WO2015016730A2 - Procédé de production de panneau flexibles d'aérogel hydrophobe renforcé de feutres de fibres - Google Patents

Procédé de production de panneau flexibles d'aérogel hydrophobe renforcé de feutres de fibres Download PDF

Info

Publication number
WO2015016730A2
WO2015016730A2 PCT/PT2014/000053 PT2014000053W WO2015016730A2 WO 2015016730 A2 WO2015016730 A2 WO 2015016730A2 PT 2014000053 W PT2014000053 W PT 2014000053W WO 2015016730 A2 WO2015016730 A2 WO 2015016730A2
Authority
WO
WIPO (PCT)
Prior art keywords
panels
aerogel
fibres
aerogels
felts
Prior art date
Application number
PCT/PT2014/000053
Other languages
English (en)
Other versions
WO2015016730A3 (fr
Inventor
Marta Leonor BATISTA OCHOA
Luisa Maria ROCHA DURÃES
Marisa La-Sálete NUNES PERDIGOTO
António Alberto TORRES GARCIA PORTUGAL
Original Assignee
Active Aerogels, Unipessoal, Lda.
Universidade De Coimbra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Active Aerogels, Unipessoal, Lda., Universidade De Coimbra filed Critical Active Aerogels, Unipessoal, Lda.
Publication of WO2015016730A2 publication Critical patent/WO2015016730A2/fr
Publication of WO2015016730A3 publication Critical patent/WO2015016730A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure

Definitions

  • Aerogels offer unique physical properties for thermal and acoustic insulation due to their very low thermal conductivity and high porosity. Aerogels are generally used to minimize heat transfer by conduction and convection. Other properties, namely hydrophobicity, help extending the applications of those materials.
  • aerogels can be used in numerous applications involving heating and cooling, particularly in buildings, industrial equipment, satellites, launchers and pipelines.
  • characteristics such as size and flexibility and production costs have limited utilization of aerogels, making the preparation of monoliths a considerable technical challenge for large-scale production. Numerous attempts have been made to improve the performance and maturity of the manufacturing process.
  • This invention relates to a process for the production of silica-based composite aerogels that also contain fibres in the form of felt panels.
  • This invention discloses a method for producing aerogel flexible panels that can be used for thermal insulation in the building, oil and gas, cryogenics, thermoelectric, aeronautical, and space sectors.
  • Other applications of this type of composite aerogel panels include aerosols controlled adsorption, separation of hydrophobic and hydrophilic species, as well as selection of specific chemical functionalities.
  • the high specific surface area of aerogel is attractive for catalysis applications, removal of pollutants from water, controlled release of active species, as well as filtration and percolation of liquids in porous media.
  • State of the art state of the art
  • Aerogel is a porous lightweight synthetic material derived from a gel in which the liquid component of the gel is replaced by a gas, resulting in a solid with extremely low density and thermal conductivity.
  • the first aerogels were synthesized from silica gels and offered unique properties of thermal and acoustic insulation. Initially, aerogels were produced in a granular form and their development was slow because of the time and labour required to complete the process, in addition to other technical difficulties. The technologies for aerogel production have been strengthened in recent decades, being reflected in the growing number of patents and the importance and diversity of applications.
  • Silica aerogel a substance derived from a silica gel, is the most common type of aerogel and the one most studied and applied in a systematic way.
  • Aerogels are sol-gel materials dried carefully to avoid collapse of the pores, creating a solid porous nanostructure with porosity higher than 90%. High porosity leads to some unusual physical properties.
  • silica aerogels can be made with low thermal conductivity ( ⁇ 20 mW m "1 K “1 ) , high surface area ( ⁇ 1000 m 2 g “1 ) and low density ( ⁇ 50 kg m “3 ) .
  • Some aerogel properties particularly chemical (composition, reactivity, hydropho- bicity) , thermal (conductivity, heat capacity, flammabi- lity) , structural (Young's modulus, tensile strength, elastic strain limit) , optical (luminescence, transparency) , acoustic (speed of sound, absorption) and electrical (conductivity, polarization, magnetic susceptibility) , are often unique in the field of synthetic. materials.
  • Silica aerogels can be prepared by various processes, typically comprising four stages: (i) gelation, (ii) aging, (iii) washing, (iv) drying.
  • the first stage involves gelation, i.e. the condensation of one or more silicon precursors to form a matrix based on silica by sol- gel chemistry. The pores of the matrix are filled with reaction by-products and solvent. Gelation is defined as the process corresponding to the transformation of a polymeric or colloidal suspension in a solid permeated by a liquid through continuous formation of a porous three- dimensional solid network, which is uniform throughout the whole solvent and without formation of any precipitate.
  • the second phase we proceed to the aging of the multiphase structure of the gel.
  • Aging is the process in which the material is maintained for a predefined time under controlled environmental conditions, while slowly varying the characteristics of the material.
  • aging is a curing period in which the structure is immersed in a liquid mixture, to obtain a strong solid structure.
  • the third stage includes washing the gel that is an optional step. This step can be used to remove salts or other components from the structure used in the reaction and, in many cases, to replace the solvent in the interior of the solid network by another network that facilitates the subsequent step.
  • the last phase, drying involves solvent extraction without causing the collapse of the structure, leaving the silica nanostructure intact. Drying may be achieved by freezing, at ambient pressure (evaporative drying), or using supercritical fluids.
  • the invention essentially describes a sol-gel process, starting from the precursor methyltrimethoxysilane (MTMS) or methyl- triethoxysilane (MTES) for synthesizing a silica gel and preparing flexible aerogel large monoliths with superior thermal insulation characteristics.
  • MTMS methyltrimethoxysilane
  • MTES methyl- triethoxysilane
  • the reinforced aerogel structure is produced through the incorporation of a felt of fibres. Aerogels have been used for multiple applications, from space to terrestrial applications, to preserve heat or cold, remove moisture, and make cosmetics. Hundreds of patents and utility models about methods, processes, and applications of aerogels are known. Solutions involving aerogel have been used for fire protection and as flame retardant (e.g.
  • JPH11314940 and JP2000182420 have been added to improve the mechanical properties and developing specific technologies (e.g. CN202597930 and KR20100083543) . Aerogels were also used in filament coatings, namely for elastomers (GB1159063 and GB1345944), and proposed for encapsulation applications (e.g. processors), casting (e.g. motors), and multilayer insulation (GB821822, GB980109, and WO2011119745 ) . However, thermal and acoustic insulation are the most common applications of these materials (e.g.
  • Aerogels have been used in the field of electronic and electromechanical parts, including engines (GB1247673 and GB1433478) and engines coating (EP0041203) .
  • Electromechanical applications e.g. for power supplies
  • EP0814520, EP0875950, US5948464, and US6148503 have also been developed. Indeed, applications can be very diverse and these materials were even developed for special niches, including metamaterials (CN102531519) , shape memory alloys (US20100144962 and WO2008057297 ) , and endoscopes ( JP2000107121) .
  • Patents that to some extent relate to the present invention are: CN101698584, CN1749214, JPH0834678, KR100831877, KR20100053350, KR20100083543, KR20100092683, KR20110082379, US5973015, and US6087407.
  • Patent KR20100053350 discloses a method for manufacturing aerogel blankets. The purpose of the invention is the manufacture of aerogel blankets that provide better insulation. The process utilizes tetraethylorthosilicate (TEOS) as precur- sor and fibres to improve elasticity at a large scale.
  • Patent KR20100083543 discusses a method of manufacturing insulating silica aerogel blankets at high temperature, including fibreglass fillers.
  • Patent KR100831877 discloses a method for the preparation of monolithic silica aerogels, which is obtained by drying at normal pressure from the hydrolysis mixture of a precursor of organically modified silicon methanol and oxalic acid.
  • the mixture can contain one or more silanes and preferably comprises MTMS (C 4 Hi 2 0 3 Si) .
  • This method for the preparation of silica aerogel monoliths also results without adding any fibres.
  • Patent KR20100092683 discusses a method of manufacturing a flexible silica aerogel. The material is produced through a drying process with carbon dioxide in a supercritical state. The mixture of solutions containing MTES or TEOS is used to produce small plates of flexible aerogel. Fibres are not included and the material is brittle.
  • Patent KR20110082379 discloses a method for preparation of materials with a high degree of thermal insulation based on fibres impregnated with aerogels. Mixtures of silica gel containing alkoxysilane and isopropyl alcohol are hydrolysed by adding acidic aqueous solutions.
  • the polymerization reaction of the TEOS solution is favoured by addition of small amounts of a basic solution.
  • the silica sol is impregnated into the fibres to produce flexible aerogels.
  • the invention provides a translucent aerogel JPH0834678.
  • the silica skeleton is reinforced with fibres.
  • a well-structured and multilayer fabric is used to make translucent properties.
  • the rigidity of the material obtained is significant.
  • Patents US6087407 and US5973015 discuss a process for manufacturing flexible aerogel composites with improved mechanical stability.
  • the invention relates to a process for the production of aerogels based on organic, flexible, mechanically stable, polymeric condensates of formaldehyde and containing composites that are mixed with glass, carbon, aramid or plastic fibres.
  • Patent CN1749214 discloses a method for preparing composite aerogels for thermal insulation. The process involves the mixture of silicon oxides and titanium fibres, and supercritical drying. The invention requires the use of TEOS, ethanol, deionized water and ammonia with well-defined molar fractions, as well as a vacuum impregnation process.
  • Patent CN101698584 describes a method for preparing a silicon oxide aerogel structure that uses a felt for the purpose of mechanical reinforcement. The method comprises winding of felt, preparation of the silica solution, impregnating the felt, aging, surface treatment, and drying under supercritical conditions.
  • the continuous fibre reinforcement can be selected from the following fibres: glass, aluminium silicate, carbon and basalt; organic felts can also be chosen.
  • the preferred silicon alkoxide used in the process is TEOS.
  • the recommended solvent is ethanol or a mixture of ethanol and isopropanol. According to this method, large composite rolls can be made (e.g. 1x10 m) .
  • the surface treatment consists of trimethylchlorosilane (TMCS) in a solution of 50% ethanol for 32 h after aging at room temperature for 24 h.
  • TMCS trimethylchlorosilane
  • Patent with reference US2012/046469 and the associated document WO2013/009984A2 discuss a method for producing porous gels from a silane and a catalyst solution. A non-supercritical drying of the gel delivers a porous material without elastic recovery. The method is applied to alkyl-linked silanes; it is specifically claimed utilization of MTMS .
  • Filler fibre e.g.
  • Figure 1 illustrates the process of producing composite aerogels, where the sol solution (1) is poured from a container (2) in to a tray (3) containing a felt matrix (4) .
  • Figure 2 shows an image obtained by scanning electron microscopy with the aerogel impregnated in the fibre felt.
  • Figure 3 shows a plot of thermogravimetric analysis where the weight loss is plotted as a function of temperature.
  • Figure 4 presents the stress vs. strain curves of the aerogel composite before and after immersion in liquid nitrogen.
  • Table 1 shows physical properties of aerogel composites described in the document.
  • Silica-based aerogels possess remarkable properties for various applications. However, the applicability of these materials has been limited by the difficulty of making them in larger dimensions. This problem is mainly due to the fragility of the materials; a process suitable to improve the mechanical strength of aerogels is addition of fibres.
  • a felt based on silica-fibres to improve the mechanical properties of aerogels prepared from MTMS and MTES.
  • This felt which is flexible and low density, has fibres arranged uniformly, allowing a homogeneous distribution of the fibres in the final composite material. Additionally, the felt has high thermal and mechanical resistance.
  • the aerogels prepared with MTMS and MTES precursors show very interesting properties, namely high flexibility, very low density and thermal conductivity, and are also hydrophobic.
  • this invention uses a felted fibre of silica and a solution ('sol') prepared from the hydrolysis and condensation reactions of the above precursor solutions.
  • the synthesis process of the final composite material is fairly simple.
  • the solution is prepared using a silica precursor, aqueous solutions of acid and basic catalysts, and an organic solvent. Subsequently, this 'sol' is added in a tray containing the felt, which fits the internal dimensions of the tray. After a few hours a gel is obtained. This gel is kept for a day or more in the same conditions of pressure and temperature to strengthen its solid structure, and the gel is finally dried in an oven at ambient pressure, and subjected to various temperatures between 60 and 200°C.
  • the final aerogel composite has the internal volume of the tray where it is prepared and can have different dimensions, depending only on the size of the tray and the oven where drying occurs. The thickness of the aerogel composite can vary between 1 and 4 cm.
  • the thickness of the fibres felt is between 5 and 15 mm; to increase the thickness of the final composite material, multiple layers of felt are superimposed on each other. In this case, several layers of felt are sewn to prevent felt layers from separating from the aerogel composite. For sewing several layers of felt, a line with high thermal resistance is used.
  • the process presented in this invention allows for production of large flexible panels of aerogel with low density and thermal conductivity, hydrophobic, and an operating temperature range from cryogenic temperatures up to at least 350°C.
  • cryogenic temperatures up to at least 350°C.
  • aerogels such as low density, low thermal conductivity and good performance under extreme temperatures make them appropriate for numerous applications, e.g. building insulation, aerospace devices, cryogenics, etc.
  • their applicability has been limited by the difficulty of preparing these materials in large dimensions, without degrading the structural properties.
  • the present invention overcomes some limitations of these materials, since it describes a way to prepare large pieces of aerogel, maintaining the relevant physical characteristics.
  • the present aerogel synthesis process uses the precursor MTMS, which yields superior properties such as flexibility and hydrophobicity, and is also suitable over a wide range of temperature, from cryogenic temperatures up to at least 350°C.
  • a felt of silica fibres is added (Figure 1) .
  • the felt has very low bulk density ( ⁇ 20 kg nf 3 ) and the fibres are laid homogeneously at a macroscopic scale.
  • the homogeneous distribution of fibres in the felt also ensures fibres uniformity in the final product. Since the felt possesses high mechanical and thermal resistance along with low density, the addition of this felt maintains low density, flexibility and hydrophobicity, but improves the mechanical strength of aerogels prepared from trialkoxysilanes . Furthermore, addition of this felt allows for the preparation of highly flexible aerogels with large dimensions.
  • step (A) preparation of a gel by hydrolysis and condensation reactions of a precursor, (B) aging, while condensation processes are still ongoing, and finally (C) drying.
  • a precursor, a solvent, and an aqueous acid and basic catalyst solution Precursors such as MTMS and MTES can be used.
  • Aqueous solutions of oxalic acid and ammonium hydroxide are used as acid and basic catalysts, respect- tively.
  • the concentration of acid catalyst can vary from 0.001 to 0.1 M and the concentration of the base catalyst should be higher than 5 M.
  • the solvent one or more organic solvents can be used, namely methanol and ethanol .
  • the molar ratio solvent / precursor varies between 15 and 40. Up to 10% of a tetraalkyl orthosilicate (either TMOS or TEOS) can also be added as co-precursor.
  • a tetraalkyl orthosilicate either TMOS or TEOS
  • the solution obtained by adding the precursor, the catalyst, and the solvent is poured to a vessel containing the felt.
  • the felt is trimmed according to the shape of the composite material to be obtained in the end.
  • the thickness of the felt varies between 5 and 15 mm and several layers of felt can be added to increase the final thickness. If several layers of felt are necessary, the felt should be sewn with kevlar, fibreglass, or other line of high thermal and mechanical resistance. Needling prevents the various layers to separate from each other in the final material.
  • the gel takes the shape of the container where the sol was added.
  • samples with specific dimensions can be prepared, e.g. from 250x250 mm with a thickness from 1 to 4 cm.
  • the mass of the felt with respect to the mass of the final aerogel composite is always less than 15%.
  • the size of the final material is only limited by the size of the container used in the production process.
  • the solution is maintained in a controlled environment between 25 and 30°C.
  • the gel obtained is kept between 1 and 4 days under the same conditions of temperature in order to strengthen the solid network (step (B) ) .
  • the gels are placed in an oven for drying at ambient pressure, being subjected to multiple temperature cycles between 60 and 200°C " that may last up to 2-9 days, depending on the thickness of the gel to be dried (step (C) ) .
  • the total drying time is significantly shorter than the time required for drying an aerogel 40 mm thick.
  • Table 1 shows some aerogel properties resulting from the present invention.
  • the density of the resulting material ⁇ 85 kg m ⁇ 3 , is considerably low for a material obtained by drying at ambient pressure.
  • the thermal conductivity measured at room temperature and pressure is 32 mW m "1 K “1 according to the EN12667 and ISO8302 standards.
  • Both components used in this invention, the aerogel and the felt are based in silica, which ensures structural integrity of the final aerogel composite.
  • the integrity of the final material which can be confirmed by the SEM micrograph of Figure 2, leads to small particle shedding, contrary to what happens with aerogels available in the market. Additionally, due to the inorganic character of both felt and aerogel, the material obtained in this invention can be used up to at least 350°C.
  • thermogravimetric analysis Figure 3
  • Figure 4 shows the curves of stress vs. deformation of the aerogel composite before and after immersion in liquid nitrogen.
  • the flexural modulus before and after immersion in liquid nitrogen is 58.5 ⁇ 3.3 and 40.1 ⁇ 4.1 kPa, respectively.
  • the material flexibility is maintained when the aerogel panel is wound and unwound on itself, with a radius of up to 2-3 times the thickness of the panel.
  • the flexible aerogels resulting from this invention have a contact angle of ⁇ 140 degrees, hence confirming their high hydrophobic character .
  • the dimensions of the panel are limited by the length and width of the tray. Increasing in thickness does not significantly reduce flexibility of the material, but increases the drying time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Silicon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

Cette invention concerne un procédé de production de grandes pièces d'aérogel. Un feutre de fibres est ajouté à la solution de silice, qui est préparée à partir d'un trialcoxysilane (méthyltriméthoxysilane et méthyltriéthoxysilane). Les propriétés les plus intéressantes de l'aérogel produit à partir de ces trialcoxysilanes sont la flexibilité, la faible masse volumique, la faible thermoconductivité et l'hydrophobicité; ces propriétés sont conservées depuis les températures cryogéniques jusqu'à au moins 350 °C. Les feutres sont utilisés pour améliorer la résistance mécanique des aérogels, ce qui permet la fabrication de pièces de grandes dimensions, qui constituaient une limitation majeure de l'application de ces matériaux. Les applications du matériau décrit ici comprennent l'isolation thermique dans les domaines de la construction, du pétrole et du gaz, de la cryogénie, de la thermoélectricité, de l'aéronautique et de l'espace. Toutefois, en raison de sa surface spécifique élevée, ce matériau est également important pour des applications dans les produits pharmaceutiques et le traitement des eaux usées.
PCT/PT2014/000053 2013-08-02 2014-08-01 Procédé de production de panneau flexibles d'aérogel hydrophobe renforcé de feutres de fibres WO2015016730A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT107101 2013-08-02
PT107101A PT107101A (pt) 2013-08-02 2013-08-02 Painéis flexíveis de aerogel hidrofóbico reforçado com feltro de fibras

Publications (2)

Publication Number Publication Date
WO2015016730A2 true WO2015016730A2 (fr) 2015-02-05
WO2015016730A3 WO2015016730A3 (fr) 2015-04-09

Family

ID=51535497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PT2014/000053 WO2015016730A2 (fr) 2013-08-02 2014-08-01 Procédé de production de panneau flexibles d'aérogel hydrophobe renforcé de feutres de fibres

Country Status (2)

Country Link
PT (1) PT107101A (fr)
WO (1) WO2015016730A2 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597635A (zh) * 2016-01-29 2016-05-25 卓达新材料科技集团有限公司 一种毛毡/硅铝气凝胶复合保温板的常压干燥方法
EP3208082A1 (fr) * 2016-02-18 2017-08-23 Panasonic Intellectual Property Management Co., Ltd. Matériau d'isolation thermique et son procédé de production
JP2018140554A (ja) * 2017-02-28 2018-09-13 パナソニックIpマネジメント株式会社 複合材料およびその製造方法
JP2019098713A (ja) * 2017-12-08 2019-06-24 パナソニックIpマネジメント株式会社 断熱材
CN111252775A (zh) * 2018-11-30 2020-06-09 李训谷 气凝胶粒子及其制备方法
CN112376269A (zh) * 2020-11-17 2021-02-19 国佳新材湖北环保凝胶产业园有限公司 一种气凝胶复合纤维毡结构件及其制备方法
WO2022012358A1 (fr) * 2020-07-11 2022-01-20 巩义市泛锐熠辉复合材料有限公司 Procédé de fabrication d'un mat d'aérogel renforcé par des fibres de silicate d'aluminium et cuve de réaction en immersion dans un sol
CN114620736A (zh) * 2021-12-15 2022-06-14 航天海鹰(镇江)特种材料有限公司 一种压缩可控的SiO2气凝胶复合材料制备方法
US20220289939A1 (en) * 2014-10-03 2022-09-15 Aspen Aerogels, Inc. Heat resistant aerogel materials
CN115108809A (zh) * 2022-07-11 2022-09-27 中国人民解放军国防科技大学 一种耐高温改性氧化硅气凝胶隔热复合材料的制备方法
CN115583829A (zh) * 2022-10-26 2023-01-10 中化学华陆新材料有限公司 一种低导热系数纤维复合气凝胶湿法毡及其制备方法
CN115784299A (zh) * 2022-11-29 2023-03-14 航天特种材料及工艺技术研究所 一种不掉粉柔性气凝胶复合材料及其制备方法
CN115849771A (zh) * 2023-03-01 2023-03-28 百能(天津)能源科技有限公司 一种气凝胶毡及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106808247B (zh) * 2017-03-02 2019-10-11 航天特种材料及工艺技术研究所 一种耐高温隔热夹层材料构件的机床加工方法
CN106826337B (zh) * 2017-03-02 2019-10-11 航天特种材料及工艺技术研究所 一种耐高温隔热夹层材料构件的数控加工方法

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB761808A (en) 1953-04-28 1956-11-21 Gen Electric Improvements relating to elastic organopolysiloxanes
GB788151A (en) 1953-10-19 1957-12-23 Du Pont Solid siliceous materials of high surface area, methods of making the same, and compositions containing them
GB821822A (en) 1954-10-05 1959-10-14 Energy Ltd Improvements in and relating to heat engines operating on the stirling or ericsson heat cycles
GB932211A (en) 1958-10-15 1963-07-24 Minnesota Mining & Mfg Improved decorative sheet material
GB955275A (en) 1961-02-06 1964-04-15 Licentia Gmbh Silicone rubber coated tapes
GB980109A (en) 1961-12-18 1965-01-13 Gen Electric Trifluoromethylphenyl polysiloxanes
GB1159063A (en) 1966-04-26 1969-07-23 Du Pont Coated Elastomeric Filaments.
GB1247673A (en) 1967-11-11 1971-09-29 Micropore Insulation Ltd Improvements in insulating materials
GB1345944A (en) 1970-12-03 1974-02-06 Du Pont Foamed materials
GB1433478A (en) 1972-08-05 1976-04-28 Mcwilliams J A Electrical heating apparatus
EP0041203A1 (fr) 1980-05-29 1981-12-09 Grünzweig + Hartmann und Glasfaser AG Dispositif pour loger de façon thermiquement isolée une hélice chauffante électrique, en particulier pour une plaque de cuisson chauffée par rayonnement et procédé pour sa fabrication
US4871607A (en) 1986-03-10 1989-10-03 Kabushiki Kaisha Seibu Giken Humidity exchanger element
JPH0834678B2 (ja) 1986-08-20 1996-03-29 日新電機株式会社 瞬時電圧低下補償装置
EP0814520A2 (fr) 1996-06-19 1997-12-29 Imra America, Inc. Procédé de fabrication d'un séparateur pour une batterie
EP0875950A2 (fr) 1997-05-01 1998-11-04 Imra America, Inc. Procédé de fabrication d'un séparateur pour une cellule électrochimique
US5973015A (en) 1998-02-02 1999-10-26 The Regents Of The University Of California Flexible aerogel composite for mechanical stability and process of fabrication
JPH11314940A (ja) 1999-01-06 1999-11-16 Matsushita Electric Works Ltd 光ファイバ
JP2000107121A (ja) 1998-10-09 2000-04-18 Olympus Optical Co Ltd 内視鏡
JP2000182420A (ja) 1998-12-15 2000-06-30 Matsushita Electric Works Ltd 光ファイバ照明装置
US6148503A (en) 1999-03-31 2000-11-21 Imra America, Inc. Process of manufacturing porous separator for electrochemical power supply
CN1749214A (zh) 2005-08-01 2006-03-22 中国人民解放军国防科学技术大学 一种气凝胶绝热复合材料及其制备方法
WO2008057297A1 (fr) 2006-10-27 2008-05-15 The University Of Akron Composites aérogels polymères à mémoire de forme
KR100831877B1 (ko) 2007-02-27 2008-05-23 한국에너지기술연구원 대기압하에서 실리카 에어로겔 모노리스의 제조방법
CN101281821A (zh) 2008-05-20 2008-10-08 中山大学 纳米丝状二氧化锰负载炭气凝胶及其制备方法与应用
KR100864784B1 (ko) 2007-07-06 2008-10-22 이재환 단열 흡음 재료의 조성물
CN101357852A (zh) 2007-07-30 2009-02-04 成都思摩纳米技术有限公司 纤维增强二氧化硅气凝胶板的制备
CN101698584A (zh) 2009-11-13 2010-04-28 航天特种材料及工艺技术研究所 一种纤维增强二氧化硅气凝胶连续毡及其制备方法
KR20100053350A (ko) 2008-11-12 2010-05-20 한국세라믹기술원 에어로젤 블랑켓의 제조방법
KR20100083543A (ko) 2009-01-14 2010-07-22 서경카로라이즈공업주식회사 실리카 에어로젤에 부직포 상태의 섬유가 보강된 유연성이 우수한 단열재의 제조방법 및 그 방법에 의하여 제조된 단열재
KR20100092683A (ko) 2009-02-13 2010-08-23 한국세라믹기술원 유연성을 갖는 실리카 에어로젤 제조방법
DE102009033367A1 (de) 2009-07-16 2011-01-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aerogel-Aerogel Verbundwerkstoff
KR20110082379A (ko) 2010-01-11 2011-07-19 한국과학기술연구원 고단열 에어로젤 함침 섬유의 제조 방법
WO2011119745A2 (fr) 2010-03-23 2011-09-29 Aeonclad Coatings, Llc. Procédés de fabrication liés à l'encapsulation d'un aérogel de silice en poudre
US20120046469A1 (en) 2009-04-14 2012-02-23 Glaxo Group Limited Process for the Preparation of a Biphenyl-2-Yl carbamic Acid Ester
CN102531519A (zh) 2011-10-31 2012-07-04 深圳光启高等理工研究院 一种介质基板的制备方法及超材料
CN102531536A (zh) 2011-12-20 2012-07-04 冷水江三A化工有限责任公司 一种阻燃硅气凝胶绝热复合材料及其制备方法
CN102634351A (zh) 2012-04-01 2012-08-15 宋斌 水性无卤柔性防火堵料
CN202597930U (zh) 2012-06-03 2012-12-12 李寿山 一种保温防腐承高压特种钢塑管
WO2013009984A2 (fr) 2011-07-12 2013-01-17 Board Of Trustees Of Michigan State University Sol-gels poreux et procédés et structures qui leur sont associés
WO2013010371A1 (fr) 2011-07-18 2013-01-24 南京工业大学 Procédé pour préparer un aérogel de sio2 renforcé de fibres avec des cendres de balle de riz en tant que matière première

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4430642A1 (de) * 1994-08-29 1996-03-07 Hoechst Ag Aerogel- und Xerogelverbundstoffe, Verfahren zu ihrer Herstellung sowie ihre Verwendung
CN101014535A (zh) * 2004-01-06 2007-08-08 白杨气凝胶股份有限公司 含有键合硅的聚甲基丙烯酸酯的有机改性的二氧化硅气凝胶
GB0704854D0 (en) * 2007-03-14 2007-04-18 Proctor Group Ltd A Wall insulation system
CN102557577B (zh) * 2011-11-01 2014-03-19 厦门纳美特新材料科技有限公司 一种二氧化硅气凝胶复合材料的制备方法
CN103102135B (zh) * 2013-02-21 2014-08-27 吴会军 静电纺微纳纤维增强的气凝胶柔性绝热材料及其制备方法

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB761808A (en) 1953-04-28 1956-11-21 Gen Electric Improvements relating to elastic organopolysiloxanes
GB788151A (en) 1953-10-19 1957-12-23 Du Pont Solid siliceous materials of high surface area, methods of making the same, and compositions containing them
GB821822A (en) 1954-10-05 1959-10-14 Energy Ltd Improvements in and relating to heat engines operating on the stirling or ericsson heat cycles
GB932211A (en) 1958-10-15 1963-07-24 Minnesota Mining & Mfg Improved decorative sheet material
GB955275A (en) 1961-02-06 1964-04-15 Licentia Gmbh Silicone rubber coated tapes
GB980109A (en) 1961-12-18 1965-01-13 Gen Electric Trifluoromethylphenyl polysiloxanes
GB1159063A (en) 1966-04-26 1969-07-23 Du Pont Coated Elastomeric Filaments.
GB1247673A (en) 1967-11-11 1971-09-29 Micropore Insulation Ltd Improvements in insulating materials
GB1345944A (en) 1970-12-03 1974-02-06 Du Pont Foamed materials
GB1433478A (en) 1972-08-05 1976-04-28 Mcwilliams J A Electrical heating apparatus
EP0041203A1 (fr) 1980-05-29 1981-12-09 Grünzweig + Hartmann und Glasfaser AG Dispositif pour loger de façon thermiquement isolée une hélice chauffante électrique, en particulier pour une plaque de cuisson chauffée par rayonnement et procédé pour sa fabrication
US4871607A (en) 1986-03-10 1989-10-03 Kabushiki Kaisha Seibu Giken Humidity exchanger element
JPH0834678B2 (ja) 1986-08-20 1996-03-29 日新電機株式会社 瞬時電圧低下補償装置
EP0814520A2 (fr) 1996-06-19 1997-12-29 Imra America, Inc. Procédé de fabrication d'un séparateur pour une batterie
US5948464A (en) 1996-06-19 1999-09-07 Imra America, Inc. Process of manufacturing porous separator for electrochemical power supply
EP0875950A2 (fr) 1997-05-01 1998-11-04 Imra America, Inc. Procédé de fabrication d'un séparateur pour une cellule électrochimique
US6087407A (en) 1998-02-02 2000-07-11 The Regents Of The University Of California Flexible aerogel composite for mechanical stability and process of fabrication
US5973015A (en) 1998-02-02 1999-10-26 The Regents Of The University Of California Flexible aerogel composite for mechanical stability and process of fabrication
JP2000107121A (ja) 1998-10-09 2000-04-18 Olympus Optical Co Ltd 内視鏡
JP2000182420A (ja) 1998-12-15 2000-06-30 Matsushita Electric Works Ltd 光ファイバ照明装置
JPH11314940A (ja) 1999-01-06 1999-11-16 Matsushita Electric Works Ltd 光ファイバ
US6148503A (en) 1999-03-31 2000-11-21 Imra America, Inc. Process of manufacturing porous separator for electrochemical power supply
CN1749214A (zh) 2005-08-01 2006-03-22 中国人民解放军国防科学技术大学 一种气凝胶绝热复合材料及其制备方法
WO2008057297A1 (fr) 2006-10-27 2008-05-15 The University Of Akron Composites aérogels polymères à mémoire de forme
US20100144962A1 (en) 2006-10-27 2010-06-10 The University Of Akron Shape memory polymer aerogel composites
KR100831877B1 (ko) 2007-02-27 2008-05-23 한국에너지기술연구원 대기압하에서 실리카 에어로겔 모노리스의 제조방법
KR100864784B1 (ko) 2007-07-06 2008-10-22 이재환 단열 흡음 재료의 조성물
CN101357852A (zh) 2007-07-30 2009-02-04 成都思摩纳米技术有限公司 纤维增强二氧化硅气凝胶板的制备
CN101281821A (zh) 2008-05-20 2008-10-08 中山大学 纳米丝状二氧化锰负载炭气凝胶及其制备方法与应用
KR20100053350A (ko) 2008-11-12 2010-05-20 한국세라믹기술원 에어로젤 블랑켓의 제조방법
KR20100083543A (ko) 2009-01-14 2010-07-22 서경카로라이즈공업주식회사 실리카 에어로젤에 부직포 상태의 섬유가 보강된 유연성이 우수한 단열재의 제조방법 및 그 방법에 의하여 제조된 단열재
KR20100092683A (ko) 2009-02-13 2010-08-23 한국세라믹기술원 유연성을 갖는 실리카 에어로젤 제조방법
US20120046469A1 (en) 2009-04-14 2012-02-23 Glaxo Group Limited Process for the Preparation of a Biphenyl-2-Yl carbamic Acid Ester
DE102009033367A1 (de) 2009-07-16 2011-01-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aerogel-Aerogel Verbundwerkstoff
CN101698584A (zh) 2009-11-13 2010-04-28 航天特种材料及工艺技术研究所 一种纤维增强二氧化硅气凝胶连续毡及其制备方法
KR20110082379A (ko) 2010-01-11 2011-07-19 한국과학기술연구원 고단열 에어로젤 함침 섬유의 제조 방법
WO2011119745A2 (fr) 2010-03-23 2011-09-29 Aeonclad Coatings, Llc. Procédés de fabrication liés à l'encapsulation d'un aérogel de silice en poudre
WO2013009984A2 (fr) 2011-07-12 2013-01-17 Board Of Trustees Of Michigan State University Sol-gels poreux et procédés et structures qui leur sont associés
WO2013010371A1 (fr) 2011-07-18 2013-01-24 南京工业大学 Procédé pour préparer un aérogel de sio2 renforcé de fibres avec des cendres de balle de riz en tant que matière première
CN102531519A (zh) 2011-10-31 2012-07-04 深圳光启高等理工研究院 一种介质基板的制备方法及超材料
CN102531536A (zh) 2011-12-20 2012-07-04 冷水江三A化工有限责任公司 一种阻燃硅气凝胶绝热复合材料及其制备方法
CN102634351A (zh) 2012-04-01 2012-08-15 宋斌 水性无卤柔性防火堵料
CN202597930U (zh) 2012-06-03 2012-12-12 李寿山 一种保温防腐承高压特种钢塑管

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DURÀES ET AL.: "Tailored silica based xerogels and aerogels for insulation in space environments", ADV. SCI. TECHNOL., vol. 63, 2010, pages 41 - 46
RAO ET AL.: "Synthesis of silica aerogels using Methyltrimethoxysilane (MTMS) precursor", J. COLLOID INTERFACE SCI., vol. 300, 2006, pages 279 - 285

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220289939A1 (en) * 2014-10-03 2022-09-15 Aspen Aerogels, Inc. Heat resistant aerogel materials
US11807734B2 (en) * 2014-10-03 2023-11-07 Aspen Aerogels, Inc. Heat resistant aerogel materials
CN105597635A (zh) * 2016-01-29 2016-05-25 卓达新材料科技集团有限公司 一种毛毡/硅铝气凝胶复合保温板的常压干燥方法
EP3208082A1 (fr) * 2016-02-18 2017-08-23 Panasonic Intellectual Property Management Co., Ltd. Matériau d'isolation thermique et son procédé de production
JP2017144640A (ja) * 2016-02-18 2017-08-24 パナソニックIpマネジメント株式会社 断熱材及びその製造方法
US10384420B2 (en) 2016-02-18 2019-08-20 Panasonic Intellectual Property Management Co., Ltd. Heat-insulation material and production method thereof
JP2018140554A (ja) * 2017-02-28 2018-09-13 パナソニックIpマネジメント株式会社 複合材料およびその製造方法
JP2019098713A (ja) * 2017-12-08 2019-06-24 パナソニックIpマネジメント株式会社 断熱材
JP7029589B2 (ja) 2017-12-08 2022-03-04 パナソニックIpマネジメント株式会社 断熱材
CN111252775A (zh) * 2018-11-30 2020-06-09 李训谷 气凝胶粒子及其制备方法
WO2022012358A1 (fr) * 2020-07-11 2022-01-20 巩义市泛锐熠辉复合材料有限公司 Procédé de fabrication d'un mat d'aérogel renforcé par des fibres de silicate d'aluminium et cuve de réaction en immersion dans un sol
CN112376269A (zh) * 2020-11-17 2021-02-19 国佳新材湖北环保凝胶产业园有限公司 一种气凝胶复合纤维毡结构件及其制备方法
CN114620736A (zh) * 2021-12-15 2022-06-14 航天海鹰(镇江)特种材料有限公司 一种压缩可控的SiO2气凝胶复合材料制备方法
CN115108809A (zh) * 2022-07-11 2022-09-27 中国人民解放军国防科技大学 一种耐高温改性氧化硅气凝胶隔热复合材料的制备方法
CN115583829A (zh) * 2022-10-26 2023-01-10 中化学华陆新材料有限公司 一种低导热系数纤维复合气凝胶湿法毡及其制备方法
CN115583829B (zh) * 2022-10-26 2023-09-12 中化学华陆新材料有限公司 一种低导热系数纤维复合气凝胶湿法毡及其制备方法
CN115784299A (zh) * 2022-11-29 2023-03-14 航天特种材料及工艺技术研究所 一种不掉粉柔性气凝胶复合材料及其制备方法
CN115849771A (zh) * 2023-03-01 2023-03-28 百能(天津)能源科技有限公司 一种气凝胶毡及其制备方法和应用

Also Published As

Publication number Publication date
WO2015016730A3 (fr) 2015-04-09
PT107101A (pt) 2015-02-02

Similar Documents

Publication Publication Date Title
WO2015016730A2 (fr) Procédé de production de panneau flexibles d'aérogel hydrophobe renforcé de feutres de fibres
CN108602307B (zh) 经改善包括增强气凝胶复合物的层板
Parale et al. Flexible and transparent silica aerogels: An overview
TWI796284B (zh) 氣凝膠積層複合體及絕熱材
KR102475767B1 (ko) 에어로겔 블랭킷의 제조방법
US11059262B2 (en) Method of preparing low-dust and high-insulation aerogel blanket
CA2551715C (fr) Aerogels d'ormosil renfermant des polymeres lineaires a liaison silicium
KR101955307B1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
WO2017010551A1 (fr) Matériau composite d'aérogel
WO2007126410A2 (fr) Matériaux hybrides organiques-inorganiques et leurs méthodes d'élaboration
CN101318659A (zh) 一种常压干燥制备二氧化硅气凝胶复合材料的方法
JP2007519780A (ja) ケイ素結合ポリメタクリレートを含有する有機変性シリカエアロゲル
JPH10504792A (ja) エーロゲル複合材料、その製造方法およびそれらの使用
JPH10504793A (ja) 繊維−強化キセロゲルを製造する方法およびそれらの使用
WO2016171558A1 (fr) Procédé d'application d'un revêtement d'aérogel de polyméthylsilsesquioxane sur un substrat poreux
KR102574283B1 (ko) 에어로겔 블랭킷
KR20210132031A (ko) 세라믹 폼, 이의 제조방법, 및 이의 용도
JP2018118488A (ja) エアロゲル積層複合体及び断熱材
JP2022541827A (ja) エアロゲルブランケット
JP6866653B2 (ja) エアロゲル積層複合体及び断熱材
JP2022518813A (ja) エアロゲルブランケット
KR20240013697A (ko) 소수성의 실리카 에어로겔 블랭킷 제조방법 및 실리카에어로겔 블랭킷
JP2024072171A (ja) エアロゲル複合体
Zuo Preparation of silica aerogels with improved mechanical properties and extremely low thermal conductivities through modified sol-gel process

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762114

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 14762114

Country of ref document: EP

Kind code of ref document: A2