WO2015020002A1 - 含フッ素芳香族化合物、その製造方法、硬化性材料、その硬化物、及び光学部材 - Google Patents

含フッ素芳香族化合物、その製造方法、硬化性材料、その硬化物、及び光学部材 Download PDF

Info

Publication number
WO2015020002A1
WO2015020002A1 PCT/JP2014/070491 JP2014070491W WO2015020002A1 WO 2015020002 A1 WO2015020002 A1 WO 2015020002A1 JP 2014070491 W JP2014070491 W JP 2014070491W WO 2015020002 A1 WO2015020002 A1 WO 2015020002A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
aromatic compound
containing aromatic
integer
formula
Prior art date
Application number
PCT/JP2014/070491
Other languages
English (en)
French (fr)
Inventor
弘賢 山本
旭史 邦本
杉山 徳英
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015530881A priority Critical patent/JP6368940B2/ja
Priority to CN201480044681.XA priority patent/CN105452209B/zh
Priority to EP14834433.6A priority patent/EP3031793B1/en
Publication of WO2015020002A1 publication Critical patent/WO2015020002A1/ja
Priority to US15/008,136 priority patent/US10087128B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/257Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings
    • C07C43/29Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/12Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/16Halogens
    • C08F12/20Fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/34Monomers containing two or more unsaturated aliphatic radicals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides

Definitions

  • the present invention relates to a novel fluorine-containing aromatic compound, a method for producing the same, a curable material containing the fluorine-containing aromatic compound, a cured product thereof, and an optical member made of the cured product.
  • thermoplastic resins acrylic resins such as polymethylmethacrylate, polycarbonate, cycloolefin polymers, fluororesin CYTOP (registered) Trademark, manufactured by Asahi Glass Co., Ltd.).
  • thermosetting resins epoxy resins, silicone resins, and the like are known.
  • thermosetting resin softens and flows at a high temperature, and is not suitable for use at a significantly high temperature.
  • thermosetting resin has two or more crosslinkable functional groups, and when heated, irradiated with light, etc., the crosslinkable functional groups react with each other and are cured. Since the cured product hardly flows at high temperatures and has high heat resistance, it is suitable for use at high temperatures.
  • epoxy resins are excellent in heat resistance.
  • a general epoxy resin has an aromatic ring and is not sufficiently transparent in the ultraviolet to near ultraviolet region.
  • An alicyclic epoxy resin having no aromatic ring can form a cured product having excellent transparency even in the ultraviolet to near-ultraviolet region (Patent Document 1).
  • the cured product has insufficient heat resistance and light resistance.
  • the silicone resin is excellent in transparency from the visible light region to the near ultraviolet region, and can form a cured product excellent in light resistance and heat resistance (Patent Document 2).
  • the cured product has a large coefficient of thermal expansion and a large gas permeability such as moisture and oxygen, which may cause a problem in the reliability of the electronic device.
  • optical waveguide As a basic component in an optical device or the like used in an optical transmission system.
  • an optical waveguide As a resin-based optical waveguide, an optical waveguide (Patent Document 3) having fluorinated polyimide as a constituent element is known.
  • fluorinated polyimide is brittle, has a high elastic modulus, and may be warped during the manufacturing process.
  • a fluorinated polyimide uses a special monomer, it is expensive and lacks applicability to the production of general-purpose optical waveguides.
  • a cured product that has two or more crosslinkable functional groups and is curable and sufficiently satisfies the characteristics required for optical members such as optical characteristics such as transparency, heat resistance, and mechanical characteristics.
  • optical characteristics such as transparency, heat resistance, and mechanical characteristics.
  • the present invention provides a novel fluorine-containing aromatic compound having two or more carbon-carbon unsaturated bonds, a method for producing the same, a curable material containing the fluorine-containing aromatic compound, a cured product thereof, and an optical member
  • the purpose is to do.
  • the present invention provides a fluorine-containing aromatic compound, a production method thereof, a curable material, a cured product thereof, and an optical member having the following configurations [1] to [11].
  • n is an integer from 0 to 6
  • a is an integer from 0 to 5
  • b is an integer from 0 to 4
  • c is an integer from 0 to 4
  • a + c + n is 2 to 6
  • a + b is 2 to 9.
  • Z is a single bond, —O—, —S—, —CO—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO—, or —SO 2 —
  • Rf 1 is a fluoroalkyl group having 1 to 8 carbon atoms
  • Y 1 and Y 2 are each independently a group represented by the following formula (1).
  • F in the aromatic ring represents that all of the hydrogen atoms in the aromatic ring are substituted with fluorine atoms.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a fluorine atom.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a fluorine atom, and X is a hydrogen atom, CH 3 CO, CH 3 CH 2 CO, (CH 3 ) 3 C (CH 3 ) 2 Si, or (CH 3 ) 3 Si.
  • n is an integer of 0 to 6
  • c is an integer of 0 to 4
  • c + n is 0 to 6
  • Z is a single bond, —O—, —S—, —CO—, —C ( CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO—, or —SO 2 —
  • Rf 1 is a fluoroalkyl group having 1 to 8 carbon atoms.
  • F in the aromatic ring represents that all of the hydrogen atoms in the aromatic ring are substituted with fluorine atoms.
  • the fluorine-containing aromatic compound represented by the formula (a2) is perfluorobenzene, perfluorotoluene, perfluoroxylene, perfluorobiphenyl, perfluoroterphenyl, perfluorotriphenylbenzenes, perfluorotetraphenylbenzenes, perfluoropentaphenyl.
  • Benzenes perfluorohexaphenylbenzenes, 1,1'-oxybis [2,3,4,5,6-pentafluorobenzene] s, 1,1'-thiobis [2,3,4,5,6-penta Fluorobenzene] s, bis (2,3,4,5,6-pentafluorophenyl) methanones, 1,1′-sulfonylbis [2,3,4,5,6-pentafluorobenzene] s, or 1,2,3,4,5-pentafluoro-6-[(2,3,4,5,6-penta A Ruorofeniru) Sarufiniru] benzene, the production method of the above-mentioned [5] or a fluorine-containing aromatic compound according to [6].
  • the fluorine-containing aromatic compound of the present invention is a novel compound having two or more carbon-carbon unsaturated bonds. According to the method for producing a fluorinated aromatic compound of the present invention, the fluorinated aromatic compound of the present invention can be produced. According to the fluorine-containing aromatic compound of the present invention and the curable composition containing the same, a cured product can be produced. The cured product is excellent in optical properties such as transparency, heat resistance and mechanical properties, and is useful as an optical member.
  • fluorine-containing aromatic compound The fluorine-containing aromatic compound of the present invention (hereinafter also referred to as fluorine-containing aromatic compound (A)) is represented by the following formula (A) and contains two or more carbon-carbon unsaturated bonds.
  • n is an integer from 0 to 6
  • a is an integer from 0 to 5
  • b is an integer from 0 to 4
  • c is an integer from 0 to 4
  • a + c + n is 2 to 6
  • a + b is 2 to 9.
  • Z is a single bond, —O—, —S—, —CO—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO—, or —SO 2 —
  • Rf 1 is a fluoroalkyl group having 1 to 8 carbon atoms
  • Y 1 and Y 2 are each independently a group represented by the following formula (1).
  • F in the aromatic ring represents that all of the hydrogen atoms in the aromatic ring are substituted with fluorine atoms.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a fluorine atom.
  • n is preferably 0 to 4, and more preferably 0 to 3.
  • a is preferably from 1 to 3, and more preferably from 1 to 2.
  • b is preferably from 1 to 3, and more preferably from 1 to 2.
  • c is preferably 0 or 1, more preferably 0.
  • a + c + n is preferably 2 to 4.
  • a + b is preferably 2 to 6.
  • Z is preferably a single bond, —O— or —S—, and more preferably a single bond or —O—.
  • the carbon number of the fluoroalkyl group in Rf 1 is preferably 1 to 6, more preferably 1 to 4, and most preferably 1.
  • the fluoroalkyl group is preferably a perfluoroalkyl group because of excellent heat resistance. Specific examples thereof include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • Rf 1 is most preferably a perfluoromethyl group.
  • Y 1 and Y 2 are each independently a group represented by the formula (1) (hereinafter also referred to as group (1)).
  • group (1) s is preferably 0 from the viewpoint of excellent crosslinking reactivity.
  • R 1, of R 2, R 3 and R 4 is preferably at least one of hydrogen atom, R 1, R 2, R 3 and R 4 are each a hydrogen atom It is particularly preferred that The greater the number of hydrogen atoms among R 1 , R 2 , R 3 and R 4 , the higher the reactivity of the group (1), and the fluorinated aromatic compound (A) and the curability containing it.
  • the material has excellent curability, and the resulting cured product has excellent heat resistance.
  • the group (1) include a vinyl substituted phenyl group and an allyl substituted phenyl group.
  • a vinyl-substituted phenyl group is preferable because it has high crosslinking reactivity and a high crosslinking density can be obtained.
  • Y 1 and Y 2 may be the same or different and are preferably the same.
  • the molecular weight of the fluorinated aromatic compound (A) is preferably 300 to 2000, more preferably 350 to 1000. When the molecular weight is within this range, curing between molecules tends to occur, and a cured product having excellent transparency, heat resistance and strength can be easily obtained.
  • R 1 , R 2 , R 3 and R 4 in Y 1 and Y 2 in the formula (A) are each a hydrogen atom in terms of excellent effects of the present invention.
  • c in the formula (A) is 0, or c is an integer of 1 to 4 and Rf 1 is a perfluoroalkyl group having 1 to 8 carbon atoms.
  • compounds represented by the following formula (A-1) or (A-2) are particularly preferred.
  • the aromatic compound (henceforth aromatic compound (a1)) represented by the following Formula (a1), and the following Formula (a2) ) -Containing aromatic compound (hereinafter referred to as “fluorinated aromatic compound (a2)”) is preferably subjected to a condensation reaction in the presence of a deHF agent.
  • the phenoxy ion derived from —OX of the aromatic compound (a1) attacks the carbon atom to which the fluorine atom of the aromatic ring of the fluorine-containing aromatic compound (a2) is bonded, and then the fluorine atom An ether bond is generated due to a reaction mechanism or the like from which is eliminated. Thereby, a fluorine-containing aromatic compound (A) is obtained.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a fluorine atom, and X is a hydrogen atom, CH 3 CO, CH 3 CH 2 CO, (CH 3 ) 3 C (CH 3 ) 2 Si, or (CH 3 ) 3 Si.
  • n is an integer of 0 to 6
  • c is an integer of 0 to 4
  • c + n is 0 to 6
  • Z is a single bond, —O—, —S—, —CO—, —C ( CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO—, or —SO 2 —
  • Rf 1 is a fluoroalkyl group having 1 to 8 carbon atoms.
  • F in the aromatic ring represents that all of the hydrogen atoms in the aromatic ring are substituted with fluorine atoms.
  • Preferred and more preferred ranges of s, R 1 , R 2 , R 3 , and R 4 in formula (a1) are the same as those in formula (A).
  • X is preferably a hydrogen atom, CH 3 CO, or CH 3 CH 2 CO.
  • Specific examples of the aromatic compound (a1) include 4-ethenylphenol (also called 4-hydroxystyrene), 2-ethenylphenol, 3-ethenylphenol, 4-ethenyltetrafluorophenol and the like.
  • Phenols having reactive double bonds such as 2-propenylphenols such as 2- (2-propenyl) phenol, 3- (2-propenyl) phenol, 4- (2-propenyl) tetrafluorophenol, and These derivatives include 4-ethenyl-1-acetoxybenzene (also referred to as p-acetoxystyrene), 4-ethenyl-1-trimethylsiloxybenzene, and the like. In these derivatives, the acetoxy group or trimethylsiloxy group is converted to a hydroxyl group (phenolic hydroxyl group) during the production of the fluorine-containing aromatic compound (A), and reacts with the fluorine-containing aromatic compound (a2).
  • 2-propenylphenols such as 2- (2-propenyl) phenol, 3- (2-propenyl) phenol, 4- (2-propenyl) tetrafluorophenol
  • 4-ethenyl-1-acetoxybenzene also referred to as p
  • aromatic compound (a1) from the viewpoint of the reactivity of the crosslinkable unsaturated double bond, an aromatic compound having an ethenyl group is more preferable, an aromatic compound not containing a fluorine atom is more preferable, and 4-ethenyl Most preferred is phenol or 4-ethenyl-1-acetoxybenzene.
  • the fluorine-containing aromatic compound (a2) constitutes the skeleton of the fluorine-containing aromatic compound (A).
  • the preferred range and more preferred range of n, c, Z and Rf 1 in the formula (a2) are the same as those in the formula (A).
  • fluorine-containing aromatic compound (a2) include perfluorobenzene, perfluorotoluene, perfluoroxylene, perfluorobiphenyl, perfluoroterphenyl, perfluorotriphenylbenzenes, perfluorotetraphenylbenzenes, perfluoropentaphenylbenzenes, perfluorohexa Phenylbenzenes, 1,1′-oxybis [2,3,4,5,6-pentafluorobenzene] s, 1,1′-thiobis [2,3,4,5,6-pentafluorobenzene] s, Bis (2,3,4,5,6-pentafluorophenyl) methanones, 1,1′-sulfonylbis [2,3,4,5,6-pentafluorobenzene] s, 1,2,3, 4,5-pentafluoro-6-[(2,3,4,5,6-pentafluorofe Le) Sarufiniru
  • perfluorobenzene, perfluorotoluene, or perfluorobiphenyl is preferable from the viewpoint of ease of production and availability of raw materials. Moreover, perfluorotoluene or perfluorobiphenyl is more preferable because the cured product is excellent in heat resistance.
  • the deHF agent used for the production of the fluorinated aromatic compound (A) is preferably a basic compound, particularly preferably an alkali metal carbonate, hydrogencarbonate or hydroxide. Specific examples include sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide and the like. As the de-HF agent, alkali metal hydroxide is preferable. In the condensation reaction between the aromatic compound (a1) and the fluorine-containing aromatic compound (a2), the amount of the deHF agent used is 1 mol or more per 1 mol of the aromatic compound (a1). 1 to 3 moles are preferred.
  • the condensation reaction is preferably performed in a polar solvent from the viewpoint of solubility of the reaction reagent and increase in reaction rate.
  • a polar solvent a solvent containing an aprotic polar solvent such as N, N-dimethylacetamide (hereinafter referred to as DMAc), N, N-dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, sulfolane and the like is preferable.
  • polar solvent toluene, xylene, benzene, tetrahydrofuran, benzotrifluoride, xylene hexafluoride, etc.
  • the solubility of the generated fluorine-containing aromatic compound (A) is not lowered and the condensation reaction is not adversely affected. May be included.
  • the polarity (dielectric constant) of the solvent changes, and the reaction rate can be controlled.
  • a fluorine-containing aromatic compound (A) can be manufactured with the said manufacturing method also in solvents other than a polar solvent.
  • low polar solvents such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether (hereinafter also referred to as diglyme), triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and the like can be given.
  • the condensation reaction conditions are preferably 0 to 100 ° C. and 1 to 72 hours.
  • 2 to 48 hours at 3 to 50 ° C. is preferable from the viewpoint of suppressing the rapid progress of the reaction and suppressing side reactions that inhibit the formation of the target product. It is more preferably 9 to 24 hours at 5 to 20 ° C., and particularly preferably 12 to 24 hours at 5 to 10 ° C.
  • 12 to 24 hours are particularly preferred at 40 to 80 ° C. from the viewpoints of production efficiency and increase in reaction rate.
  • the fluorinated aromatic compound (A) is purified by a method such as neutralization, reprecipitation, extraction, or filtration as necessary. It is preferred that Metals derived from de-HF agents (potassium, sodium, etc.) and fluorine atoms liberated by the condensation reaction may degrade the performance as optical members such as transparency and strength, so be thoroughly purified and removed. Is preferred.
  • the purification is preferably carried out in the presence of a polar solvent that is preferably used during production from the viewpoint of efficiency.
  • the structure of the obtained fluorine-containing aromatic compound (A) can be identified by a known analysis method such as nuclear magnetic resonance (NMR) or size exclusion chromatography (SEC).
  • the fluorine-containing aromatic compound (A) has two or more (a + b) carbon-carbon unsaturated bonds derived from the group (1), the molecules of the fluorine-containing aromatic compound (A) can be bonded to each other by heating or light irradiation. Can react (addition polymerization) to obtain a cured product of the fluorine-containing aromatic compound (A).
  • the fluorine-containing aromatic compound (A) is added with a radical polymerization initiator (photoinitiator, thermal initiator, etc.).
  • cured material of a fluorine-containing aromatic compound (A) has few impurities, and is excellent in transparency and light resistance. Moreover, since this hardened
  • hardenable component means the compound which can form hardened
  • the fluorine-containing aromatic compound (A) can also be used as a crosslinking aid.
  • a fluorine-containing aromatic compound (A) as a crosslinking aid with the fluorine-containing elastomer, a fluorine-containing elastomer composition having excellent crosslinking reactivity and a crosslinked product having excellent chemical resistance and heat resistance can be obtained.
  • the method of crosslinking the fluorine-containing elastomer affects the properties of the resulting crosslinked product. In particular, it is known that perfluoroelastomers are not easily crosslinked.
  • crosslinking methods have been proposed for improving the properties of the crosslinked product and improving the crosslinking reactivity.
  • a method for crosslinking a perfluoroelastomer a method is proposed in which a perfluoroelastomer having an iodine atom as a crosslinking site at the end of a polymer chain is reacted with a crosslinking aid in the presence of a peroxide.
  • a crosslinking aid for example, US Pat. No. 4,243,770, International Publication No. 90/014367
  • 1,6-divinylperfluorohexane for example, Japanese Patent No. 5057657
  • the cross-linked product obtained using triallyl isocyanurate has a cross-linking point of isocyanurate ring, the heat resistance is not sufficient.
  • a cross-linked product obtained using 1,6-divinylperfluorohexane is excellent in heat resistance, but has insufficient chemical resistance, particularly amine resistance. According to the fluorine-containing aromatic compound (A), both excellent chemical resistance and heat resistance can be achieved.
  • the curable material of the present invention contains the fluorine-containing aromatic compound (A).
  • the fluorine-containing aromatic compound (A) contained in the curable material of the present invention may be one type or two or more types.
  • the curable material of the present invention may be composed of only the fluorine-containing aromatic compound (A), or may be a composition further including other components other than the fluorine-containing aromatic compound (A).
  • the curable material of the present invention may contain a radical polymerization initiator, a conductivity imparting agent, a reinforcing material, and the like as necessary.
  • Conductivity imparting agents include carbon blacks such as acetylene black and thermal black, carbon fibers such as PAN and pitch, single- and multi-walled carbon nanotubes, graphite, fine metal powders such as silver, copper and nickel, and zinc oxide And metal oxides such as magnesium oxide and aluminum oxide.
  • the reinforcing material examples include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polychlorotrifluoroethylene, TFE / ethylene copolymer, TFE / propylene copolymer, TFE / vinylidene fluoride copolymer, and the like. Can be mentioned. Each of these components may be used alone or in combination of two or more. Moreover, it is also preferable to obtain a curable material by adding the fluorine-containing aromatic compound (A) of the present invention to various known thermosetting compositions and photocurable compositions. By containing the fluorine-containing aromatic compound (A) of the present invention, the curable material is excellent in curability, and the obtained cured product is excellent in optical properties such as transparency and mechanical properties.
  • the cured product of the present invention is obtained by curing the curable material.
  • the curing method is preferably heating (thermal curing) or light irradiation (photocuring).
  • the curing conditions for heat curing are preferably 130 ° C. to 180 ° C.
  • the light used for photocuring preferably has a wavelength of 200 nm to 400 nm.
  • Specific examples of a method for producing a cured product include, for example, a method in which a solid (powdered) curable material is filled in a mold having an arbitrary shape and heated (thermal curing), and a solid dissolved in a solvent is used as a base material. Examples include a method of heating (thermosetting) or light irradiation (photocuring) after application.
  • the cured product obtained by curing the curable material of the present invention is very excellent in transparency, heat resistance, light resistance and mechanical properties. Therefore, the cured product of the present invention is useful for optical members.
  • the optical member of the present invention comprises the cured product of the present invention.
  • the cured product of the present invention may constitute the entire optical member or a part thereof.
  • the optical member include an optical film, an optical sheet, a transparent substrate, a lens, an adhesive, an optical waveguide, a solar cell member, a light-emitting diode (LED), a phototransistor, a photodiode, an optical semiconductor element such as a solid-state imaging device, Illumination devices, image display devices, and the like can be given.
  • Examples of the image display device include a plasma display (PDP), a cathode ray tube (CRT), a field emission display (FED), an organic EL display, a 3D display, and electronic paper.
  • Glass transition temperature (Tg) The glass transition temperature (Tg) of the fluorinated aromatic compound and its cured product was measured by DSC Q-100 manufactured by TA Instrument. The DSC curve obtained was measured under the condition that the temperature was raised to 135 ° C. at a temperature rising rate of 10 ° C./min, cooled at a cooling rate of 20 ° C./min, and again raised to 135 ° C. at a temperature rising rate of 10 ° C./min. The temperature at the inflection point was defined as Tg.
  • Tm melting point
  • TG-DTA 1% weight reduction temperature
  • T 5d 5% weight reduction temperature
  • the refractive index (nD 20 ) of the cured product of the fluorine-containing aromatic compound was measured with an Abbe refractometer NAR-2T manufactured by Atago Co., Ltd. under the conditions of a wavelength of 589.3 nm and a temperature of 20 ° C. 1-bromonaphthalene was used as an intermediate solution.
  • the yellowness (YI) of the cured product of the fluorine-containing aromatic compound was measured by Color Cute i manufactured by Suga Test Instruments Co., Ltd. This value is a value measured according to the standard of JIS K 7373.
  • Heat resistance test A sample for heat resistance test (crosslinked product of 10 mm ⁇ 30 mm, 1 mm thick crosslinkable fluorine-containing elastomer composition) is heated in a hot air oven at a predetermined temperature for a predetermined time, taken out, visually observed, and The heat resistance in a heat resistance test for a predetermined time at a predetermined temperature was evaluated.
  • good: The sample was not deformed.
  • X defect
  • the heat resistance test was conducted at 300 ° C. for 48 hours, 300 ° C. for 72 hours, 325 ° C. for 24 hours, 325 ° C. for 48 hours, and 325 ° C. for 72 hours. When the evaluation was “x”, no heat resistance test was performed for a longer time or at a higher temperature.
  • a sample for chemical resistance test (a cross-linked product of a crosslinkable fluorine-containing elastomer composition having a size of 13 mm ⁇ 13 mm and a thickness of 1 mm) was immersed in a 48% NaOH aqueous solution and DMAc, respectively, and 180 ° C. at 40 ° C. After holding for a time, it was taken out and visually observed, and the chemical resistance was evaluated according to the following criteria. ⁇ (Good): Neither coloring, swelling nor shrinkage was observed in the sample. X (defect): Any of coloring, swelling and shrinkage was observed in the sample.
  • a latex of fluorine-containing elastomer (F1) having an iodine terminal was obtained.
  • the polymerization time was 9 hours.
  • the concentration of the solid content in the latex was 20% by mass.
  • 50 g of 96% sulfuric acid was added to the latex to coagulate the fluorine-containing elastomer (F1).
  • a white fluorine-containing elastomer (F1) was obtained by vacuum drying at 50 ° C. for 12 hours.
  • the content of iodine atoms in the fluorine-containing elastomer (F1) was 18.8 ⁇ mol / g. Further, the storage elastic modulus G ′ was 495 kPa.
  • Example 1 Synthesis of fluorine-containing aromatic compound (A-1)
  • a 2 L four-necked flask equipped with a three-way cock and thermocouple thermometer for introducing nitrogen was charged with 82.2 g of perfluorobiphenyl and 98.4 g of p-acetoxystyrene, and dissolved in 708.9 g of DMAc.
  • 140.0 g of a 48% aqueous potassium hydroxide solution was added and stirred to react.
  • the temperature of the reaction solution was controlled in the range of 8 to 9 ° C. and reacted for 24 hours. Thereafter, when the reaction crude liquid was dropped into 3090 g of 0.5N hydrochloric acid, a white solid was precipitated.
  • Example 2 Synthesis of fluorine-containing aromatic compound (A-1)
  • a 200 mL three-necked flask equipped with a three-way cock for introducing nitrogen and a thermocouple thermometer was charged with 10.0 g of perfluorobiphenyl and 12.2 g of p-acetoxystyrene, and dissolved in 60 g of diglyme. 20.6 g of 48% potassium hydroxide aqueous solution was added and stirred to react. The temperature of the reaction solution was controlled at 45 ° C. and reacted for 15 hours. Thereafter, when the reaction crude liquid was dropped into 312 g of 0.5N hydrochloric acid, a white solid was precipitated.
  • Example 1 and Example 2 the same fluorine-containing aromatic compound (A-1) was produced by changing the solvent and reaction conditions. Specifically, in Example 1 using DMAc as the solvent, the reaction was performed at 8 to 9 ° C. for 24 hours, and in Example 2 using diglyme as the solvent, the reaction was performed at 45 ° C. for 15 hours. It was. This is because when the reaction is carried out in DMAc, which is a polar solvent, the reaction proceeds more easily at a lower temperature than diglyme, which is a low polarity solvent. However, if the reaction temperature is too high, a side reaction that inhibits the formation of the target product is likely to occur, so care must be taken in selecting the reaction temperature.
  • Example 3 Synthesis of fluorine-containing aromatic compound (A-2)
  • a 1 L 4-neck flask equipped with a three-way cock and thermocouple thermometer for introducing nitrogen was charged with 25.0 g of perfluorotoluene and 68.7 g of p-acetoxystyrene and dissolved in 385.0 g of diglyme. Thereafter, 102.5 g of a 48% aqueous sodium hydroxide solution was added and stirred to react. The temperature of the reaction solution was controlled at 60 ° C. and reacted for 6 hours. Then, when the reaction crude liquid was dripped in 1744g of 0.5N hydrochloric acid, white solid precipitated.
  • Example 4 920 mg of the fluorine-containing aromatic compound (A-1) obtained in Example 1 was placed in a square box made of 10 mm ⁇ 35 mm ⁇ 35 mm polytetrafluoroethylene (hereinafter referred to as PTFE), and the mixture was kept at 120 ° C. for 15 minutes. When heated and then heated to 170 ° C. for 30 minutes, a cured product (X-1) of 0.7 mm ⁇ 35 mm ⁇ 35 mm was obtained. The obtained cured product (X-1) was evaluated for thermophysical properties, optical properties, and mechanical properties. The results are shown below.
  • PTFE polytetrafluoroethylene
  • Example 5 927 mg of the fluorine-containing aromatic compound (A-1) obtained in Example 2 was placed in a 10 mm ⁇ 35 mm ⁇ 35 mm PTFE square box, heated at 120 ° C. for 15 minutes, then heated to 170 ° C. When heated for 30 minutes, a cured product (X-2) of 0.7 mm ⁇ 35 mm ⁇ 35 mm was obtained. The obtained cured product (X-2) was evaluated for thermophysical properties, optical properties, and mechanical properties. The results are shown below.
  • Example 6 When 920 mg of the fluorine-containing aromatic compound (A-2) was placed in a 10 mm ⁇ 35 mm ⁇ 35 mm PTFE square box and heated at 170 ° C. for 30 minutes, a cured product of 0.7 mm ⁇ 35 mm ⁇ 35 mm (X ⁇ 3) was obtained. The obtained cured product (X-3) was evaluated for thermophysical properties, optical properties, and mechanical properties. The results are shown below.
  • Tg and Tm of the cured product (X-3) were not observed.
  • Example 7 Synthesis of fluorine-containing aromatic compound (A-2)
  • a 1 L four-necked flask equipped with a three-way cock and thermocouple thermometer for introducing nitrogen was charged with 20.1 g of perfluorotoluene and 51.4 g of p-acetoxystyrene, and dissolved in 143.3 g of diglyme. Thereafter, 73.4 g of a 48% aqueous sodium hydroxide solution was added and stirred to react. The temperature of the reaction solution was controlled at 45 ° C. and reacted for 15 hours. Then, when the reaction crude liquid was dripped in 497.7g of 0.1N hydrochloric acid, white solid precipitated.
  • the film has sufficient heat resistance for optical applications.
  • T 1d 1% weight reduction temperature
  • T 5d 5% weight reduction temperature
  • the cured products of Examples 4 to 6 have no melting point (Tm) and do not flow even when heated to 300 ° C. Therefore, the fluorinated aromatic compound (A-1) and the fluorinated aromatic compound (A- It was confirmed that each of 2) was sufficiently cured. Further, from the measurement results of thermophysical properties, optical properties, and mechanical properties, it was confirmed that the cured products of Examples 4 to 6 had excellent heat resistance, optical properties, and mechanical properties, respectively.
  • Reference Example B A dispersion of a crosslinkable fluorine-containing elastomer composition was prepared in the same manner as in Reference Example A except that magnesium oxide was not blended, and a 1 mm thick film was prepared from the film for heat resistance test and chemical resistance. A test sample was prepared, and a heat resistance test and a chemical resistance test were performed. The results are shown in Table 2.
  • Reference Example D A dispersion of a crosslinkable fluorine-containing elastomer composition was prepared in the same manner as in Reference Example C except that magnesium oxide was not blended, and a 1 mm thick film was prepared from the film for heat resistance test and chemical resistance. A test sample was prepared, and a heat resistance test and a chemical resistance test were performed. The results are shown in Table 2.
  • crosslinked products of the crosslinkable fluorine-containing elastomer compositions of Reference Examples A to D did not show any deformation in the heat resistance test at 300 ° C. for 72 hours, and were excellent in heat resistance.
  • the crosslinked products of the crosslinkable fluorine-containing elastomer compositions of Reference Examples A to B did not show any deformation in the heat resistance test at 325 ° C. for 48 hours.
  • the cross-linked products of the cross-linkable fluorine-containing elastomer compositions of Reference Examples A to D are excellent in chemical resistance because they are not colored, swelled or shrunk in a chemical resistance test using any of 48% NaOH aqueous solution and DMAc. It was.
  • the crosslinked product of the crosslinkable fluorine-containing elastomer composition of Comparative Reference Example E using TAIC instead of the fluorine-containing aromatic compound was greatly deformed in a heat resistance test at 300 ° C. for 72 hours, and the heat resistance was It was low.
  • the crosslinked product of the crosslinkable fluorine-containing elastomer composition of Comparative Reference Example F using 1,6-divinylperfluorohexane instead of the fluorine-containing aromatic compound was dissolved in DMAc, and its volume was shrunk. Therefore, this cross-linked product was found to be inferior in chemical resistance.
  • the curable resin obtained by heating or photocuring the fluorine-containing aromatic compound of the present invention can be used as an optical member.
  • Optical members include optical films, optical sheets, transparent substrates, lenses, adhesives, optical waveguides, solar cell members, light-emitting diodes (LEDs), phototransistors, photodiodes, solid-state imaging devices and other optical semiconductor elements, and lighting devices. And an image display device.
  • the fluorine-containing aromatic compound of the present invention can be used as a crosslinking aid for fluorine-containing elastomers.
  • the fluorine-containing aromatic compound of the present invention is blended in various thermosetting compositions and photocurable compositions and used as a modifier for improving the optical properties and mechanical properties of the cured products obtained therefrom. it can.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2013-164619 filed on August 7, 2013 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 2個以上の炭素-炭素不飽和結合を有する新規な含フッ素芳香族化合物、その製造方法、該含フッ素芳香族化合物を含有する硬化性材料、その硬化物、及び光学部材の提供。 式(A)で表される含フッ素芳香族化合物。式中、nは0~6の整数、aは0~5の整数、bは0~4の整数、cは0~4の整数であり、a+c+nは2~6、a+bは2~9であり、Zは単結合、-O-、-S-、-CO-、-C(CH-、-C(CF-、-SO-、又は-SO-であり、Rfは炭素数1~8のフルオロアルキル基であり、Y及びYはそれぞれ独立に下式(1)で表される基(sは0又は1であり、R、R、R及びRはそれぞれ独立に水素原子又はフッ素原子である。)である。芳香環内のFはその芳香環の水素原子が全てフッ素原子で置換されていることを表す。 

Description

含フッ素芳香族化合物、その製造方法、硬化性材料、その硬化物、及び光学部材
 本発明は、新規な含フッ素芳香族化合物、その製造方法、該含フッ素芳香族化合物を含有する硬化性材料、その硬化物、及び該硬化物からなる光学部材に関する。
 光・電子機器分野では、光学フィルム、光学シート、透明基板、レンズ等の光学部材に透明な樹脂が使用されている。かかる光学用途に用いられる樹脂としては、熱可塑性樹脂と熱硬化性樹脂とに大別され、熱可塑性樹脂としては、ポリメチルメタクリレート等のアクリル樹脂、ポリカーボネート、シクロオレフィンポリマー、フッ素樹脂のCYTOP(登録商標、旭硝子社製)等が知られている。熱硬化性樹脂としては、エポキシ樹脂、シリコーン樹脂等が知られている。
 近年、光・電子機器分野では、高強度のレーザー光や青色光又は近紫外光の利用が広がっており、透明性、耐熱性及び耐光性に優れる樹脂が求められている。
 一般に、熱可塑性樹脂は、高温で軟化、流動するため、著しい高温下の使用には適さない。一方、熱硬化性樹脂は、架橋性官能基を2個以上有しており、加熱、光照射等を行うと架橋性官能基同士が反応して硬化する。その硬化物は、高温で流動しにくく耐熱性が高いため、高温下の使用に適する。
 熱硬化性樹脂の中でもエポキシ樹脂は、耐熱性に優れる。しかし、一般的なエポキシ樹脂は、芳香族環を有しており、紫外から近紫外域では透明性が充分でない。芳香族環を有しない、脂環式のエポキシ樹脂は、紫外から近紫外域でも透明性に優れる硬化物を形成できる(特許文献1)。しかし、該硬化物は、耐熱性や耐光性が充分でない。シリコーン樹脂は、可視光域から近紫外域まで透明性に優れ、耐光性、耐熱性に優れる硬化物を形成できる(特許文献2)。しかし、該硬化物は、熱膨張係数が大きく、水分や酸素等のガス透過性が大きいことから、電子デバイスの信頼性に問題を生じる場合がある。
 近年、光通信システムやコンピュータにおける情報処理の大容量化及び高速化の要求から、光伝送システムが使用されるようになっている。光伝送システムで用いられる光デバイス等における基本構成要素として光導波路がある。樹脂系光導波路として、フッ素化ポリイミドを構成要素とする光導波路(特許文献3)等が知られている。
 しかし、フッ素化ポリイミドは、脆く、弾性率が高く、製造過程で反りが生じる場合がある。また、フッ素化ポリイミドは、特殊なモノマーを使用とするため、高価であり、汎用の光導波路の生産への適用性に欠ける。
 したがって、2個以上の架橋性官能基を有し、硬化可能な化合物であって、透明性等の光学特性、耐熱性、機械特性等の光学部材に求められる特性を充分に満足する硬化物を製造できる新規な化合物が求められる。
日本特開2003-171439号公報 日本特開2004-186168号公報 日本特開平4-9807号公報
 本発明は、2個以上の炭素-炭素不飽和結合を有する新規な含フッ素芳香族化合物、その製造方法、該含フッ素芳香族化合物を含有する硬化性材料、その硬化物、及び光学部材を提供することを目的とする。
 本発明は、以下の[1]~[11]の構成を有する、含フッ素芳香族化合物、その製造方法、硬化性材料、その硬化物、及び光学部材を提供する。
 [1]下式(A)で表される含フッ素芳香族化合物。
Figure JPOXMLDOC01-appb-C000005
[式中、nは0~6の整数、aは0~5の整数、bは0~4の整数、cは0~4の整数であり、a+c+nは2~6、a+bは2~9であり、Zは単結合、-O-、-S-、-CO-、-C(CH-、-C(CF-、-SO-、又は-SO-であり、Rfは炭素数1~8のフルオロアルキル基であり、Y及びYはそれぞれ独立に下式(1)で表される基である。芳香環内のFはその芳香環の水素原子が全てフッ素原子で置換されていることを表す。]
Figure JPOXMLDOC01-appb-C000006
[式中、sは0又は1であり、R、R、R及びRはそれぞれ独立に水素原子又はフッ素原子である。]
 [2]分子量が、300~2000である、上記[1]に記載の含フッ素芳香族化合物。
 [3]前記式(A)中のY及びYにおけるR、R、R及びRがそれぞれ水素原子であること、並びに
 前記式(A)中のcが0であるか、またはcが1~4の整数であってRfが炭素数1~8のペルフルオロアルキル基であること、の両方を満たすものである、上記[1]または[2]に記載の含フッ素芳香族化合物。
 [4]下式(A-1)または(A-2)で表される、上記[3]に記載の含フッ素芳香族化合物。
Figure JPOXMLDOC01-appb-C000007
 [5]上記[1]に記載の含フッ素芳香族化合物を製造する方法であって、
 下式(a1)で表される芳香族化合物と、下式(a2)で表される含フッ素芳香族化合物とを、脱HF剤存在下に縮合反応させる工程を含むことを特徴とする、含フッ素芳香族化合物の製造方法。
Figure JPOXMLDOC01-appb-C000008
[式(a1)中、sは0又は1であり、R、R、R及びRはそれぞれ独立に水素原子又はフッ素原子であり、Xは、水素原子、CHCO、CHCHCO、(CHC(CHSi、又は(CHSiである。式(a2)中、nは0~6の整数、cは0~4の整数、c+nは0~6であり、Zは単結合、-O-、-S-、-CO-、-C(CH-、-C(CF-、-SO-、又は-SO-であり、Rfは炭素数1~8のフルオロアルキル基である。芳香環内のFはその芳香環の水素原子が全てフッ素原子で置換されていることを表す。]
 [6]前記式(a1)で表される芳香族化合物が、4-エテニルフェノール、又は4-エテニル-1-アセトキシベンゼンである、上記[5]に記載の含フッ素芳香族化合物の製造方法。
 [7]前記式(a2)で表される含フッ素芳香族化合物が、ペルフルオロベンゼン、ペルフルオロトルエン、ペルフルオロキシレン、ペルフルオロビフェニル、ペルフルオロテルフェニル、ペルフルオロトリフェニルベンゼン類、ペルフルオロテトラフェニルベンゼン類、ペルフルオロペンタフェニルベンゼン類、ペルフルオロヘキサフェニルベンゼン類、1、1’-オキシビス[2,3,4,5,6-ペンタフルオロベンゼン]類、1、1’-チオビス[2,3,4,5,6-ペンタフルオロベンゼン]類、ビス(2,3,4,5,6-ペンタフルオロフェニル)メタノン類、1、1’-サルフォニルビス[2,3,4,5,6-ペンタフルオロベンゼン]類、又は1、2,3,4,5-ペンタフルオロ-6-[(2,3,4,5,6-ペンタフルオロフェニル)サルフィニル]ベンゼン類である、上記[5]又は[6]に記載の含フッ素芳香族化合物の製造方法。
 [8]前記脱HF剤が、アルカリ金属水酸化物である、上記[5]~[7]のいずれか一項に記載の含フッ素芳香族化合物の製造方法。
 [9]上記[1]~[4]のいずれか一項に記載の含フッ素芳香族化合物を含有することを特徴とする硬化性材料。
 [10]上記[9]に記載の硬化性材料を硬化させてなる硬化物。
 [11]上記[10]に記載の硬化物を備える光学部材。
 本発明の含フッ素芳香族化合物は、2個以上の炭素-炭素不飽和結合を有する新規な化合物である。本発明の含フッ素芳香族化合物の製造方法によれば、本発明の含フッ素芳香族化合物を製造できる。本発明の含フッ素芳香族化合物及びこれを含有する硬化性組成物によれば、硬化物を製造できる。該硬化物は、透明性等の光学特性、耐熱性、機械特性等に優れ、光学部材として有用である。
〔含フッ素芳香族化合物〕
 本発明の含フッ素芳香族化合物(以下、含フッ素芳香族化合物(A)ともいう。)は、下式(A)で表され、2個以上の炭素-炭素不飽和結合を含有する。
Figure JPOXMLDOC01-appb-C000009
[式中、nは0~6の整数、aは0~5の整数、bは0~4の整数、cは0~4の整数であり、a+c+nは2~6、a+bは2~9であり、Zは単結合、-O-、-S-、-CO-、-C(CH-、-C(CF-、-SO-、又は-SO-であり、Rfは炭素数1~8のフルオロアルキル基であり、Y及びYはそれぞれ独立に下式(1)で表される基である。芳香環内のFはその芳香環の水素原子が全てフッ素原子で置換されていることを表す。]
Figure JPOXMLDOC01-appb-C000010
[式中、sは0又は1であり、R、R、R及びRはそれぞれ独立に水素原子又はフッ素原子である。]
 前記式(A)において、nは0~4が好ましく、0~3がより好ましい。
 aは1~3が好ましく、1~2がより好ましい。
 bは1~3が好ましく、1~2がより好ましい。
 cは0又は1が好ましく、0がより好ましい。
 a+c+nは2~4が好ましい。a+bは2~6が好ましい。
 Zは単結合、-O-、又は-S-であることが好ましく、単結合、又は-O-であることがより好ましい。
 Rfにおけるフルオロアルキル基の炭素数は、1~6が好ましく、1~4がより好ましく、1が最も好ましい。フルオロアルキル基としては、耐熱性に優れることから、ペルフルオロアルキル基が好ましい。その具体例としては、ペルフルオロメチル基、ペルフルオロエチル基、ペルフルオロプロピル基、ペルフルオロブチル基、ペルフルオロヘキシル基、ペルフルオロオクチル基等が挙げられる。Rfとしてはペルフルオロメチル基が最も好ましい。
 Y及びYはそれぞれ独立に前記式(1)で表される基(以下、基(1)ともいう。)である。
 式(1)中、sは、架橋反応性に優れる点で、0であることが好ましい。
 また、架橋反応性に優れる点で、R、R、R及びRのうち、少なくとも1つが水素原子であることが好ましく、R、R、R及びRがそれぞれ水素原子であることが特に好ましい。R、R、R及びRのうち、水素原子であるものの数が多いほど、基(1)の反応性が高くなり、含フッ素芳香族化合物(A)やこれを含有する硬化性材料は硬化性に優れ、得られる硬化物は耐熱性に優れる。
 基(1)の具体例としては、ビニル置換フェニル基、アリル置換フェニル基等が挙げられる。架橋反応性が高く、高い架橋密度が得られる点で、ビニル置換フェニル基が好ましい。
 式(A)中、Y及びYは同じであっても異なってもよく、同じであることが好ましい。
 含フッ素芳香族化合物(A)の分子量は、300~2000が好ましく、350~1000がより好ましい。分子量がこの範囲にあると、分子間での硬化が起こりやすく、透明性、耐熱性及び強度に優れた硬化物を得やすい。
 含フッ素芳香族化合物(A)としては、本発明の効果に優れる点で、前記式(A)中のY及びYにおけるR、R、R及びRがそれぞれ水素原子であること、並びに前記式(A)中のcが0であるか、またはcが1~4の整数であって、Rfが炭素数1~8のペルフルオロアルキル基であること、の両方を満たすものが好ましく、下式(A-1)または(A-2)で表される化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000011
<含フッ素芳香族化合物(A)の製造方法>
 含フッ素芳香族化合物(A)の製造方法としては、特に限定されないが、下式(a1)で表される芳香族化合物(以下、芳香族化合物(a1)と記す。)と、下式(a2)で表される含フッ素芳香族化合物(以下、含フッ素芳香族化合物(a2)と記す。)とを、脱HF剤存在下に縮合反応させる方法が好ましい。
 該縮合反応においては、芳香族化合物(a1)の-OXから誘導されるフェノキシイオンが、含フッ素芳香族化合物(a2)の芳香環のフッ素原子が結合した炭素原子を攻撃し、次いで、フッ素原子が脱離する反応機構等によりエーテル結合が生成する。これにより、含フッ素芳香族化合物(A)が得られる。
Figure JPOXMLDOC01-appb-C000012
[式(a1)中、sは0又は1であり、R、R、R及びRはそれぞれ独立に水素原子又はフッ素原子であり、Xは、水素原子、CHCO、CHCHCO、(CHC(CHSi、又は(CHSiである。式(a2)中、nは0~6の整数、cは0~4の整数、c+nは0~6であり、Zは単結合、-O-、-S-、-CO-、-C(CH-、-C(CF-、-SO-、又は-SO-であり、Rfは炭素数1~8のフルオロアルキル基である。芳香環内のFはその芳香環の水素原子が全てフッ素原子で置換されていることを表す。]
 式(a1)中のs、R、R、R、及びRの好ましい範囲及びより好ましい範囲は、式(A)におけるものと同じである。
 Xとしては、水素原子、CHCO、またはCHCHCOが好ましい。
 芳香族化合物(a1)の具体例としては、4-エテニルフェノール(4-ヒドロキシスチレンともいう)、2-エテニルフェノール、3-エテニルフェノール、4-エテニルテトラフルオロフェノール等のエテニルフェノール類、2-(2-プロペニル)フェノール、3-(2-プロペニル)フェノール、4-(2-プロペニル)テトラフルオロフェノール等の2-プロペニルフェノール類等の反応性二重結合を有するフェノール類、及びそれらの誘導体である4-エテニル-1-アセトキシベンゼン(p-アセトキシスチレンともいう)、4-エテニル-1-トリメチルシロキシベンゼン等が挙げられる。これらの誘導体は、含フッ素芳香族化合物(A)の製造時に、アセトキシ基やトリメチルシロキシ基が水酸基(フェノール性水酸基)に変換され、含フッ素芳香族化合物(a2)と反応する。
 芳香族化合物(a1)としては、架橋性不飽和二重結合の反応性という観点から、エテニル基を有する芳香族化合物がより好ましく、フッ素原子を含有しない芳香族化合物がさらに好ましく、4-エテニルフェノール、又は4-エテニル-1-アセトキシベンゼンが最も好ましい。
 含フッ素芳香族化合物(a2)は、含フッ素芳香族化合物(A)の骨格を構成する。
 式(a2)中のn、c、Z、Rfの好ましい範囲及びより好ましい範囲は、式(A)におけるものと同じである。
 含フッ素芳香族化合物(a2)の具体例としては、ペルフルオロベンゼン、ペルフルオロトルエン、ペルフルオロキシレン、ペルフルオロビフェニル、ペルフルオロテルフェニル、ペルフルオロトリフェニルベンゼン類、ペルフルオロテトラフェニルベンゼン類、ペルフルオロペンタフェニルベンゼン類、ペルフルオロヘキサフェニルベンゼン類、1、1’-オキシビス[2,3,4,5,6-ペンタフルオロベンゼン]類、1、1’-チオビス[2,3,4,5,6-ペンタフルオロベンゼン]類、ビス(2,3,4,5,6-ペンタフルオロフェニル)メタノン類、1、1’-サルフォニルビス[2,3,4,5,6-ペンタフルオロベンゼン]類、1、2,3,4,5-ペンタフルオロ-6-[(2,3,4,5,6-ペンタフルオロフェニル)サルフィニル]ベンゼン類等が挙げられる。
 含フッ素芳香族化合物(a2)としては、製造のしやすさと原料入手性の点から、ペルフルオロベンゼン、ペルフルオロトルエン、又はペルフルオロビフェニルが好ましい。また、硬化物が耐熱性に優れる点から、ペルフルオロトルエン又はペルフルオロビフェニルがより好ましい。
 含フッ素芳香族化合物(A)の製造に用いられる脱HF剤としては、塩基性化合物が好ましく、アルカリ金属の炭酸塩、炭酸水素塩又は水酸化物が特に好ましい。具体例としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。脱HF剤としては、アルカリ金属水酸化物が好ましい。
 芳香族化合物(a1)と含フッ素芳香族化合物(a2)との縮合反応において、脱HF剤の使用量は、芳香族化合物(a1)1モルに対し、1モル以上が必要であり、1.1~3モルが好ましい。
 縮合反応は、反応試薬の溶解性及び反応速度上昇の点から、極性溶媒中で行うことが好ましい。極性溶媒としては、N,N-ジメチルアセトアミド(以下、DMAcと記す。)、N,N-ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド、スルホラン等の非プロトン性の極性溶媒を含む溶媒が好ましい。
 極性溶媒には、生成する含フッ素芳香族化合物(A)の溶解性を低下させず、縮合反応に悪影響を及ぼさない範囲で、トルエン、キシレン、ベンゼン、テトラヒドロフラン、ベンゾトリフルオライド、キシレンヘキサフルオライド等が含まれていてもよい。これらを含有することによって、溶媒の極性(誘電率)が変化し、反応速度をコントロールできる。
 なお、極性溶媒以外の溶媒中でも上記製造方法で含フッ素芳香族化合物(A)を製造できる。例えば、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル(以下、ジグライムとも記す。)、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の低極性溶剤が挙げられる。
 縮合反応条件は、0~100℃で1~72時間が好ましい。
 中でも、極性溶媒中で縮合反応を行う場合は、反応の急激な進行を抑制する、目的物の生成を阻害する副反応を抑制する等の点から、3~50℃で2~48時間が好ましく、5~20℃で9~24時間がより好ましく、5~10℃で12~24時間が特に好ましい。
 極性溶媒以外の溶媒中で縮合反応を行う場合は、製造効率、反応速度の増大等の点から、40~80℃で12~24時間が特に好ましい。
 芳香族化合物(a1)と含フッ素芳香族化合物(a2)との縮合反応後に、含フッ素芳香族化合物(A)は、必要に応じて、中和、再沈殿、抽出、ろ過等の方法で精製されることが好ましい。脱HF剤に由来する金属(カリウム、ナトリウム等)や、縮合反応によって遊離したフッ素原子は、透明性や強度などの光学部材としての性能を低下させる可能性があるので充分に精製し除去することが好ましい。
 精製は、効率がよい点から、製造時において好ましく使用される極性溶媒が存在する状態で行うことが好ましい。
 得られた含フッ素芳香族化合物(A)の構造は、核磁気共鳴(NMR)、サイズ排除クロマトグラフィー(SEC)等の公知の分析方法により同定できる。
<作用効果>
 含フッ素芳香族化合物(A)は、基(1)に由来する炭素-炭素不飽和結合を2個以上(a+b個)有するため、加熱または光照射により含フッ素芳香族化合物(A)の分子同士が反応(付加重合)し、含フッ素芳香族化合物(A)の硬化物を得ることができる。また、含フッ素芳香族化合物(A)が有する基(1)は反応性が高いため、含フッ素芳香族化合物(A)は、ラジカル重合開始剤(光開始剤、熱開始剤等)を添加しなくても、単独で付加重合させることができ、反応副生物も発生しない。このため、含フッ素芳香族化合物(A)の硬化物は、不純物が少なく、透明性、耐光性に優れている。また、該硬化物は、含フッ素芳香族骨格からなるため、耐熱性、機械的特性にも優れている。
 したがって、含フッ素芳香族化合物(A)は、硬化性材料の硬化性成分として、硬化物の製造に使用できる。中でも、硬化物に透明性、耐熱性、耐光性、及び機械的特性が求められる光学用途に好適に用いられる。なお、硬化性成分とは、単独で硬化物を形成し得る化合物をいう。
 含フッ素芳香族化合物(A)は、架橋助剤として使用することもできる。例えば含フッ素エラストマーに架橋助剤として含フッ素芳香族化合物(A)を配合することで、架橋反応性に優れ、架橋物が耐薬品性及び耐熱性に優れる含フッ素エラストマー組成物が得られる。
 含フッ素エラストマーの架橋方法は、得られる架橋物の特性に影響することが知られている。特にペルフルオロエラストマーは架橋が容易でないことが知られている。そこで、架橋物の特性の改良、架橋反応性の向上等のため、種々の架橋方法が提案されてきた。例えばペルフルオロエラストマーの架橋方法として、高分子鎖末端に架橋部位としてヨウ素原子を有するペルフルオロエラストマーを、ペルオキシドの存在下、架橋助剤と反応させる方法が提案されている。架橋助剤としては、トリアリルイソシアヌレート(例えば米国特許第4243770号明細書、国際公開第90/014367号)、1,6-ジビニルペルフルオロヘキサン(例えば特許第5057657号公報)等が提案されている。しかし、トリアリルイソシアヌレートを用いて得られる架橋物は、イソシアヌレート環の架橋点を有するので、耐熱性が充分でない。1,6-ジビニルペルフルオロヘキサンを用いて得られる架橋物は、耐熱性に優れるが、耐薬品性、特に耐アミン性が充分でない。含フッ素芳香族化合物(A)によれば、優れた耐薬品性及び耐熱性を両立できる。
〔硬化性材料〕
 本発明の硬化性材料は、前記含フッ素芳香族化合物(A)を含有する。
 本発明の硬化性材料に含まれる含フッ素芳香族化合物(A)は、1種でも2種以上でもよい。
 本発明の硬化性材料は、含フッ素芳香族化合物(A)のみからなるものであってもよく、含フッ素芳香族化合物(A)以外の他の成分をさらに含む組成物であってもよい。
 例えば、本発明の硬化性材料は、必要に応じて、ラジカル重合開始剤、導電性付与剤、補強材等を含んでいてもよい。導電性付与剤としては、アセチレンブラックやサーマルブラックなどのカーボンブラック、PAN系やピッチ系などの炭素繊維、単層及び多層のカーボンナノチューブ、黒鉛、銀や銅やニッケルなどの金属微粉末、酸化亜鉛や酸化マグネシウムや酸化アルミニウムなどの金属酸化物が挙げられる。また、補強材としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリクロロトリフルオロエチレン、TFE/エチレン共重合体、TFE/プロピレン共重合体、TFE/フッ化ビニリデン共重合体等が挙げられる。これらの成分はそれぞれ、1種を単独で用いても2種以上を併用してもよい。
 また、本発明の含フッ素芳香族化合物(A)を、公知の種々の熱硬化性組成物や光硬化性組成物に添加して、硬化性材料を得ることも好ましい。本発明の含フッ素芳香族化合物(A)を含有することにより、該硬化性材料は、硬化性に優れ、かつ、得られる硬化物は、透明性等の光学特性や機械特性に優れる。
〔硬化物〕
 本発明の硬化物は、前記硬化性材料を硬化させてなるものである。
 硬化方法は、加熱(熱硬化)又は光照射(光硬化)が好ましい。
 熱硬化する場合の硬化条件としては、130℃~180℃が好ましい。
 光硬化に用いられる光としては、200nm~400nmの波長が好ましい。
 硬化物の製造方法の具体例としては、例えば、固体(粉末状等)の硬化性材料を任意形状の型中に充填し、加熱(熱硬化)する方法、溶剤に溶かした固体を基材に塗布後、加熱(熱硬化)、または光照射(光硬化)する方法等が挙げられる。
 本発明の硬化性材料を硬化させて得られる硬化物は、透明性、耐熱性、耐光性及び機械的特性に非常に優れる。
 したがって、本発明の硬化物は、光学部材用として有用である。
〔光学部材〕
 本発明の光学部材は、本発明の硬化物を備えるものである。本発明の硬化物は、光学部材の全体を構成してもよく一部を構成してもよい。
 光学部材としては、例えば、光学フィルム、光学シート、透明基板、レンズ、接着剤、光導波路、太陽電池用部材、発光ダイオード(LED)、フォトトランジスタ、フォトダイオード、固体撮像素子等の光半導体素子、照明装置、画像表示用装置等が挙げられる。画像表示用装置としては、例えばプラズマディスプレイ(PDP)、陰極線管(CRT)、電界放出ディスプレイ(FED)、有機ELディスプレイ、3Dディスプレイ、電子ペーパー等が挙げられる。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。なお、各測定項目は下記方法により測定した。
(含フッ素芳香族化合物およびその硬化物について)
[含フッ素芳香族化合物のNMR分析]
 含フッ素芳香族化合物のH NMRスペクトル、及び19F NMRスペクトルは、日本電子社製(JEOL)のFT NMR装置JNM-AL300を用いて測定した。
<熱物性>
[ガラス転移温度(Tg)]
 含フッ素芳香族化合物およびその硬化物のガラス転移温度(Tg)は、TA Instrument社製DSC Q-100によって測定した。昇温速度10℃/分で135℃まで昇温し、冷却速度20℃/分で冷却し、再び昇温速度10℃/分で135℃まで昇温する条件で測定し、得られたDSC曲線の変曲点での温度をTgとした。
[融点(Tm)]
 含フッ素芳香族化合物およびその硬化物の融点(Tm)は、TA Instrument社製DSC Q-100によって測定した。昇温速度10℃/分で135℃まで昇温し、冷却速度20℃/分で冷却し、再び昇温速度10℃/分で135℃まで昇温する条件で測定し、得られたDSC曲線の吸熱ピークのピークトップでの温度をTmとした。なお、複数のTmが観測された場合には、低い方からTm、Tm、Tm等と記載した。複数のTmが観測される理由は、複数の結晶状態が存在するためであると考えられる。
[示差熱-熱重量同時測定(TG-DTA)]
 含フッ素芳香族化合物の硬化物の1%重量減少温度(T1d)、及び5%重量減少温度(T5d)は、NETZSCHのTG-DTA2000SAによって測定した。空気存在下、昇温速度10℃/分の条件で測定し、TG曲線上の重量減少1%の温度をT1d、重量減少5%の温度をT5dとした。
<光学特性>
[屈折率]
 含フッ素芳香族化合物の硬化物の屈折率(nD20)は、波長589.3nm、温度20℃の条件で、アタゴ社製のアッベ屈折計 NAR-2Tによって測定した。中間液として1-ブロモナフタレンを用いた。
[色相]
 含フッ素芳香族化合物の硬化物の黄色度(YI)は、スガ試験機社製のColour Cute iによって測定した。この値はJIS K 7373の規格に則って測定した値である。
<機械物性>
[曲げ強度、及び曲げ弾性率]
 含フッ素芳香族化合物の硬化物の曲げ強度、及び曲げ弾性率は、島津製作所社製の小型卓上試験機EZ TESTにおける3点曲げ試験によって測定した。
(含フッ素エラストマー組成物およびその架橋物について)
[含フッ素エラストマーの共重合組成]
 含フッ素エラストマーについて、日本電子社製(JEOL)のFT-NMR装置JNM-AL300によって19F-NMRの測定を行い、その結果から共重合組成を決定した。
[含フッ素エラストマーの貯蔵弾性率G’の測定方法]
 Alpha Technologies社製RPA2000を用いて、ASTM D5289、及びD6204に従い、温度100℃、振幅0.5度、振動数50回/分で測定した値を貯蔵弾性率G’とした。
[ヨウ素原子含有量]
 含フッ素エラストマーの2mgを燃焼し、発生したガスを0.02質量%ヒドラジン水溶液に吸収させ、得られた溶液をICP発光法によって分析し、該溶液中のヨウ素原子の含有量を測定し、その結果から含フッ素エラストマー中のヨウ素原子の含有量を決定した。
[耐熱性試験]
 耐熱性試験用のサンプル(10mm×30mm、厚さ1mmの架橋性含フッ素エラストマー組成物の架橋物)を、熱風オーブンの中で、所定温度で所定時間加熱した後取り出し、目視で観察し、下記の基準で、所定温度で所定時間の耐熱性試験における耐熱性を評価した。
 ○(良好):サンプルが変形しなかった。
 ×(不良):サンプルが変形した。
 耐熱性試験は、300℃×48時間、300℃×72時間、325℃×24時間、325℃×48時間、325℃×72時間の条件のうち、加熱温度が300℃で加熱時間が短いものから実施し、評価が「×」となった時点でそれよりも長時間や高温の条件下の耐熱性試験は行わなかった。
[耐薬品性試験]
 サンプル瓶中で、耐薬品試験用のサンプル(13mm×13mm、厚さ1mmの架橋性含フッ素エラストマー組成物の架橋物)を、48%NaOH水溶液、及びDMAcにそれぞれ浸漬させて、40℃で180時間保持した後取り出し、目視で観察し、下記の基準で耐薬品性を評価した。
 ○(良好):サンプルに着色、膨潤、及び収縮のいずれもが見られなかった。
 ×(不良):サンプルに着色、膨潤、及び収縮のいずれかの変化が見られた。
(合成例1:ヨウ素末端の含フッ素エラストマー(F1)の合成)
 アンカー型撹拌翼を備えた内容積20Lのステンレス鋼製耐圧反応器に、脱気したイオン交換水の8770g、CFCFOCFCFOCFCOONHの733g、リン酸水素二ナトリウム・12水和物の15.9g及びCF=CFO(CFOCF=CF(以下、C4DVEと記す。)の18.0gを仕込み、気相を窒素置換した。375rpmの回転速度で撹拌しながら、CF=CFO-CF(以降、PMVEと記す。)の554g、TFEの115gを仕込み、内温を80℃まで昇温させた。内圧は0.90MPaG(Gはゲージ圧であることを意味する。)であった。過硫酸アンモニウムの2.5質量%水溶液の40mLを添加して重合を開始した。
 重合の進行に伴い反応器の内圧が低下するため、内圧が0.89MPaGに降下した時点でTFEガスを圧入し、内圧を0.91MPaGまで昇圧させた。この操作を繰り返して反応器の内圧を0.89~0.91MPaGに保持して重合反応を継続した。TFEの添加量が30gになった時点で、1,4-ジヨードペルフルオロブタンの16.0gを窒素背圧により添加した。以降、TFEの80gが添加される毎に、PMVEの80.0gを窒素背圧により添加した。PMVEの圧入は、TFEの800gを添加するまで続けた。重合開始から終了までのPMVEの添加量の合計は635gだった。
 過硫酸アンモニウム水溶液添加後のTFEの総添加量が800gとなった時点で、TFEの添加を停止し、反応器の内温を10℃まで冷却して重合反応を停止させた。ヨウ素末端の含フッ素エラストマー(F1)のラテックスの6530gを得た。重合時間は9時間であった。ラテックス中の固形分の濃度は、20質量%であった。
 ラテックスの5000gを撹拌しながら、ラテックスに96%硫酸の50gを添加して含フッ素エラストマー(F1)を凝集させた。凝集物を分離したのち、1回あたり5000gの超純水によって10回洗浄した。50℃で12時間、真空乾燥することによって白色の含フッ素エラストマー(F1)を得た。
 含フッ素エラストマー(F1)の共重合組成は、TFEに基づく構成単位/PMVEに基づく構成単位/C4DVEに基づく構成単位=76/24/0.10(モル比)であり、C4DVEに由来する重合性二重結合に基づくシグナルは観測されなかった。したがって、C4DVEのビニル基は重合中にすべて消費され、含フッ素エラストマー(F1)中にはビニル基は存在しないと推定された。
 含フッ素エラストマー(F1)中のヨウ素原子の含有量は、18.8μmol/gであった。また、貯蔵弾性率G’は、495kPaであった。
(実施例1:含フッ素芳香族化合物(A-1)の合成)
 窒素を導入するための三方コック、熱電対温度計を備えた2Lの4口フラスコに、ペルフルオロビフェニルの82.2g、p-アセトキシスチレンの98.4gを入れ、DMAcの708.9gに溶解させた後、48%の水酸化カリウム水溶液の140.0gを添加し撹拌し反応させた。反応液の温度は8~9℃の範囲で制御し、24時間反応させた。その後、反応粗液を0.5Nの塩酸の3090g中に滴下させると、白色の固体が析出した。ろ過により得られた固体をろ別し、イオン交換水で2回洗浄することにより、白色固体である含フッ素芳香族化合物(A-1)の122g(収率92.8%)を得た。
 得られた含フッ素芳香族化合物(A-1)について、NMR、及びDSCによる分析を行った。結果を以下に示す。
 H-NMR、19F-NMRスペクトル;
 H-NMR(300.4MHz、溶媒:重アセトン、基準:テトラメチルシラン(TMS)、内部標準:ビス(トリフルオロメチル)ベンゼン)δ(ppm):7.55、7.20、6.75、5.80、5.25。
 19F-NMR(282.7MHz、溶媒:重アセトン、基準:CFCl、内部標準:ビス(トリフルオロメチル)ベンゼン)δ(ppm):-140.0、-155.5。
 Tg=-1.6℃、Tm=79.5℃、Tm=107.3℃。
 上記の結果から、含フッ素芳香族化合物(A-1)が以下に示す構造を有することが確認された。
Figure JPOXMLDOC01-appb-C000013
(実施例2:含フッ素芳香族化合物(A-1)の合成)
 窒素を導入するための三方コック、熱電対温度計を備えた200mLの3口フラスコに、ペルフルオロビフェニルの10.0g、p-アセトキシスチレンの12.2gを入れ、ジグライムの60gに溶解させた後、48%の水酸化カリウム水溶液の20.6gを加えて撹拌させ反応させた。反応液の温度は45℃に制御し、15時間反応させた。その後、反応粗液を0.5Nの塩酸の312g中に滴下させると、白色の固体が析出した。ろ過により得られた固体をろ別し、イオン交換水で2回洗浄することにより、白色固体である含フッ素芳香族化合物(A-1)の15.1g(収率94.2%)を得た。
 得られた含フッ素芳香族化合物(A-1)について、NMRによる分析を行ったところ、実施例1と同様の結果が得られた。
 Tg=0.1℃、Tm=81.6℃、Tm=108.9℃。TgおよびTmが実施例1と異なる理由は、データ解析による誤差であると考えられる。
 なお、実施例1と実施例2とでは、同じ含フッ素芳香族化合物(A-1)を、溶媒および反応条件を変更して製造した。具体的には、溶媒としてDMAcを用いた実施例1においては、8~9℃で24時間の反応を行い、溶媒としてジグライムを用いた実施例2においては、45℃で15時間の反応を行った。これは、極性溶媒であるDMAc中で反応を行う場合、低極性溶剤であるジグライムに比べて、低温でも反応が進行しやすいためである。ただし、反応温度が高すぎると、目的物の生成を阻害する副反応が起こりやすくなるので反応温度の選択には注意を要する。
(実施例3:含フッ素芳香族化合物(A-2)の合成)
 窒素を導入するための三方コック、熱電対温度計を備えた1Lの4口フラスコに、ペルフルオロトルエンの25.0g、p-アセトキシスチレンの68.7gを入れ、ジグライムの385.0gに溶解させた後、48%の水酸化ナトリウム水溶液の102.5gを加えて撹拌させ反応させた。反応液の温度は60℃に制御し、6時間反応させた。その後、反応粗液を0.5Nの塩酸の1744g中に滴下させると、白色の固体が析出した。ろ過により得られた固体をろ別し、イオン交換水で2回洗浄することにより、白色固体である含フッ素芳香族化合物(A-2)の30.1g(収率53.0%)を得た。
 得られた含フッ素芳香族化合物(A-2)について、NMR、及びDSCによる分析を行った。結果を以下に示す。
 H-NMR、19F-NMRスペクトル;
 H-NMR(300.4MHz、溶媒:重アセトン、基準:TMS、内部標準:ビス(トリフルオロメチル)ベンゼン)δ(ppm):7.50、7.15、6.75、5.75、5.20。
 19F-NMR(282.7MHz、溶媒:重アセトン、基準:CFCl、内部標準:ビス(トリフルオロメチル)ベンゼン)δ(ppm):-56.7、-142.0。
Tg=-0.4℃、Tm=122.1℃、Tm=130.2℃。
 上記の結果から、含フッ素芳香族化合物(A-2)が以下に示す構造を有することが確認された。
Figure JPOXMLDOC01-appb-C000014
(実施例4)
 実施例1で得た含フッ素芳香族化合物(A-1)の920mgを、10mm×35mm×35mmのポリテトラフルオロエチレン(以降、PTFEと記す)製の正方形の箱に入れ、120℃で15分間加熱し、その後昇温して170℃で30分間加熱したところ、0.7mm×35mm×35mmの硬化物(X-1)が得られた。
 得られた硬化物(X-1)について、熱物性、光学特性、及び機械特性を評価した。結果を以下に示す。
 硬化物(X-1)のガラス転移温度(Tg)、及び融点(Tm);
 Tg、及びTmは観測されなかった。
 硬化物(X-1)の1%重量減少温度(T1d)、5%重量減少温度(T5d);
 T1dは336℃であり、T5dは450℃であった。
 硬化物(X-1)の屈折率(nD20);
 nD20は、1.412であった。
 硬化物(X-1)の黄色度(YI);
 YIは、2.3と低く、色相が良好であった。
 硬化物(X-1)の曲げ強度、及び曲げ弾性率;
 曲げ強度は22.3MPa、曲げ弾性率は1.237GPaであった。
(実施例5)
 実施例2で得た含フッ素芳香族化合物(A-1)の927mgを、10mm×35mm×35mmのPTFE製の正方形の箱に入れ、120℃で15分間加熱し、その後昇温して170℃で30分間加熱したところ、0.7mm×35mm×35mmの硬化物(X-2)が得られた。
 得られた硬化物(X-2)について、熱物性、光学特性、及び機械特性を評価した。結果を以下に示す。
 硬化物(X-2)のガラス転移温度(Tg)、及び融点(Tm);
 Tg、及びTmは観測されなかった。
 硬化物(X-2)の1%重量減少温度(T1d)、5%重量減少温度(T5d);
 T1dは338℃であり、T5dは451℃であった。
 硬化物(X-2)の屈折率(nD20);
 nD20は、1.407であった。
 硬化物(X-2)の黄色度(YI);
 YIは、2.1と低く、色相が良好であった。
 硬化物(X-2)の曲げ強度、及び曲げ弾性率;
 曲げ強度は24.6MPa、曲げ弾性率は1.382GPaであった。
(実施例6)
 含フッ素芳香族化合物(A-2)の920mgを10mm×35mm×35mmのPTFE製の正方形の箱に入れ、170℃で30分間加熱したところ、0.7mm×35mm×35mmの硬化物(X-3)が得られた。
 得られた硬化物(X-3)について、熱物性、光学特性、及び機械特性を評価した。結果を以下に示す。
 硬化物(X-3)の
 Tg、Tmは観測されなかった。
 硬化物(X-3)の1%重量減少温度(T1d)、5%重量減少温度(T5d);
 T1dは412℃であり、T5dは465℃であった。
 硬化物(X-3)の屈折率(nD20);
 nD20は、1.408であった。
 硬化物(X-3)の黄色度(YI);
 YIは、2.1と低く、色相が良好であった。
 硬化物(X-3)の曲げ強度、及び曲げ弾性率;
 曲げ強度は44.8MPa、曲げ弾性率は1.898GPaであった。
(実施例7:含フッ素芳香族化合物(A-2)の合成)
 窒素を導入するための三方コック、熱電対温度計を備えた1Lの4口フラスコに、ペルフルオロトルエンの20.1g、p-アセトキシスチレンの51.4gを入れ、ジグライムの143.3gに溶解させた後、48%の水酸化ナトリウム水溶液の73.4gを加えて撹拌させ反応させた。反応液の温度を45℃に制御し、15時間反応させた。その後、反応粗液を0.1Nの塩酸の497.7g中に滴下させると、白色の固体が析出した。ろ過により得られた固体をろ別し、イオン交換水で2回洗浄することにより、白色固体である含フッ素芳香族化合物(A-2)の39.4g(収率86.0%)を得た。
 得られた含フッ素芳香族化合物(A-2)について、NMRによる分析を行ったところ、実施例3と同様の結果が得られた。
 Tg=-0.1℃、Tm=122.7℃、Tm=130.6℃。TgおよびTmが実施例3と異なる理由は、データ解析による誤差であると考えられる。
実施例4~6の結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000015
 1%重量減少温度(T1d)が300℃以上、及び5%重量減少温度(T5d)が400℃以上であれば、光学用途に充分な耐熱性を有すると判定される。
 また、YIが5以下であれば、光学用途に充分な黄色度の低さを有すると判定される。
 曲げ強度が10~200MPa、曲げ弾性率が0.5~5.0GPaであれば、光学用途に充分な機械特性を有すると判定される。
 実施例4~6の硬化物は、融点(Tm)が観測されず、300℃に加熱しても流動しないことから、含フッ素芳香族化合物(A-1)、含フッ素芳香族化合物(A-2)がそれぞれ充分に硬化したことが確認できた。
 また、熱物性、光学特性、機械特性の測定結果から、実施例4~6の硬化物がそれぞれ、優れた耐熱性、光学特性、及び機械特性を有することが確認できた。
(参考例A)
 含フッ素エラストマー(F1)の1.01g、実施例1で得た含フッ素芳香族化合物(A-1)の0.104g、1H-トリデカフルオロヘキサン(旭硝子社製AC-2000;以下、AC-2000と記す。)の20.0g、酸化マグネシウムの0.0306g、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン(日本油脂社製パーヘキサ25B;以下、パーヘキサ25Bと記す。)の0.0203gを、50mLのナスフラスコ内で混合し撹拌することによって架橋性含フッ素エラストマー組成物の分散液を得た。
 該分散液を、PTFEのシート上に流延して窒素フローによって溶媒を除去し、続いて170℃で12分間、ステンレス板間で加熱プレスすることによって、厚さ1mmのフィルム(架橋性含フッ素エラストマー組成物の架橋物)を作製した。
 得られたフィルムを10mm×30mmに切断して耐熱性試験用のサンプルを作製し、表1に示す温度と時間での耐熱性試験を実施した。結果を表1に示す。
 また、得られたフィルムを13mm×13mmに切断して耐薬品試験用のサンプルを作製し、耐薬品試験を実施した。結果を表2に示す。
(参考例B)
 酸化マグネシウムを配合しなかった以外は参考例Aと同様にして、架橋性含フッ素エラストマー組成物の分散液を調製し、厚さ1mmのフィルムを作製し、該フィルムから耐熱性試験用及び耐薬品試験用のサンプルを作製し、耐熱性試験及び耐薬品試験を実施した。結果を表2に示す。
(参考例C)
 含フッ素エラストマー(F1)の1.01g、含フッ素芳香族化合物(A-2)の0.105g、AC-2000の20.3g、酸化マグネシウムの0.0318g、パーヘキサ25Bの0.0165gを用いた以外は参考例Aと同様にして、架橋性含フッ素エラストマー組成物の分散液を調製し、厚さ1mmのフィルムを作製し、該フィルムから耐熱性試験用及び耐薬品試験用のサンプルを作製し、耐熱性試験及び耐薬品試験を実施した。結果を表2に示す。
(参考例D)
 酸化マグネシウムを配合しなかった以外は参考例Cと同様にして、架橋性含フッ素エラストマー組成物の分散液を調製し、厚さ1mmのフィルムを作製し、該フィルムから耐熱性試験用及び耐薬品試験用のサンプルを作製し、耐熱性試験及び耐薬品試験を実施した。結果を表2に示す。
(比較参考例E)
 架橋性含フッ素エラストマー(F1)の1.02g、トリアリルイソシアヌレート(以下、TAICと記す。)の0.104g、AC-2000の20.2g、酸化マグネシウムの0.0298g、パーヘキサ25Bの0.0180gを用いた以外は参考例Aと同様にして、架橋性含フッ素エラストマー組成物の分散液を調製し、厚さ1mmのフィルムを作製し、該フィルムから耐熱性試験用及び耐薬品試験用のサンプルを作製し、耐熱性試験及び耐薬品試験を実施した。結果を表2に示す。
(比較参考例F)
 架橋性含フッ素エラストマー(F1)の1.00g、1,6-ジビニルペルフルオロヘキサンの0.104g、AC-2000の20.6g、酸化マグネシウムの0.0310g、パーヘキサ25Bの0.0185gを用いた以外は参考例Aと同様にして、架橋性含フッ素エラストマー組成物の分散液を調製し、厚さ1mmのフィルムを作製し、該フィルムから耐熱性試験用及び耐薬品試験用のサンプルを作製し、耐熱性試験及び耐薬品試験を実施した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000016
 参考例A~Dの架橋性含フッ素エラストマー組成物の架橋物は、300℃72時間の耐熱性試験で全く変形が見られず、耐熱性に優れていた。特に参考例A~Bの架橋性含フッ素エラストマー組成物の架橋物は、325℃48時間の耐熱性試験でも全く変形が見られなかった。
 また、参考例A~Dの架橋性含フッ素エラストマー組成物の架橋物は、48%NaOH水溶液、DMAcのいずれを用いた耐薬品試験でも着色、膨潤及び収縮が見られず、耐薬品性に優れていた。
 一方、含フッ素芳香族化合物の代わりにTAICを用いた比較参考例Eの架橋性含フッ素エラストマー組成物の架橋物は、300℃で72時間の耐熱性試験で大きな変形が見られ、耐熱性が低かった。
 また、含フッ素芳香族化合物の代わりに1,6-ジビニルペルフルオロヘキサンを用いた比較参考例Fの架橋性含フッ素エラストマー組成物の架橋物は、DMAcに溶け、体積が収縮した。ゆえに、この架橋物は耐薬品性に劣ることが判明した。
 本発明の含フッ素芳香族化合物を加熱または光硬化することにより得られる硬化性樹脂は光学部材として使用できる。光学部材としては、光学フィルム、光学シート、透明基板、レンズ、接着剤、光導波路、太陽電池用部材、発光ダイオード(LED)、フォトトランジスタ、フォトダイオード、固体撮像素子等の光半導体素子、照明装置、画像表示用装置等が挙げられる。
 また、本発明の含フッ素芳香族化合物は、含フッ素エラストマーの架橋助剤として使用できる。
 また、本発明の含フッ素芳香族化合物は、種々の熱硬化性組成物や光硬化性組成物に配合して、それから得られた硬化物の光特性や機械特性の向上する改質剤として使用できる。
 なお、2013年8月7日に出願された日本特許出願2013-164619号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  下式(A)で表される含フッ素芳香族化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、nは0~6の整数、aは0~5の整数、bは0~4の整数、cは0~4の整数であり、a+c+nは2~6、a+bは2~9であり、Zは単結合、-O-、-S-、-CO-、-C(CH-、-C(CF-、-SO-、又は-SO-であり、Rfは炭素数1~8のフルオロアルキル基であり、Y及びYはそれぞれ独立に下式(1)で表される基である。芳香環内のFはその芳香環の水素原子が全てフッ素原子で置換されていることを表す。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、sは0又は1であり、R、R、R及びRはそれぞれ独立に水素原子又はフッ素原子である。]
  2.  分子量が、300~2000である、請求項1に記載の含フッ素芳香族化合物。
  3.  前記式(A)中のY及びYにおけるR、R、R及びRがそれぞれ水素原子であること、並びに
     前記式(A)中のcが0であるか、またはcが1~4の整数であってRfが炭素数1~8のペルフルオロアルキル基であること、の両方を満たすものである、請求項1または2に記載の含フッ素芳香族化合物。
  4.  下式(A-1)または(A-2)で表される、請求項3に記載の含フッ素芳香族化合物。
    Figure JPOXMLDOC01-appb-C000003
  5.  請求項1に記載の含フッ素芳香族化合物を製造する方法であって、
     下式(a1)で表される芳香族化合物と、下式(a2)で表される含フッ素芳香族化合物とを、脱HF剤存在下に縮合反応させる工程を含むことを特徴とする、含フッ素芳香族化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    [式(a1)中、sは0又は1であり、R、R、R及びRはそれぞれ独立に水素原子又はフッ素原子であり、Xは、水素原子、CHCO、CHCHCO、(CHC(CHSi、又は(CHSiである。式(a2)中、nは0~6の整数、cは0~4の整数、c+nは0~6であり、Zは単結合、-O-、-S-、-CO-、-C(CH-、-C(CF-、-SO-、又は-SO-であり、Rfは炭素数1~8のフルオロアルキル基である。芳香環内のFはその芳香環の水素原子が全てフッ素原子で置換されていることを表す。]
  6.  前記式(a1)で表される芳香族化合物が、4-エテニルフェノール、又は4-エテニル-1-アセトキシベンゼンである、請求項5に記載の含フッ素芳香族化合物の製造方法。
  7.  前記式(a2)で表される含フッ素芳香族化合物が、ペルフルオロベンゼン、ペルフルオロトルエン、ペルフルオロキシレン、ペルフルオロビフェニル、ペルフルオロテルフェニル、ペルフルオロトリフェニルベンゼン類、ペルフルオロテトラフェニルベンゼン類、ペルフルオロペンタフェニルベンゼン類、ペルフルオロヘキサフェニルベンゼン類、1、1’-オキシビス[2,3,4,5,6-ペンタフルオロベンゼン]類、1、1’-チオビス[2,3,4,5,6-ペンタフルオロベンゼン]類、ビス(2,3,4,5,6-ペンタフルオロフェニル)メタノン類、1、1’-サルフォニルビス[2,3,4,5,6-ペンタフルオロベンゼン]類、又は1、2,3,4,5-ペンタフルオロ-6-[(2,3,4,5,6-ペンタフルオロフェニル)サルフィニル]ベンゼン類である、請求項5又は6に記載の含フッ素芳香族化合物の製造方法。
  8.  前記脱HF剤が、アルカリ金属水酸化物である、請求項5~7のいずれか一項に記載の含フッ素芳香族化合物の製造方法。
  9.  請求項1~4のいずれか一項に記載の含フッ素芳香族化合物を含有することを特徴とする硬化性材料。
  10.  請求項9に記載の硬化性材料を硬化させてなる硬化物。
  11.  請求項10に記載の硬化物を備える光学部材。
PCT/JP2014/070491 2013-08-07 2014-08-04 含フッ素芳香族化合物、その製造方法、硬化性材料、その硬化物、及び光学部材 WO2015020002A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015530881A JP6368940B2 (ja) 2013-08-07 2014-08-04 含フッ素芳香族化合物、その製造方法、硬化性材料、その硬化物、及び光学部材
CN201480044681.XA CN105452209B (zh) 2013-08-07 2014-08-04 含氟芳香族化合物、其制造方法、固化性材料、其固化物、以及光学构件
EP14834433.6A EP3031793B1 (en) 2013-08-07 2014-08-04 Fluorinated aromatic compound, method for its production, curable material, its cured product, and optical member
US15/008,136 US10087128B2 (en) 2013-08-07 2016-01-27 Fluorinated aromatic compound, method for its production, curable material, its cured product, and optical member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013164619 2013-08-07
JP2013-164619 2013-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/008,136 Continuation US10087128B2 (en) 2013-08-07 2016-01-27 Fluorinated aromatic compound, method for its production, curable material, its cured product, and optical member

Publications (1)

Publication Number Publication Date
WO2015020002A1 true WO2015020002A1 (ja) 2015-02-12

Family

ID=52461334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070491 WO2015020002A1 (ja) 2013-08-07 2014-08-04 含フッ素芳香族化合物、その製造方法、硬化性材料、その硬化物、及び光学部材

Country Status (6)

Country Link
US (1) US10087128B2 (ja)
EP (1) EP3031793B1 (ja)
JP (1) JP6368940B2 (ja)
CN (1) CN105452209B (ja)
TW (1) TWI632184B (ja)
WO (1) WO2015020002A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632185B (zh) * 2013-08-07 2018-08-11 旭硝子股份有限公司 Crosslinkable fluoroelastomer composition and crosslinked product thereof
EP3650476A4 (en) * 2017-07-05 2021-03-24 AGC Inc. ELASTIC COPOLYMER CONTAINING FLUORINE, COMPOSITION OF IT AND CROSS-LINKED RUBBER ITEMS

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243770A (en) 1977-04-08 1981-01-06 Daikin Kogyo Co., Ltd. Cross linkable fluorine-containing polymer and its production
WO1990014367A1 (en) 1989-05-19 1990-11-29 E.I. Du Pont De Nemours And Company Preparation of bromo-containing perfluoropolymers having iodine curesites
JPH049807A (ja) 1990-04-27 1992-01-14 Nippon Telegr & Teleph Corp <Ntt> ポリイミド系光導波路
JPH05507742A (ja) * 1990-04-17 1993-11-04 アライド・シグナル・インコーポレイテツド 架橋性フッ素化芳香族エーテル組成物
JP2003171439A (ja) 2001-12-06 2003-06-20 Mitsubishi Chemicals Corp 脂環式エポキシ化合物および発光ダイオード用封止材
JP2004186168A (ja) 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
US20040198906A1 (en) * 2002-05-28 2004-10-07 Jianfu Ding Techniques for the preparation of highly fluorinated polyethers
JP2004300089A (ja) * 2003-03-31 2004-10-28 Asahi Glass Co Ltd 新規化合物およびその用途
WO2006137327A1 (ja) * 2005-06-24 2006-12-28 Asahi Glass Company, Limited 架橋性含フッ素芳香族プレポリマー及びその用途
JP2008539304A (ja) * 2005-04-28 2008-11-13 サイテク・テクノロジー・コーポレーシヨン 製造特性が向上したビスマレイミド樹脂系
JP5057657B2 (ja) 2004-06-22 2012-10-24 ソルヴェイ ソレクシス エス.ピー.エー. パーフルオロエラストマー組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505438A1 (en) * 1989-12-08 1992-09-30 AlliedSignal Inc. Electronic articles containing a fluorinated poly(arylene ether) dielectric
KR100511100B1 (ko) * 2002-07-12 2005-08-31 김미화 퍼플루오로스티렌 화합물, 이를 이용한 코팅액 및광도파로형 광소자
WO2006032020A1 (en) * 2004-09-14 2006-03-23 E.I. Dupont De Nemours And Company Optical organic polymer
US8716403B2 (en) * 2008-12-10 2014-05-06 Electronics And Telecommunications Research Institute Prepolymer prepared by a condensation reaction and a polymer sheet obtained therefrom

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243770A (en) 1977-04-08 1981-01-06 Daikin Kogyo Co., Ltd. Cross linkable fluorine-containing polymer and its production
WO1990014367A1 (en) 1989-05-19 1990-11-29 E.I. Du Pont De Nemours And Company Preparation of bromo-containing perfluoropolymers having iodine curesites
JPH05507742A (ja) * 1990-04-17 1993-11-04 アライド・シグナル・インコーポレイテツド 架橋性フッ素化芳香族エーテル組成物
JPH049807A (ja) 1990-04-27 1992-01-14 Nippon Telegr & Teleph Corp <Ntt> ポリイミド系光導波路
JP2003171439A (ja) 2001-12-06 2003-06-20 Mitsubishi Chemicals Corp 脂環式エポキシ化合物および発光ダイオード用封止材
US20040198906A1 (en) * 2002-05-28 2004-10-07 Jianfu Ding Techniques for the preparation of highly fluorinated polyethers
JP2004186168A (ja) 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2004300089A (ja) * 2003-03-31 2004-10-28 Asahi Glass Co Ltd 新規化合物およびその用途
JP5057657B2 (ja) 2004-06-22 2012-10-24 ソルヴェイ ソレクシス エス.ピー.エー. パーフルオロエラストマー組成物
JP2008539304A (ja) * 2005-04-28 2008-11-13 サイテク・テクノロジー・コーポレーシヨン 製造特性が向上したビスマレイミド樹脂系
WO2006137327A1 (ja) * 2005-06-24 2006-12-28 Asahi Glass Company, Limited 架橋性含フッ素芳香族プレポリマー及びその用途

Also Published As

Publication number Publication date
CN105452209A (zh) 2016-03-30
TWI632184B (zh) 2018-08-11
JP6368940B2 (ja) 2018-08-08
US20160137572A1 (en) 2016-05-19
TW201510038A (zh) 2015-03-16
EP3031793A1 (en) 2016-06-15
CN105452209B (zh) 2018-06-12
JPWO2015020002A1 (ja) 2017-03-02
US10087128B2 (en) 2018-10-02
EP3031793B1 (en) 2018-03-21
EP3031793A4 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
KR101578963B1 (ko) 근적외선 차단 필터 및 근적외선 차단 필터를 사용한 장치
WO2004016689A1 (ja) 光硬化性含フッ素ポリマーを含む光学材料および光硬化性含フッ素樹脂組成物
US10196467B2 (en) Fluorinated polymer, method for its production, and cured product of the fluorinated polymer
US10066077B2 (en) Crosslinkable fluorinated elastomer composition and crosslinked product thereof
CN1335831A (zh) 可聚合的卤代乙烯基醚
TW201835120A (zh) 含氟聚合物、其硬化物之製造方法及發光裝置
TW200815498A (en) Crosslinkable prepolymer, process for production thereof, and use thereof
JP6368940B2 (ja) 含フッ素芳香族化合物、その製造方法、硬化性材料、その硬化物、及び光学部材
US10875940B2 (en) Fluorinated polymer, method for producing it, and article having cured product of fluorinated polymer
JP5996412B2 (ja) ビス(メタ)アクリロイル末端ベンジルエーテル化合物及びその製造方法
JP2006199747A (ja) 光学材料用の芳香族ポリエーテルおよび芳香族ポリエーテルからなる光学材料用樹脂
JP6261194B2 (ja) 光学部材、電子基板、光学部材の製造方法、電子基板の製造方法
JP2019085450A (ja) 含フッ素ポリマー及び硬化性組成物
JP5398720B2 (ja) 硬化組成物およびこれを用いて製造した硬化物
JP5396694B2 (ja) 架橋性プレポリマーならびにその製造方法および用途
JP2020134799A (ja) ポリマー光導波路
JPH11279504A (ja) フッ素系接着剤組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044681.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530881

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014834433

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE