非常有限; 通过 在透明电极层上制造表面微结构来减少波导模式损失, 通过将光 子晶体或微透镜阵列贴敷到玻璃基底上减少全内反射, 制造褶皱 的阴极以降低其表面等离子损失以及利用光学微腔结构等, 这些 技术虽然可以大幅度增加有机电致发光器件的出光效率, 但是光 子晶体以及在阴极上形成周期性或准周期性微结构图形等方法往 往采用纳米影印技术, 制备工艺和难度较大, 而微腔效应容易造 成发光颜色的偏离和可视角度变窄等缺点。 发明内容
本发明的目的是针对现有的有机电致发光器件存在的上述不 足, 提供一种可以提高有机电致发光器件出光效率的阵列基板及 其制备方法、 显示装置。
为了实现上述目的, 本发明提供了一种阵列基板, 包括有机 电致发光器件和设置于其下方的平坦保护层, 所述有机电致发光 器件包括: 第一电极层、 第二电极层、 以及设置在第一电极层和 第二电极层之间的发光层, 所述第一电极层为透明电极层, 其设 置在所述平坦化层上, 并且所述平坦化层掺杂有金属微纳米颗粒。
本发明的阵列基板的平坦化层中掺杂有金属微纳米颗粒, 故 其增强有机电致发光器件的出光效率, 进而提高阵列基板的出光 效率。
优选的是, 所述金属微纳米颗粒材料为金、 银、 铝中任意一 种, 或金、 银、 铝中任意组合。
优选的是, 所述金属微纳米颗粒的形态为球状、 棱柱状、 立 方体状、 笼状、 核-壳结构中任意一种。
优选的是, 所述金属微纳米颗粒的粒径在 lnm-100nm之间。 优选的是, 所述金属微纳米颗粒具有多种规格的粒径尺寸。 优选的是, 所述金属微纳米颗粒在平坦化层中的质量浓度大 于等于 1%小于等于 5%。
优选的是, 所述第一电极层的材料为氧化铟锡、 氧化锌、 氧 化铟镓锌中任意一种, 和 /或, 所述第二电极层的材料为银、 铜、 铝中的任意一种。
进一步优选的是, 上述阵列基板还包括薄膜晶体管, 所述平 坦化层覆盖在薄膜晶体管上, 所述薄膜晶体管的漏极通过贯穿其 上方平坦化层的接触过孔与有机电致发光器件的第一电极层连 接。
优选的是, 所述第二电极层为反射层。
解决本发明技术问题所采用的技术方案是一种显示装置, 其 包括上述阵列基板。
由于本发明的显示装置包括上述阵列基板, 故其出光效率明 显提高。
解决本发明技术问题所采用的技术方案是一种阵列基板的制 备方法, 包括如下步骤:
S1 : 在基底上通过构图工艺形成薄膜晶体管;
S2: 在形成有薄膜晶体管的基底上形成掺杂有金属微纳米颗 粒的平坦化层; 以及
S3: 在平坦化层上方, 通过构图工艺形成有机电致发光器件 的第一电极层, 其中所述第一电极层为透明电极层。
本发明阵列基板制备方法中将平坦化层中掺杂金属微纳米颗 粒, 使得设于平坦化层上方的有机电致发光器件的出光效率大大 提高, 进而提高阵列基板的出光效率。
优选的是,所述形成掺杂有金属微纳米颗粒的平坦化层包括:
S21: 在形成有薄膜晶体管的基底上形成第一平坦化层;
S22: 在第一平坦化层上形成非连续的金属微纳米颗粒层; S23: 在金属微纳米颗粒层上形成第二平坦化层, 从而得到掺 杂有金属微纳米颗粒的平坦化层。 附图说明
图 1为本发明的实施例 1的金属微纳米颗粒的表面等离子体 共振的示意图;
图 2为本发明的实施例 1的金属微纳米颗粒对光散射和吸收 的示意图;
图 3为本发明的实施例 1的阵列基板的结构图;
图 4为发明的实施例 1的掺杂有金属微纳米颗粒的阵列基板 中有机电致发光器件的出光效率与现有的阵列基板中的有机电致 发光器件的出光效率的对比图;
图 5为本发明的实施例 3中最终形成的阵列基板的结构图。 其中附图标记为: 101、 基底; 102、 薄膜晶体管; 103、 平坦 化层; 1031、 第一平坦化层; 1032、 第二平坦化层; 104、 第一电 极层; 105、 像素界定层; 106、 发光层; 107、 第二电极层; q、 金属微纳米颗粒; Sl、 现有的阵列基板中有机电致发光器件的出 光效率曲线; S2、 本发明提供的阵列基板中有机电致发光器件的 出光效率曲线。 具体实施方式
为使本领域技术人员更好地理解本发明的技术方案, 下面结 合附图和具体实施方式对本发明作进一步详细描述。 实施例 1 :
如图 3所示, 本实施例提供一种阵列基板, 其包括有机电致 发光器件和设置于其下方的平坦保护层 103 ,所述有机电致发光器 件包括: 第一电极层 104、 第二电极层 107, 以及设置在第一电极 层 104和第二电极层 107之间的发光层 106, 其中, 第一电极层 104为透明电极层, 其设置在平坦化层 103上, 平坦化层 103掺杂 有金属微纳米颗粒 q。
本实施例提供的阵列基板的有机电致发光器件中位于透明电 极层(即第一电极层 104 )下方的平坦化层 103中掺杂有金属微纳 米颗粒 q,利用金属微纳米颗粒 q的表面等离子体共振效应能增强 有机电致发光器件的出光效率, 因而能增强阵列基板的出光效率。
需要说明的是, 表面等离子体(surface plasmons; SPs )是指 在金属表面存在的自由振动的电子与光子相互作用产生的沿着金 属表面传播的电子疏密波, 电子疏密波是一种电磁表面波, 可以 将光波横向限制在亚波长的尺度范围内, 并且在接近其谐振频率 附近, 其色散曲线平坦、 光子态密度大, 与有源介质相互作用时 可以增强表面等离子体自发辐射。 表面等离子体在金属薄膜的表 面处场强最大, 在垂直于界面方向是指数衰减场, 其能够被电子 激发, 也能被光波激发。 如果金属薄膜的表面非常粗糙或在金属 的曲面结构 (如球体、 柱体等) 附近, 其表面的等离子体不能以 波的形式沿界面传播, 而是被局域在这些结构的表面附近, 即表 面等离子体的局域化。 当尺寸接近或小于光波长的金属微纳米颗 粒 q被光照射后, 其振荡电场使金属微纳米颗粒 q的电子云相对 于核心发生位移, 由于电子云和核心间库伦引力的作用产生恢复 力, 引起电子云在核心周围的振荡, 这种电子云的集体振荡被称 为表面等离子体共振, 如图 1所示。
发生表面等离子体共振时, 金属微纳米颗粒 q周围的电磁场 被大大增强。 此时可以将金属微纳米颗粒 q认为是一个纳米透镜, 而振荡等离子体是一个光子, 其被强烈限制于一个纳米尺寸的颗 粒之内。 表面等离子体共振带来的一个非常重要的效果就是金属 微纳米颗粒 q的对光的散射和吸收截面都被大大增强了, 如图 2 所示。
其中, 振荡的频率主要由金属微纳米颗粒 q的电子密度(由 金属种类决定) 、 有效电子质量、 颗粒的尺寸、 形状、 周围介质 等因素决定。
表面等离子共振的频率 Q)sp可以根据下述公式得到: ―
( 1)
式 (1 ) 中, ωρ是表面等离子体的频率, sm是周围介质的介 电常数。
有机发光器件的外量子效 (T!ext)可以按照下式得到:
Figure imgf000007_0001
式 (2) 中, C'ext是光提取效率 (即出光效率) , Tlint是内量 子效率。 内量子效率(Tlint)由辐射失活速率(Krad)和非辐射失活 速率(κηη)的比值决定。 通常在室温情况下有机电致发光器件的 辐射失活速率 (Krad)要比非辐射失活速率 (κηη)快, 导致形成 中等的内量子效率 (T!int) 。 而利用表面等离子体可以分别提高有 机电致发光器件的内量子效率 (T!int)和出光效率 (C'ext) 。 其中, 利用表面等离子体提高有机电致发光器件的内量子效率 (T!int)是 基于激子自发辐射失活速率 (Krad) 和态密度有关的原理, 当发 光中心处在波长量级的微腔中时, 光子的态密度增大, 引起激子 自发辐射失活速率(Krad)增大, 从而提高了辐射失活的比例, 也 即内量子效率 (ηίηί)得到提高; 利用表面等离子体提高有机电致 发光器件出光效率( C'ext )是基于大于全内反射角而不能辐射出去 的光可激发表面等离子体, 使其再以光的方式辐射出去, 从而提 高有机电致发光器件的外量子效率(Tlext)的原理。 由此可以看出, 合理利用金属微纳米颗粒 q的表面等离子体共振效应可以有效地 提高有机电致发光器件的外量子效率 (T!ext) 。 综上所述, 本实施例提供的阵列基板的有机电致发光器件的 透明电极层 (即第一电极层 104 )设于掺杂有金属微纳米颗粒 q 的平坦化层 103上方, 使得阵列基板中的有机电致发光器件的出 光效率大大提高, 从而提高阵列基板的出光效率。
优选地, 金属微纳米颗粒 q的材料可以为金、 银、 铝中的任 意一种金属, 或者可以为金、 银、 铝中任意多种金属的合金。 当 然也可以采用其他金属的复合结构。 金属微纳米颗粒 q的形状可 以为球状、 棱柱状、 方体状、 笼状、 核-壳结构中的任意一种, 其 粒径在 lnm-100nm之间。 优选地, 平坦化层 103中掺杂的金属微 纳米颗粒 q具有多种不同规格的粒径尺寸, 即掺杂的金属微纳米 颗粒 q的粒径尺寸不相同, 这样发生共振的金属微纳米颗粒 q的 表面等离子体的能量可以与不同波长相对应, 从而更有效地提高 有机电致发光器件的出光效率。
优选地, 金属微纳米颗粒 q与平坦化层 103的质量浓度比控 制在大于等于 1%且小于等于 5%的范围内, 以保证平坦化层 103 的电学性能不会受到太大影响。 平坦化层 103 中掺杂的金属微纳 米颗粒 q可以是均匀的掺杂也可以是非均匀的掺杂;平坦化层 103 中可以掺杂同一形状的金属微纳米颗粒 q,例如掺杂球状、棱柱状、 方体状、 笼状或核 -壳结构的金属微纳米颗粒 q, 也可以掺杂不同 形状的金属微纳米颗粒 q, 例如掺杂球状、 棱柱状、 方体状、 笼状 和核-壳结构中的任意两种或多种形状的金属微纳米颗粒4。
其中, 可以设置第一电极层 104为阳极层, 第二电极层 107 为阴极层, 或者, 设置第一电极层 104为阴极层, 第二电极层 107 为阳极层, 只要保证掺杂有金属微纳米颗粒 q的平坦化层 103透 光即可。 优选地, 若第一电极层 104为阳极层, 其材料可以为氧 化铟锡、 氧化锌、 氧化铟镓锌中的任意一种, 此时, 第二电极层 107为反射层, 也就是阴极层, 其材料可以选用银、铜或铝等金属 材料, 此时, 照射在第二电极层 107上的光可被其反射至第一电 极层 104, 并透过第一电极层 104射出; 若第一电极层 104为阴极 层, 其材料也可以选用银、 铜或铝等金属材料, 并且该层的厚度 应设置得很薄, 以保证光可以透过第一电极层 104, 此时在第二电 极层 107 (也就是阳极层)的出光面侧设置有反射层, 该反射层可 以由例如, 铝、 银等反射性材料制成, 此时, 照射在第二电极层 107 上的光可以被其出光面侧设置的反射层反射至第一电极层 104, 并透过第一电极层 104射出。
当然, 阵列基板上还可包括薄膜晶体管 102, 所述平坦化层 103覆盖在薄膜晶体管上。优选地, 薄膜晶体管 102的漏极通过贯 穿其上方平坦化层 103 的接触过孔与有机电致发光器件的第一电 极层 104连接。 此时通过薄膜晶体管 102驱动有机电致发光器件 发光, 使得有机电致发光器件的光穿过透明的基底 101发射出来 (也就是底发射型有机电致发光器件) 。
图 4为掺杂有金属微纳米颗粒 q的阵列基板中有机电致发光 器件的出光效率与现有的阵列基板中的有机电致发光器件的出光 效率的对比图, 如图 4所示, X轴方向为波长, Y方向为发光强 度, S1为包括现有的平坦化层的阵列基板中的有机电致发光器件 的出光效率曲线, S2为包括掺杂有金属微纳米颗粒 q的平坦化层 103的阵列基板中的有机电致发光器件的出光效率曲线,很容易看 出, 与现有技术相比, 包括掺杂有金属微纳米颗粒 q的平坦化层 103的阵列基板中的有机电致发光器件的出光效率明显较高。 实施例 2:
本实施例提供一种显示装置, 其包括实施例 1所述的阵列基 板, 该显示装置可以为: 手机、 平板电脑、 电视机、 显示器、 笔 记本电脑、 数码相框、 导航仪等任何具有显示功能的产品或部件。
本实施例提供的显示装置中具有实施例 1 中的阵列基板, 故 其具有更好的出光效率, 视觉效果更好。
当然, 本实施例的显示装置中还可以包括其他常规结构, 如 电源单元、 显示驱动单元等, 由于这些结构均为现有技术, 故此 在此不予赘述。 实施例 3:
本实施例提供一种阵列基板的制备方法, 其包括下述步骤: 步骤一、 在基底 101 上通过构图工艺形成薄膜晶体管 102。 其中, 薄膜晶体管 102可以为顶栅型也可以为底栅型。
当然, 同时还可形成栅极线、 数据线等信号线。 此外, 薄膜 晶体管可由现有的 2T1C电路驱动。
步骤二、 在形成有薄膜晶体管 102的基底 101上形成掺杂有 金属微纳米颗粒 q的平坦化层 103 ,以使得平坦化层 103覆盖在薄 膜晶体管 102上并延伸至基底 101上。
其中, 如前所述, 金属微纳米颗粒 q的材料可以为金、 银、 铝中的任意一种金属, 或者可以为金、 银、 铝中任意多种金属的 合金。 当然也可以采用其他金属的复合结构。 以下, 将以金属微 纳米颗粒 q的材料为金作为示例来对形成掺杂有金属 ( Au )微纳 米颗粒 q的平坦化层 103的具体方法进行说明。结合图 5,该方法 包括:
S101:在形成有薄膜晶体管 102的基底 101上沉积第一平坦化 层 1031;
S102:在第一平坦化层 1031 的表面上采用溅射的方式镀一层 2nm厚的金层, 然后将其置于真空度小于 lxlO_3Pa的真空环境下, 以 300 °C的温度退火半小时后, 冷却至室温,形成非连续的金属微 纳米颗粒 q层; 以及
S103:以电子束蒸发或气相沉积方式在金属微纳米颗粒 q层上 沉积第二平坦化层 1032, 以覆盖金属微纳米颗粒 q层, 从而得到 内部嵌有金属 ( Au )微纳米颗粒 q的平坦化层 103 (由第一平坦 化层 1031、第二平坦化层 1032、金属微纳米颗粒 q层共同组成)。
其中, 上述的制作过程中采用的溅射法也可以替换为其他的 干法成膜工艺, 诸如: 真空蒸镀、 化学气相沉积法等。
可选择地, 还可采用溅射的方法形成掺杂有金属 (Au )微纳 米颗粒 q的平坦层。 该方法包括: 采用多靶磁控溅射技术制备金 属微纳米颗粒 q分散氧化物金( Au ) -二氧化硅( Si02 )复合薄膜。 具体地, 在双靶的磁控溅射腔体内, 一个靶材放置高纯的二 氧化硅, 另一个靶材放置高纯的金。 溅射气体为高纯氩(纯度为
99.995% ) 。 溅射前设置腔体的真空度小于 5xl(T5Pa, 溅射压力为 1.6x10 溅射时设置氩气和氧气的流量分别为 8.3xl0_8m3/s和 5.8x10"8m3/s, 二氧化硅和金的射频功率分别为 200W和 50W。 通 过开启溅射靶前的可调节的遮挡板, 来选择沉积到基底 101 上的 材料的比例, 从而得到不同掺杂比例的金(即金属微纳米颗粒) - 二氧化硅复合薄膜, 最终得到均勾掺杂有金属微纳米颗粒 q的平 坦化层 103。
此外, 如前所述, 金属微纳米颗粒 q的形状可以为球状、 棱 柱状、 方体状、 笼状、 核-壳结构中的任意一种。 以下将以核 -壳结 构为例, 对形成掺杂有金属微纳米颗粒 q的平坦化层 103的具体 方法进行说明。
首先, 以核-壳结构的 Ag@Si02 (即, 以银(Ag ) 为核, 以 二氧化硅 (Si02 ) 为壳层) 为例, 对形成掺杂有核-壳结构的 Ag@Si02颗粒的平坦化层 103的具体方法进行说明。该方法包括:
S201:制备核-壳结构的 Ag@Si02的胶体水溶液, 具体步骤包 括:
首先将水合肼和硝酸银都配成稀溶液; 称取 72.89mg 十六烷 基三曱基溴化铵(CTAB ) , 将其溶于 200mL去离子水中, 同时 加入 2.5mL浓度为 0.1M的水合肼,利用磁力搅拌器在室温下搅拌, 大约 2分钟后逐滴加入 5mL浓度为 0.05M的硝酸银, 溶液颜色从 无色透明逐渐变为红棕色, 持续反应 7-10分钟得到纳米银胶体; 随后加入 50mL无水乙醇和 2mL质量浓度为 25 %的氨水, 大约 1 分钟后逐滴加入 0.25mLTEOS, 继续搅拌 2 小时, 得到单分散的 核-壳结构的纳米 Ag@Si02的胶体水溶液。
S202:采取溶胶 -凝胶法制备掺杂有核-壳结构的 Au@Si02颗 粒 (即金属微纳米颗粒 q ) 的平坦化层 103, 具体步骤包括:
将上述制备的 Ag@Si02胶体水溶液分散在正硅酸乙酯、无水 乙醇、 稀盐酸组成的混合溶液中, 在室温下形成二氧化硅溶胶。 随后采取旋涂的方法, 制备平坦化层 103 , 干燥后即得到嵌有 Au@Si02颗粒的二氧化硅薄膜, 也就是掺杂有核-壳结构的 Au@Si02颗粒 (即金属微纳米颗粒 q ) 的平坦化层 103。
另夕卜, 还以核-壳结构的 11@聚苯乙烯为例,对形成掺杂有核 -壳结构的 Au@聚苯乙烯颗粒的平坦化层 103 的具体方法进行说 明。 该方法具体包括:
S301:制备核-壳结构的 11@聚苯乙烯颗粒, 具体步骤如下: 取 l.Og纳米金粉、 l.Og 聚乙烯基吡咯烷酮加入 80mL水中, 而后利用超声波发生器连续超声分散 0.5h (超声波发生器的功率为 500W), 再加入 l.Og的乳化剂, 利用超声波发生器连续超声分散 0.5h 获得均勾分散体系; 之后, 将其转移至装有电动搅拌器、 蛇 形冷凝管、 N2管的四口烧瓶内。 将上述装置置于恒温水槽中, 维 持搅拌约 lOmin, 降温至 30°C以避免温度过高导致硫酸钾加入后 过早分解; 加入引发剂过硫酸钾(KPS ) , 维持搅拌 20min, 其间 通 N2排 02; 然后,将纯化后的苯乙烯单体置于滴液漏斗中逐滴加 入反应体系, 约 lOmin滴完; 然后, 升温至 70°C , 反应过程中搅 拌速率与通 N2速率保持恒定。 5h后结束反应并在搅拌状态下自然 降温至 40°C以下出料, 即得复合胶乳。 将一定量的复合胶乳用氯 化钠 (NaCl )破乳后, 再经过滤、 洗涤、 干燥, 可得到核-壳结构 的 Au@聚苯乙烯颗粒(即以金纳米颗粒为核, 聚苯乙烯为壳层的 金属微纳米颗粒) 。
S302:形成掺杂有核-壳结构的 Au@聚苯乙烯颗粒的平坦化层 103, 具体步骤包括:
将上述制成的核-壳结构的 Au@聚苯乙烯颗粒分散在有机溶 剂中, 然后与预备形成平坦层的光刻胶(比如聚酰亚胺溶液) 混 合, 采取诸如旋涂的工艺得到光刻胶薄膜, 干燥后即为掺杂有核- 壳结构的 Au@聚苯乙烯颗粒的平坦化层 103。
需要说明的是, 以上虽然仅以金属微纳米颗粒 q的材料为金 或银, 和 /或金属微纳米颗粒 q的形状为核-壳结构为例对形成掺 杂有金属微纳米颗粒 q的平坦化层 103的方法进行了说明, 但是, 在不脱离上述教导的情况下, 本领域技术人员还可以形成掺杂有 其他材料和 /或其他形状的金属微纳米颗粒 q的平坦化层 103,在 此不再逐一说明。
步骤三、 通过构图工艺在由上述方法制作好的掺杂有金属微 纳米颗粒 q的平坦化层 103上方依次形成有机电致发光器件的第 一电极层 104、 像素界定层 105、 发光层 106、 第二电极层 107。 最终形成如图 5所示的阵列基板, 其中第一电极层 104为透明电 极层。 由于形成第一电极层 104、 像素界定层 105、 发光层 106或 第二电极层 107的方法均为现有技术, 故此在此不予赘述。
采用上述方法制备的阵列基板的平坦化层 103 中掺杂金属微 纳米颗粒 q, 其可有效的提高有机电致发光器件的出光效率,从而 提高阵列基板的出光效率。 可以理解的是, 以上实施方式仅仅是为了说明本发明的原理 而采用的示例性实施方式, 然而本发明并不局限于此。 对于本领 域内的普通技术人员而言, 在不脱离本发明的精神和实质的情况 下, 可以做出各种变型和改进, 这些变型和改进也视为本发明的 保护范围。

Claims

权 利 要 求 书
1. 一种阵列基板, 包括有机电致发光器件和设置于其下方的 平坦保护层, 所述有机电致发光器件包括: 第一电极层、 第二电 极层、 以及设置在第一电极层和第二电极层之间的发光层, 其特 征在于, 所述第一电极层为透明电极层, 其设置在所述平坦化层 上, 并且所述平坦化层掺杂有金属微纳米颗粒。
2. 根据权利要求 1所述的阵列基板, 其特征在于, 所述金属 微纳米颗粒的材料为金、 银、 铝中的任意一种, 或金、 银、 铝的 任意组合。
3. 根据权利要求 1所述的阵列基板, 其特征在于, 所述金属 微纳米颗粒的形状为球状、 棱柱状、 立方体状、 笼状、 核-壳结构 中的任意一种。
4. 根据权利要求 1所述的阵列基板, 其特征在于, 所述金属 微纳米颗粒的粒径在 lnm- 1 OOnm之间。
5. 根据权利要求 1所述的阵列基板, 其特征在于, 所述金属 微纳米颗粒具有多种规格的粒径尺寸。
6. 根据权利要求 1所述的阵列基板, 其特征在于, 所述金属 微纳米颗粒在平坦化层中的质量浓度大于等于 1%且小于等于 5%。
7. 根据权利要求 1所述的阵列基板, 其特征在于, 所述第一 电极层的材料为氧化铟锡、 氧化锌、 氧化铟镓锌中的任意一种, 和 /或, 所述第二电极层的材料为银、 铜、 铝中的任意一种。
8. 根据权利要求 7所述的阵列基板, 其特征在于, 还包括薄 膜晶体管, 所述平坦化层覆盖在薄膜晶体管上,
所述薄膜晶体管的漏极通过贯穿其上方平坦化层的接触过孔 与有机电致发光器件的第一电极层连接。
9. 一种显示装置, 其特征在于, 包括权利要求 1~8中任意一 项所述的阵列基板。
10. 一种阵列基板的制备方法, 其特征在于, 包括如下步骤: S1 : 在基底上通过构图工艺形成薄膜晶体管;
S2: 在形成有薄膜晶体管的基底上形成掺杂有金属微纳米颗 粒的平坦化层; 以及
S3: 在平坦化层上方, 通过构图工艺形成有机电致发光器件 的第一电极层, 其中所述第一电极层为透明电极层。
11. 根据权利要求 10所述的阵列基板的制备方法, 其特征在 于, 所述步骤 S2包括:
S21: 在形成有薄膜晶体管的基底上形成第一平坦化层; S22: 在第一平坦化层上形成非连续的金属微纳米颗粒层; S23: 在金属微纳米颗粒层上形成第二平坦化层, 从而得到掺 杂有金属微纳米颗粒的平坦化层。
PCT/CN2013/089498 2013-08-13 2013-12-16 一种阵列基板及其制备方法、显示装置 WO2015021714A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/362,117 US9847382B2 (en) 2013-08-13 2013-12-16 Array substrate, manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310351782.9 2013-08-13
CN201310351782.9A CN103441138B (zh) 2013-08-13 2013-08-13 一种阵列基板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2015021714A1 true WO2015021714A1 (zh) 2015-02-19

Family

ID=49694824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089498 WO2015021714A1 (zh) 2013-08-13 2013-12-16 一种阵列基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US9847382B2 (zh)
CN (1) CN103441138B (zh)
WO (1) WO2015021714A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170207414A1 (en) * 2016-01-15 2017-07-20 Boe Technology Group Co., Ltd. Dielectric layer, display substrate comprising the dielectric layer, and method for manufacturing the display substrate

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441138B (zh) * 2013-08-13 2016-06-22 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN103943661A (zh) * 2014-04-15 2014-07-23 京东方科技集团股份有限公司 一种显示装置及其制作方法
CN103981491A (zh) 2014-04-30 2014-08-13 京东方科技集团股份有限公司 一种蒸镀装置
TWI549330B (zh) * 2014-06-04 2016-09-11 群創光電股份有限公司 有機發光二極體顯示器
GB201412455D0 (en) * 2014-07-14 2014-08-27 Cambridge Display Tech Ltd Lighting devices
US9666658B2 (en) * 2015-01-05 2017-05-30 Samsung Display Co., Ltd. Organic light emitting diode display and manufacturing method thereof
KR102377173B1 (ko) 2015-08-25 2022-03-22 엘지디스플레이 주식회사 유기발광다이오드 표시장치
CN105070847B (zh) * 2015-09-10 2017-10-17 京东方科技集团股份有限公司 一种复合层、其制备方法及oled器件
CN106784348A (zh) * 2016-12-15 2017-05-31 Tcl集团股份有限公司 含有贵金属纳米材料的qled及其制备方法
CN106898633B (zh) 2017-02-24 2019-09-10 深圳市华星光电技术有限公司 发光二极管显示器及其制作方法
CN107394062B (zh) * 2017-07-20 2019-02-05 京东方科技集团股份有限公司 一种有机发光二极管显示面板及其制作方法、显示装置
KR102605887B1 (ko) * 2018-05-08 2023-11-23 엘지디스플레이 주식회사 발광 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100042A (ja) * 2004-09-28 2006-04-13 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
CN1829399A (zh) * 2005-03-03 2006-09-06 统宝光电股份有限公司 阵列基板、其制造方法以及应用其的电子装置
JP2007335253A (ja) * 2006-06-15 2007-12-27 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
WO2011065358A1 (ja) * 2009-11-27 2011-06-03 国立大学法人大阪大学 有機電界発光素子、および有機電界発光素子の製造方法
CN102272973A (zh) * 2008-12-17 2011-12-07 3M创新有限公司 具有纳米颗粒涂层的光提取膜
CN103441138A (zh) * 2013-08-13 2013-12-11 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462324B (zh) * 2007-05-18 2014-11-21 Delta Electronics Inc 發光二極體裝置及其製造方法
US7777233B2 (en) * 2007-10-30 2010-08-17 Eastman Kodak Company Device containing non-blinking quantum dots
KR100934262B1 (ko) * 2008-03-18 2009-12-28 삼성모바일디스플레이주식회사 유기전계발광표시장치 및 그의 제조방법
JP2010182449A (ja) * 2009-02-03 2010-08-19 Fujifilm Corp 有機el表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100042A (ja) * 2004-09-28 2006-04-13 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
CN1829399A (zh) * 2005-03-03 2006-09-06 统宝光电股份有限公司 阵列基板、其制造方法以及应用其的电子装置
JP2007335253A (ja) * 2006-06-15 2007-12-27 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
CN102272973A (zh) * 2008-12-17 2011-12-07 3M创新有限公司 具有纳米颗粒涂层的光提取膜
WO2011065358A1 (ja) * 2009-11-27 2011-06-03 国立大学法人大阪大学 有機電界発光素子、および有機電界発光素子の製造方法
CN103441138A (zh) * 2013-08-13 2013-12-11 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170207414A1 (en) * 2016-01-15 2017-07-20 Boe Technology Group Co., Ltd. Dielectric layer, display substrate comprising the dielectric layer, and method for manufacturing the display substrate

Also Published As

Publication number Publication date
US9847382B2 (en) 2017-12-19
US20150303242A1 (en) 2015-10-22
CN103441138B (zh) 2016-06-22
CN103441138A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
WO2015021714A1 (zh) 一种阵列基板及其制备方法、显示装置
WO2015196573A1 (zh) 有机电致发光器件、阵列基板及其制备方法、显示装置
JP6930016B2 (ja) エンハンスメント層を有するoledデバイス
JP4504640B2 (ja) 多孔質アルミナを含む発光デバイスとその製造方法
WO2015043054A1 (zh) 有机电致发光器件及其制备方法
CN105489633B (zh) 显示基板及其制备方法、oled显示面板及其制备方法
CN108615752A (zh) 显示面板及显示装置
TW200908780A (en) Electroluminescent device having improved light output
KR20120013770A (ko) 표면 플라즈몬 공명을 이용하여 발광 특성이 향상된 발광 소자 및 그 제조 방법
US9484553B2 (en) Organic light-emitting diode device and manufacturing method thereof
JP6089338B2 (ja) 有機el素子及びその製造方法
CN102569677A (zh) 一种介质层及一种有机电致发光器件的制作方法
CN103996767A (zh) 表面等离激元增强型硅纳米线电致发光器件及其制作方法
CN110943113A (zh) 一种阵列基板、oled显示面板及其制备方法
KR101623093B1 (ko) 확률론적 나노 구조물을 이용하여 양자 효율이 향상된 유기전계발광소자 및 이를 제조하는 방법
WO2021238770A1 (zh) 封装结构及封装方法、电致发光器件、显示设备
CN203466191U (zh) 一种阵列基板及显示装置
CN113451881B (zh) 栅状电极增强表面等离激元激光器及其制备方法
CN110164910B (zh) 颜色转换层及其制备方法、显示装置
JP2013522815A (ja) ガラス基材発光素子、その製造方法、並びにその発光方法
JPWO2002065817A1 (ja) 有機電界発光素子
WO2021227888A1 (zh) 量子点发光二极管及其制备方法、显示面板及显示装置
CN113410410B (zh) 一种提高硅基oled发光效率的器件及其制备方法
WO2022226683A1 (zh) 发光器件及其制造方法
WO2023226222A1 (zh) 发光器件及其制备方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14362117

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/06/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13891541

Country of ref document: EP

Kind code of ref document: A1