WO2015196573A1 - 有机电致发光器件、阵列基板及其制备方法、显示装置 - Google Patents

有机电致发光器件、阵列基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2015196573A1
WO2015196573A1 PCT/CN2014/086368 CN2014086368W WO2015196573A1 WO 2015196573 A1 WO2015196573 A1 WO 2015196573A1 CN 2014086368 W CN2014086368 W CN 2014086368W WO 2015196573 A1 WO2015196573 A1 WO 2015196573A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroluminescent device
organic electroluminescent
metal nanoparticles
hole injection
injection layer
Prior art date
Application number
PCT/CN2014/086368
Other languages
English (en)
French (fr)
Inventor
代青
侯文军
刘则
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/436,922 priority Critical patent/US9893318B2/en
Publication of WO2015196573A1 publication Critical patent/WO2015196573A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/125Active-matrix OLED [AMOLED] displays including organic TFTs [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present invention belongs to the field of display technologies, and in particular, to an organic electroluminescent device, an array substrate, a preparation method thereof, and a display device.
  • OLED Organic Light-Emitting Diode
  • LCD liquid crystal display
  • the basic structure of the organic electroluminescent device includes an anode, a cathode, and a light-emitting layer between the anode layer and the cathode layer.
  • the internal quantum efficiency mainly measures the proportion of the exciton generated by the injection of the carrier in the luminescent layer into the photon-coupled luminescence as a percentage of the total exciton. Increasing the internal quantum efficiency can be achieved by improving material properties or using phosphorescent materials, and theoretically achieves near-100% internal quantum efficiency luminescence.
  • the OLED in the SP mode more than 40% of the light is limited to the OLED in the SP mode, and the waveguide mode and the substrate mode are limited to 15% and 23%, respectively, and the loss due to metal absorption is 4%, resulting in only the light emitted from the luminescent layer. About 20% can see the OLED enter the air and be seen by the human eye.
  • microlenses and microcavity structures on the surface of the substrate to reduce the loss of the waveguide mode, or adding a grating or a photonic crystal on the substrate to reduce total reflection to improve the loss of the substrate mode, or using a Bragg diffraction technique or the like.
  • the microlens can usually only solve the improvement of the light extraction efficiency in the field of illumination, but it is still difficult to realize the display field of the pixel level with finer size; the use of the microcavity structure usually causes the deviation of the color of the OLED and the narrowing of the viewing angle.
  • Photonic crystals require complex lithography processes, which are difficult to implement and difficult to implement.
  • Bragg diffraction techniques usually require high-precision thickness through multiple layers.
  • the low refractive index materials are alternately stacked to adjust the light, and the optimum Bragg diffraction layer thickness is different for different luminescent colors (such as red R, green G, and blue B), so it is necessary to pass multiple steps of deposition and masking.
  • the exposure and etching process can achieve accurate RGB thickness adjustment, which is very difficult for the full-color OLED display device preparation technology, low yield and high cost.
  • the present invention provides an organic electroluminescent device, an array substrate, a preparation method thereof, and a display device.
  • the electroluminescent device has a high external quantum efficiency and thus has a high light extraction efficiency.
  • the technical solution adopted to solve the technical problem of the present invention is an organic electroluminescence device comprising an anode, a cathode, a light-emitting layer disposed between the anode and the cathode, and an anode disposed at the anode and the light a hole injection layer between the layers, wherein the hole injection layer is provided with metal nanoparticles whose local surface plasmon resonance frequency matches the emission wavelength of the light-emitting layer.
  • the metal nanoparticles have a particle size ranging from 1 nm to 100 nm.
  • the doping concentration of the metal nanoparticles in the hole injection layer ranges from 1% to 20%.
  • the metal nanoparticle forming material is any one of gold, silver, and aluminum, or an alloy of any one of gold, silver, and aluminum, or any combination of gold, silver, and aluminum.
  • the form of the metal nanoparticles is any one of a spherical shape, a prismatic shape, a cubic shape, a cage shape, and a core-shell structure, or any combination thereof.
  • the metal nanoparticles are prepared by a sputtering method, an evaporation method, a photolithography method, a hydrothermal method, a chemical synthesis method, or an electrochemical method.
  • the hole injecting layer is formed by inkjet printing using a mixed system of an ink for forming the hole injecting layer and the metal nanoparticles.
  • the hole injection layer includes a first sub-hole injection layer and a second sub-hole injection layer, the metal nanoparticles are disposed in the first sub-hole injection layer, the second sub- The hole injection layer is closer to the light-emitting layer than the first hole injection layer.
  • the technical solution adopted to solve the technical problem of the present invention is an array substrate, which is divided into a plurality of sub-pixel regions, wherein the sub-pixel region is provided with an organic electroluminescent device, wherein the organic electroluminescent device adopts the above-mentioned Electroluminescent device.
  • the array substrate comprises a red organic electroluminescent device, a green organic electroluminescent device, and a blue organic electroluminescent device, a red organic electroluminescent device, a green organic electroluminescent device, and a blue organic electroluminescent device.
  • the light emitting devices are respectively disposed in the adjacent three sub-pixel regions, wherein
  • the metal nanoparticles in the hole injection layer of the red organic electroluminescent device are silver ellipsoids having a long-to-short axis ratio of 9.5-10.5;
  • the metal nanoparticles in the hole injection layer of the green organic electroluminescent device are silver ellipsoids having a length to length axis ratio of 1.5 to 2.5;
  • the metal nanoparticles in the hole injection layer of the blue organic electroluminescence device are silver ellipsoids having a long-and short-axis ratio of 2.8 to 3.8.
  • a thin film transistor for driving the organic electroluminescent device is further disposed in the sub-pixel region, and a drain of the thin film transistor is connected to an anode of the organic electroluminescent device.
  • a technical solution adopted to solve the technical problem of the present invention is a display device including the above array substrate.
  • the technical solution adopted to solve the technical problem of the present invention is a method for fabricating an array substrate, the array substrate is divided into a plurality of sub-pixel regions, and an organic electroluminescent device is disposed in the sub-pixel region, and the preparation method includes forming a substrate An anode, a cathode, a light-emitting layer formed between the anode and the cathode, and a hole injection layer formed between the anode and the light-emitting layer, wherein Metal nanoparticles are formed in the hole injection layer, and the local surface plasmon resonance frequency of the metal nanoparticles matches the emission wavelength of the light-emitting layer.
  • the step of forming the hole injection layer comprises:
  • the hybrid system is sprayed in the sub-pixel region by inkjet printing, and then dried to form the hole injecting layer containing metal nanoparticles.
  • the sub-pixel region includes a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region, wherein
  • the mixed system of the metal nanoparticles comprising a localized surface plasmon resonance peak at a red wavelength is sprayed into the red sub-pixel region to form a red organic electroluminescent device;
  • a metal nanoparticle comprising a localized surface plasmon resonance at a green wavelength
  • the mixed system of particles is sprayed into the green sub-pixel region to form a green organic electroluminescent device
  • the hybrid system of the metal nanoparticles comprising a localized surface plasmon resonance peak at a blue wavelength is sprayed into the blue sub-pixel region to form a blue organic electroluminescent device.
  • the metal nanoparticles are prepared by a sputtering method, an evaporation method, a photolithography method, a hydrothermal method, a chemical synthesis method, or an electrochemical method.
  • the metal nanoparticles and the ink for forming the hole injection layer are uniformly mixed by ultrasonication or chemical modification to form a mixed system.
  • the metal nanoparticle is doped by doping the metal nanoparticle in the hole injection layer and matching the local surface plasmon resonance frequency of the metal nanoparticle with the emission wavelength of the light-emitting layer Localized plasmon resonance with the emitted photons in the luminescent layer to improve the external quantum efficiency of the organic electroluminescent device, thereby enhancing the light extraction efficiency of the organic electroluminescent device, thereby improving the light extraction efficiency of the array substrate, and further ensuring the display device
  • the hole injection layer is formed by inkjet printing, which is simple and practical, simplifies the preparation process and improves the preparation efficiency.
  • FIG. 1 is a schematic structural view of an organic electroluminescent device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view showing surface plasmon resonance of a metal nanoparticle according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of the organic electroluminescent device of FIG. 1 applied as a sub-pixel in an array substrate;
  • FIG. 4 is a schematic view showing an extinction spectrum of a silver nanoparticle solution according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of an array substrate according to Embodiment 3 of the present invention.
  • 1-anode 2-luminescent layer; 3-cathode; 4-hole injection layer; 5-electron injection layer; 6-metal nanoparticle; 7-hole transport layer;
  • the embodiment provides an organic electroluminescent device comprising an anode 1, a cathode 3, a light-emitting layer 2 disposed between the anode 1 and the cathode 3, and an anode 1 and A hole injection layer 4 (HIL) between the light-emitting layers 2 is provided with metal nanoparticles 6 in the hole injection layer 4, wherein the local surface plasmon resonance frequency of the metal nanoparticles 6 and the light-emitting layer The illuminating wavelengths of 2 match.
  • HIL hole injection layer 4
  • the material for forming the metal nanoparticles 6 is usually an inert noble metal, such as any one of gold, silver, and aluminum, or an alloy of gold, silver, or aluminum, or any combination of gold, silver, and aluminum;
  • the form of the particles 6 is any one of a spherical shape, a prismatic shape, a cubic shape, a cage shape, and a core-shell structure, or any combination thereof.
  • the metal nanoparticles 6 in the hole injection layer 4 have a particle size ranging from 1 nm to 100 nm, and the selection principle is: localized surface Plasmon (LSP) resonance frequency of the metal nanoparticles 6 It should be substantially consistent with the emission wavelength of the luminescent layer in the OLED to obtain a maximized LSP resonance enhancement effect.
  • LSP localized surface Plasmon
  • SP Surface Plasmon
  • An electron-dense wave that propagates along the metal surface by the free-vibrating electrons present on the metal surface and excited by electrons or light waves. It is an electromagnetic surface wave, which can laterally limit the light wave to the sub-wavelength scale range, and has a flat dispersion curve and a large photon state density near the near resonance frequency, and can enhance its spontaneous emission when interacting with the surrounding medium.
  • the electron dense wave has the largest field strength at the surface, An exponential decay field perpendicular to the interface direction.
  • the surface plasmons cannot propagate along the interface in the form of waves, but are locally localized near the surface of these structures, ie surface plasmons.
  • the localization of the surface plasma SP is called the local surface plasma LSP.
  • a metal particle whose size is close to or smaller than the wavelength of light is illuminated, its oscillating electric field causes the electron cloud of the metal particle to be displaced relative to the nucleus, and the restoring force is generated by the Coulomb attraction between the electron cloud and the nucleus, causing the electron cloud to surround the nucleus.
  • the oscillation of this electron cloud is called localized surface plasmon resonance, as shown in Fig. 2 is a schematic diagram of surface plasmon resonance of metal nanoparticles.
  • the electromagnetic field around the metal particles is greatly enhanced.
  • the metal particles can be considered as a nanolens, while the oscillating plasma is a photon that is strongly confined within one nanometer sized particle.
  • a significant effect of localized surface plasmon resonance is that the surface plasmon generates fluorescence consistent with the wavelength of the fluorescent molecules under the fluorescence induction of the excited photons (such as the luminescent photons of the luminescent layer), while increasing the radiation of the system.
  • the decay rate reduces the fluorescence lifetime of the photons, increases the fluorescence quantum efficiency, and enhances the fluorescence emission.
  • the hole injection layer 4 is doped with metal nanoparticles 6, and the external quantum efficiency of the metal nano-particles 6 on the organic electroluminescent device is according to the local surface plasmon resonance principle described above.
  • the external quantum efficiency of the light-emitting device can be greatly improved, and it has been found that the light-emitting efficiency is also improved accordingly.
  • the external quantum efficiency ⁇ ext of the organic electroluminescent device can be obtained according to formula (1):
  • C' ext is the light extraction efficiency
  • h int is the internal quantum efficiency.
  • the internal quantum efficiency h int is determined by the ratio of the radiation deactivation rate k rad to the sum of the radiation deactivation rate k rad and the non-radiation deactivation rate k non .
  • the rate of radiation deactivation of organic electroluminescent devices k rad is greater than the rate of non-radiative deactivation k non , resulting in a moderate level of internal quantum efficiency h int .
  • the local quantum efficiencies and light extraction efficiencies of the OLED can be respectively improved by using the local surface plasmon LSP. According to the formula (1), the light extraction efficiency and the internal quantum efficiency are respectively improved, thereby improving the external quantum efficiency of the OLED.
  • the organic electroluminescent device shown in FIG. 1 excitons recombine in the light-emitting layer 2 and emit photons, and light passes through the hole injection layer 4 (or other organic layers such as the electron injection layer 5), and the anode 1 It is permeable from the bottom (the OLED shown in Fig. 1 is a bottom emission type OLED).
  • the incident light field acts on the metal nanoparticles 6, the electrons in the metal nanoparticles 6 will collectively oscillate with the incident light field, as shown in FIG.
  • the adjustment of the optical properties of the metal nanoparticles 6 mainly depends on the influence of the local surface plasmon, when a light field of a certain frequency acts on the surface plasmon resonance of the metal nanoparticles 6
  • Metal nano Particle 6 has the greatest effect on the regulation of optical properties.
  • the resonance frequency is mainly related to the electron density (metal type) of the metal nanoparticles, the effective electron mass, the particle size, the particle shape, the medium surrounding the particle (or the surrounding dielectric environment), etc., by adjusting the size and shape of the metal nanoparticles 6.
  • the surrounding medium and the order degree can conveniently adjust the surface plasmon resonance characteristics of the metal nanoparticles.
  • the electrostatic field is approximately satisfied, and dipole resonance is dominant, and the simulation can be calculated according to the Mie theory.
  • the high-order multipole effect dominates and the absorption peak shifts toward the long-wave direction. Since the wavelength of the interacting light is comparable to the particle size, as the particle size increases, the electric field causes non-uniform polarization of the particles and the plasma peak broadens.
  • Metal particles of different compositions have different frequencies and intensities of localized plasmon resonance.
  • Au-silver (Au-Ag) alloy nanoparticles As the molar percentage of gold increases, the surface plasmon resonance absorption peak of the particles is red-shifted (ie, the wavelength becomes longer, the frequency decreases), and the absorption peak and gold The molar percentage is linear. This dependence of the absorption wavelength on the composition of the alloy allows the absorption peak of the system to be adjusted to a specific wavelength to meet the needs of the optical application.
  • the shape of the metal nanoparticles has a greater influence on the surface plasmon absorption characteristics.
  • the surface plasmon absorption peak will split into two peaks: a longitudinal mode that oscillates axially along the nanorods and a transverse mode that is perpendicular to the axial oscillations.
  • the absorption peak of the transverse mode is around 520 nm, which is consistent with the surface plasmon absorption peak of the spherical particles, and the longitudinal mode is red-shifted as the aspect ratio of the nanorods increases.
  • the surface plasmon resonance peak varies greatly with the length-to-minor axis ratio of the ellipsoid (ie, the maximum axis to the minimum axis ratio), when the ellipsoid When the length-to-axis ratio is about 10, The formant is around 650 nm. When the length of the ellipsoid is close to 2, the resonance peak is around 520 nm. When the length of the ellipsoid is close to 3.33, the resonance peak is about 460-475 nm.
  • the surrounding medium includes the type of solvent, the polarity, the substrate or substrate material, and the like.
  • the surrounding medium mainly refers to a material of the hole injection layer HIL in which the metal nanoparticles are located.
  • the matching metal nanoparticles can always be found to generate localized surface plasmon resonance with the photons.
  • the concentration of the metal nanoparticles 6 doped in the hole injection layer 4 should not adversely affect the electrical properties of the OLED, and thus the metal nanoparticles 6 are in the hole injection layer 4.
  • the doping concentration in the film is generally required to be controlled below 20% wt.
  • the doping concentration of the metal nanoparticles 6 in the hole injection layer 4 ranges from 1% to 20% to ensure electrical charge in the hole injection layer 4. Performance is not affected too much.
  • the metal nanoparticles 6 doped in the hole injection layer 4 may be uniformly doped or non-uniformly doped, for example, embedded in a regular pattern.
  • the resonance effect enhances the light extraction efficiency of the organic electroluminescent device; on the other hand, the light extraction efficiency is further improved by the light scattering effect.
  • the metal nanoparticles 6 having suitable particle size and morphology characteristics can be prepared and used for the inks forming the hole injection layer 4 are sufficiently mixed together, and are uniformly deposited in a suitable ratio by inkjet printing to form a hole injecting layer 4.
  • the characteristics of the metal nanoparticles 6 and their distribution in the hole injection layer 4 determine the characteristics of their surface plasmon resonance.
  • the inkjet printing technology is used to print the mixed ink containing the metal nanoparticles 6 into the sub-pixel to be formed, and the local quantum plasmon resonance effect is used to enhance the external quantum efficiency of the OLED, thereby greatly simplifying the preparation process. Increased preparation efficiency.
  • the metal nanoparticles 6 are first prepared, and then the metal nanoparticles 6 are doped in the material forming the hole injection layer 4 to complete the holes according to the conventional method for preparing the OLED.
  • the preparation of the injection layer completes the preparation of the OLED.
  • the method for preparing the hole injection layer 4 containing the metal nanoparticles 6 is as follows:
  • the ink containing the metal nanoparticles 6 is disposed: the prepared metal nanoparticles 6 are pre-mixed with the ink for forming the hole injection layer 4 to obtain a hole injection layer mixing system, and the metal nanoparticles 6 are in the hole injection layer 4.
  • the doping concentration in the range is from 1% to 20%.
  • the extinction spectrum of the metal nanoparticles 6 should substantially overlap with the emission wavelength of the luminescent layer of the OLED of the corresponding color, so that LSP resonance occurs, and the effect of illuminating enhancement is relatively obvious.
  • a hole injection layer 4 is formed: a hole injection layer containing a metal nanoparticle 6 is mixed, and inkjet printing is applied to the formation region of the hole injection layer 4, and after drying, a film is formed to obtain a metal nanoparticle.
  • the doping ratio of the metal nanoparticles 6 is preferably such that the electrical performance of the organic electroluminescent device is not lowered, and the optical performance is maximized.
  • the device is then prepared in a general OLED preparation procedure to obtain the final OLED.
  • an OLED can be used as a sub-pixel in an array substrate.
  • the array substrate includes a substrate 10 and a thin film transistor 11 and a resin layer 12 formed over the substrate 10.
  • a pixel defining wall is further formed above the resin layer 12 (the first pixel defining wall is shown in FIG. 3).
  • 131 and the second pixel define a wall 132), the OLED being defined within a space defined by adjacent pixels defining a wall.
  • the metal nanoparticles 6 used generally need to be prepared in advance, and the preparation method of the metal nanoparticles 6 is: sputtering method, evaporation method, photolithography method, hydrothermal method, chemical synthesis method or electrochemical method, wherein A more efficient preparation method is electrochemical.
  • sputtering method evaporation method
  • photolithography method evaporation method
  • hydrothermal method evaporation method
  • chemical synthesis method evaporation method
  • electrochemical method evaporation method
  • a more efficient preparation method is electrochemical.
  • the following is a detailed description of the preparation of silver (Ag) nanoparticles and gold (Au) nanoparticles by electrochemical synthesis and chemical reduction:
  • a mixed solution of silver nitrate (AgNO 3 ), sodium citrate, potassium nitrate (KNO 3 ) mixed in a certain ratio (according to the particle size of the Ag nanoparticles to be formed) may be placed in the electrochemical solution.
  • AgNO 3 silver nitrate
  • KNO 3 potassium nitrate
  • the ITO conductor (the anode electrode commonly used in electrochemistry) is used as the working electrode, the platinum is the counter electrode, and the saturated calomel is used as the reference electrode.
  • the deposition is performed by the double potential step method to obtain Ag deposited on the surface of the ITO conductor. Nanoparticles;
  • the Ag nanoparticles were scraped off from the surface of the ITO conductor by an external force to obtain a dispersed Ag nanoparticle powder.
  • the method can control the morphology and size of the formed Ag nanoparticles by controlling the concentration of the electrolyte, the step potential and the deposition time, and the obtained Ag nanoparticles have a particle size ranging from 10 nm to 100 nm.
  • the Ag nanoparticles prepared by the chemical reduction method described above have a particle size distribution of about 76 nm as measured by a microscope.
  • Figure 4 shows the extinction spectrum of a solution of spherical Ag nanoparticles prepared according to the above method. It can be seen that it has a maximum plasmon resonance peak around 428 nm, but the waveform is wide and there is a certain tailing phenomenon at the long wave. This may be because the prepared spherical Ag nanoparticles are accompanied by a small amount of other Regularly shaped nanoparticles that affect surface plasmon resonance peaks.
  • the Au nanoparticle is prepared by a wet method, preferably citric acid using chloroauric acid Sodium reduction method.
  • the standard preparation process is as follows:
  • the particle size of the synthesized Au nanoparticles was adjusted by controlling the concentrations of trisodium citrate and chloroauric acid and the ratio of the two. For example, when the concentration of trisodium citrate is 0.776 mol/l (mol/L) and the chloroauric acid is 2.13 ⁇ 10 -3 mol/l, the two are mixed in a ratio of 1 ml and 20 ml (200 ml of pure water). The diameter of the Au nanoparticles is about 20 nm, and the peak of the absorption spectrum is about 518 nm.
  • the embodiment provides an OLED having a high external quantum efficiency, wherein the hole injecting layer is provided with metal nanoparticles, and the metal nanoparticles cooperate with the luminescent photons in the luminescent layer to generate a local area under the condition of satisfying resonance.
  • the surface plasmon resonance enhancement effect utilizes the interaction between localized surface plasmons formed on the surface of metal nanoparticles and luminescent molecules to adjust its luminescence characteristics, reduce the loss caused by SP mode, and enhance the external quantum efficiency of the device, thereby effectively improving
  • the light extraction efficiency of the OLED at the same time, the hole injection layer is formed by inkjet printing, compared with the grating or photonic crystal method adopted in the prior art to improve the light extraction efficiency, by providing metal nano in the hole injection layer.
  • the particle method is simple and fast, does not require complicated lithography process, and has no viewing angle problem such as color shift caused by grating; etc.; compared with the Bragg diffraction technology used in the prior art to improve light extraction efficiency, the preparation is simple, no Complex high- and low-refractive-index materials are required, and there is no corresponding thickness and thickness accuracy. The problem is solved, the preparation difficulty is small, the preparation process is simplified, and the preparation efficiency is improved.
  • the present embodiment provides an OLED.
  • the hole injection layer of the OLED in the embodiment is more than one sub-layer, for example, a hole injection.
  • the in-layer includes a first sub-hole injection layer and a second sub-hole injection layer.
  • the hole injection layer includes a first sub-hole injection layer and a second sub-hole injection layer, the metal nanoparticles are disposed in the first sub-hole injection layer, and the second sub-hole injection layer is opposite A hole injecting layer is closer to the light emitting layer.
  • the structure of the hole injection layer in the OLED is locally fine-tuned, mainly involving adjusting the distance between the metal nanoparticle and the exciton composite illuminating region, that is, inkjet printing can be first performed on a thin layer of embedded metal nanoparticles.
  • the first sub-hole injection layer is then printed on the first sub-hole injection layer with a second sub-hole injection layer without metal nanoparticles.
  • a light-emitting layer is then formed over the second sub-hole injection layer.
  • the embodiment can better achieve the matching of the wavelength and the maximum benefit of the illuminating enhancement, and the light-emitting efficiency is greatly increased.
  • the preparation of the hole injection layer of the OLED is still carried out by using a printing method.
  • the OLED is prepared by the method, and the preparation process is simple and rapid, and does not cause color shift and viewing angle problems of the OLED, and has strong use value.
  • an array substrate is provided, and the array substrate includes the OLED in Embodiment 1 or Embodiment 2.
  • the array substrate is divided into a plurality of sub-pixel regions, and an organic electroluminescent device is disposed in the sub-pixel region, and the array substrate includes a red organic electroluminescent device, a green organic electroluminescent device, and a blue organic electroluminescence device.
  • the device, the red organic electroluminescent device, the green organic electroluminescent device and the blue organic electroluminescent device are respectively disposed in adjacent three sub-pixel regions,
  • FIG. 5 shows a structure of an active array substrate of an active driving OLED including a thin film transistor 11 , comprising: a substrate 10 and a thin film transistor 11 above the substrate 10 and an anode 1 connected to the drain of the thin film transistor 11 Anode 1 and thin film transistor 11 There is a resin layer 12 between the insulating layer and the flattening layer, which functions as a pixel defining wall for limiting the sub-pixel emitting region (the double-layer structure in FIG.
  • the organic layers of the OLED are located above the anode 1 and between the walls defining the pixels, and the organic layer comprises a hole injection layer 6, a hole transport layer 7, a light-emitting layer 2, an electron injection layer 5 and a cathode 3.
  • the thin film transistor 11 on the array substrate may be of a top gate type or a bottom gate type.
  • the bottom emission type organic electroluminescent device that is, the organic electroluminescent device is driven by the thin film transistor 11, the excitons recombine in the luminescent layer 2 and excite the photon luminescence, and the light passes through the openings of the organic layer, the anode 1, and the sub-pixel. A portion or the like is emitted from the substrate 10.
  • one pixel includes three sub-pixels of red, green, and blue, which can realize full color display.
  • the metal nanoparticles 6 in the hole injection layer 4 of the OLED filled in different luminescent sub-pixels differ in material composition, particle size (particle size), morphology, and the like, and metal nanoparticles in the hole injection layer 4
  • the particle size range of the particle is from 1 nm to 100 nm.
  • the principle of selection is that the LSP resonance frequency of the metal nanoparticle 6 should be substantially the same as that of the OLED in the red, green and blue illuminating sub-pixel regions, that is, the LSP resonance is maximized. Enhancement.
  • the metal nanoparticles in the hole injection layer of the red organic electroluminescent device are silver ellipsoids having a length to short axis ratio of 9.5-10.5, and metal in the hole injection layer of the green organic electroluminescent device.
  • the nanoparticles are silver ellipsoids having a long-to-short axis ratio of 1.5 to 2.5, and the metal nanoparticles in the hole injection layer of the blue organic electroluminescent device are silver ellipsoids having a length-to-minor axis ratio of 2.8 to 3.8.
  • the metal nanoparticles in the hole injection layer of the red organic electroluminescent device are silver ellipsoids having a length to short axis ratio of 10 (the volume is equal to a sphere having a radius of nearly 30 nm), and the hole injection layer of the green organic electroluminescent device
  • the metal nanoparticles in the interior are a silver ellipsoid having a length to side axis ratio of about 2 (the volume is equal to a sphere having a radius of nearly 30 nm) or a gold sphere having a radius of nearly 10 nm, and a metal in the hole injection layer of the blue organic electroluminescent device.
  • the nanoparticles are silver ellipsoids with a length to short axis ratio of 3.3 (the volume is equal to a sphere with a radius of nearly 30 nm).
  • the energy of the surface plasmon of the metal nanoparticles 6 can be made to correspond to the different wavelengths of the light emitted by the luminescent layer 2, so that the metal nanoparticles 6 in each sub-pixel can be respectively located In the sub-pixel
  • the light molecules emitted by the light layer 2 generate a localized surface plasmon resonance phenomenon, thereby effectively enhancing the external quantum efficiency of the OLED and improving the light extraction efficiency of the OLED.
  • the hole injecting layer 4 of different color (red, green, blue) sub-pixel regions in the organic electroluminescent device is doped with metal nanoparticles 6 of different particle diameters, through the bureau of the metal nanoparticles
  • the surface plasmon resonance effect enhances the external quantum efficiency of the organic electroluminescent device, effectively improves the light extraction efficiency of the organic electroluminescent device, and further improves the light extraction efficiency of the array substrate.
  • a hole injection layer mixing system containing metal nanoparticles having different particle diameters is still printed by inkjet printing into a red, green, and blue sub-pixel region, and dried to obtain a content.
  • the embodiment further provides a method for fabricating an array substrate, the array substrate is divided into a plurality of sub-pixel regions, and an organic electroluminescent device is disposed in the sub-pixel region, and the preparation method includes forming an organic electroluminescent device.
  • the localized surface plasmon resonance frequency matches the emission wavelength of the luminescent layer.
  • the step of forming a hole injection layer comprises:
  • the mixed system is spray-formed in a sub-pixel region by inkjet printing, and after drying, a hole injecting layer containing metal nanoparticles is formed.
  • the sub-pixel region comprises a red sub-pixel region, a green sub-pixel region and a blue sub-pixel region, and a mixed system of metal nanoparticles including a local surface plasmon resonance peak at a red wavelength is sprayed to form a red in the red sub-pixel region.
  • An organic electroluminescent device comprising a localized surface plasmon resonance peak in a mixed system of metal nanoparticles at a green wavelength sprayed into a green sub-pixel region to form a green organic electroluminescent device comprising a localized surface plasmon resonance peak at a blue wavelength
  • a mixed system of metal nanoparticles is sprayed into the blue sub-pixel region to form a blue organic electroluminescent device.
  • the preparation method of the metal nanoparticles is: a sputtering method, an evaporation method, a photolithography method, a hydrothermal method, a chemical synthesis method or an electrochemical method.
  • the metal nanoparticles and the ink for forming the hole injection layer are uniformly mixed by ultrasonic or chemical modification to form a mixed system.
  • the specific array substrate preparation process is: firstly, a resin layer 12, an anode 1 of an organic electroluminescence device, and a pixel defining wall (including a first sub-pixel defining wall 131 and a second sub-pixel defining wall 132) are sequentially formed over the thin film transistor 11. );
  • a hole injection layer mixing system containing the metal nanoparticles 6 is disposed: the prepared metal nanoparticles 6 of different particle sizes (6-1, 6-2, and 6-3 in FIG. 5 represent different particle diameters) are respectively formed and formed.
  • the ink of the hole injection layer 4 is mixed to obtain a hole injection layer-mixing system.
  • the extinction spectrum of the metal nanoparticles 6 should substantially overlap with the emission wavelength of the luminescent layer of the corresponding color OLED, so that localized surface plasmon resonance phenomenon is easily generated, and the effect of light enhancement is relatively obvious.
  • a hole injection layer 4 is formed: hole injection layer inks containing metal nanoparticles 6 having different particle diameters are respectively applied to red, green, and blue sub-pixels by an inkjet printing apparatus (for example, the lance 20 in FIG. 5). In the region, after drying, a film is formed to obtain a hole injecting layer 4 containing metal nanoparticles 6.
  • the doping ratio of the metal nanoparticles 6 is preferably such that the electrical performance of the organic electroluminescent device is not lowered, and the optical performance is maximized.
  • the light-emitting layer 2, the electron injection layer 5, and the cathode 3 are formed to form an array substrate.
  • metal of different particle sizes is doped in the hole injection layer in different sub-pixel regions.
  • Nanoparticles such as 6-1, 6-2, and 6-3 shown in FIG. 5
  • inkjet printing is used to ink the hole injection layer containing metal nanoparticles in the corresponding sub-pixel region.
  • the film achieves the purpose of simultaneously enhancing the external quantum efficiency of the red, green and blue sub-pixels, thereby improving the light-emitting efficiency of the array substrate.
  • the hole injection layer is formed by inkjet printing, which is simple and practical, simplifies the preparation process and improves Preparation efficiency.
  • the method for enhancing the external quantum efficiency of the OLED is used to effectively improve the light extraction efficiency of the array substrate, and has the following advantages:
  • This embodiment provides a display device including the array substrate of Embodiment 3.
  • the display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device of the embodiment has the array substrate of the embodiment 3, and the array substrate used has a better display effect, so that the corresponding display device has a better display effect and the visual effect is better.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件、阵列基板及其制备方法和显示装置。该有机电致发光器件包括阳极(1)、阴极(3)、设置在阳极(1)和阴极(3)之间的发光层(2)、以及设置在阳极(1)与发光层(2)之间的空穴注入层(4),其中,空穴注入层(4)内设置有金属纳米颗粒(6),金属纳米颗粒(6)的局域表面等离子体共振频率与发光层(2)的发光波长相匹配。该有机电致发光器件在空穴注入层(4)中掺杂金属纳米颗粒(6),金属纳米颗粒(6)的局域表面等离子体共振频率与发光层(2)的发光波长相匹配,使得金属纳米颗粒(6)与光子产生局域等离子体共振,增强有机电致发光器件的出光效率,进而提高阵列基板的出光效率;同时,采用喷墨打印的方式形成空穴注入层,简单实用,简化了制备工艺,提高了制备效率。

Description

有机电致发光器件、阵列基板及其制备方法、显示装置 技术领域
本发明属于显示技术领域,具体涉及一种有机电致发光器件、阵列基板及其制备方法和显示装置。
背景技术
有机电致发光器件(Organic Light-Emitting Diode,简称OLED)被誉为新一代平面显示器件,与目前主流的液晶显示器(Liquid Crystal Display,简称LCD)相比,具有自发光、视角宽、对比度高、反应时间快、面板厚度薄(平板化)、柔性显示等优势。有机电致发光器件的基本结构包括:阳极、阴极、以及在阳极层和阴极层之间的发光层。在外加电压作用下,电子和空穴分别从阴极方向和阳极方向注入,然后迁移并在发光层中相遇复合产生激子,激子的能量以光的形式衰减,即辐射出光。
自1987年邓青云博士发表用真空蒸镀法制作多层薄膜式OLED的方法以来,OLED引起了学界及业界的广泛关注与研究。然而目前还有许多问题有待改善,其中,如何提升OLED的出光效率仍然是关键点之一。目前,为了提高出光效率通常采用两种方法:一种方法是提高内量子效率,另一种方法是提高外量子效率。其中,当光子入射到光敏器材的表面时,部分光子被吸收而激发光敏材料产生电子空穴对,形成电流,此时产生的电子与被吸收的光子数之比即内量子效率(internal quantum efficiency);而此时产生的电子与所有入射的光子数之比即外量子效率(external quantum efficiency)。
内量子效率主要衡量注入载流子在发光层中复合产生的激子转变为光子耦合发光的部分占总激子数的比例。提高内量子效率可以通过改善材料性能或使用磷光材料等方式实现,理论上可达到接近100%的内量子效率发光。
提高外量子效率即提高OLED的耦合出光效率,对于平面显示 器件来说,通常激子发光只有20%左右的光子能够被提取出来,绝大部分(80%)的能量以多种模式被损耗掉,例如:发生在OLED的阳极与基板、基板与空气等折射或反射界面处的基板模式、发生在OLED的阳极与发光层界面之间的波导模式、发生在金属电极附近的表面等离子体(Surface Plasmon,简称SP)模式。其中,超过40%的光因为SP模式局限在OLED中,波导模式及基板模式局限的光各占15%与23%,由于金属吸收造成的损耗为4%,导致从发光层发出的光仅有大约20%左右能透出OLED进入到空气中被人眼看到。
目前,出现了采用在基板表面增加微透镜、微腔结构来减少波导模式的损耗,或在基板上增加光栅或光子晶体减少全反射来改善基板模式的损耗,或是利用布拉格衍射技术等方法来提高出光效率。然而,微透镜通常只能解决照明领域的出光效率提高,而对于具有较精细尺寸的像素级别的显示领域仍难以实现;采用微腔结构通常会造成OLED出光颜色的偏离和可视角度变窄,而光子晶体需要复杂的光刻工艺,制备工艺难度较大、实现困难,同时还可能存在光栅等带来的色偏等视角问题;采用布拉格衍射技术,通常需要通过多层具有高精度厚度的高、低折射率的材料交替层叠的方式来调节出光,并且对不同的发光颜色(如红R、绿G、蓝B)其最佳的布拉格衍射层厚度不同,因此必须通过多步沉积、掩膜曝光、刻蚀的工艺才能实现RGB精确的厚度调节,这对全彩化的OLED显示器件制备技术而言难度很大,良率低,成本高。
由上可知,如何将占损耗比例最大的SP模式所损耗的光耦合出来是有效提升OLED器件的外量子效率的方法;而且,对于全彩化的OLED器件而言,如何以一种简单实用的方法同时提升红、绿、蓝子像素的出光效率也是目前OLED领域亟待解决的技术问题。
发明内容
针对现有的有机电致发光器件存在的上述不足,本发明提供了有机电致发光器件、阵列基板及其制备方法、显示装置,该有 机电致发光器件具有较高的外量子效率,从而具有较高的出光效率。
解决本发明技术问题所采用的技术方案是一种有机电致发光器件,其包括阳极、阴极、设置在所述阳极和所述阴极之间的发光层、以及设置在所述阳极与所述发光层之间的空穴注入层,其中,所述空穴注入层内设置有金属纳米颗粒,所述金属纳米颗粒的局域表面等离子体共振频率与所述发光层的发光波长相匹配。
优选的是,所述金属纳米颗粒的粒径范围为1nm-100nm。
优选的是,所述金属纳米颗粒在所述空穴注入层中的掺杂浓度范围为1%-20%。
优选的是,所述金属纳米颗粒的形成材料为金、银、铝中的任意一种,或金、银、铝中任意一种的合金,或金、银、铝中的任意组合。
优选的是,所述金属纳米颗粒的形态为球状、棱柱状、立方体状、笼状、核-壳结构中任意一种或其任意组合。
优选的是,所述金属纳米颗粒采用以下方法制备:溅射法、蒸镀法、光刻法、水热法、化学合成法或电化学法。
优选的是,采用用于形成所述空穴注入层的墨水与所述金属纳米颗粒的混合体系以喷墨打印的方式形成所述空穴注入层。
优选的是,所述空穴注入层包括第一子空穴注入层和第二子空穴注入层,所述金属纳米颗粒设置于所述第一子空穴注入层内,所述第二子空穴注入层相对所述第一空穴注入层更靠近所述发光层。
解决本发明技术问题所采用的技术方案是一种阵列基板,其划分为多个子像素区,所述子像素区内设置有机电致发光器件,其中,所述有机电致发光器件采用上述的有机电致发光器件。
优选的是,所述阵列基板包括红色有机电致发光器件、绿色有机电致发光器件和蓝色有机电致发光器件,红色有机电致发光器件、绿色有机电致发光器件和蓝色有机电致发光器件分别依次设置于相邻的三个所述子像素区内,其中
红色有机电致发光器件的所述空穴注入层内的所述金属纳米颗粒为长短轴比为9.5-10.5的银椭球体;
绿色有机电致发光器件的所述空穴注入层内的所述金属纳米颗粒为长短轴比为1.5-2.5的银椭球体;以及
蓝色有机电致发光器件的所述空穴注入层内的所述金属纳米颗粒为长短轴比为2.8-3.8的银椭球体。
优选的是,所述子像素区内还设置有用于驱动所述有机电致发光器件的薄膜晶体管,所述薄膜晶体管的漏极与有机电致发光器件的阳极相连接。
解决本发明技术问题所采用的技术方案是一种显示装置,其包括上述的阵列基板。
解决本发明技术问题所采用的技术方案是一种阵列基板的制备方法,所述阵列基板划分为多个子像素区,所述子像素区内设置有机电致发光器件,所述制备方法包括形成所述有机电致发光器件的阳极、阴极、形成在所述阳极和所述阴极之间的发光层、以及形成在所述阳极与所述发光层之间的空穴注入层的步骤,其中,所述空穴注入层内形成有金属纳米颗粒,所述金属纳米颗粒的局域表面等离子体共振频率与所述发光层的发光波长相匹配。
优选的是,形成所述空穴注入层的步骤包括:
制备不同粒径或形貌或组成的金属纳米颗粒;
将所述金属纳米颗粒与用于形成空穴注入层的墨水混合均匀形成混合体系;
采用喷墨打印的方式将所述混合体系喷涂在所述子像素区内,然后进行干燥以形成包含有金属纳米颗粒的所述空穴注入层。
优选的是,所述子像素区包括红色子像素区、绿色子像素区和蓝色子像素区,其中,
包含局域表面等离子共振峰在红色波长处的所述金属纳米颗粒的所述混合体系被喷涂到所述红色子像素区内形成红色有机电致发光器件;
包含局域表面等离子共振峰在绿色波长处的所述金属纳米颗 粒的所述混合体系被喷涂到所述绿色子像素区内形成绿色有机电致发光器件;以及
包含局域表面等离子共振峰在蓝色波长处的所述金属纳米颗粒的所述混合体系被喷涂到所述蓝色子像素区内形成蓝色有机电致发光器件。
优选的是,所述金属纳米颗粒以下列方法制备:溅射法、蒸镀法、光刻法、水热法、化学合成法或电化学法。
优选的是,所述金属纳米颗粒与用于形成空穴注入层的墨水通过超声法或化学修饰法混合均匀以形成混合体系。
本发明的有机电致发光器件中,通过在空穴注入层中掺杂金属纳米颗粒,并使得金属纳米颗粒的局域表面等离子体共振频率与发光层的发光波长相匹配,从而使得金属纳米颗粒与发光层中的发出的光子产生局域等离子体共振,以提高有机电致发光器件的外量子效率,从而增强有机电致发光器件的出光效率,进而提高阵列基板的出光效率,进一步保证显示装置的显示效果;同时,采用喷墨打印的方式形成空穴注入层,简单实用,简化了制备工艺,提高了制备效率。
附图说明
图1为本发明实施例1的有机电致发光器件的结构示意图;
图2为本发明实施例1的金属纳米颗粒表面等离子体共振示意图;
图3为图1中的有机电致发光器件应用为阵列基板中的一个子像素的示意图;
图4为本发明实施例1的银纳米颗粒溶液的消光光谱示意图;
图5为本发明实施例3的阵列基板的结构示意图;
附图标记中:
1-阳极;2-发光层;3-阴极;4-空穴注入层;5-电子注入层;6-金属纳米颗粒;7-空穴传输层;
10-基底;11-薄膜晶体管;12-树脂层;131-第一像素界定墙; 132-第二像素界定墙;
20-喷枪。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明有机电致发光器件、阵列基板及其制备方法、显示装置作进一步详细描述。
实施例1:
如图1所示,本实施例提供一种有机电致发光器件,有机电致发光器件包括阳极1、阴极3、设置在阳极1和阴极3之间的发光层2、以及设置在阳极1与发光层2之间的空穴注入层4(Hole Injection Layer,简称HIL),空穴注入层4内设置有金属纳米颗粒6,其中,金属纳米颗粒6的局域表面等离子体共振频率与发光层2的发光波长相匹配。
其中,金属纳米颗粒6的形成材料通常是惰性贵金属,比如可以为金、银、铝中的任意一种,或金、银、铝的合金,或金、银、铝中的任意组合;金属纳米颗粒6的形态为球状、棱柱状、立方体状、笼状、核-壳结构中任意一种或它们的任意组合。
优选的是,空穴注入层4内的金属纳米颗粒6的粒径范围为1nm-100nm,其选择的原则是:金属纳米颗粒6的局域表面等离子体(Localized Surface Plasmon,简称LSP)共振频率应与OLED中发光层的发光波长基本一致,以获得最大化的LSP共振增强效果。
表面等离子体(Surface Plasmon,简称SP)是指在金属表面存在的自由振动的电子受电子或光波激发,而与电子或光子相互作用产生的沿着金属表面传播的一种电子疏密波。其是一种电磁表面波,可以将光波横向限制在亚波长的尺度范围内,并且在近谐振频率附近其色散曲线平坦、光子态密度大,与周围介质相互作用时可以增强其自发辐射。该电子疏密波在表面处场强最大, 在垂直于界面方向呈指数衰减场。如果金属表面非常粗糙或在金属的曲面结构(如球体、柱体等)附近,表面等离子体不能以波的形式沿界面传播,而是被局域在这些结构的表面附近,即是表面等离子体的局域化,此时表面等离子体SP即被称作局域表面等离子体LSP。当尺寸接近或小于光波长的金属颗粒被光照后,其振荡电场使金属颗粒的电子云相对于原子核发生位移,由于电子云和原子核之间库仑引力的作用产生恢复力,引起电子云在原子核周围的振荡,这种电子云的集体振荡被称为局域表面等离子体共振,如图2所示为金属纳米颗粒表面等离子体共振示意图。
发生局域表面等离子体共振时,金属颗粒周围的电磁场被大大增强。此时可以将金属颗粒视为一个纳米透镜,而振荡等离子是一个光子,其被强烈限制于一个纳米尺寸的颗粒之内。局域表面等离子体共振带来的一个重大效果就是:表面等离子体在激发光子(例如发光层的发光光子)的荧光诱导下,产生与荧光分子辐射波长一致的辐射,同时增大了体系的辐射衰减速率,减小了光子的荧光寿命,使荧光量子效率增大,荧光发射增强。
本实施例提供的有机电致发光器件中,空穴注入层4中掺杂有金属纳米颗粒6,根据上述的局域表面等离子体共振原理,金属纳米颗粒6对有机电致发光器件外量子效率ηext的增强包括两部分,一是增加辐射失活速率,进而增强其内量子效率,二是增强其光提取效率,由于外量子效率ηext=光提取效率×内量子效率,由于有机电致发光器件的外量子效率可以大大提高,经测试发现,也相应提高了出光效率。
具体的,有机电致发光器件的外量子效率ηext可以根据公式(1)得到:
Figure PCTCN2014086368-appb-000001
公式(1)中:C′ext为光提取效率,hint为内量子效率。而内量子效率hint由辐射失活速率krad与辐射失活速率krad和非辐射失活速率knon之和的比值决定。在通常的室温情况下,有机电致发光器件 的辐射失活速率krad要比非辐射失活速率knon大,导致一个中等水平的内量子效率hint。根据Purcell在1946年提出的激子辐射失活速率krad和光子态密度有关的原理,当发光中心处在波长量级的微腔中时,光子态密度发生增大,引起激子自发辐射速率的增大,从而提高了辐射失活的比例,也即利用局域表面等离子体LSP提高OLED的内量子效率。进一步的,OLED的发光层中大于全内反射角的、不能辐射出去的光可激发局域表面等离子体LSP,使其再次以光的方式辐射出去,从而利用局域表面等离子体LSP提高OLED的光提取效率。可见,利用局域表面等离子体LSP可以分别提高OLED的内量子效率和光提取效率,根据公式(1),由于光提取效率和内量子效率分别得到了提高,进而提高了OLED的外量子效率。
对于如图1所示的有机电致发光器件,激子在发光层2中复合并发出光子,光经过空穴注入层4(或者还有其他的有机层,例如电子注入层5)、阳极1从底部透出(图1所示的OLED为底发射型OLED)。当入射光场作用于金属纳米颗粒6时,金属纳米颗粒6内的电子将会随着入射光场做集体振荡,如图2所示。当电子云偏离原子核时,电子云和原子核之间的库仑引力相互作用,使这些偏离的电子云向原子核重新靠近,由此电子云在原子核附近振荡,即为局域表面等离子体振荡;当入射光的频率与自由电子的固有振荡频率一致时,即形成局域表面等离子体共振。
发生局域表面等离子体共振时,即使一个很小的入射场也可引起很大的共振。当光作用于金属纳米颗粒6并产生局域表面等离子体共振时,与等离子体振荡频率相当的光会被吸收或者散射,此时所产生的吸收即等离子体共振吸收,产生的散射即等离子体共振散射。这种电子的集体振荡称为偶极等离子体共振,也有更高级次的振荡,如四极子、多极子振荡,这种等离子体共振将导致金属纳米颗粒6周围的局域场显著提高。
本实施例的有机电致发光器件中,金属纳米颗粒6对光学性质的调节主要取决于其局域表面等离子体的影响,当一定频率的光场作用于金属纳米颗粒6产生表面等离子体共振时,金属纳米 颗粒6对光学性质的调节作用最大。共振频率主要与金属纳米颗粒的电子密度(金属种类)、有效电子质量、颗粒尺寸、颗粒形状、颗粒周围介质(或者说周围介电环境)等因素有关,通过调节金属纳米颗粒6的尺寸、形状、周围介质以及有序程度等,可以比较方便的调节金属纳米颗粒的表面等离子体共振特性。
以下将具体说明颗粒尺寸、颗粒成分、颗粒形状以及颗粒周围介质对金属纳米颗粒6的表面等离子体共振特性的影响。
(1)颗粒尺寸的影响
对于颗粒尺寸远小于入射波长的金属纳米颗粒(例如12-13nm的金颗粒)近似满足静电场,偶极子共振占主导作用,可以根据Mie理论计算模拟。对于较大的金属纳米颗粒6(例如>25nm的金颗粒),高阶多极子效应占主导,吸收峰向长波方向移动。由于相互作用的光波长与颗粒尺寸可比,随着颗粒尺寸增大,电场引起粒子的非均匀极化,等离子体峰展宽。
(2)颗粒成分的影响
不同成分的金属颗粒,其发生局域等离子体共振的频率和强度也不一样。例如对于金-银(Au-Ag)合金纳米颗粒而言,随着金的摩尔百分比增大,颗粒的表面等离子体共振吸收峰红移(即波长变长、频率降低),且吸收峰与金的摩尔百分比成线性关系。吸收波长与合金成分的这种依赖关系使得体系的吸收峰可以调节到某一特定的波长以满足光学应用需要。
(3)颗粒形状的影响
金属纳米颗粒的形状对表面等离子体吸收特性产生更大的影响。例如,对于纳米棒形金颗粒,表面等离子体吸收峰将分裂为两个峰:沿纳米棒轴向振荡的纵向模式和垂直于轴向振荡的横向模式。横向模式的吸收峰在520nm附近,与球形颗粒的表面等离子体吸收峰一致,而纵向模式随着纳米棒长径比的增大红移。又例如,对于一体积与半径为30nm的球体一致的椭球体银纳米颗粒而言,其表面等离子共振峰随椭球体的长短轴比(即最大轴与最小轴比值)变化非常明显,当椭球体的长短轴比为10左右时,其 共振峰在650nm左右,当椭球体的长短轴比接近2时,其共振峰在520nm左右,当椭球体的长短轴比接近3.33时,其共振峰在460-475nm左右。
(4)颗粒周围介质的影响
周围介质包括溶剂种类、极性大小、基底或衬底材质等。在本实施例中周围介质主要指金属纳米颗粒所在的空穴注入层HIL的材料。总之,对于一个常见波长的发光光子而言,总是可以找到与其相匹配的金属纳米颗粒,使其与光子之间产生局域表面等离子体共振。
在本实施例的有机电致发光器件中,在空穴注入层4掺杂的金属纳米颗粒6的浓度,应对OLED的电学性能不应造成负面影响,因此金属纳米颗粒6在空穴注入层4中的掺杂浓度一般要求控制在20%wt以下,例如:金属纳米颗粒6在空穴注入层4中的掺杂浓度范围为1%-20%,以保证对空穴注入层4中的电学性能不会受到太大影响。空穴注入层4中掺杂的金属纳米颗粒6可以是均匀的掺杂也可以使非均匀的掺杂,比如说按照一定规则图形嵌入。
本实施例的有机电致发光器件中,经过空穴注入层4中的金属纳米颗粒6对于光子的调节效果,即金属纳米颗粒4嵌入到了OLED的光路中,一方面可以利用局域表面等离子体共振效应增强有机电致发光器件的出光效率;另一方面还通过光散射效应,进一步提高出光效率。
本实施例的有机电致发光器件的制备过程中,对于掺杂有金属纳米颗粒6的空穴注入层4,可以通过制备合适粒径和形貌特征的金属纳米颗粒6,将其与用于形成空穴注入层4的墨水充分混合到一起,并用喷墨打印的方式按照合适的比例的均匀沉积成膜,从而形成空穴注入层4。金属纳米颗粒6的特征及其在空穴注入层4中的分布状况决定了其表面等离子体共振的特性。本实施例采用喷墨打印技术,将包含金属纳米颗粒6的混合墨水打印到待成膜的子像素内,利用局域表面等离子体共振效应来增强OLED的外量子效率,大大简化了制备过程、提高了制备效率。
在本实施例的有机电致发光器件的制备过程中:首先制备金属纳米颗粒6,然后按常规的OLED的制备方法,在形成空穴注入层4的材料中掺杂金属纳米颗粒6完成空穴注入层的制备,进而完成OLED的制备。
具体的,含有金属纳米颗粒6的空穴注入层4的制备方法如下:
首先配置含有金属纳米颗粒6的墨水:将制得的金属纳米颗粒6与用于形成空穴注入层4的墨水预混合,得到空穴注入层混合体系,金属纳米颗粒6在空穴注入层4中的掺杂浓度范围为1%-20%。其中,金属纳米颗粒6的消光光谱应与对应颜色的OLED的发光层的发光波长基本重叠,这样发生LSP共振,发光增强的效果比较明显。
接着形成空穴注入层4:将含有金属纳米颗粒6的空穴注入层混合体系,通过喷墨打印方式喷印到空穴注入层4的形成区域内,干燥后形成薄膜,得到含有金属纳米颗粒6的空穴注入层4。金属纳米颗粒6的掺杂比例以不造成有机电致发光器件的电学性能下降为最低标准,同时光学性能达到最大化增益为佳。
然后按一般的OLED制备流程制备器件,得到最终的OLED。
应用到显示技术领域,可以将OLED作为阵列基板中的一个子像素。如图3所示,阵列基板包括基底10以及形成在基底10上方的薄膜晶体管11、树脂层12,在树脂层12的上方还形成有像素界定墙(图3中所示为第一像素界定墙131和第二像素界定墙132),OLED限定在由相邻的像素界定墙形成的空间内。
本实施例中,使用的金属纳米颗粒6一般需要提前制备,金属纳米颗粒6的制备方法为:溅射法、蒸镀法、光刻法、水热法、化学合成法或电化学法,其中比较高效的制备方法是电化学法。下面以电化学合成法、化学还原法制备银(Ag)纳米颗粒和金(Au)纳米颗粒作进一步详细说明:
(1)Ag纳米颗粒的制备:
A.电化学合成法:
将按照一定比例(根据需形成的Ag纳米颗粒的粒径大小可选择适当的比例)混合好的硝酸银(AgNO3)、柠檬酸钠、硝酸钾(KNO3)的混合溶液放入到电化学沉积池内;
然后以ITO导电体(电化学中常用的阳极电极)为工作电极、铂为对电极、饱和甘汞为参比电极,采用双电位阶跃的方法进行沉积,得到沉积在ITO导电体表面的Ag纳米颗粒;
利用外力将Ag纳米颗粒从ITO导电体表面刮下,得到分散的Ag纳米颗粒粉末。
该方法可以通过控制电解液的浓度、跃阶电位和沉积时间,很好地控制形成的Ag纳米颗粒的形貌和大小,得到的Ag纳米颗粒的粒径大小范围为10nm-100nm。
B.化学还原法:
用移液管量取0.5ml浓度为0.1mol/l的硝酸银溶液加入盛有47.5ml高纯水的烧瓶中,搅拌加热至沸腾;
量取2ml质量分数为1%的柠檬酸三钠加入锥形瓶,沸腾状态下反应1小时。溶液状态从无色逐渐加深,变为浅褐色,最后变为墨绿色。这时停止加热,冷却至室温,得到需要的球形Ag纳米粒子溶液;
上述利用化学还原法制备的Ag纳米颗粒,经显微镜测量其颗粒的大小分布在76nm左右。
通过调节硝酸银和柠檬酸三钠的比例和反应时间可以得到粒径不同的Ag纳米颗粒溶液。
图4所示为按照如上方法制备的球形Ag纳米颗粒的溶液的消光光谱。可以看到其在428nm左右有一个最大的等离子体共振峰,但是波形较宽,并在长波处有一定的拖尾现象,这可能是因为制备的球形Ag纳米颗粒中还伴随有少量的其他不规则形状纳米颗粒,影响表面等离子体共振峰。
(2)Au纳米颗粒的制备:
化学还原法:
通常采用湿法制备Au纳米颗粒,优选采用氯金酸的柠檬酸三 钠还原法。标准的制备流程如下:
在用王水洗净、淋洗、干燥后的玻璃器皿中,先加入一定量的纯水,再加入一定量的柠檬酸三钠溶液;
加热至沸腾后,快速向急剧搅拌的柠檬酸三钠溶液中加入氯金酸溶液,继续加热搅拌;
加热搅拌数分钟后,移去热源,并停止搅拌,冷却至室温,然后通过多次离心、清洗,收集得到干净的Au纳米颗粒。
通过控制柠檬酸三钠和氯金酸的浓度以及两者的比例,来调节合成的Au纳米颗粒的粒径大小。例如,当柠檬酸三钠浓度为0.776mol/l(摩尔/升),氯金酸为2.13×10-3mol/l,两者按照1ml和20ml的比例混合(纯水用量200ml),得到的Au纳米颗粒的直径为20nm左右,吸收光谱峰值在518nm左右。
本实施例提供了一种具有较高外量子效率的OLED,其中空穴注入层中设置有金属纳米颗粒,该金属纳米颗粒与发光层中的发光光子配合,在满足共振的条件下产生局域表面等离子体共振增强效应,利用金属纳米颗粒表面形成的局域表面等离子体与发光分子的相互作用,进而调节其发光特性,减小SP模式造成的损耗,增强器件的外量子效率,从而有效提升OLED的出光效率;同时,其中的空穴注入层通过喷墨打印的方式形成,相比现有技术中为提高出光效率而采用的光栅或光子晶体方法,通过在空穴注入层中设置金属纳米颗粒的方式简单快捷,不需要复杂的光刻工艺,同时也不存在光栅等带来的色偏等视角问题;相比现有技术中为提高出光效率而采用的布拉格衍射技术,制备简单,不需设置复杂的高、低折射率材料层,也相应的不存在厚度及厚度精度的要求问题,制备难度小,简化了制备工艺,提高了制备效率。
实施例2:
本实施例提供一种OLED,本实施例与实施例1的区别在于,本实施例中OLED的空穴注入层为一个以上的子层,例如:空穴注 入层包括第一子空穴注入层和第二子空穴注入层。
在本实施例中,空穴注入层包括第一子空穴注入层和第二子空穴注入层,金属纳米颗粒设置于第一子空穴注入层内,第二子空穴注入层相对第一空穴注入层更靠近发光层。
在本实施例中,将OLED中空穴注入层的结构进行了局部微调,主要涉及调节金属纳米颗粒与激子复合发光所在区域的距离,即可以先喷墨打印一薄层内部嵌有金属纳米颗粒的第一子空穴注入层,然后再在第一子空穴注入层上方打印一层无金属纳米颗粒的第二子空穴注入层。然后在第二子空穴注入层的上方形成发光层。
与实施例1相比,本实施例能较好地实现波长的匹配以及发光增强效益的最大化,其出光效率大大增加。
本实施例中OLED的空穴注入层的制备仍采用喷印方式,利用该法制备OLED,制备工艺简单快捷,也不会造成OLED的色偏和视角问题,具有较强的使用价值。
实施例3:
在本实施例提供一种阵列基板,该阵列基板包括实施例1或实施例2中的OLED。
如图5所示,该阵列基板划分为多个子像素区,子像素区内设置有机电致发光器件,阵列基板包括红色有机电致发光器件、绿色有机电致发光器件和蓝色有机电致发光器件,红色有机电致发光器件、绿色有机电致发光器件和蓝色有机电致发光器件分别依次设置于相邻的三个子像素区内,
在本实施例中,子像素区内还设置有薄膜晶体管(Thin Film Transistor,简称TFT),该薄膜晶体管用于驱动有机电致发光器件,薄膜晶体管的漏极与有机电致发光器件的阳极相连接。如图5所示为常见的包含薄膜晶体管11的主动型驱动OLED的阵列基板的结构,其包含:基底10以及位于基底10上方的薄膜晶体管11,与薄膜晶体管11的漏极相连的阳极1,阳极1与薄膜晶体管11 之间有起到绝缘和平坦化作用的树脂层12,起到限制子像素发光区域的像素界定墙(图5中由双层结构,即第一像素界定墙131和第二像素界定墙132组成),位于阳极1之上和像素界定墙之间的OLED各有机层,该有机层包括空穴注入层6,空穴传输层7,发光层2,电子注入层5及阴极3。
阵列基板上的薄膜晶体管11可以为顶栅型也可以为底栅型。对于底发射型有机电致发光器件来说,即通过薄膜晶体管11驱动有机电致发光器件,激子在发光层2复合并激发出光子发光,光经过各有机层、阳极1、子像素的开口部位等从基底10发射出来。
在本实施例中,一个像素包括红、绿、蓝三个子像素,能够实现全彩显示。其中,填充在不同的发光子像素中的OLED的空穴注入层4中的金属纳米颗粒6在材料组成、颗粒尺寸(粒径)、形貌等方面不同,空穴注入层4内的金属纳米颗粒的粒径范围为1nm-100nm,其选择的原则是:金属纳米颗粒6的LSP共振频率应与OLED在红、绿、蓝发光子像素区的发光波长基本一致,即具有最大化的LSP共振增强效果。
一种优选的方案是,红色有机电致发光器件的空穴注入层内的金属纳米颗粒为长短轴比为9.5-10.5的银椭球体,绿色有机电致发光器件的空穴注入层内的金属纳米颗粒为长短轴比为1.5-2.5的银椭球体,蓝色有机电致发光器件的空穴注入层内的金属纳米颗粒为长短轴比为2.8-3.8的银椭球体。例如:红色有机电致发光器件的空穴注入层内的金属纳米颗粒为长短轴比为10的银椭球体(体积与半径近30nm的球体相等),绿色有机电致发光器件的空穴注入层内的金属纳米颗粒为长短轴比为2左右的银椭球体(体积与半径近30nm的球体相等)或者半径为近10nm的金球体,蓝色有机电致发光器件的空穴注入层内的金属纳米颗粒为长短轴比为3.3的银椭球体(体积与半径近30nm的球体相等)。在金属纳米颗粒6选择合适的情况下,能使得金属纳米颗粒6的表面等离子体的能量和发光层2所发出的光的不同波长对应,使各子像素内的金属纳米颗粒6分别可以与其所在的子像素内的发 光层2所发出的光分子产生局域表面等离子体共振现象,从而有效增强OLED的外量子效率,提高OLED的出光效率。
基于上述OLED结构的阵列基板,有机电致发光器件中不同颜色(红、绿、蓝)子像素区的空穴注入层4中掺杂不同粒径的金属纳米颗粒6,通过金属纳米颗粒的局域表面等离子体共振效应增强有机电致发光器件的外量子效率,有效地提高有机电致发光器件的出光效率,进而提高阵列基板的出光效率。
本实施例的阵列基板中,仍采用喷墨打印的方式将含有不同粒径的金属纳米颗粒的空穴注入层混合体系喷印到红、绿、蓝的子像素区内,经过干燥后得到含有金属纳米颗粒的空穴注入层。
作为本发明的另一方面,本实施例还提供一种阵列基板的制备方法,阵列基板划分为多个子像素区,子像素区内设置有机电致发光器件,制备方法包括形成有机电致发光器件的阳极、阴极、形成在阳极和阴极之间的发光层、以及形成在阳极与发光层之间的空穴注入层的步骤,其中,空穴注入层内形成有金属纳米颗粒,金属纳米颗粒的局域表面等离子体共振频率与发光层的发光波长相匹配。
优选的是,形成空穴注入层的步骤包括:
制备不同粒径或形貌或组成的金属纳米颗粒;
将金属纳米颗粒与用于形成空穴注入层的墨水混合均匀形成混合体系;
将混合体系采用喷墨打印的方式,喷涂形成在子像素区,干燥后形成包含有金属纳米颗粒的空穴注入层。
优选的,子像素区包括红色子像素区、绿色子像素区和蓝色子像素区,包含局域表面等离子共振峰在红色波长处的金属纳米颗粒的混合体系喷涂至红色子像素区内形成红色有机电致发光器件,包含局域表面等离子共振峰在绿色波长处的金属纳米颗粒的混合体系喷涂到绿色子像素区内形成绿色有机电致发光器件,包含局域表面等离子共振峰在蓝色波长处的金属纳米颗粒的混合体系喷涂到蓝色子像素区内形成蓝色有机电致发光器件。
优选的,金属纳米颗粒的制备方法有:溅射法、蒸镀法、光刻法、水热法、化学合成法或电化学法。
优选的,金属纳米颗粒与用于形成空穴注入层的墨水通过超声法或化学修饰法混合均匀形成混合体系。
具体的阵列基板制备过程为:首先在薄膜晶体管11的上方依次形成树脂层12、有机电致发光器件的阳极1、像素界定墙(包括第一子像素界定墙131和第二子像素界定墙132);
然后配置含有金属纳米颗粒6的空穴注入层混合体系:将制得的不同粒径的金属纳米颗粒6(图5中6-1、6-2、6-3代表不同粒径)分别与形成空穴注入层4的墨水混合,得到可以空穴注入层混合体系。其中,金属纳米颗粒6的消光光谱应与对应颜色的OLED的发光层的发光波长基本重叠,使得容易产生局域表面等离子体共振现象,出光增强的效果比较明显。
接着形成空穴注入层4:将含有不同粒径的金属纳米颗粒6的空穴注入层墨水,通过喷墨打印设备(例如图5中的喷枪20)分别涂覆到红、绿、蓝子像素区内,干燥后成膜,得到含有金属纳米颗粒6的空穴注入层4。金属纳米颗粒6的掺杂比例以不造成有机电致发光器件的电学性能下降为最低标准,同时光学性能达到最大化增益为佳。
最后形成发光层2、电子注入层5、阴极3,形成阵列基板。
本实施例的阵列基板中,针对全彩的红、绿、蓝子像素区中的OLED的出光效率同时增强的需求,在不同子像素区内的空穴注入层中掺入不同粒径的金属纳米颗粒(例如图5中所示的6-1,6-2和6-3),并且采用喷墨打印的方式将含有金属纳米颗粒的空穴注入层墨水喷印在相应子像素区内成膜,达到同时增强红、绿、蓝子像素的外量子效率的目的,从而提高阵列基板的出光效率;同时,采用喷墨打印的方式形成空穴注入层,简单实用,简化了制备工艺,提高了制备效率。
具体的,本实施例的阵列基板中,利用增强OLED外量子效率的方法,使得阵列基板的出光效率得到有效提高,具有如下优势:
(1)利用金属纳米颗粒的局域表面等离子体共振(Local Surface Plasmon,简称LSP)效应来增强OLED的外量子效率,相对于利用微腔效应提高光提取效率,进而增加外量子效率的方法,不存在色偏(颜色的偏离)和视角(可视角度变窄)的问题,同时也不存在微腔制备过程中对膜层厚度控制要求非常严格的问题,使得阵列基板能提供较好的显示效果;
(2)利用喷墨打印的方式将不同粒径的金属纳米颗粒随用于形成空穴注入层的墨水一起喷印成膜,制程简单,相对于利用不同厚度的布拉格衍射层改变OLED的出光效率的方式而言,可以大大节省由于不同颜色的子像素区对应的布拉格衍射层不一样而带来的制造工艺的复杂性(通常需要针对不同颜色子像素区多次重复沉积、曝光、显影、刻蚀等步骤)。
实施例4:
本实施例提供一种显示装置,其包括实施例3的阵列基板。
该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本实施例的显示装置中具有实施例3中的阵列基板,由于其采用的阵列基板具有更好的显示效果,使得相应的显示装置具有更好的显示效果,视觉效果更好。
当然,本实施例的显示装置中还可以包括其他常规结构,如电源单元、显示驱动单元等,这里不再赘述。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (17)

  1. 一种有机电致发光器件,包括阳极、阴极、设置在所述阳极和所述阴极之间的发光层、以及设置在所述阳极与所述发光层之间的空穴注入层,其特征在于,所述空穴注入层内设置有金属纳米颗粒,所述金属纳米颗粒的局域表面等离子体共振频率与所述发光层的发光波长相匹配。
  2. 根据权利要求1所述的有机电致发光器件,其特征在于,所述金属纳米颗粒的粒径范围为1nm-100nm。
  3. 根据权利要求1所述的有机电致发光器件,其特征在于,所述金属纳米颗粒在所述空穴注入层中的掺杂浓度范围为1%-20%。
  4. 根据权利要求1所述的有机电致发光器件,其特征在于,所述金属纳米颗粒的形成材料为金、银、铝中的任意一种,或金、银、铝中任意一种的合金,或金、银、铝中的任意组合。
  5. 根据权利要求1所述的有机电致发光器件,其特征在于,所述金属纳米颗粒的形态为球状、棱柱状、立方体状、笼状、核-壳结构中任意一种或其任意组合。
  6. 根据权利要求1所述的有机电致发光器件,其特征在于,所述金属纳米颗粒采用以下方法制备:溅射法、蒸镀法、光刻法、水热法、化学合成法或电化学法。
  7. 根据权利要求1所述的有机电致发光器件,其特征在于,采用用于形成所述空穴注入层的墨水与所述金属纳米颗粒的混合体系以喷墨打印的方式形成所述空穴注入层。
  8. 根据权利要求1-7任一项所述的有机电致发光器件,其特征在于,所述空穴注入层包括第一子空穴注入层和第二子空穴注入层,所述金属纳米颗粒设置于所述第一子空穴注入层内,所述第二子空穴注入层相对所述第一空穴注入层更靠近所述发光层。
  9. 一种阵列基板,划分为多个子像素区,所述子像素区内设置有机电致发光器件,其特征在于,所述有机电致发光器件采用权利要求1-8任一项所述的有机电致发光器件。
  10. 根据权利要求9所述的阵列基板,其特征在于,所述阵列基板包括红色有机电致发光器件、绿色有机电致发光器件和蓝色有机电致发光器件,红色有机电致发光器件、绿色有机电致发光器件和蓝色有机电致发光器件分别依次设置于相邻的三个所述子像素区内,其中,
    红色有机电致发光器件的所述空穴注入层内的所述金属纳米颗粒为长短轴比为9.5-10.5的银椭球体;
    绿色有机电致发光器件的所述空穴注入层内的所述金属纳米颗粒为长短轴比为1.5-2.5的银椭球体;以及
    蓝色有机电致发光器件的所述空穴注入层内的所述金属纳米颗粒为长短轴比为2.8-3.8的银椭球体。
  11. 根据权利要求9所述的阵列基板,其特征在于,所述子像素区内还设置有用于驱动所述有机电致发光器件的薄膜晶体管,所述薄膜晶体管的漏极与有机电致发光器件的阳极相连接。
  12. 一种显示装置,其特征在于,包括权利要求9-11中任意一项所述的阵列基板。
  13. 一种阵列基板的制备方法,所述阵列基板划分为多个子 像素区,所述子像素区内设置有机电致发光器件,所述制备方法包括形成所述有机电致发光器件的阳极、阴极、形成在所述阳极和所述阴极之间的发光层、以及形成在所述阳极与所述发光层之间的空穴注入层的步骤,其特征在于,所述空穴注入层内形成有金属纳米颗粒,所述金属纳米颗粒的局域表面等离子体共振频率与所述发光层的发光波长相匹配。
  14. 根据权利要求13所述的阵列基板的制备方法,其特征在于,形成所述空穴注入层的步骤包括:
    制备不同粒径或形貌或组成的金属纳米颗粒;
    将所述金属纳米颗粒与用于形成空穴注入层的墨水混合均匀形成混合体系;
    采用喷墨打印的方式将所述混合体系喷涂在所述子像素区内,然后进行干燥以形成包含有金属纳米颗粒的所述空穴注入层。
  15. 根据权利要求13所述的阵列基板的制备方法,其特征在于,所述子像素区包括红色子像素区、绿色子像素区和蓝色子像素区,其中
    包含局域表面等离子共振峰在红色波长处的所述金属纳米颗粒的所述混合体系被喷涂到所述红色子像素区内以形成红色有机电致发光器件;
    包含局域表面等离子共振峰在绿色波长处的所述金属纳米颗粒的所述混合体系被喷涂到所述绿色子像素区内以形成绿色有机电致发光器件;以及
    包含局域表面等离子共振峰在蓝色波长处的所述金属纳米颗粒的所述混合体系被喷涂到所述蓝色子像素区内以形成蓝色有机电致发光器件。
  16. 根据权利要求13所述的阵列基板的制备方法,其特征在于,所述金属纳米颗粒以下列方法制备:溅射法、蒸镀法、光刻 法、水热法、化学合成法或电化学法。
  17. 根据权利要求13所述的阵列基板的制备方法,其特征在于,所述金属纳米颗粒与用于形成空穴注入层的墨水通过超声法或化学修饰法混合均匀以形成混合体系。
PCT/CN2014/086368 2014-06-27 2014-09-12 有机电致发光器件、阵列基板及其制备方法、显示装置 WO2015196573A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/436,922 US9893318B2 (en) 2014-06-27 2014-09-12 Organic light-emitting diode, array substrate and preparation method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410302840.3A CN104103766A (zh) 2014-06-27 2014-06-27 有机电致发光器件、阵列基板及其制备方法、显示装置
CN201410302840.3 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015196573A1 true WO2015196573A1 (zh) 2015-12-30

Family

ID=51671736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086368 WO2015196573A1 (zh) 2014-06-27 2014-09-12 有机电致发光器件、阵列基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US9893318B2 (zh)
CN (1) CN104103766A (zh)
WO (1) WO2015196573A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336119A (zh) * 2018-03-20 2018-07-27 京东方科技集团股份有限公司 像素单元、像素结构和显示面板
US10566391B2 (en) 2016-05-27 2020-02-18 3M Innovative Properties Company OLED display with improved color uniformity
CN110808336A (zh) * 2019-11-12 2020-02-18 杭州追猎科技有限公司 一种有机发光面板及其制备方法
US10804417B2 (en) * 2016-10-12 2020-10-13 Kateeva, Inc. Display devices utilizing quantum dots and inkjet printing techniques thereof

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI549330B (zh) * 2014-06-04 2016-09-11 群創光電股份有限公司 有機發光二極體顯示器
EP3034548A1 (en) * 2014-12-18 2016-06-22 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Barrier film laminate comprising submicron getter particles and electronic device comprising such a laminate
KR102430819B1 (ko) * 2015-08-19 2022-08-10 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
CN105140412A (zh) * 2015-09-01 2015-12-09 Tcl集团股份有限公司 一种具有高发光效率的qled器件及其制备方法
CN105047827A (zh) * 2015-09-02 2015-11-11 上海和辉光电有限公司 一种顶发射型有机电致发光器件
CN105280682A (zh) * 2015-09-08 2016-01-27 上海和辉光电有限公司 Oled显示面板及其制备方法
US11211582B2 (en) 2016-01-15 2021-12-28 Samsung Display Co., Ltd. Organic light-emitting display apparatus with protection layer surrounding the pixel electrode
CN106206971A (zh) * 2016-09-05 2016-12-07 Tcl集团股份有限公司 一种基于金银核壳纳米棒的qled制备方法及qled
US20180175319A1 (en) * 2016-12-15 2018-06-21 Universal Display Corporation Spectral emission modification using localized surface plasmon of metallic nanoparticles
CN106873234B (zh) * 2017-03-16 2019-10-25 京东方科技集团股份有限公司 发光显示器件及其制作方法、发光显示装置
CN106848104B (zh) * 2017-04-14 2019-07-26 京东方科技集团股份有限公司 顶发射型发光器件
US10367037B2 (en) * 2017-04-28 2019-07-30 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Pixel structure of OLED display panel and manufacturing method thereof
KR102300028B1 (ko) * 2017-06-08 2021-09-09 삼성디스플레이 주식회사 유기발광표시장치의 제조방법
CN107275514B (zh) * 2017-06-15 2018-12-18 京东方科技集团股份有限公司 一种oled器件及其制备方法、显示装置
CN109713138B (zh) * 2017-10-25 2020-11-17 Tcl科技集团股份有限公司 一种qled器件
CN109713139A (zh) * 2017-10-25 2019-05-03 Tcl集团股份有限公司 一种薄膜及其制备方法与应用
CN108565357B (zh) * 2018-01-09 2020-06-30 深圳市华星光电半导体显示技术有限公司 一种喷墨打印的oled显示面板及其制备方法
WO2019138055A1 (en) * 2018-01-12 2019-07-18 Philip Morris Products S.A. An aerosol-generating device comprising a plasmonic heating element
EP3776681A4 (en) 2018-03-30 2021-12-08 BOE Technology Group Co., Ltd. ORGANIC LIGHT EMITTING DIODE DISPLAY PANEL AND DISPLAY DEVICE AND MANUFACTURING METHOD FOR IT
CN108615752B (zh) * 2018-07-02 2020-05-05 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN110838551A (zh) * 2018-08-15 2020-02-25 Tcl集团股份有限公司 复合材料和量子点发光二极管及其制备方法
CN109273623B (zh) * 2018-09-28 2021-01-26 京东方科技集团股份有限公司 一种自发光器件及其制备方法、阵列基板
CN109540858B (zh) * 2018-11-26 2020-10-27 中国科学技术大学 载流子浓度的测量方法及系统
WO2020121398A1 (ja) * 2018-12-11 2020-06-18 シャープ株式会社 表示装置およびその製造方法
CN111384255A (zh) * 2018-12-27 2020-07-07 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN110350108B (zh) * 2019-07-25 2022-04-05 京东方科技集团股份有限公司 发光器件及其制备方法、显示面板、金-银核壳纳米粒子的制备方法
CN110484058A (zh) * 2019-08-20 2019-11-22 深圳市华星光电半导体显示技术有限公司 墨水组合物
CN110690352A (zh) * 2019-09-06 2020-01-14 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN110911577A (zh) * 2019-12-04 2020-03-24 京东方科技集团股份有限公司 有机发光显示器件及其制备方法、显示装置
CN113066873B (zh) * 2019-12-31 2022-10-11 Tcl科技集团股份有限公司 光电探测器及其制备方法
KR20210130889A (ko) * 2020-04-22 2021-11-02 삼성디스플레이 주식회사 발광 소자 잉크 및 표시 장치의 제조 방법
CN112071997B (zh) * 2020-09-09 2021-08-06 Tcl华星光电技术有限公司 显示装置及显示装置的制备方法
JP2023553379A (ja) 2020-12-07 2023-12-21 オーティーアイ ルミオニクス インコーポレーテッド 核形成抑制被膜及び下地金属被膜を用いた導電性堆積層のパターニング
CN113066936A (zh) * 2021-03-16 2021-07-02 北京京东方技术开发有限公司 发光器件及其制备方法、显示基板和显示装置
US20220367579A1 (en) * 2021-05-08 2022-11-17 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and display device
CN116568072B (zh) * 2023-05-18 2024-01-26 深圳市鸿展光电有限公司 一种高透射率的柔性oled显示器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242927A (ja) * 2006-03-09 2007-09-20 Seiko Epson Corp 発光装置及び発光装置の製造方法
EP2287939A1 (en) * 2008-05-21 2011-02-23 Pioneer Corporation Organic electroluminescent element
KR20130125957A (ko) * 2012-05-10 2013-11-20 한국기계연구원 금 나노입자를 포함하는 유기발광소자 및 그 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8921473B1 (en) * 2004-04-30 2014-12-30 Sydney Hyman Image making medium
US7416928B2 (en) * 2004-09-08 2008-08-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
EP1805826B1 (en) * 2004-09-24 2010-03-24 Plextronics, Inc. Heteroatomic regioregular poly(3-substitutedthiophenes) in electroluminescent devices
US7351999B2 (en) * 2004-12-16 2008-04-01 Au Optronics Corporation Organic light-emitting device with improved layer structure
KR100811996B1 (ko) * 2007-03-21 2008-03-10 삼성에스디아이 주식회사 유기 전계 발광소자 및 이를 이용한 유기 전계발광표시장치
CN101993032B (zh) * 2009-08-14 2013-03-27 京东方科技集团股份有限公司 微结构薄膜图形和tft-lcd阵列基板制造方法
JP5679460B2 (ja) * 2009-11-27 2015-03-04 国立大学法人大阪大学 有機電界発光素子、および有機電界発光素子の製造方法
CN102569677A (zh) * 2012-01-17 2012-07-11 苏州大学 一种介质层及一种有机电致发光器件的制作方法
CN203466191U (zh) * 2013-08-13 2014-03-05 京东方科技集团股份有限公司 一种阵列基板及显示装置
CN103490018B (zh) * 2013-09-25 2016-03-09 京东方科技集团股份有限公司 有机电致发光器件及其制备方法
CN103872261B (zh) * 2014-02-28 2017-03-15 京东方科技集团股份有限公司 一种有机电致发光器件和显示装置
CN204029875U (zh) * 2014-06-27 2014-12-17 京东方科技集团股份有限公司 有机电致发光器件、阵列基板和显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242927A (ja) * 2006-03-09 2007-09-20 Seiko Epson Corp 発光装置及び発光装置の製造方法
EP2287939A1 (en) * 2008-05-21 2011-02-23 Pioneer Corporation Organic electroluminescent element
KR20130125957A (ko) * 2012-05-10 2013-11-20 한국기계연구원 금 나노입자를 포함하는 유기발광소자 및 그 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHEN, YANGNA: "Properties of Metal Nanoparticles and Their Application", SCIENCE -ENGINEERING (A), CHINA MASTER'S THESES FULL-TEXT DATABASE, 30 April 2012 (2012-04-30), pages 7 - 9, XP055249586, ISSN: 1674-0246 *
XIAO, Y ET AL.: "Surface Plasmon-enhanced Electroluminescence in Organic Light-emitting Diodes Incorporating Au Nanoparticles", APPLIED PHYSICS LETTERS, vol. 1, no. 100, 6 January 2012 (2012-01-06), pages 013308 - 1, XP012155037, ISSN: 0003-6951 *
XIE, WENFA ET AL.: "High-efficiency Organic Photoelectric Devices with Metal Nanoparticles", CHINESE JOURNAL OF LUMINESCENCE, vol. 5, no. 34, 31 May 2013 (2013-05-31), pages 536, XP055249576, ISSN: 1000-7032 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10566391B2 (en) 2016-05-27 2020-02-18 3M Innovative Properties Company OLED display with improved color uniformity
US10991765B2 (en) 2016-05-27 2021-04-27 3M Innovative Properties Company Optical stack for improved color uniformity in OLED display
US10804417B2 (en) * 2016-10-12 2020-10-13 Kateeva, Inc. Display devices utilizing quantum dots and inkjet printing techniques thereof
CN108336119A (zh) * 2018-03-20 2018-07-27 京东方科技集团股份有限公司 像素单元、像素结构和显示面板
CN110808336A (zh) * 2019-11-12 2020-02-18 杭州追猎科技有限公司 一种有机发光面板及其制备方法
CN110808336B (zh) * 2019-11-12 2022-06-21 深圳市与辰科技有限公司 一种有机发光面板及其制备方法

Also Published As

Publication number Publication date
US20160126499A1 (en) 2016-05-05
CN104103766A (zh) 2014-10-15
US9893318B2 (en) 2018-02-13

Similar Documents

Publication Publication Date Title
WO2015196573A1 (zh) 有机电致发光器件、阵列基板及其制备方法、显示装置
Xuan et al. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays
Jurow et al. Manipulating the transition dipole moment of CsPbBr3 perovskite nanocrystals for superior optical properties
CN103441138B (zh) 一种阵列基板及其制备方法、显示装置
Hyun et al. Dual role of quantum dots as color conversion layer and suppression of input light for full-color micro-LED displays
WO2020015173A1 (zh) Oled显示器
Xu et al. Multiphoton upconversion enhanced by deep subwavelength near-field confinement
JP4504640B2 (ja) 多孔質アルミナを含む発光デバイスとその製造方法
TWI678006B (zh) 有機電激發光元件
TW201418003A (zh) 金屬系粒子集合體
CN108615752A (zh) 显示面板及显示装置
JPWO2005097939A1 (ja) 蛍光変換媒体及びカラー発光装置
KR20120013770A (ko) 표면 플라즈몬 공명을 이용하여 발광 특성이 향상된 발광 소자 및 그 제조 방법
CN204029875U (zh) 有机电致发光器件、阵列基板和显示装置
CN102569677A (zh) 一种介质层及一种有机电致发光器件的制作方法
Onal et al. High-performance white light-emitting diodes over 150 lm/W using near-unity-emitting quantum dots in a liquid matrix
US9484553B2 (en) Organic light-emitting diode device and manufacturing method thereof
Wu et al. Enhancing perovskite film fluorescence by simultaneous near-and far-field effects of gold nanoparticles
Huang et al. Localized surface plasmon resonance enhanced by the light-scattering property of silver nanoparticles for improved luminescence of polymer light-emitting diodes
KR101623093B1 (ko) 확률론적 나노 구조물을 이용하여 양자 효율이 향상된 유기전계발광소자 및 이를 제조하는 방법
Chou et al. Synthesis of SiO2-coated perovskite quantum dots for micro-LED display applications
Srivastava et al. Freestanding high-resolution quantum dot color converters with small pixel sizes
Liang et al. High-resolution patterning of perovskite quantum dots via femtosecond laser-induced forward transfer
CN110164910B (zh) 颜色转换层及其制备方法、显示装置
CN111430574A (zh) 一种有机发光器件及其制备方法、显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14436922

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/05/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14895823

Country of ref document: EP

Kind code of ref document: A1