WO2015043054A1 - 有机电致发光器件及其制备方法 - Google Patents

有机电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2015043054A1
WO2015043054A1 PCT/CN2013/088247 CN2013088247W WO2015043054A1 WO 2015043054 A1 WO2015043054 A1 WO 2015043054A1 CN 2013088247 W CN2013088247 W CN 2013088247W WO 2015043054 A1 WO2015043054 A1 WO 2015043054A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic electroluminescent
matrix material
electroluminescent device
nanometal particles
Prior art date
Application number
PCT/CN2013/088247
Other languages
English (en)
French (fr)
Inventor
代青
刘则
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/360,366 priority Critical patent/US9484553B2/en
Publication of WO2015043054A1 publication Critical patent/WO2015043054A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • Embodiments of the present invention relate to an organic electroluminescent device and a method of fabricating the same. Background technique
  • the basic structure of the organic electroluminescent device is such that one or more organic light-emitting layers are sandwiched between the two electrodes.
  • the two layers of electrodes serve as the anode and cathode of the light emitting device, respectively.
  • the electrode can be prepared using a metal or metal oxide material as needed. Under the action of the applied voltage, carrier electrons and holes are injected into the organic light-emitting layer from the cathode direction and the anode direction, respectively, and encounter recombination to generate excitons. The energy of the excitons is attenuated in the form of light, thereby radiating light and realizing The effect of electroluminescence.
  • Embodiments of the present invention provide organic electroluminescent devices capable of improving external quantum efficiency.
  • One aspect of the present invention provides an organic electroluminescent device comprising a pixel defining layer and a light emitting structure, the pixel defining layer being doped with nano metal particles.
  • an isolation layer is disposed between the nano metal particles and the luminescent molecules in the light emitting structure.
  • the isolation layer can be part of a pixel defining layer, or the isolation layer and the nano metal particles form a separate core-shell structure.
  • the isolation layer may be composed of an insulating medium.
  • the metal material in the nano metal particles may be one of gold, silver, and aluminum; or one of the respective alloys of gold, silver, and aluminum; or two of gold, silver, and aluminum or Three alloys.
  • the shape of the nano metal particles may be one or more of a spherical shape, a prismatic shape, a cubic shape, and a cage shape.
  • the nano metal particles may have a particle diameter of from 1 nm to 100 nm.
  • Another aspect of the present invention provides a method of fabricating an organic electroluminescent device, comprising: forming a layer of a host material doped with nano metal particles on a substrate provided with an electrode; and performing the layer of the matrix material by a patterning process Processing, to obtain a pixel defining layer of a desired shape.
  • one example of forming a layer of a matrix material includes: forming a first layer of host material on a substrate provided with an electrode; sputtering a metal on the first layer of matrix material to form dispersedly arranged nano metal particles; A second matrix material layer is formed on the first matrix material layer formed with dispersedly arranged nano metal particles.
  • another example of forming a layer of a matrix material includes: simultaneously sputtering a host material and nano metal particles on a substrate provided with an electrode to form a layer of a matrix material doped with nano metal particles.
  • the method further comprises: immersing the pixel defining layer of the desired shape with an etching solution to remove the exposed nano metal particles.
  • the matrix material may be silica, silicon oxynitride, aluminum oxide, or the like.
  • a further example of forming a layer of a matrix material includes: providing the nano metal particles; mixing the nano metal particles with a matrix material to form a mixed solution of nano metal particles; coating the mixed solution on a substrate provided with an electrode On top, a layer of a matrix material doped with nano metal particles is formed.
  • the matrix material can be polyimide.
  • the matrix material can be a SiO 2 gel.
  • the method may further include: forming an isolation layer around the nano metal particles, the isolation layer and the nano metal particles forming a separate core-shell structure;
  • the nano metal particles having the outer layer formed with the separation layer are mixed with the matrix material to form a mixed solution of the nano metal particles.
  • FIG. 1 is a schematic structural view of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an organic electroluminescent device according to another embodiment of the present invention
  • FIG. 4 is a flow chart of a method for fabricating an organic electroluminescent device according to another embodiment of the present invention
  • FIG. 6 is a flow chart of a method for preparing an organic electroluminescent device according to another embodiment of the present invention.
  • the organic electroluminescent device comprises a substrate 1, an anode 2 disposed on the substrate 1, a pixel defining layer 3 disposed on the substrate 1 and the anode 2, and a cathode disposed above the pixel defining layer. 4.
  • a light emitting structure 5 is disposed in a space defined by the pixel defining layer 3.
  • the light emitting structure 5 may be a single layer structure, for example, including only one layer of organic light emitting material; the light emitting structure 5 may also be a three layer device structure, for example The hole transport layer, the light emitting layer, and the electron transport layer are sequentially included from bottom to top; in addition, the light emitting structure 5 may also be a five-layer device structure, including a hole injection layer 51 in order from bottom to top as shown in FIGS. 1 and 2. The hole transport layer 52, the light-emitting layer 53, the electron transport layer 54, and the electron injection layer 55.
  • the light-emitting structure 5 may further include a plurality of light-emitting layers, or other film layer structures including a hole blocking layer, which are not limited in this embodiment.
  • Figures 1 and 2 of the present embodiment are pixel defining layers in the organic electroluminescent device of the present embodiment for better illustration.
  • the specific selection of the substrate, the anode, the cathode, and the luminescent material shown in the drawing and their positional relationship with the pixel defining layer, the size relationship, and the like are not limited to the embodiment.
  • the pixel defining layer 3 is doped with nano metal particles.
  • the nano metal particles are metal particles having a particle size of nanometers, for example, the particle diameter may be Inm - 100 nm, and the nano metal particles are provided in a dispersed form in the pixel defining layer.
  • the content of the nano metal particles in the pixel defining layer is not specifically limited in the embodiment of the present invention. However, it is understood that the content is preferably such that leakage or short circuit between pixels is not caused.
  • the doping of the nano metal particles in the pixel defining layer may be uniformly doped, as shown in FIG. 2; or may be uneven doping, for example, the nano metal particles are embedded in the pixel defining layer according to a certain regular pattern. As shown in Fig. 1, the nano metal particles are only in the range of one plane in the middle of the pixel defining layer.
  • the organic light-emitting layer of the light-emitting structure 5 contains a light-emitting molecule, and the light-emitting molecule may be a fluorescent molecule or a phosphorescent molecule.
  • a luminescent molecule will be described as an example of a fluorescent molecule.
  • SP refers to an electron-dense wave that propagates along a metal surface generated by the interaction of free-vibrating electrons existing on a metal surface and photons. If the surface of the metal is very rough or in the vicinity of the curved structure of the metal (such as spheres, cylinders, etc.), then SP cannot propagate along the interface in the form of waves, but is confined to the surface of these structures, in this special In the case, SP is also called Localized Surface Plasmon (LSP).
  • LSP Localized Surface Plasmon
  • the oscillation frequency of this resonance is mainly determined by the electron density of the metal (determined by the type of metal), the effective electron mass, the size and shape of the particles, the surrounding medium, and the like.
  • LSP resonance occurs, the electromagnetic field around the nano metal particles is greatly enhanced.
  • the LSP resonance has the following effects.
  • the light radiated by the excitons acts on the metal nanoparticles to induce LSP resonance, thereby causing an increase in the local electric field near the fluorescent molecules, thereby improving The rate of exciton transition radiation enhances internal quantum efficiency.
  • the scattering effect of the metal nanoparticles can change the direction of the light that is irradiated onto the nanoparticles, and scatter the light that could not be emitted outside the device to the outside of the device, thereby enhancing the light-emitting efficiency of the device.
  • the scattering cross section of the external light is greatly enhanced due to the action of the LSP.
  • the organic electroluminescent device provided by the embodiment of the invention is doped with nano metal particles in its pixel defining layer.
  • the organic electroluminescent device When the organic electroluminescent device is energized, the light incident into the pixel defining layer interacts with the nano metal particles in the pixel defining layer to cause LSP resonance.
  • This resonance effect not only increases the excitation intensity and efficiency of the fluorescent molecules, increases the fluorescence quantum yield, increases the internal quantum efficiency, and more importantly, this resonance effect also greatly increases the light scattering of the metal nanoparticles and The absorption cross section scatters light that could not be emitted from the outside, which increases the external quantum efficiency and improves the luminous efficiency of the organic electroluminescent device.
  • the resonance effect does not change the luminescence spectrum of the organic electroluminescence device compared to the optical microcavity effect, and the original color of the device is maintained to the utmost while improving the luminescence efficiency.
  • the nano metal particles have a particle size of from 1 nm to 100 nm. Further preferably, nano metal particles having different particle diameter sizes may be doped in the pixel defining layer to accommodate the wavelength of light from the light emitting layer 53.
  • the nano metal particles may be one of gold, silver, aluminum, or may be their respective alloys. It may be an alloy composed of two or three of gold, silver, and aluminum.
  • the nano metal particles may be one or more of a spherical shape, a prismatic shape, a cubic shape, and a cage shape.
  • the cage refers to a structure in which the interior of the nano metal particles is hollow, and the outside is uniformly arranged with holes and corners. The increase in field strength caused by LSP resonance is mainly concentrated at the tip angle of these structures, and the enhancement factor of the field strength at these positions is larger. Stronger luminous efficiency.
  • an isolation layer may be disposed between the nano metal particles and the luminescent molecules. This is because during the interaction of the nano metal particles with the luminescent molecules from the luminescent structure 5, there are simultaneously opposite processes of fluorescence quenching and fluorescence enhancement. When the distance between the nano metal particles and the luminescent molecules is too close, the fluorescence quenching effect is easily caused. Therefore, a more preferred solution is to provide an isolating layer between the nano metal particles and the luminescent molecules.
  • an isolation layer may be disposed between the portion of the nano metal particles and the luminescent molecules.
  • the spacer layer may be part of a pixel defining layer, i.e., the spacer layer is disposed in the pixel defining layer 3 to separate the nano metal particles from the light emitting structure 5.
  • the spacer layer may also constitute a core-shell structure together with the nano metal particles.
  • the nano metal particles are cores and the separator is a shell. There may be voids between the core shells, or they may be in direct contact.
  • the spacer layer may be an insulating medium and may be selected from one or more of Si0 2 , Si 3 N 4 , SiO x Ny, A1 2 0 3 , Y 2 0 3 , Ti0 2 , Ta 2 0 5 , Hf0 2 .
  • the separator may also be an organic polymer material selected from, for example, polydecyl acrylate (PMMA), polypyrrole, polyaniline, polyethylene, polystyrene-acrylic copolymer (PST-AA), polystyrene, and the like.
  • the embodiment of the present invention further provides a method for preparing an organic electroluminescent device, which comprises a method for preparing a pixel defining layer, as shown in FIG.
  • the method of preparing the pixel defining layer includes the following process.
  • the matrix material may be SiO 2 particles, polyimide, SiO 2 gel or the like.
  • the above anode is an example of an electrode of an electroluminescent device.
  • the present invention is not limited to the case where an anode is formed on a substrate, and for example, a cathode may be formed on the substrate.
  • the cathode is first formed on the substrate, the related preparation manner may be substantially the same as the case where the anode is first formed on the substrate, and thus the present disclosure is not particularly repeated.
  • the substrate material layer is processed by a patterning process to obtain a pixel boundary layer of a desired shape.
  • the patterning process may be performed by coating the photoresist or by using the light sensitization of the matrix material itself, by processing the substrate material by exposure, development and/or etching steps.
  • the desired shape that is, the final pixel-defining layer.
  • one or more layers of luminescent materials may be sequentially formed in a space defined by the pixel defining layer.
  • the hole injection layer 51, the hole transport layer 52, and the luminescent layer are sequentially formed.
  • An electron transport layer 54, an electron injection layer 55, and then a cathode 4 is formed on the pixel defining layer 3 and the electron injection layer 55.
  • this embodiment does not specifically limit this.
  • a three-layer light-emitting structure of a hole transport layer, a light-emitting layer, an electron transport layer, or a single-layer light-emitting structure in which only one light-emitting layer is formed may be sequentially formed.
  • a layer of a matrix material doped with nano metal particles is formed on the bottom.
  • the resonance effect can not only improve the excitation intensity and efficiency of the fluorescent molecule, increase the fluorescence quantum yield, increase the internal quantum efficiency, but more importantly, the resonance effect also greatly increases the light of the metal nanoparticle.
  • the scattering effect and the absorption cross section scatter light that would otherwise not be emitted from the outside, which increases the external quantum efficiency and improves the luminous efficiency of the organic electroluminescent device.
  • the resonance effect does not change the illuminating utterance of the organic electroluminescent device, and the original color of the device is maintained to the utmost while improving the luminous efficiency.
  • an example of a method of preparing a pixel defining layer includes the following process.
  • the first matrix material layer may be formed by an electron beam evaporation process or a vapor deposition process, and the material in the first matrix material layer is, for example, silicon dioxide, formed on the substrate by electron beam evaporation or vapor deposition.
  • the material in the first matrix material layer may also be silicon oxynitride, aluminum oxide or the like.
  • nano metal particles such as a layer of nano silver particles
  • the thickness of the nano metal particle layer may be selected to be l-3 nm.
  • This step is similar to step 201, and can still be formed by electron beam evaporation process or vapor deposition process.
  • the second matrix material layer, the material in the second matrix material layer is, for example, silicon dioxide, silicon oxynitride, aluminum oxide or the like.
  • the layer of the matrix material consisting of the first matrix material layer and the second matrix material layer is processed by a patterning process to obtain a pixel defining layer of a desired shape.
  • a specific patterning process may be selected according to the matrix materials used in steps 201 and 203.
  • the materials in the first and second matrix material layers are non-photosensitive SiO 2 .
  • a pixel defining layer of a desired shape can be obtained by spin coating a layer of photoresist on the second layer of host material, performing process steps such as exposure, development, and etching.
  • another example of the method of preparing the pixel defining layer includes the following process.
  • a composite film of a matrix material and a nano metal particle can be prepared by a multi-target magnetron sputtering technique, for example, the matrix material is silicon dioxide, and the nano metal particles are gold, and simultaneously sputtering silicon dioxide and gold to form Au- Si0 2 composite film.
  • the composite film of different doping ratios can be obtained by adjusting the opening of the mask before the sputtering target, selecting the ratio of the metal particles and the matrix material deposited on the substrate.
  • the matrix material may be silicon oxynitride, aluminum oxide or the like in addition to silica.
  • the substrate material layer is processed by a patterning process to obtain a pixel boundary layer of a desired shape.
  • a specific patterning process may be selected according to the matrix material used in step 301. If the matrix material is non-photosensitive SiO 2 , in this step, a layer of photoresist may be spin-coated on the layer of the matrix material. Process steps such as exposure, development, and etching are performed to obtain a pixel defining layer of a desired shape.
  • the above two methods mainly use a sputtering process to form nano metal particles.
  • a sputtering process since the nano metal particles are likely to be exposed to the surface of the matrix material layer, the performance of the organic electroluminescent device is disadvantageous. Therefore, after steps 204 and 302 of the above two methods, a process for removing the dew nano metal particles may be separately included.
  • the pixel-defining layer of the desired shape may be immersed with an etching solution to remove the exposed nano metal particles.
  • an insulating layer may be formed over the formed matrix material layer to prevent adverse effects of the nano metal particles exposed to the surface of the matrix material layer on the performance of the organic electroluminescent device.
  • still another example of the method of fabricating the pixel defining layer includes the following process.
  • granulation can be carried out by a thermal decomposition method, an electrochemical method, a microwave reduction method, a chemical reduction method or the like.
  • a thermal decomposition method an electrochemical method, a microwave reduction method, a chemical reduction method or the like.
  • nano metal particles can be obtained from others.
  • the matrix material in this step can be selected according to whether the nano metal particles formed in step 401 are oil-soluble or water-soluble. For example, if oil-soluble nano metal particles are obtained in step 401, this step may select an oil-soluble photoresist commonly used to form a pixel defining layer as a host material, such as a polyimide material. If water soluble nano metal particles are obtained in step 401, this step may select a water soluble material that is typically used to form the pixel as a matrix material, such as a SiO 2 gel.
  • a specific patterning process may be selected according to the matrix material selected in step 402. If the matrix material is non-photosensitive SiO 2 , in this step, a layer of photoresist may be spin-coated on the layer of the matrix material. Process steps such as exposure, development, and etching are performed to obtain a pixel defining layer of a desired shape. If the host material is a photosensitive photoresist such as a polyimide material, the pixel defining layer of the desired shape can be obtained directly by a process step of exposure, development, and the like.
  • the step 402 may further include: forming an isolation layer on the periphery of the nano metal particles, the isolation layer and the nano metal The particles constitute an independent core-shell structure.
  • the nano metal particles may form a core-shell structure with the separator.
  • the separator is, for example, Ti0 2 , polystyrene or the like.
  • An example of the step 402 may be: mixing the nano metal particles having the isolation layer formed on the periphery with the matrix material to form a mixed solution of the nano metal particles.
  • Example 1 Organic electroluminescent device containing an Ag-SiO 2 pixel defining layer
  • a layer of SiO 2 film 31 is deposited by electron beam evaporation or vapor deposition on a substrate 1 containing an anode 2 (e.g., ITO).
  • anode 2 e.g., ITO
  • a 2 nm thick silver layer was deposited on the surface of the SiO 2 film 31 by sputtering.
  • the gas pressure in the chamber during sputtering was 10 Pa
  • the atmosphere was argon gas
  • the gas flow was maintained at 30 sccm (standard-state cubic centimeter per mimute, The standard condition is cubic centimeters per minute)
  • the sputtering current is 0.2A
  • the voltage is 0.5KV
  • the substrate temperature is 200 °C.
  • it was placed in a vacuum atmosphere having a degree of vacuum of less than 1 X 10 ⁇ 3 Pa, annealed at a temperature of 300 ° C for half an hour, and then cooled to room temperature to form a discontinuous layer of nano silver particles 32.
  • a layer of SiO 2 film 33 is then deposited on the discontinuous layer of nanosilver particles 32 by electron beam evaporation or vapor deposition to cover the silver particles.
  • a layer of photoresist is spin-coated, exposed, developed, and etched to obtain a desired shape of the pixel defining layer 3.
  • a hole injection layer 51, a hole transport layer 52, a light-emitting layer 53, an electron transport layer 54, an electron injection layer 55, a cathode layer 4, and the like are sequentially deposited in a space defined by the pixel defining layer 3, and finally formed as shown in FIG. Organic electroluminescent device.
  • Example 2 Organic electroluminescent device containing an Au-SiO 2 pixel defining layer
  • a Au-SiO 2 composite film of a metal nanoparticle dispersed oxide is prepared by a multi-target magnetron sputtering technique.
  • a target is placed with high-purity Si0 2 , one placed with high purity Au.
  • the sputtering gas was high purity argon (99.995%).
  • Vacuum degree before sputtering chamber is ⁇ 5 xl (T 5 Pa, a sputtering pressure of 1.6 10 sputtering argon and oxygen flow rate were 8.3xl0_ 8 m 3 / s and 5.8xl0 "8 m 3 / s
  • the RF power of Si0 2 and Au is 200W and 50W respectively.
  • the Au-SiO 2 composite film is processed by a patterning process to obtain a pixel defining layer 3 of a desired shape.
  • the patterning process may be performed by dry etching such as plasma etching, or by spin coating.
  • the wet etching method in which the photoresist is subjected to exposure and development is not described here.
  • the pixel defining layer lmin was soaked with Au etching solution of KI/I 2 /H 2 0 (1 g/1 g/200 mL) to remove the exposed Au from the edge, and the final pixel defining layer structure was obtained.
  • a hole injection layer 51, a hole transport layer 52, a light-emitting layer 53, an electron transport layer 54, an electron injection layer 55, a cathode layer 4, and the like are sequentially deposited in a space defined by the pixel defining layer, and finally an organic electroluminescent device is formed.
  • the structure of the device is shown in Figure 2.
  • Example 3 Organic electroluminescent device containing cubic nano-Ag-polyimide pixel defining layer
  • cubic nano silver is prepared by a chemical reduction method.
  • 3 mL of silver nitrate in ethylene glycol solution (0.1 M) and 3 mL of PVP in ethylene glycol solution (0.6 M) were injected into a three-necked flask containing 5 mL of ethylene glycol through a two-channel syringe pump. °C heating under constant temperature reflux. The feed rate was controlled at 0.3 mL/min. The mixture was refluxed at 160 ° C for 60 min under magnetic stirring. After the end of the reaction, 5-10 times the amount of acetone was added to dilute, and then the centrifugation was repeated several times, and the supernatant was removed each time to finally obtain pure cubic nano silver particles.
  • the prepared cubic nano silver particles were dispersed with isopropyl alcohol to obtain a solution which can be spin-coated.
  • the isopropyl alcohol solution of the above dispersed cubic nano silver particles is thoroughly mixed with a photoresist material which can form the pixel defining layer 3, and then spin-coated on the substrate 1 on which the conductive anode 2 (such as an ITO layer) is formed.
  • the film of the above mixed material is dried, and then subjected to a process of exposure, development, etc. to obtain a patterned pixel defining layer structure 3 embedded with cubic nano silver particles.
  • a hole injection layer 51, a hole transport layer 52, a light-emitting layer 53, an electron transport layer 54, an electron injection layer 55, a cathode layer 4, and the like are sequentially deposited in a space defined by the pixel defining layer, and finally an organic electroluminescent device is formed.
  • the structure of the device is shown in Figure 2.
  • Example 4 Organic electroluminescent device containing Au-polyimide pixel defining layer
  • the nano gold particles synthesized in this step A are oil-soluble, and in step B, a photoresist material compatible with the oil-soluble particles is selected.
  • the size of the gold nanoparticles formed by the reverse microemulsion system is controlled, and the protective surfactant 4-dodecyloxybenzylamine (C 12 OBA ) is taken as an example.
  • the specific steps are as follows: First, 0.50 mL of 9.7 10" 3 M chloroauric acid (HAuCl 4 ) aqueous solution was evaporated to dryness in a 50 mL beaker, followed by 16.0 mL of n-heptane, 4.0 mL of n-butanol, 0.141 g of 4- Dodecyloxybenzylamine (C 12 OBA/HAuCl 4 molar ratio 100:1), the mixture was ultrasonically dispersed into a clear, transparent pale yellow solution at room temperature.
  • composition ratio of the respective microemulsion components having different size and morphology of C 12 OBA hydrophobic protected gold nanoparticles can be produced that is.
  • the gold nanoparticle prepared in the step A was dissolved in a chloroform solution to form a gold chloroform sol, and a certain amount of a polyimide solution was added thereto, followed by thorough mixing.
  • the mixed solution is spin-coated, and then a series of patterning processes commonly used in the semiconductor industry, such as drying, exposure, and development, are used to obtain a final patterned pixel boundary layer structure.
  • One or more layers of luminescent material and metal cathode layer are deposited in the pixel defining layer and encapsulated to obtain an organic electroluminescent device containing uniformly distributed nano gold particles in the pixel defining layer.
  • Example 5 Organic electroluminescent device containing Au@Ti0 2 -SiO 2 gel pixel defining layer
  • the nano gold sol was prepared by reducing chloroauric acid (HAuCl 4 ) with sodium citrate, and then adding an ethanol solution of tetrabutyl titanate, and continuously stirring, refluxing, filtering, washing and drying to obtain Au@Ti0 2 core- Nanoparticles of the shell structure.
  • the composite nanoparticles can be effectively dispersed in a hydrophilic solvent for the next pixel-defining layer formation process.
  • the above Au@Ti0 2 core-shell nanoparticles were first ultrasonically dispersed in a water-ethanol system. Ethyl orthosilicate, absolute ethanol, and dilute hydrochloric acid were uniformly mixed in a certain ratio to form a SiO 2 gel at room temperature. Then, the ⁇ : system of Au@Ti0 2 and the Si0 2 gel are mixed in a certain ratio to obtain a coating. The solution was then spin-coated (coated on the ITO layer containing the TFT driving unit on the underlayer), and dried to obtain a SiO 2 film in which Au@Ti0 2 particles were embedded. Subsequently, a layer of photoresist is spin-coated thereon, and exposure, development, fixing, and the like are performed to obtain a patterned pixel defining layer structure.
  • One or more layers of luminescent material and metal cathode layer are deposited in the pixel defining layer and encapsulated to obtain an organic electroluminescent device containing uniformly distributed nano gold particles in the pixel defining layer.
  • Example 6 Organic electroluminescent device containing Ag@polystyrene-polyimide pixel defining layer
  • the above device was placed in a constant temperature water bath, stirring was maintained for about 10 minutes, and the temperature was lowered to 30 ° C to avoid premature decomposition after the initiator KPS (potassium persulfate) was added due to excessive temperature; the initiator KPS was added and stirring was maintained for 20 minutes. N 2 rows of 0 2 ; Then, the purified styrene monomer was placed in the dropping funnel and added dropwise to the reaction system, and the mixture was dropped in about 10 minutes; then, the temperature was raised to 70 ° C, and the stirring rate during the reaction was passed. The N 2 rate remains constant. After 5 hours, the reaction was terminated, and the mixture was naturally cooled to a temperature below 40 ° C under stirring to obtain a composite latex.
  • the initiator KPS potassium persulfate
  • the composite latex was demulsified with NaCl, it was filtered, washed, and dried to obtain a core-shell structure of Ag @polystyrene having nano silver particles as a core and polystyrene as a shell.
  • the Ag@polystyrene core-shell structure prepared above is dispersed in an organic solvent, and then mixed with a polyimide solution, and a photoresist film is obtained by a spin coating process, followed by drying, exposure, development, fixing, etc. Process, to obtain a graphical pixel-defining layer structure.
  • the pixel defining layer structure contains uniformly distributed Ag@polystyrene core-shell nanoparticles.
  • One or more layers of luminescent material and metal cathode layer are deposited in the pixel defining layer and encapsulated to obtain an organic electroluminescent device containing uniformly distributed nano gold particles in the pixel defining layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件包括像素界定层(3)和发光结构(5),该像素界定层(3)中掺杂有纳米金属颗粒(32)。该有机电致发光器件具有增加的发光效率。还提供了一种有机电致发光器件的制备方法。

Description

有机电致发光器件及其制备方法 技术领域
本发明的实施例涉及一种有机电致发光器件及其制备方法。 背景技术
有机电致发光器件的基本结构是两层电极中间夹有一层或者多层有机发 光层。 该两层电极分别作为该发光器件的阳极和阴极。 根据需要, 该电极可 以采用金属或金属氧化物材料制备。 在外加电压的作用下, 载流子电子和空 穴分别从阴极方向和阳极方向注入到有机发光层中, 并相遇复合产生激子, 激子的能量以光的形式衰减, 从而辐射出光, 实现电致发光的效果。
在有机电致发光器件中, 主要存在两个方面的能量损耗。 第一, 注入载 流子在发光层中复合发光时, 并不是所有能量均能转变为光子, 其中一部分 能量经过晶格振动、 深能级杂质跃迁等辐射跃迁过程被损耗掉, 该过程可用 内量子效率描述。 第二, 辐射的光在阳极 /基底、 基底 /空气等界面处发生全 反射而无法折射出去,以及在阳极 /有机发光层界面的波导模式损失以及金属 电极附近的表面等离子损失等, 这使得大约仅 20%左右的光能够透出器件用 作显示, 该过程可用外量子效率描述。
目前, 人们尝试了多种方法来提高外量子效率, 也即提高光的提取效率 或者出光效率。 例如通过在金属氧化物电极(如 ITO )上制造表面微结构来 减少波导模式损失; 通过将光子晶体或微透镜阵列贴附到玻璃基底上减少全 反射; 制造具有褶皱的阴极以降低其表面等离子损失, 以及利用光学微腔结 构等。
这些技术虽然可以大幅度增加器件的出光效率, 但往往也存在弊端。 例 如, 对于在阴极上形成周期性或准周期性微结构图形以及将光子晶体或微透 镜阵列贴附到玻璃基底上等方法而言, 其往往采用纳米影印技术, 制备工艺 和难度较大。 而光学微腔效应容易造成发光颜色的偏离和可视角度变窄等问 题。 发明内容
本发明的实施例提供了能够提高外量子效率的有机电致发光器件。
本发明的一个方面提供了一种有机电致发光器件, 包括像素界定层和发 光结构, 所述像素界定层中掺杂有纳米金属颗粒。
例如,在所述纳米金属颗粒与发光结构中的发光分子之间设置有隔离层。 例如, 所述隔离层可为像素界定层的一部分, 或者所述隔离层与所述纳米金 属颗粒构成独立的核-壳结构。
例如, 所述隔离层可由绝缘介质构成。
例如, 所述纳米金属颗粒中的金属材料可为金、 银、 铝中的一种; 或者 金、 银、 铝的各自的合金中的一种; 或者由金、 银、 铝中的两种或三种构成 的合金。
例如, 所述纳米金属颗粒的形状可为球状、 棱柱状、 立方体状、 笼状中 的一种或几种。
例如, 所述纳米金属颗粒的粒径可为 lnm-100nm。
本发明的另一个方面提供了一种有机电致发光器件的制备方法, 包括: 在设置有电极的基底上形成掺杂有纳米金属颗粒的基质材料层; 通过构图工 艺对所述基质材料层进行处理, 得到所需形状的像素界定层。
例如, 形成基质材料层的一个示例包括: 在设置有电极的基底上形成第 一基质材料层; 在所述第一基质材料层上溅射金属, 形成分散排布的纳米金 属颗粒; 在所述形成有分散排布的纳米金属颗粒的所述第一基质材料层上形 成第二基质材料层。
例如, 形成基质材料层的另一个示例包括: 在设置有电极的基底上同时 溅射基质材料和纳米金属颗粒, 形成掺杂有纳米金属颗粒的基质材料层。
例如, 在所述得到所需形状的像素界定层的步骤之后, 该方法还包括: 用腐蚀液浸泡所述所需形状的像素界定层, 去除棵露在外的纳米金属颗粒。
例如, 所述基质材料可为二氧化硅、 氮氧化硅、 氧化铝等。
例如, 形成基质材料层的再一个示例包括: 提供所述纳米金属颗粒; 将 所述纳米金属颗粒与基质材料混合形成纳米金属颗粒的混合溶液; 将所述混 合溶液涂覆在设置有电极的基底上,形成掺杂有纳米金属颗粒的基质材料层。
例如, 所述基质材料可为聚酰亚胺。 例如, 所述基质材料可为 Si02凝胶。
例如, 在提供所述纳米金属颗粒的步骤之后, 该方法还可包括: 在所述 纳米金属颗粒外围形成隔离层, 所述隔离层与所述纳米金属颗粒构成独立的 核-壳结构; 然后, 将所述外围形成有隔离层的纳米金属颗粒与基质材料混合 形成纳米金属颗粒的混合溶液。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明实施例提供的有机电致发光器件的结构示意图;
图 2为本发明另一实施例提供的有机电致发光器件的结构示意图; 图 4为本发明另一实施例提供的有机电致发光器件的制备方法流程图; 图 5为本发明另一实施例提供的有机电致发光器件的制备方法流程图; 图 6为本发明另一实施例提供的有机电致发光器件的制备方法流程图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。 行详细描述。
本发明的一个实施例提供了一种有机电致发光器件。 如图 1和 2所示, 该有机电致发光器件包括基底 1、 设置在基底 1上的阳极 2、 设置在基底 1 和阳极 2上的像素界定层 3 , 以及设置在像素界定层上方的阴极 4。在像素界 定层 3限定的空间内设置有发光结构 5。 例如, 发光结构 5可为单层结构, 例如, 仅包括一层有机发光材料; 发光结构 5还可以为三层器件结构, 例如 从下到上依次包括空穴传输层、 发光层、 电子传输层; 此外, 发光结构 5还 可以为五层器件结构, 如图 1和 2所示从下到上依次包括空穴注入层 51、 空 穴传输层 52、 发光层 53、 电子传输层 54、 电子注入层 55。 当然, 发光结构 5还可以包括多层发光层, 或者包括空穴阻挡层等其他膜层结构, 这些, 本 实施例均不做限定。
可以理解的是, 本实施例图 1和图 2是为了更好的说明的本实施例有机 电致发光器件中的像素界定层。 图中所示的基底、 阳极、 阴极、 发光材料的 具体选取及其与像素界定层的位置关系、 大小关系等并不限定本实施例。
在像素界定层 3中掺杂有纳米金属颗粒。 纳米金属颗粒为粒径在纳米级 别的金属颗粒, 例如粒径可以为 Inm-lOOnm, 这些纳米金属颗粒以分散的形 式提供于像素界定层中。
需要说明的是, 本发明实施例对纳米金属颗粒在像素界定层中的含量不 作具体限定。 但可以理解的是, 其含量以不会造成像素间的漏电或短路现象 发生为宜。
纳米金属颗粒在像素界定层中的掺杂可以是均勾的掺杂, 如图 2所示; 也可以是不均匀的掺杂, 例如纳米金属颗粒按照一定的规则图形嵌入到像素 界定层中。 如图 1所示, 纳米金属颗粒仅^:在像素界定层中部的一个平面 范围内。
发光结构 5的有机发光层包含发光分子, 发光分子可以为荧光分子或者 磷光分子。 以下以发光分子为荧光分子为例进行说明。 当有机电致发光器件 的阳极 2和阴极 4通电时, 发光结构 5中的发光材料由于电子和空穴的复合 而发光, 其发出的光线射入像素界定层 3中, 与其中的纳米金属颗粒相互作 用, 形成表面等离子体(surface plasmon, SP ) 。 SP是指在金属表面存在的 自由振动的电子与光子相互作用产生的沿着金属表面传播的电子疏密波。 如 果金属的表面非常粗糙或在金属的曲面结构(如球体、柱体等)附近, 此时, SP不能以波的形式沿界面传播, 而是被局限在这些结构的表面附近,在这种 特殊情况下, SP也被称作局域表面等离子体(Localized Surface Plasmon, LSP ) 。 当尺寸接近或小于光波长的金属颗粒被光照后, 其振荡电场使金属 颗粒的电子云相对于核心发生位移, 由于电子云和核心间的库伦引力的作用 产生恢复力, 引起电子云在核心周围的振荡。 当这种电子云的集体振荡频率 与激发光的波长接近或相等时, 就发生 LSP共振。
这种共振的振荡频率主要由金属的电子密度(由金属种类决定) 、 有效 电子质量、 颗粒的尺寸、 形状、 周围介质等因素决定。 发生 LSP共振时, 纳 米金属颗粒周围的电磁场被大大增强。 LSP共振具有如下效果。
第一、 发光结构 5中的荧光分子与纳米金属颗粒的表面距离合适时, 激 子辐射出的光与金属纳米颗粒作用, 诱导产生 LSP共振, 从而导致荧光分子 附近局域电场的增强, 进而提高激子跃迁辐射的速率, 增强内量子效率。
第二、 金属纳米颗粒的散射效应, 可以改变照射到纳米颗粒上的光线的 方向, 将原本不能射出外界的光线散射到器件外边, 增强器件的出光效率。 尤其是当纳米颗粒的直径和相位合适时, 由于 LSP作用, 其对外界光线的散 射截面会大大增强。
本发明实施例提供的有机电致发光器件, 在其像素界定层中掺杂有纳米 金属颗粒。 当有机电致发光器件通电时, 射入像素界定层中的光线与像素界 定层中的纳米金属颗粒相互作用, 发生 LSP共振。 该共振效应不仅能够提高 荧光分子的激发强度和效率、 增大荧光量子产率, 增大内量子效率, 而且更 重要的是,这种共振效应还极大地增大了金属纳米颗粒的光散射和吸收截面, 将原本不能射出外界的光线散射出去, 这增大了外量子效率, 提高有机电致 发光器件的发光效率。 此外, 相比于光学微腔效应, 共振效应不会改变有机 电致发光器件的发光光谱, 在提高发光效率的同时, 最大程度保持了器件的 原来色彩。
在本发明的另一个实施例中, 在第一个实施例的基础上, 优选的, 纳米 金属颗粒粒径尺寸为 lnm-100nm。 进一步优选的, 可在像素界定层中掺杂粒 径尺寸不同的纳米金属颗粒, 以适应来自发光层 53的光的波长。
在本发明的又一个实施例中,在第一或第二个实施例的基础上,优选的, 纳米金属颗粒可以为金、 银、 铝中的一种, 也可以为它们各自的合金, 还可 以为由金、 银、 铝中的两种或三种构成的合金。
在又一优选实施例中, 在前述任一实施例的基础上, 纳米金属颗粒可以 为球状、 棱柱状、 立方体状、 笼状中的一种或几种。 这里笼状是指纳米金属 颗粒内部中空, 外部均匀布置有孔洞和棱角的结构。 LSP共振导致的场强的 增加主要集中在这些结构的尖端角度, 这些位置场强的增强因子更大, 可获 得更强的发光效率。
在另一优选实施例中, 在前述任一实施例的基础上, 在纳米金属颗粒与 所述发光分子之间可以设置有隔离层。 这是因为在纳米金属颗粒与来自发光 结构 5的发光分子相互作用的过程中, 同时存在荧光淬灭和荧光增强两个作 用相反的过程。 在纳米金属颗粒与发光分子距离过近时, 容易导致荧光淬灭 效应。 因此, 更为优选的方案是在纳米金属颗粒与发光分子之间设置有隔离 层。 可以理解的是, 由于像素界定层 3中靠近发光结构 5—侧的纳米金属颗 粒距离发光结构较近, 因此可以对这部分纳米金属颗粒与发光分子之间设置 隔离层。 所述隔离层可以为像素界定层的一部分, 即隔离层设置在像素界定 层 3中, 将纳米金属颗粒与发光结构 5隔开。 此外, 隔离层也可以与纳米金 属颗粒一起构成核-壳结构。 纳米金属颗粒为核, 隔离层为壳。 在核壳之间可 以存在空隙, 也可以直接相接触。
该隔离层可以为绝缘介质, 可选自 Si02、 Si3N4、 SiOxNy、 A1203、 Y203、 Ti02、 Ta205、 Hf02的一种或几种。 该隔离层还可为有机聚合物材料, 选取 例如聚曱基丙烯酸曱酯 (PMMA ) 、 聚吡咯、 聚苯胺、 聚乙烯、 聚苯乙烯- 丙烯酸共聚物(PST-AA ) 、 聚苯乙烯等。
与本发明实施例提供的有机电致发光器件相对应的, 本发明实施例还提 供了一种有机电致发光器件的制备方法,该方法包括像素界定层的制备方法, 如图 3所示, 所述像素界定层的制备方法包括如下工艺。
101、 在设置有例如阳极的基底上形成掺杂有纳米金属颗粒的基质材料 层。
该基质材料可以为 Si02颗粒、 聚酰亚胺、 Si02凝胶等。 纳米金属颗粒的 介绍可参见前述实施例, 此处不再赘述。 上述阳极是电致发光器件的电极的 示例。 本发明不限于基底上形成有阳极的情形, 例如基底上也可以先形成阴 极。 对于基底上先形成阴极的情形, 相关的制备方式与在基底上先形成阳极 的情形可以是基本上相同的, 因此本公开不再特别重复。
102、通过构图工艺对所述基质材料层进行处理,得到所需形状的像素界 定层。
在本步骤中, 构图工艺可以是通过涂覆光刻胶或者利用基质材料本身的 光感作用, 通过曝光、 显影和 /或刻蚀等步骤对基质材料进行处理, 得到所需 要的形状, 即得到最终的像素界定层。
在制备完成像素界定层后, 可以在像素界定层限定的空间内依次形成一 层或多层发光材料, 例如如图 1所示, 依次形成空穴注入层 51、 空穴传输层 52、 发光层 53、 电子传输层 54、 电子注入层 55 , 然后在像素界定层 3和电 子注入层 55上形成阴极 4。 可以理解, 本实施例对此不作具体限定, 例如还 可以依次形成空穴传输层、 发光层、 电子传输层的三层发光结构或者仅形成 一层发光层的单层发光结构。 底上形成掺杂有纳米金属颗粒的基质材料层。 当有机电致发光器件通电时, 射入像素界定层中的光线与其中的纳米金属颗粒相互作用, 发生 SP或 LSP 共振。 该共振效应不仅能够提高荧光分子的激发强度和效率、 增大荧光量子 产率, 增大内量子效率, 而且更重要的是, 这种共振效应还极大地增大了金 属纳米颗粒的对光的散射作用和吸收截面, 将原本不能射出外界的光线散射 出去, 这增大了外量子效率, 提高有机电致发光器件的发光效率。 此外, 相 比于光学微腔效应, 该共振效应不会改变有机电致发光器件的发光光语, 在 提高发光效率的同时, 最大程度保持了器件的原来色彩。
在本发明的一个实施例中, 如图 4所示, 像素界定层的制备方法的一个 示例包括如下工艺。
201、 在设置有阳极的基底上形成第一基质材料层。
在本步骤中, 可通过电子束蒸发工艺或者气相沉积工艺形成第一基质材 料层, 所述第一基质材料层中的材料例如为二氧化硅, 则通过电子束蒸发或 者气相沉积在基底上形成一层二氧化硅薄膜。 当然, 除了二氧化硅外, 所述 第一基质材料层中的材料还可以为氮氧化硅、 氧化铝等。
202、在所述第一基质材料层上溅射金属,形成分散排布的纳米金属颗粒。 本步骤中采用溅射方式镀一层纳米金属颗粒层, 例如纳米银颗粒层。 需 要说明的是, 此处形成的纳米金属颗粒是不连续的, 如图 1所示。 纳米金属 颗粒层的厚度可选的为 l-3nm。
203、在所述形成有分散排布的纳米金属颗粒的所述第一基质材料层上形 成第二基质材料层。
本步骤与步骤 201类似, 仍可采用电子束蒸发工艺或者气相沉积工艺形 成第二基质材料层, 所述第二基质材料层中的材料例如为二氧化硅、 氮氧化 硅、 氧化铝等。
204、通过构图工艺对由所述第一基质材料层和第二基质材料层组成的所 述基质材料层进行处理, 得到所需形状的像素界定层。
本步骤中, 可根据步骤 201和步骤 203中所采用的基质材料选择具体的 构图工艺, 例如, 若第一和第二基质材料层中的材料为不感光的 Si02, 则在 本步骤中, 可通过在第二基质材料层上旋涂一层光刻胶, 进行曝光、 显影和 刻蚀等工艺步骤获得所需形状的像素界定层。
在本发明的另一个实施例中, 如图 5所示, 像素界定层的制备方法的另 一个示例包括如下工艺。
301、在设置有阳极的基底上同时溅射基质材料和纳米金属颗粒,形成掺 杂有纳米金属颗粒的基质材料层。
本步骤中, 可采用多靶磁控溅射技术制备基质材料和纳米金属颗粒的复 合薄膜, 例如基质材料为二氧化硅, 纳米金属颗粒为金, 则同时溅射二氧化 硅和金形成 Au-Si02复合薄膜。 通过调节溅射靶前遮挡板的开启, 选择沉积 到基底上的金属颗粒和基质材料的比例,可以获得不同掺杂比例的复合薄膜。 所述基质材料除了可以为二氧化硅外, 还可以为氮氧化硅、 氧化铝等。
302、通过构图工艺对所述基质材料层进行处理,得到所需形状的像素界 定层。
本步骤中, 可根据步骤 301中所采用的基质材料选择具体的构图工艺, 若基质材料为不感光的 Si02, 则在本步骤中, 可通过在基质材料层上旋涂一 层光刻胶, 进行曝光、 显影和刻蚀等工艺步骤获得所需形状的像素界定层。
上述两种方法主要采用溅射工艺形成纳米金属颗粒, 在溅射过程中, 由 于纳米金属颗粒有可能暴露于基质材料层的表面, 不利于有机电致发光器件 的性能。 因此, 在上述两种方法的步骤 204和步骤 302后, 还可分别包括去 除棵露纳米金属颗粒的工艺。
例如, 可用腐蚀液浸泡所述所需形状的像素界定层, 去除棵露在外的纳 米金属颗粒。 或者, 也可以采取在形成的基质材料层上方形成一层绝缘层, 来防止暴露于基质材料层表面的纳米金属颗粒对有机电致发光器件性能的不 良影响。 在本发明的又一个实施例中, 如图 6所示, 像素界定层的制备方法的再 一个示例包括如下工艺。
401、 制备纳米金属颗粒。
本步骤中, 可通过热分解法、 电化学法、 微波还原法、 化学还原法等制 粒。 当然, 纳米金属颗粒可以从其他人那里获得。
402、 将所述纳米金属颗粒与基质材料混合形成纳米金属颗粒的混合溶 液。
可根据步骤 401中形成纳米金属颗粒是油溶性还是水溶性选择本步骤中 的基质材料。 例如, 若步骤 401中获得油溶性纳米金属颗粒, 则本步骤可选 择通常用于形成像素界定层的油溶性光刻胶作为基质材料, 比如聚酰亚胺材 料。 若步骤 401中获得水溶性纳米金属颗粒, 则本步骤可选择通常用于形成 像素界定成的水溶性材料作为基质材料, 比如 Si02凝胶。
403、将所述混合溶液涂覆在设置有阳极的基底上,形成掺杂有纳米金属 颗粒的基质材料层。
404、通过构图工艺对所述基质材料层进行处理,得到所需形状的像素界 定层。
本步骤中, 可根据步骤 402中选取的基质材料选择具体的构图工艺, 若 基质材料为不感光的 Si02, 则在本步骤中, 可通过在基质材料层上旋涂一层 光刻胶, 进行曝光、 显影和刻蚀等工艺步骤获得所需形状的像素界定层。 若 基质材料为感光的光刻胶如聚酰亚胺材料, 则可直接通过曝光、 显影等工艺 步骤获得所需形状的像素界定层。
在一示例中, 为了减少纳米金属颗粒与发光分子距离过近导致的荧光淬 灭现象, 步骤 402之后还可以包括: 在所述纳米金属颗粒外围形成隔离层, 所述隔离层与所述纳米金属颗粒构成独立的核-壳结构。
本步骤中, 隔离层材料可参照前述实施例的介绍, 此处不再赘述。 纳米 金属颗粒可与隔离层构成核-壳结构。 隔离层例如为 Ti02、 聚苯乙烯等。
步骤 402的一个示例可为: 将所述外围形成有隔离层的纳米金属颗粒与 基质材料混合形成纳米金属颗粒的混合溶液。 下面以具体实施例进行详细说明。
实施例 1含有 Ag-Si02像素界定层的有机电致发光器件
如图 1所示。 在含有阳极 2 (例如 ITO ) 的基底 1上以电子束蒸发或气 相沉积方式沉积一层 Si02薄膜 31。
然后在 Si02薄膜 31表面上采用溅射的方式镀一层 2nm厚的银层, 溅射 时腔体内的气压为 10Pa,气氛为氩气,气流保持在 30sccm( standard-state cubic centimeter per mimute ,标况立方厘米每分),溅射电流为 0.2A,电压为 0.5KV, 衬底温度为 200°C。 然后将其置于真空度小于 1 X 10·3 Pa的真空环境下, 以 300 °C的温度退火半小时后, 冷至室温, 形成非连续的纳米银颗粒层 32。
然后再以电子束蒸发或气相沉积方式在非连续的纳米银颗粒层 32 上沉 积一层 Si02薄膜 33以覆盖银颗粒。
旋涂一层光刻胶, 进行曝光、 显影、 刻蚀, 得到的所需形状的像素界定 层 3。
用硝酸腐蚀液浸泡所需形状的像素界定层 1 分钟 ( min ) , 去除边缘棵 露的银。 洗净后, 再进行一次退火, 得到内部嵌有非连续银颗粒的像素界定 层结构。
然后在该像素界定层 3限定的空间内依次沉积空穴注入层 51、空穴传输 层 52、 发光层 53、 电子传输层 54、 电子注入层 55、 阴极层 4等, 最后形成 图 1所示的有机电致发光器件。
实施例 2 含有 Au-Si02像素界定层的有机电致发光器件
如图 2所示, 本实施例采用多靶磁控溅射技术制备金属纳米颗粒分散氧 化物的 Au-Si02复合薄膜。
在双靶的磁控溅射腔体内, 一个靶材放置高纯的 Si02, —个放置高纯的 Au。 溅射气体为高纯氩(99.995% )。 溅射前腔体的真空度为<5 xl(T5Pa, 溅 射压力为 1.6 10 溅射时氩气和氧气的流量分别为 8.3xl0_8 m3/s 和 5.8xl0"8 m3/s, Si02和 Au的射频功率分别为 200W和 50W。 通过调节溅射靶 前的遮挡板的开启, 来选选择沉积到基板上材料的比例, 最终得到不同掺杂 比例的 Au-Si02复合薄膜。
通过构图工艺对 Au-Si02复合薄膜进行处理, 得到所需形状的像素界定 层 3。 该构图过程可以采用诸如等离子刻蚀的干法刻蚀, 也可以采用先旋涂 光刻胶再经历曝光、 显影的湿法刻蚀方法, 在此不再叙述。
用 KI/I2/H20 (1 g/1 g/200 mL)的 Au腐蚀液浸泡像素界定层 lmin,去除边 缘棵露的 Au, 得到最终的像素界定层结构。
然后在该像素界定层限定的空间内依次沉积空穴注入层 51、空穴传输层 52、 发光层 53、 电子传输层 54、 电子注入层 55、 阴极层 4等, 最后形成有 机电致发光器件, 器件的结构如图 2所示。
实施例 3含有立方体纳米 Ag-聚酰亚胺像素界定层的有机电致发光器件
A.立方纳米银的制备
本实施例采用化学还原法制备立方纳米银。将 3mL硝酸银的乙二醇溶液 ( 0.1M )和 3mL的 PVP的乙二醇溶液 ( 0.6M )通过双通道注射泵注入到含 有 5mL乙二醇的三口烧瓶中, 乙二醇溶液事先在 160°C加热恒温回流。 控制 加料速率为 0.3 mL/min。 混合物在磁力搅拌下 160 °C回流反应 60min。 反应 结束后,加入 5-10倍量的丙酮稀释,然后多次重复离心,每次均去除上清液, 最终得到纯的立方纳米银颗粒。 将制备的立方纳米银颗用异丙醇分散, 得到 可以旋涂的溶液。
B.制备含有立方纳米银颗粒的像素界定层
将上述分散好的立方体纳米银颗粒的异丙醇溶液与可以形成像素界定层 3的光刻胶材料进行充分混合, 然后在形成有导电阳极 2 (比如 ITO层) 的 基板 1上旋涂一层上述混合材料的薄膜, 干燥后采用曝光、 显影等工艺得到 图形化的嵌入有立方纳米银颗粒的像素界定层结构 3。
C.有机电致发光器件的制备
在该像素界定层限定的空间内依次沉积空穴注入层 51、 空穴传输层 52、 发光层 53、 电子传输层 54、 电子注入层 55、 阴极层 4等, 最后形成有机电 致发光器件, 器件的结构如图 2所示。
实施例 4含有 Au-聚酰亚胺像素界定层的有机电致发光器件
A.纳米金颗粒的合成
本步骤 A中合成的纳米金颗粒为油溶性,步骤 B中选取与油溶性颗粒相 适应的光刻胶材料。
这里采取反相微乳液体系控制形成的金纳米颗粒的大小, 以起保护作用 的表面活性剂 4-十二烷氧基苄胺( C12OBA ) 为例进行说明。 具体操作步骤如下: 首先将 0.50 mL 9.7 10"3 M氯金酸( HAuCl4 )水溶 液置于 50mL烧杯中蒸发至干, 然后依次加入 16.0 mL正庚烷、 4.0 mL正丁 醇、 0.141g 4-十二烷氧基苄胺(C12OBA/HAuCl4摩尔比为 100:1 ) , 混合物在 室温条件下经超声分散成澄清、 透明的浅黄色溶液。 再将 50μ 曱酸加入其 中, 超声 2min, 使曱酸增溶分散于微乳液中, 将烧杯置于经过改装带有搅拌 装置的 2450 MHz的微波炉的托盘中心, 采用最大加热功率微波辐射约 25s, 溶液瞬间转变成酒红色, 立即停止加热, 继续搅拌 1 min后由 C12OBA稳定 的金胶体即被制得。向冷至室温的金溶胶中添加适量无水乙醇,可将 C12OBA 包裹的金纳米粒子从体系中沉淀出来, 经无水乙醇等洗涤并干燥的样品可很 好地溶于氯仿溶液。
通过调节微乳液各组成成分的比率, 具有不同尺寸和形貌的 C12OBA保 护的憎水性纳米金颗粒即可以制得。
B.像素界定层的形成
将步骤 A中制备的纳米金颗粒溶于氯仿溶液形成金的氯仿溶胶,加入一 定量的聚酰亚胺溶液, 充分混合。 将混合溶液进行旋涂, 继而采用干燥、 曝 光、 显影等一系列半导体行业中常用的构图工艺, 得到最终图形化的像素界 定层结构。
C.有机电致发光器件的制备
在像素界定层中沉积一层或多层发光材料和金属阴极层 , 并封装得到像 素界定层中含有均勾分布的纳米金颗粒的有机电致发光器件。
实施例 5含有 Au@Ti02-Si02凝胶像素界定层的有机电致发光器件
A. Au@Ti02核-壳结构的纳米颗粒的形成
先用柠檬酸钠还原氯金酸(HAuCl4 )制得纳米金溶胶, 然后加入钛酸四 丁酯的乙醇溶液, 经连续搅拌、 回流、 过滤、 洗涤、 干燥, 得到了 Au@Ti02 核-壳结构的纳米颗粒。 该复合纳米粒子可以有效地分散在亲水性溶剂中, 用 于下一步的像素界定层形成过程。
B.溶胶-凝胶法制备像素界定层
先将上述 Au@Ti02核-壳纳米粒子超声分散在水-乙醇体系中。 将正硅酸 乙酯、 无水乙醇、 稀盐酸以一定比例混合均匀, 在室温下形成 Si02凝胶。 然 后将 Au@Ti02的^:体系和 Si02凝胶按照一定的比例进行混合, 得到涂覆 溶液, 随后进行旋涂(涂覆在底层含有 TFT驱动单元的 ITO层之上), 干燥 即得到嵌有 Au@Ti02颗粒的 Si02薄膜。 随后在其上旋涂一层光刻胶, 进行 曝光、 显影、 定影等工艺, 得到图形化的像素界定层结构。
C.有机电致发光器件的制备
在像素界定层中沉积一层或多层发光材料和金属阴极层, 并封装得到像 素界定层中含有均勾分布的纳米金颗粒的有机电致发光器件。
实施例 6含有 Ag@聚苯乙烯-聚酰亚胺像素界定层的有机电致发光器件
A. Ag@聚苯乙烯核-壳结构的合成
取 1.0 g纳米银粉、 1.0 g PVP (聚乙烯吡咯烷酮 )加入 80mL水中, 而后 利用超声波发生器连续超声分散 0.5h(功率: 500W), 再加入 l.Og的乳化剂, 利用超声波发生器连续超声分散 0.5 h(功率: 500W)获得均匀分散体系;之后, 将其转移至装有电动搅拌器、 蛇形冷凝管、 N2管的四口烧瓶内。 将上述装置 置于恒温水槽中, 维持搅拌约 10 min, 降温至 30°C以避免温度过高导致引发 剂 KPS (过硫酸钾)加入后过早分解; 加入引发剂 KPS, 维持搅拌 20min, 期间通 N2排 02; 然后, 将纯化后的苯乙烯单体置于滴液漏斗中逐滴加入反 应体系, 约 10 min滴完; 然后, 升温至 70°C , 反应过程中搅拌速率与通 N2 速率保持恒定。 5h后结束反应在搅拌状态下自然降温至 40°C以下出料, 即 得复合胶乳。 将一定量的复合胶乳用 NaCl破乳后, 过滤、 洗涤、 干燥, 得 到以纳米银颗粒为核, 聚苯乙烯为壳的 Ag @聚苯乙烯的核-壳结构。
B.像素界定层的形成
将上述制成的 Ag@聚苯乙烯核-壳结构分散在有机溶剂中, 然后与聚酰 亚胺溶液混合, 采取旋涂工艺得到光刻胶薄膜, 然后依次采取干燥、 曝光、 显影、 定影等工艺, 得到图形化的像素界定层结构。 该像素界定层结构含有 均匀分布的 Ag@聚苯乙婦核-壳纳米粒子。
C.有机电致发光器件的制备
在像素界定层中沉积一层或多层发光材料和金属阴极层 , 并封装得到像 素界定层中含有均勾分布的纳米金颗粒的有机电致发光器件。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种有机电致发光器件, 包括像素界定层和发光结构, 其中, 所述像 素界定层中包含纳米金属颗粒。
2、根据权利要求 1所述的有机电致发光器件, 其中, 在所述纳米金属颗 粒与发光结构中的发光分子之间设置有隔离层。
3、根据权利要求 2所述的有机电致发光器件, 其中, 所述隔离层为像素 界定层的一部分, 或者
所述隔离层与所述纳米金属颗粒构成独立的核-壳结构。
4、根据权利要求 2或 3所述的有机电致发光器件, 其中, 所述隔离层由 绝缘材料构成。
5、 根据权利要求 1-4任一项所述的有机电致发光器件, 其中, 所述纳米 金属颗粒中的金属材料为:
金、 银、 铝中的一种; 或者
金、 银、 铝的各自的合金中的一种; 或者
由金、 银、 铝中的两种或三种构成的合金。
6、 根据权利要求 1-5任一项所述的有机电致发光器件, 其中, 所述纳米 金属颗粒的形状为球状、 棱柱状、 立方体状、 笼状中的一种或多种。
7、 根据权利要求 1-6任一项所述的有机电致发光器件, 其中, 所述纳米 金属颗粒的粒径为 lnm-100nm。
8、 一种权利要求 1所述的有机电致发光器件的制备方法, 包括: 在设置有阳极的基底上形成掺杂有纳米金属颗粒的基质材料层; 通过构图工艺对所述基质材料层进行处理,得到所需形状的像素界定层。
9、根据权利要求 8所述的有机电致发光器件的制备方法, 其中, 形成所 述基质材料层包括:
在设置有电极的所述基底上形成第一基质材料层;
在所述第一基质材料层上溅射金属材料,形成分散排布的纳米金属颗粒; 在所述形成有分散排布的纳米金属颗粒的所述第一基质材料层上形成第 二基质材料层。
10、 根据权利要求 8所述的有机电致发光器件的制备方法, 其中, 形成 所述基质材料层包括:
在设置有电极的所述基底上同时溅射基质材料和纳米金属材料, 形成掺 杂有纳米金属颗粒的基质材料层。
11、根据权利要求 9或 10所述的有机电致发光器件的制备方法,在所述 得到所需形状的像素界定层的步骤之后, 还包括:
用腐蚀液浸泡所述所需形状的像素界定层, 去除棵露在外的纳米金属颗 粒。
12、根据权利要求 8-11任一所述的有机电致发光器件的制备方法,其中, 所述基质材料为二氧化硅、 氮氧化硅、 氧化铝中的一种或多种。
13、 根据权利要求 8所述的有机电致发光器件的制备方法, 其中, 形成 所述基质材料层包括:
提供所述纳米金属颗粒;
将所述纳米金属颗粒与基质材料混合形成纳米金属颗粒的混合溶液; 将所述混合溶液涂覆在设置有电极的基底上, 形成掺杂有纳米金属颗粒 的基质材料层。
14、根据权利要求 13所述的有机电致发光器件的制备方法, 其中, 所述 基质材料为聚酰亚胺。
15、根据权利要求 13所述的有机电致发光器件的制备方法, 其中, 所述 基质材料为 Si02凝胶。
16、根据权利要求 13所述的有机电致发光器件的制备方法,在提供制备 纳米金属颗粒的步骤之后, 包括:
在所述纳米金属颗粒外围形成隔离层, 所述隔离层与所述纳米金属颗粒 构成独立的核-壳结构;
然后将所述外围形成有隔离层的纳米金属颗粒与基质材料混合形成纳米 金属颗粒的混合溶液。
PCT/CN2013/088247 2013-09-25 2013-11-30 有机电致发光器件及其制备方法 WO2015043054A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/360,366 US9484553B2 (en) 2013-09-25 2013-11-30 Organic light-emitting diode device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310450562.1 2013-09-25
CN201310450562.1A CN103490018B (zh) 2013-09-25 2013-09-25 有机电致发光器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2015043054A1 true WO2015043054A1 (zh) 2015-04-02

Family

ID=49830097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088247 WO2015043054A1 (zh) 2013-09-25 2013-11-30 有机电致发光器件及其制备方法

Country Status (2)

Country Link
CN (1) CN103490018B (zh)
WO (1) WO2015043054A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019205594A1 (en) 2018-04-26 2019-10-31 Boe Technology Group Co., Ltd. Display substrate, display apparatus, method of fabricating display substrate, and pixel definition material for forming pixel definition layer of display substrate

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872261B (zh) * 2014-02-28 2017-03-15 京东方科技集团股份有限公司 一种有机电致发光器件和显示装置
CN104103766A (zh) 2014-06-27 2014-10-15 京东方科技集团股份有限公司 有机电致发光器件、阵列基板及其制备方法、显示装置
CN108630829B (zh) * 2017-03-17 2019-11-08 京东方科技集团股份有限公司 显示面板的制作方法、显示面板及显示装置
CN106848104B (zh) * 2017-04-14 2019-07-26 京东方科技集团股份有限公司 顶发射型发光器件
CN107039602A (zh) * 2017-04-21 2017-08-11 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法、显示装置
CN108470845A (zh) 2018-04-09 2018-08-31 京东方科技集团股份有限公司 一种oled发光器件及其制备方法、显示装置
CN109065584B (zh) * 2018-08-06 2021-01-26 京东方科技集团股份有限公司 像素界定层、显示基板及制备方法
CN112151567A (zh) * 2019-06-28 2020-12-29 成都辰显光电有限公司 显示面板、显示装置及显示面板的制备方法
CN110600502B (zh) * 2019-08-05 2022-04-05 深圳市华星光电半导体显示技术有限公司 有机发光显示面板及其显示装置
CN111863927B (zh) * 2020-08-21 2023-11-24 京东方科技集团股份有限公司 柔性显示基板和柔性显示装置
CN113380966A (zh) * 2021-06-08 2021-09-10 安徽熙泰智能科技有限公司 一种oled器件结构及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080093978A1 (en) * 2006-10-23 2008-04-24 Nec Lighting, Ltd. Electroluminescent device and electroluminescent panel
US20080164807A1 (en) * 2004-08-25 2008-07-10 Novaled Gmbh Component Based on Organic Light-Emitting Diodes and Method For Producing the Same
US20100033078A1 (en) * 2008-08-07 2010-02-11 Samsung Mobile Display Co., Ltd Organic light emitting display device
CN102487128A (zh) * 2010-12-06 2012-06-06 三星移动显示器株式会社 光散射基底、有机发光显示装置及它们的制造方法
KR20120067644A (ko) * 2010-12-16 2012-06-26 엘지디스플레이 주식회사 유기전계 발광소자
US20130200780A1 (en) * 2012-02-06 2013-08-08 Samsung Mobile Display Co., Ltd. Organic light emitting display devices and methods of manufacturing organic light emitting display devices
US20140008618A1 (en) * 2012-07-06 2014-01-09 Jae Ik Lim Organic light emitting display device and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080036367A1 (en) * 2004-08-26 2008-02-14 Idemitsu Kosan Co., Ltd. Organic El Display Device
CN1971933A (zh) * 2005-11-24 2007-05-30 群康科技(深圳)有限公司 有机电激发光显示器
WO2010030591A2 (en) * 2008-09-10 2010-03-18 Universal Display Corporation Oleds having light-scattering embankments
JP5979932B2 (ja) * 2011-03-31 2016-08-31 住友化学株式会社 有機エレクトロルミネッセンス素子
JP2014199267A (ja) * 2011-08-05 2014-10-23 シャープ株式会社 蛍光体基板、表示装置および電子機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164807A1 (en) * 2004-08-25 2008-07-10 Novaled Gmbh Component Based on Organic Light-Emitting Diodes and Method For Producing the Same
US20080093978A1 (en) * 2006-10-23 2008-04-24 Nec Lighting, Ltd. Electroluminescent device and electroluminescent panel
US20100033078A1 (en) * 2008-08-07 2010-02-11 Samsung Mobile Display Co., Ltd Organic light emitting display device
CN102487128A (zh) * 2010-12-06 2012-06-06 三星移动显示器株式会社 光散射基底、有机发光显示装置及它们的制造方法
KR20120067644A (ko) * 2010-12-16 2012-06-26 엘지디스플레이 주식회사 유기전계 발광소자
US20130200780A1 (en) * 2012-02-06 2013-08-08 Samsung Mobile Display Co., Ltd. Organic light emitting display devices and methods of manufacturing organic light emitting display devices
US20140008618A1 (en) * 2012-07-06 2014-01-09 Jae Ik Lim Organic light emitting display device and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019205594A1 (en) 2018-04-26 2019-10-31 Boe Technology Group Co., Ltd. Display substrate, display apparatus, method of fabricating display substrate, and pixel definition material for forming pixel definition layer of display substrate
EP3785302A4 (en) * 2018-04-26 2022-02-16 Boe Technology Group Co., Ltd. DISPLAY SUBSTRATE, DISPLAY APPARATUS, METHOD FOR MAKING DISPLAY SUBSTRATE AND PIXEL DEFINING MATERIAL FOR FORMING A PIXEL DEFINING LAYER OF A DISPLAY SUBSTRATE
US11393885B2 (en) 2018-04-26 2022-07-19 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Display substrate, display apparatus, method of fabricating display substrate, and pixel definition material for forming pixel definition layer of display substrate

Also Published As

Publication number Publication date
CN103490018A (zh) 2014-01-01
CN103490018B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
WO2015043054A1 (zh) 有机电致发光器件及其制备方法
US9847382B2 (en) Array substrate, manufacturing method thereof, and display device
TWI678006B (zh) 有機電激發光元件
WO2015196573A1 (zh) 有机电致发光器件、阵列基板及其制备方法、显示装置
US9401497B2 (en) Metal-based particle assembly
TWI618924B (zh) Metal-based particle assembly, metal-based particle assembly film-layered substrate, and optical element including metal-based particle assembly
US9484553B2 (en) Organic light-emitting diode device and manufacturing method thereof
US20170097447A1 (en) Metal-based particle assembly
WO2018107789A1 (zh) 含有贵金属纳米材料的 qled 及其制备方法
JP2011108632A (ja) 有機発光表示装置及びその製造方法
US9693424B2 (en) Metal-based particle assembly
CN106449902B (zh) 在发光二极管芯片的量子阱附近制备纳米金属结构的方法
CN108130085A (zh) 一种贵金属/二氧化硅复合粒子与半导体量子点叠层量子点发光薄膜的制备方法
CN103996767A (zh) 表面等离激元增强型硅纳米线电致发光器件及其制作方法
KR101623093B1 (ko) 확률론적 나노 구조물을 이용하여 양자 효율이 향상된 유기전계발광소자 및 이를 제조하는 방법
CN111293233B (zh) 有机发光显示基板及其制备方法、有机发光显示面板
CN110828624A (zh) 一种具有局域等离子体增强效应的led的制备方法
CN104576873B (zh) 利用微结构形成表面电浆的方法
CN111355115A (zh) 基于金银核壳纳米棒-金属薄膜的有机固体激光器及制备方法
CN203466191U (zh) 一种阵列基板及显示装置
CN113451881B (zh) 栅状电极增强表面等离激元激光器及其制备方法
CN111313215B (zh) 基于金属纳米核壳结构-金属薄膜等离子体复合结构的有机固体激光器及制备方法
WO2023226222A1 (zh) 发光器件及其制备方法、显示装置
KR100871649B1 (ko) 발광 다이오드의 사파이어 기판 패터닝 방법
JP6777246B2 (ja) 光変換部材及びその製造方法、太陽電池モジュールと太陽電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14360366

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/09/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13894701

Country of ref document: EP

Kind code of ref document: A1