WO2015016360A1 - 感光性樹脂組成物 - Google Patents

感光性樹脂組成物 Download PDF

Info

Publication number
WO2015016360A1
WO2015016360A1 PCT/JP2014/070397 JP2014070397W WO2015016360A1 WO 2015016360 A1 WO2015016360 A1 WO 2015016360A1 JP 2014070397 W JP2014070397 W JP 2014070397W WO 2015016360 A1 WO2015016360 A1 WO 2015016360A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
group
resin composition
parts
epoxy resin
Prior art date
Application number
PCT/JP2014/070397
Other languages
English (en)
French (fr)
Inventor
好章 布施
吉野 利純
正幸 小島
真也 大崎
佐藤 邦明
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020217023762A priority Critical patent/KR102440445B1/ko
Priority to KR1020157037169A priority patent/KR102284557B1/ko
Priority to CN201480042171.9A priority patent/CN105408816B/zh
Priority to KR1020227030260A priority patent/KR102666147B1/ko
Priority to JP2015529633A priority patent/JP6455432B2/ja
Publication of WO2015016360A1 publication Critical patent/WO2015016360A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/144Polymers containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/508Amines heterocyclic containing only nitrogen as a heteroatom having three nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/04Epoxynovolacs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N

Definitions

  • the present invention relates to a photosensitive resin composition, a photosensitive element using the photosensitive resin composition, a permanent mask resist, and a printed wiring board.
  • permanent mask resist is formed on printed wiring boards.
  • the permanent mask resist has a role of preventing corrosion of the conductor layer and maintaining electrical insulation between the conductor layers when the printed wiring board is used.
  • permanent mask resists prevent solder from adhering to unnecessary portions of a conductor layer of a printed wiring board in a process of flip chip mounting, wire bonding mounting or the like of a semiconductor element on the printed wiring board via solder. It also has a role as a solder resist film.
  • this permanent mask resist is formed by applying a dry film type photocurable resist on a substrate by thermocompression bonding, or applying a liquid type photocurable resist on a substrate by curtain coating or spray coating. A layer is formed, and the resist layer is selectively irradiated with actinic rays such as ultraviolet rays through a negative mask to be cured, and only an unirradiated portion is removed with a developer to form an image.
  • actinic rays such as ultraviolet rays through a negative mask to be cured
  • the mounting method is changed from the conventional insertion mounting to surface mounting such as FC (Flip Chip), TAB (Tape Automated Bonding), COF (Chip On Film), etc.
  • surface mounting such as FC (Flip Chip), TAB (Tape Automated Bonding), COF (Chip On Film), etc.
  • FC Flexible Chip
  • TAB Tap Automated Bonding
  • COF Chip On Film
  • the solder is reflowed and fixed, that is, cream solder is printed in advance on the necessary part, and the entire printed solder is heated in a high-temperature furnace such as infrared rays to melt the solder and surface Since the mounting component and the substrate are soldered, the temperature reached inside and outside the package is extremely high at 220 to 280 ° C.
  • the conventional liquid-type photo-curable resist When exposed to a high temperature in this way, the conventional liquid-type photo-curable resist is said to have reduced reflow resistance, such as cracking in the coating film due to thermal shock or peeling from the substrate or sealing material. There was also a problem.
  • the pitch between the wirings has become finer. Insulation (HAST resistance)) is required.
  • the electroless-plating method which does not require a lead wire is employ
  • the electroless plating method has features such as uniform plating film thickness and high smoothness.
  • the pH of the plating solution is large and exhibits strong alkalinity, and the temperature of the solution is increased to about 90 ° C. in order to improve the plating deposition rate, damage to the permanent mask resist tends to increase. Therefore, the permanent mask resist is also required to have electroless plating resistance that is resistant to damage by a plating solution used for electroless plating.
  • the permanent mask resist is required to have a good resist shape.
  • the photocuring resist at the bottom is not sufficiently photocured, resulting in an undercut where the bottom is removed after development, or photocuring at the bottom
  • the middle part (center part) and deepest part (bottom part) with respect to the line width of the surface part (upper part) of the pattern cross section Since the line width becomes large, there is a tendency that the resist shape is deteriorated or the resolution is lowered.
  • the resist upper portion is lost due to insufficient photocuring in a region extending from the surface to about 3 ⁇ m in the resist depth direction due to oxygen inhibition, and the resist shape is deteriorated.
  • FIG. 1 It is a schematic diagram of the cross section of the resist formed using the photosensitive resin composition of this invention. It is a figure which shows the pattern shape of the negative mask used in the Example. It is a figure which shows the reflow profile employ
  • the object of the present invention has been made in view of such problems, and can form a pattern having excellent resist shape and excellent resolution, PCT resistance (moisture and heat resistance), reflow resistance, and electrical insulation.
  • a photosensitive resin composition capable of forming a pattern having excellent heat resistance, solvent resistance, chemical resistance (alkali resistance, acid resistance), and adhesion in addition to (HAST resistance) and electroless plating resistance. That is.
  • the photosensitive resin composition of the present invention it was excellent in the miniaturization of electronic devices in recent years, and the formation stability of the finer hole diameter and the pitch between the holes due to higher performance, A permanent mask resist capable of forming a pattern, a printed wiring board having the permanent mask resist, and a photosensitive element.
  • the present invention provides the following photosensitive resin composition, a photosensitive element using the photosensitive resin composition, a permanent mask resist, and a printed wiring board.
  • a photosensitive resin composition capable of forming a pattern having excellent heat resistance, solvent resistance, chemical resistance (alkali resistance, acid resistance), and adhesion, a permanent mask resist using the same, and a permanent mask resist A printed wiring board can be obtained.
  • the photosensitive resin composition according to the embodiment of the present invention includes (A) an acid-modified vinyl group-containing epoxy resin, (B) a photopolymerization initiator, and (C). It contains a nitrogen-containing heterocyclic compound and (D) a photopolymerizable compound, and the (C) nitrogen-containing heterocyclic compound has an average particle size of 0.01 to 10 ⁇ m.
  • Each component will be described below. In the present specification, these components may be simply referred to as (A) component, (B) component, (C) component, and (D) component.
  • the photosensitive resin composition of this embodiment contains an acid-modified vinyl group-containing epoxy resin as the component (A).
  • the acid-modified vinyl group-containing epoxy resin is not particularly limited as long as the epoxy resin is modified with a vinyl group-containing organic acid, and the epoxy resin (a) and the vinyl group-containing monocarboxylic acid (b) are used.
  • Epoxy resin (a ′) obtained by reaction, and epoxy resin (a ′′) obtained by reacting the epoxy resin (a ′) with a saturated or unsaturated group-containing polybasic acid anhydride (c) Is preferred.
  • Preferred examples of the epoxy resin (a) include epoxy resins having structural units represented by the following general formulas (I) to (V), and are preferably at least one selected from these.
  • the epoxy resin which has a structural unit shown by these general formulas is demonstrated.
  • epoxy resin (a) the epoxy resin which has a structural unit shown by the following general formula (I) is mentioned preferably, As a novolak-type epoxy resin which has such a structural unit, general formula ( A novolak type epoxy resin represented by I ′) is preferred.
  • R 11 represents a hydrogen atom or a methyl group
  • Y 1 represents a glycidyl group.
  • the content of the structural unit is preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. It is.
  • R 11 ′ represents a hydrogen atom or a methyl group
  • Y 1 ′ represents a hydrogen atom or a glycidyl group
  • the molar ratio of the hydrogen atom to the glycidyl group is preferably 0: 100 to 30:70, more preferably 0: 100 to 10:90, and still more preferably 0: 100.
  • n 1 represents an integer of 1 or more.
  • the plurality of R 11 ′ may be the same or different, and the plurality of Y 1 ′ may be the same or different.
  • n 1 is an integer of 1 or more as described above, preferably 10 to 200, more preferably 30 to 150, and further preferably 30 to 100. When n 1 is within the above range, a resist pattern that is superior in the balance of resist shape, resolution, heat resistance, adhesion, and electrical insulation can be obtained.
  • Preferred examples of the novolak type epoxy resin represented by the general formula (I ′) include a phenol novolak type epoxy resin and a cresol novolak type epoxy resin. These novolak-type epoxy resins can be obtained, for example, by reacting a phenol resin such as a phenol novolak resin or a cresol novolak resin with an epihalohydrin such as epichlorohydrin by a known method.
  • Examples of the novolac type epoxy resin represented by the general formula (I ′) include YDCN-701, YDCN-702, YDCN-703, YDCN-704, YDCN-704L, YDPN-638, YDPN-602 (and above, NSSMC).
  • an epoxy resin having a structural unit represented by the general formula (II) is preferably exemplified, and examples of the epoxy resin having such a structural unit include bisphenol represented by the general formula (II ′).
  • a type epoxy resin and bisphenol F type epoxy resin are preferably mentioned.
  • R 12 represents a hydrogen atom or a methyl group
  • Y 2 represents a glycidyl group.
  • the content of the structural unit is preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. .
  • R 12 ′ represents a hydrogen atom or a methyl group
  • Y 2 ′ represents a hydrogen atom or a glycidyl group
  • the molar ratio of the hydrogen atom to the glycidyl group is preferably 0: 100 to 30:70, more preferably 0: 100 to 10:90, and still more preferably 0: 100.
  • at least one Y 2 ′ represents a glycidyl group.
  • n 2 represents an integer of 1 or more.
  • the plurality of R 12 ′ may be the same or different, and when n 2 is 2 or more, the plurality of Y 2 ′ may be the same or different.
  • n 2 is an integer of 1 or more as described above, preferably 10 to 100, more preferably 10 to 80, and still more preferably 15 to 60. When n 2 is in the above range, it obtained a good resist profile and resolution excellent pattern, also excellent adhesion, heat resistance, and electrical insulation resistance.
  • the bisphenol A type epoxy resin and bisphenol F type epoxy resin represented by the general formula (II ′) and Y 2 ′ is a glycidyl group include, for example, bisphenol A type epoxy resin and bisphenol F represented by the following general formula (VI): It can be obtained by reacting a hydroxyl group of an epoxy resin with an epihalohydrin such as epichlorohydrin.
  • R 12 and n 2 are the same as described above.
  • the amount of epihalohydrin used is such that the resist pattern, resolution, coating strength, heat resistance, electrical insulation (HAST resistance), thermal shock resistance, and excellent resist pattern due to the balance of resolution can be obtained.
  • the amount is preferably 2 to 10 mol with respect to 1 mol of the hydroxyl group in the epoxy resin represented by the general formula (VI).
  • a basic catalyst in the reaction between the epoxy resin represented by the general formula (VI) and epihalohydrin.
  • the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, alkali metal hydroxides, and the like, and alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide. Is more preferable from the viewpoint of catalytic activity. Further, the amount used is preferably 0.9 to 2 moles relative to 1 mole of hydroxyl groups in the epoxy resin represented by the general formula (VI).
  • examples of the organic solvent include alcohols such as methanol and ethanol; cellosolves such as methyl cellosolve and ethyl cellosolve; It is preferable to use ethers such as dioxane; polar organic solvents such as dimethylformamide, dimethylacetamide, and dimethylsulfoxide. Among these, one kind can be used alone, or two or more kinds can be used in combination. From the viewpoint of polarity adjustment, two or more kinds are preferably used in combination.
  • the reaction temperature is preferably 20 to 120 ° C., more preferably 50 to 120 ° C., and the reaction time is preferably 0.5 to 10 hours. When the reaction temperature and reaction time are within the above ranges, the reaction is unlikely to be slow and side reactions are unlikely to occur.
  • the unreacted epihalohydrin, the organic solvent, and the like are distilled off by distillation under heating and reduced pressure to obtain the epoxy resin represented by the general formula (II ′).
  • the obtained epoxy resin can be dissolved again in an organic solvent, and a basic catalyst such as the above alkali metal hydroxide can be added and reacted.
  • a phase transfer catalyst such as a quaternary ammonium salt or crown ether in the range of 0.1 to 3% by mass with respect to the epoxy resin.
  • a high-purity epoxy resin can be obtained by removing the salt and the like generated after completion of the reaction by filtration or washing with water, and further distilling off the organic solvent and the like under heating and reduced pressure.
  • Examples of the bisphenol A type epoxy resin or bisphenol F type epoxy resin represented by the general formula (II ′) include, for example, Epicoat 807, 815, 825, 827, 828, 834, 1001, 1004, 1007 and 1009 (above, Mitsubishi Chemical) (Trade name), DER-330, DER-301, DER-361 (above, manufactured by Dow Chemical Co., Ltd., trade name), YD-8125, YDF-170, YDF-175S, YDF-2001, YDF-2004, YDF-8170 (above, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name) and the like are commercially available.
  • Preferred examples of the epoxy resin (a) include an epoxy resin having a structural unit represented by the following general formula (III).
  • Examples of the epoxy resin having such a structural unit include those represented by the general formula (III ′):
  • the triphenolmethane type epoxy resin shown is preferable.
  • Y 3 represents a hydrogen atom or a glycidyl group, and the molar ratio of the hydrogen atom to the glycidyl group is preferably 0: 100 to 30:70. As can be seen from the molar ratio of hydrogen atom to glycidyl group, at least one Y 3 represents a glycidyl group. n 3 represents an integer of 1 or more. The plurality of Y 3 may be the same or different.
  • n 3 is an integer of 1 or more as described above, preferably 10 to 100, more preferably 15 to 80, and still more preferably 15 to 70.
  • n 3 is within the above range, a resist pattern that is excellent in the balance of resist shape, resolution, heat resistance, adhesion, and electrical insulation can be obtained.
  • the content of the structural unit is preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. .
  • triphenolmethane type epoxy resin represented by the general formula (III ′) for example, FAE-2500, EPPN-501H, EPPN-502H (above, Nippon Kayaku Co., Ltd., trade name) are commercially available. It is available.
  • Preferred examples of the epoxy resin (a) include bisphenol novolac type epoxy resins having a structural unit represented by the general formula (IV).
  • R 13 represents a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a sulfonic group, or a trihalomethyl group
  • Y 4 represents a hydrogen atom or a glycidyl group. At least one Y 4 represents a glycidyl group, and a plurality of R 13 may be the same or different.
  • the alkyl group for R 13 preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • the alkyl group may be linear or branched and may be substituted with a halogen atom, an alkyl group, an aryl group, an aralkyl group, an amino group, an amide group, an alkoxy group, or the like.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a sec-pentyl group, an isopentyl group, and a neopentyl group.
  • a methyl group is preferable.
  • aryl group examples include a phenyl group, a biphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and the like, preferably an aryl group having 6 to 20 ring carbon atoms, more preferably an aryl group having 6 to 14 ring carbon atoms. It is.
  • the aryl group may be substituted with a halogen atom, an alkyl group, an aryl group, an aralkyl group, an amino group, an amide group, an alkoxy group, or the like.
  • the aralkyl group is not particularly limited as long as one of the hydrogen atoms of the alkyl group is substituted with the aryl group, and examples thereof include a benzyl group, a phenylethyl group, a phenylpropyl group, and a naphthylmethyl group. And may be substituted with a halogen atom, an alkyl group, an aryl group, an aralkyl group, an amino group, an amide group, an alkoxy group, or the like.
  • the content of the structural unit is preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. .
  • a resist pattern that is superior in the balance of resist shape, resolution, heat resistance, adhesion, and electrical insulation can be obtained.
  • epoxy resin (a) a bisphenol novolac type epoxy resin having a structural unit represented by the general formula (V) is preferably exemplified.
  • R 14 represents a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a sulfone group, or a trihalomethyl group
  • Y 5 represents a hydrogen atom or a glycidyl group. At least one Y 5 represents a glycidyl group, and a plurality of R 14 may be the same or different.
  • the alkyl group, aryl group, and aralkyl group of R 14 the same as those described for R 13 can be exemplified, and preferred embodiments are also the same.
  • the content of the structural unit is preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. .
  • a resist pattern that is superior in the balance of resist shape, resolution, heat resistance, adhesion, and electrical insulation can be obtained.
  • the bisphenol novolac type epoxy resin having the structural units represented by the general formulas (IV) and (V) includes, for example, a hydroxyl group of the bisphenol novolac resin represented by the general formulas (VII) and (VIII) and an epihalohydrin such as epichlorohydrin. It can be obtained by reacting.
  • R 13 is the same as R 13 in the above the general formula (IV), in the general formula (VIII), R 14 is a R 14 in the general formula (V) The same.
  • the bisphenol novolak resin having the structural units represented by the general formulas (VII) and (VIII) is preferably a molecular structure of, for example, a bisphenol compound and an aldehyde compound or a ketone compound, and an alkyl group having 1 to 4 carbon atoms. It can be obtained by reacting in the presence of sulfonic acid contained therein.
  • the bisphenol compound is not particularly limited as long as it is a compound having two hydroxyphenyl groups.
  • bisphenol A, bisphenol AP, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, Bisphenol G, bisphenol M, bisphenol S, bisphenol P, bisphenol TMC, bisphenol Z and the like are preferred, and bisphenol A and bisphenol F are more preferred.
  • aldehyde compound to be reacted with the bisphenol compound include formaldehyde, acetaldehyde, benzaldehyde, 4-methylbenzaldehyde, 3,4-dimethylbenzaldehyde, biphenylaldehyde, naphthylaldehyde, and the like, and examples of the ketone compound include benzophenone, fluorenone, Indanone and the like are preferred, and formaldehyde is particularly preferred.
  • Examples of the sulfonic acid having an alkyl group having 1 to 4 carbon atoms in the molecular structure include alkane sulfonic acids such as methane sulfonic acid, ethane sulfonic acid, propane sulfonic acid and butane sulfonic acid, and perfluoro having a fluorine atom in the alkane portion.
  • alkane sulfonic acids such as methane sulfonic acid, ethane sulfonic acid, propane sulfonic acid and butane sulfonic acid, and perfluoro having a fluorine atom in the alkane portion.
  • Preferred examples include alkanesulfonic acid.
  • the bisphenol novolac type epoxy resin having the structural units represented by the general formulas (IV) and (V) is preferably obtained as follows.
  • the above bisphenol compound and aldehyde compound or ketone compound are charged into a reaction vessel, and sulfonic acid is added continuously or intermittently so as to maintain the range of 20 to 200 ° C. while stirring in an inert gas atmosphere.
  • a bisphenol compound is reacted with an aldehyde compound or a ketone compound to obtain a crude bisphenol novolac resin.
  • the crude bisphenol novolak resin is extracted with a water-insoluble organic solvent to obtain a bisphenol novolak resin solution, which is washed with water and neutralized, and further, the water-insoluble organic solvent is distilled off to obtain a bisphenol novolak-type epoxy. A resin is obtained.
  • the water-insoluble organic solvent preferably has a boiling point of 100 to 130 ° C. from the viewpoint of improving the working efficiency of extraction, washing and neutralization, for example, butanol, pentyl alcohol, methoxyethanol, ethoxyethanol, Preferred examples include diethylene glycol and methyl isobutyl ketone, butanol, methoxyethanol, and methyl isobutyl ketone are more preferred, and methyl isobutyl ketone is more preferred.
  • the above water washing is performed until the crude bisphenol novolak resin solution has a pH of 3 to 7, more preferably pH 5 to 7, and a basic substance such as sodium hydroxide, sodium carbonate, ammonia, triethylenetetramine is used as necessary. May be neutralized.
  • the above distillation is preferably carried out by distillation under reduced pressure under conditions of a temperature of 170 to 200 ° C. and a pressure of 3 kPa or less, whereby a high purity bisphenol novolac resin can be obtained.
  • an epoxy resin having a structural unit represented by the general formula (I) and a structural unit represented by the general formula (II) from the viewpoint of excellent process tolerance and improved solvent resistance.
  • Preferred is an epoxy resin having a bisphenol novolac type epoxy resin having a structural unit represented by the general formula (IV), a novolak type epoxy resin represented by the general formula (I '), and a bisphenol A represented by the general formula (II')
  • Type epoxy resin bisphenol F type epoxy resin represented by general formula (II ′), bisphenol novolak A type epoxy resin having a structural unit represented by general formula (IV), and structure represented by general formula (IV)
  • a bisphenol novolac F type epoxy resin having a unit is more preferable.
  • an epoxy resin having a structural unit represented by the general formula (IV) and a structural unit represented by the general formula (V) It is preferable to use together with the epoxy resin which has.
  • Examples of the vinyl group-containing monocarboxylic acid (b) to be reacted with the epoxy resin (a) include acrylic acid, a dimer of acrylic acid, methacrylic acid, ⁇ -furfurylacrylic acid, ⁇ -styrylacrylic acid. , Cinnamic acid, crotonic acid, acrylic acid derivatives such as ⁇ -cyanocinnamic acid, half-ester compounds that are reaction products of hydroxyl group-containing acrylate and dibasic acid anhydride, vinyl group-containing monoglycidyl ether or vinyl group-containing monoglycidyl Preferable examples include a half-ester compound which is a reaction product of an ester and a dibasic acid anhydride.
  • the half ester compound can be obtained by reacting a hydroxyl group-containing acrylate, a vinyl group-containing monoglycidyl ether or a vinyl group-containing monoglycidyl ester with a dibasic acid anhydride in an equimolar ratio.
  • vinyl group-containing monocarboxylic acids (b) can be used singly or in combination of two or more.
  • Examples of the hydroxyl group-containing acrylate, vinyl group-containing monoglycidyl ether, and vinyl group-containing monoglycidyl ester used in the synthesis of the half ester compound as an example of the vinyl group-containing monocarboxylic acid (b) include hydroxyethyl (meth) Acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) Preferred examples include acrylate, vinyl glycidyl ether, glycidyl (meth) acrylate and the like.
  • dibasic acid anhydride used for the synthesis of the above half ester compound one containing a saturated group or one containing an unsaturated group can be used.
  • dibasic acid anhydrides include succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, ethyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride.
  • the vinyl group-containing monocarboxylic acid (b) is 0.6 to 0.6 to 1 equivalent of the epoxy group of the epoxy resin (a).
  • the reaction is preferably performed at a ratio of 1.05 equivalents, more preferably at a ratio of 0.8 to 1.0 equivalents, and further at a ratio of 0.9 to 1.0 equivalents. preferable. It is preferable to react at such a ratio because the photopolymerizability is improved, that is, the photosensitivity is further improved.
  • the reaction between the epoxy resin (a) and the vinyl group-containing monocarboxylic acid (b) can be performed by dissolving in an organic solvent.
  • organic solvent include ketones such as ethyl methyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, Glycol ethers such as dipropylene glycol monoethyl ether, dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate and carbitol acetate; aliphatic carbonization such as octane and decane Hydrogen: petroleum-based solvents such as petroleum ether, petroleum naphtha,
  • a catalyst in order to promote the reaction.
  • Preferred examples of the catalyst include triethylamine, benzylmethylamine, methyltriethylammonium chloride, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylmethylammonium iodide, and triphenylphosphine.
  • the amount of the catalyst used is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the epoxy resin (a) and the vinyl group-containing monocarboxylic acid (b). The amount used is preferable because the reaction between the epoxy resin (a) and the vinyl group-containing monocarboxylic acid (b) is promoted.
  • a polymerization inhibitor for the purpose of preventing polymerization during the reaction.
  • Preferred examples of the polymerization inhibitor include hydroquinone, methyl hydroquinone, hydroquinone monomethyl ether, catechol, pyrogallol and the like.
  • the amount of the polymerization inhibitor used is preferably 0.01 to 1 part by mass with respect to 100 parts by mass in total of the epoxy resin (a) and the vinyl group-containing monocarboxylic acid (b). The amount used is preferable because the storage stability (shelf life) of the composition is improved.
  • the reaction temperature is preferably 60 to 150 ° C, more preferably 80 to 120 ° C.
  • a vinyl group-containing monocarboxylic acid (b) and a phenolic compound such as p-hydroxyphenethyl alcohol, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, biphenyl tetracarboxylic
  • a polybasic acid anhydride such as an acid anhydride can be used in combination.
  • the epoxy resin (a ′) thus obtained has a hydroxyl group formed by an addition reaction between the epoxy group of the epoxy resin (a) and the carboxyl group of the vinyl group-containing monocarboxylic acid (b). It is guessed.
  • an epoxy resin (a ′′) obtained by reacting the above-mentioned epoxy resin (a ′) with a polybasic acid anhydride (c) is also used.
  • the epoxy resin (a ′′) the hydroxyl group in the epoxy resin (a ′) (including the original hydroxyl group in the epoxy resin (a)) and the acid anhydride group of the polybasic acid anhydride (c) It is inferred that it is half-esterified.
  • polybasic acid anhydride (c) those containing a saturated group and those containing an unsaturated group can be preferably used.
  • Specific examples of the polybasic acid anhydride (c) include succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, ethyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexa
  • Preferred examples include hydrophthalic anhydride, ethylhexahydrophthalic anhydride, itaconic anhydride and the like.
  • the polybasic acid anhydride (c) is added in an amount of 0.1 to 1. By reacting with 0 equivalent, the acid value of the acid-modified vinyl group-containing epoxy resin can be adjusted.
  • the acid value of the acid-modified vinyl group-containing epoxy resin is preferably 30 to 150 mgKOH / g, more preferably 40 to 120 mgKOH / g, and further preferably 50 to 100 mgKOH / g.
  • the acid value is 30 mgKOH / g or more, the solubility of the photosensitive resin composition in a dilute alkali solution is unlikely to decrease, and when it is 150 mgKOH / g or less, the electrical characteristics of the cured film are unlikely to decrease.
  • the reaction temperature between the epoxy resin (a ′) and the polybasic acid anhydride (c) is preferably 60 to 120 ° C.
  • epoxy resin (a) for example, a hydrogenated bisphenol A type epoxy resin can be partially used together.
  • acid-modified vinyl group-containing epoxy resin (A) a styrene-maleic acid-based resin such as a hydroxyethyl (meth) acrylate modified product of a styrene-maleic anhydride copolymer may be used in combination.
  • the weight average molecular weight of the acid-modified vinyl group-containing epoxy resin is preferably 3000 to 30000, more preferably 4000 to 25000, and still more preferably 5000 to 18000.
  • the weight average molecular weight of the component (A) is within the above range, a resist pattern that is superior in the balance of resist shape, resolution, heat resistance, adhesion, and electrical insulation can be obtained.
  • the weight average molecular weight is a polyethylene-converted weight average molecular weight measured by a gel permeation chromatography (GPC) method using tetrahydrofuran as a solvent.
  • a value measured by the following GPC measurement apparatus and measurement conditions and converted using a standard polystyrene calibration curve can be used as the weight average molecular weight.
  • the calibration curve is prepared by using 5 sample sets (“PStQuick MP-H” and “PStQuick B”, manufactured by Tosoh Corporation) as standard polystyrene.
  • GPC measuring device GPC apparatus: High-speed GPC apparatus “HCL-8320GPC”, detector is a differential refractometer, manufactured by Tosoh Corporation Column: column TSKgel SuperMultipore HZ-H (column length: 15 cm, column inner diameter: 4.6 mm), Tosoh Corporation ) Made (measurement conditions) Solvent: Tetrahydrofuran (THF) Measurement temperature: 40 ° C Flow rate: 0.35 ml / min Sample concentration: 10 mg / THF 5 ml Injection volume: 20 ⁇ l
  • epoxy resin (a) As an acid-modified vinyl group-containing epoxy resin, as the epoxy resin (a), a novolac type epoxy resin represented by the general formula (I ′) having a structural unit represented by the general formula (I), II) An epoxy resin obtained by reacting a bisphenol A type epoxy resin represented by the general formula (II ′), a bisphenol F type epoxy resin and a vinyl group-containing monocarboxylic acid (b) having the structural unit represented by (II) a ′), and an epoxy resin (a ′′) obtained by reacting an epoxy resin (a ′) with a saturated or unsaturated group-containing polybasic acid anhydride (c) are preferred. ) Is more preferable.
  • epoxy resins (a ′) and (a ′′) can be used singly or in combination of two or more, and are preferably used in combination of a plurality of types.
  • the combination includes an epoxy resin (a ′) or (a ′′) obtained from a novolac type epoxy resin represented by the general formula (I ′), a bisphenol A type epoxy resin represented by the general formula (II ′), and bisphenol.
  • epoxy resin (a ′) or (a ′′) obtained from F-type epoxy resin are preferred, and epoxy resin (a ′′ obtained from novolak-type epoxy resin represented by general formula (I ′)) ) And an epoxy resin (a ′′) obtained from a bisphenol A type epoxy resin and a bisphenol F type epoxy resin represented by the general formula (II ′) are more preferable.
  • the mass mixing ratio with the epoxy resin (a ′) or (a ′′) obtained from the resin is preferably 95: 5 to 30:70, more preferably 90:10 to 40:60, and 80:20 More preferably, it is ⁇ 45: 55.
  • the content of component (A) with the total solid content in the photosensitive resin composition being 100 parts by mass is preferably 20 to 80 parts by mass, more preferably 30 to 75 parts by mass, and 40 to 40 parts by mass. 75 parts by mass is particularly preferred.
  • the content of the component (A) is within the above range, a coating film excellent in heat resistance, electrical characteristics, and chemical resistance (alkali resistance, acid resistance) can be obtained.
  • the total amount of solids in the present embodiment is the total amount of solids contained in the components (A) to (D), (A) to (E), or (A) to (F). .
  • the total amount of solids contained in the components (A) to (D) is the photosensitive property of the present embodiment.
  • the resin composition further contains the component (E)
  • the resin composition further contains the component (F) the total amount of solids contained in the component is the total amount of solids.
  • the photosensitive resin composition of this embodiment contains a photopolymerization initiator as the component (B).
  • a photoinitiator there is no restriction
  • limiting in particular, It can select from a photopolymerization initiator used normally, and can use it. From the viewpoint of resist shape and reflow resistance, it is preferable to contain an acylphosphine oxide photopolymerization initiator having an acylphosphine oxide group ( P ( ⁇ O) —C ( ⁇ O) — group).
  • acylphosphine oxide photopolymerization initiator examples include (2,6-dimethoxybenzoyl) -2,4,6-trimethylbenzoyl-pentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
  • 2,4,6-trimethylbenzoyldiphenylphosphine oxide ethyl-2,4,6-trimethylbenzoylphenylphosphinate, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, (2,5-dihydroxy Phenyl) diphenylphosphine oxide, (p-hydroxyphenyl) diphenylphosphine oxide, bis (p-hydroxyphenyl) phenylphosphine oxide, tris (p-hydroxyphenyl) phosphine oxide, etc.
  • photopolymerization initiators other than acylphosphine oxide photopolymerization initiators include benzoin photopolymerization initiators such as benzoin, benzoin methyl ether, and benzoin isopropyl ether; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone, N, Acetophenone photopolymerization initiators such as N-dimethylaminoacetophenone; 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone, 2-aminoanthone Anthraquinon
  • the total amount of solid content in the photosensitive resin composition is 100 parts by mass.
  • the content of the (B) photopolymerization initiator is preferably 0.2 to 15 parts by mass. When the amount is 0.2 parts by mass or more, the exposed portion is hardly eluted during development, and when the amount is 15 parts by mass or less, the heat resistance is not easily lowered.
  • the content of the (B) photopolymerization initiator is more preferably 0.2 to 10 parts by mass, further preferably 0.5 to 5 parts by mass, and particularly preferably 0.5 to 3 parts by mass. preferable.
  • photopolymerization initiation aids such as tertiary amines such as N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine, and triethanolamine Can be used singly or in combination of two or more.
  • the photosensitive resin composition of this embodiment contains a nitrogen-containing heterocyclic compound as the component (C).
  • the nitrogen-containing heterocyclic compound is not particularly limited as long as it is a cyclic compound having an average particle size of 0.01 to 10 ⁇ m and containing at least carbon and nitrogen, and has reflow resistance, heat resistance, and chemical resistance. It can be improved.
  • imidazole compounds, triazine compounds, imidazoline compounds, and the like are preferably mentioned, one kind alone or a combination of two or more kinds Can be used.
  • imidazole compounds include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, and 4-methyl-2-phenyl.
  • Imidazole 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazole Um trimellitate, 2-phenyl-4,5-dihydroxy methyl imidazole, 2,3-dihydro -1H- pyrrolo [1,2-a] benzimidazole, 2-phenylimidazole isocyanuric acid adduct, and the like preferably. Of these, 4-methyl-2-phenylimidazole, 2-ethyl-4-methylimi
  • Triazine compounds include triaminotriazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecyl Imidazolyl- (1 ′)]-ethyl-s-triazine, ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4-diamino-6-xylyl-s-triazine, 2,4-diamino -6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine isocyanuric acid adduct, 2,4-diamino-6-vinyl-s-triazine, 2,4-diamino-6-vinyl- Preferred examples include s-triazine isocyanuric
  • imidazoline compounds examples include 2-methylimidazoline, 2-phenylimidazoline, 2-undecylimidazoline, 2-heptadecylimidazoline, 2-ethylimidazoline, 2-isopropylimidazoline, 2,4-dimethylimidazoline, 2-phenyl-4- Methyl imidazoline and the like are preferable, and among these, 2-methyl imidazoline, 2-phenyl imidazoline and the like are preferable.
  • These imidazoline compounds may be used singly or in combination of two or more.
  • the average particle size of the (C) nitrogen-containing heterocyclic compound used in the present invention is required to be 0.01 to 10 ⁇ m. If the average particle size is less than 0.01 ⁇ m, secondary aggregation is likely to occur, making handling difficult. If it exceeds 10 ⁇ m, excellent curability cannot be obtained, resulting in poor resist shape, and excellent HAST. Resistance and electroless plating resistance cannot be obtained.
  • the average particle size of the (C) nitrogen-containing heterocyclic compound excellent reflow resistance, heat resistance, and chemical resistance can be obtained. It is preferably 5 to 5 ⁇ m.
  • the average particle diameter was measured by a laser diffraction method (based on JIS Z8825-1 (2001)).
  • the content of the (C) nitrogen-containing heterocyclic compound with the total solid content in the photosensitive resin composition being 100 parts by mass is preferably 0.05 to 10 parts by mass. When it is 0.05 parts by mass or more, excellent electroless plating resistance is obtained, and when it is 10 parts by mass or less, excellent electrical insulation (HAST resistance) is obtained.
  • the content of the (C) nitrogen-containing heterocyclic compound is more preferably 0.1 to 10 parts by mass, further preferably 0.1 to 5 parts by mass, and 0.3 to 5 parts by mass. Particularly preferred.
  • the photosensitive resin composition of this embodiment contains a photopolymerizable compound as component (D).
  • the photopolymerizable compound is a functional group exhibiting photopolymerization properties such as vinyl group, allyl group, propargyl group, butenyl group, ethynyl group, phenylethynyl group, maleimide group, nadiimide group, (meth) acryloyl group, etc. If it is a compound which has an ethylene oxide unsaturated group, there will be no restriction
  • Examples of the photopolymerizable compound include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate; ethylene glycol, methoxytetraethylene glycol, polyethylene glycol and the like Mono- or di (meth) acrylates of glycols; (meth) acrylamides such as N, N-dimethyl (meth) acrylamide and N-methylol (meth) acrylamide; N, N-dimethylaminoethyl (meth) acrylate and the like Aminoalkyl (meth) acrylates; polyhydric alcohols such as hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, tris-hydroxyethyl isocyanurate, etc.
  • hydroxyalkyl (meth) acrylates such as 2-hydroxy
  • Multivalent (meth) acrylates of these ethylene oxide or propylene oxide adducts include (meth) acrylates of ethylene oxide or propylene oxide adducts of phenols such as phenoxyethyl (meth) acrylate, polyethoxydi (meth) acrylate of bisphenol ⁇ Preferred examples include (meth) acrylates of glycidyl ethers such as glycerin diglycidyl ether, trimethylolpropane triglycidyl ether and triglycidyl isocyanurate; melamine (meth) acrylate and the like.
  • These (D) photopolymerizable compounds can be used individually by 1 type or in combination of 2 or more types.
  • the content of the photopolymerizable compound (D) in which the total solid content in the photosensitive resin composition is 100 parts by mass is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, The amount is preferably 1 to 15 parts by mass.
  • the content of the component (D) is 0.1 part by mass or more, the exposed part is less likely to be eluted during development, and the sensitivity and resolution of the photosensitive resin composition tend to be improved. If it exists, heat resistance will improve.
  • the photosensitive resin composition of this embodiment contains an inorganic filler as (E) component.
  • the inorganic filler is preferably used for the purpose of improving various properties such as adhesion, heat resistance and coating strength of the photosensitive resin composition.
  • Examples of the inorganic filler include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), and silicon nitride (Si 3 ).
  • the inorganic filler preferably has a maximum particle size of 0.1 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m, still more preferably 0.1 to 5 ⁇ m, and more preferably 0.1 to 1 ⁇ m. Particularly preferred. When the maximum particle size is 20 ⁇ m or less, it is possible to suppress a decrease in electrical insulation (HAST resistance).
  • the maximum particle diameter of the (E) inorganic filler was measured by a laser diffraction method (based on JIS Z8825-2 (2001)).
  • inorganic fillers it is preferable to use silica from the viewpoint of improving heat resistance, and from the viewpoint of improving solder heat resistance, crack resistance (thermal shock resistance), and PCT resistance, barium sulfate is used. It is preferable to use it. Moreover, it is preferable that the said barium sulfate is surface-treated with 1 or more types chosen from an alumina and an organosilane type compound from a viewpoint which can improve the aggregation prevention effect.
  • the elemental composition of aluminum on the surface of barium sulfate surface-treated with at least one selected from alumina and organosilane compounds is preferably 0.5 to 10 atomic%, and preferably 1 to 5 atomic%. More preferably, it is 1.5 to 3.5 atomic%.
  • the elemental composition of silicon on the surface of barium sulfate is preferably 0.5 to 10 atomic%, more preferably 1 to 5 atomic%, and further preferably 1.5 to 3.5 atomic%. preferable.
  • the elemental composition of carbon on the surface of barium sulfate is preferably 10 to 30 atomic%, more preferably 15 to 25 atomic%, and further preferably 18 to 23 atomic%. These elemental compositions can be measured using XPS.
  • NanoFine BFN40DC (trade name, manufactured by Nippon Solvay Co., Ltd.) is commercially available.
  • the total amount of solid content in the photosensitive resin composition is 100 parts by mass.
  • the content of (E) inorganic filler is 10 to 80 masses. Part, preferably 20 to 70 parts by weight, more preferably 20 to 50 parts by weight, and particularly preferably 20 to 45 parts by weight.
  • the coating strength, heat resistance, electrical insulation (HAST resistance), thermal shock resistance, resolution, etc. of the photosensitive resin composition are further improved. Can be improved.
  • the barium sulfate content with the total solid content in the photosensitive resin composition being 100 parts by mass is preferably 5 to 60 parts by mass. It is more preferably from 50 to 50 parts by mass, further preferably from 10 to 40 parts by mass, and particularly preferably from 10 to 35 parts by mass.
  • the content of the barium sulfate fine particles is within the above range, the heat resistance and the PCT resistance can be further improved.
  • the photosensitive resin composition of the present embodiment preferably contains a pigment as the component (F).
  • the pigment is preferably used according to a desired color when the wiring pattern is concealed.
  • a colorant that develops a desired color may be appropriately selected and used. Examples of the colorant include known phthalocyanine blue, phthalocyanine green, iodin green, diazo yellow, crystal violet, and the like. Coloring agents are preferred.
  • the content of the pigment (F) with the total solid content in the photosensitive resin composition being 100 parts by mass is preferably 0.1 to 5 parts by mass, more preferably 0.1 to 3 parts by mass. (F) When the pigment content is within the above range, the wiring pattern can be concealed.
  • a diluent can be used as needed to adjust the viscosity.
  • the diluent include organic solvents or photopolymerizable monomers.
  • the organic solvent can be appropriately selected from the solvents exemplified as the organic solvent that can be used in the reaction of the epoxy resin (a) and the vinyl group-containing monocarboxylic acid (b).
  • the photopolymerizable monomer what was illustrated by said (D) photopolymerizable compound is mentioned preferably.
  • the amount of diluent used should be such that the total content of the solid content in the photosensitive resin composition and the solid content other than the components (A) to (F) is 50 to 90% by mass.
  • the amount is preferably 60 to 80% by mass, more preferably 65 to 75% by mass. That is, when the diluent is used, the content of the diluent in the photosensitive resin composition is preferably 10 to 50% by mass, more preferably 20 to 40% by mass, and further preferably 25 to 35% by mass.
  • the photosensitive resin composition of this embodiment may contain an antioxidant in order to improve heat resistance, reflow resistance, chemical resistance, and the like.
  • Preferred examples of the antioxidant include hindered phenol antioxidants and quinone antioxidants.
  • the hindered phenol-based antioxidant pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (BASF Japan Ltd., Irganox 1010 (trade name)), Thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (BASF Japan K.K., Irganox 1035 (trade name)), octadecyl [3- (3,5-di -Tert-butyl-4-hydroxyphenyl) propionate] (BASF Japan K.K., Irganox 1076 (trade name)), octyl 1-3,5-di-ter
  • quinone antioxidant examples include hydroquinone, 2-t-butylhydroquinone, hydroquinone monomethyl ether, metaquinone, benzoquinone Etc. are preferable. These antioxidants can be used singly or in combination of two or more.
  • the photosensitive resin composition of the present embodiment may contain a curing agent.
  • a curing agent a compound that cures itself by heat, ultraviolet light, or the like, or a photocurable resin component in the composition of the present embodiment (A) carboxy group, hydroxyl group and heat of the acid-modified vinyl group-containing epoxy resin.
  • a compound that is cured by ultraviolet rays or the like is preferable.
  • an epoxy compound for example, as a thermosetting compound, an epoxy compound, a melamine compound, a urea compound, an oxazoline compound and the like are preferably exemplified.
  • the epoxy compound include bisphenol A type epoxy resins, bisphenol F type epoxy resins, hydrogenated bisphenol A type epoxy resins, brominated bisphenol A type epoxy resins, bisphenol S type epoxy resins and the like; novolak type epoxy resins Preferred examples include resins; biphenyl type epoxy resins; heterocyclic epoxy resins such as triglycidyl isocyanurate; and bixylenol type epoxy resins.
  • Preferred examples of the melamine compound include triaminotriazine, hexamethoxymelamine, hexabutoxylated melamine and the like.
  • Preferred examples of the urea compound include dimethylol urea.
  • the curing agent preferably contains at least one selected from an epoxy compound (epoxy resin) and a block type isocyanate from the viewpoint of further improving heat resistance, and the epoxy compound and the block type isocyanate may be used in combination. More preferred.
  • an epoxy compound epoxy resin
  • a block type isocyanate an addition reaction product of a polyisocyanate compound and an isocyanate blocking agent is used.
  • polyisocyanate compound examples include tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, naphthylene diisocyanate, bis (isocyanate methyl) cyclohexane, tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, and isophorone diisocyanate.
  • isocyanate blocking agent examples include phenolic blocking agents such as phenol, cresol, xylenol, chlorophenol and ethylphenol; lactam blocking agents such as ⁇ -caprolactam, ⁇ -palerolactam, ⁇ -butyrolactam and ⁇ -propiolactam; Active methylene blocking agents such as ethyl acetoacetate and acetylacetone; methanol, ethanol, propanol, butanol, amyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, benzyl Ether, methyl glycolate, butyl glycolate, diacetone alcohol, lactic acid And alcohol blocking agents such as ethyl lactate; oxime blocking agents such as formaldehyde oxime, acetoaldoxime, acetoxime, methyl methyl
  • the curing agent is used alone or in combination of two or more.
  • a curing agent When a curing agent is used, its content is preferably 2 to 50 parts by weight, more preferably 2 to 40 parts by weight, based on 100 parts by weight of the total solid content in the photosensitive resin composition. 30 parts by mass is further preferable, and 5 to 20 parts by mass is particularly preferable.
  • an epoxy resin curing agent can be used in combination for the purpose of further improving various properties such as heat resistance, adhesion, and chemical resistance of the final cured film.
  • epoxy resin curing agents include, for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methyl Imidazoles such as -5-hydroxymethylimidazole; guanamines such as acetoguanamine and benzoguanamine; diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives, melamine, polybasic hydrazide, etc.
  • the epoxy resin curing agent is used singly or in combination of two or more, and the content of the epoxy resin curing agent contained in the photosensitive resin composition is preferably 0.01 to 20% by mass, more preferably 0. 1 to 10% by mass.
  • the photosensitive resin composition of the present embodiment includes, if necessary, polymerization inhibitors such as hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, catechol, pyrogallol; thickeners such as benton and montmorillonite; silicone-based, fluorine-based, vinyl Various known and commonly used additives such as resin-based antifoaming agents and silane coupling agents can be used. Further, flame retardants such as brominated epoxy compounds, acid-modified brominated epoxy compounds, antimony compounds, phosphate compounds of phosphorus compounds, aromatic condensed phosphate esters, and halogen-containing condensed phosphate esters can be used.
  • the photosensitive resin composition of the present embodiment can contain an elastomer.
  • the elastomer is particularly preferably used when the photosensitive resin composition of the present embodiment is used for manufacturing a semiconductor package substrate.
  • the curing reaction proceeds by ultraviolet rays or heat, so that (A) distortion inside the resin due to curing shrinkage of the acid-modified vinyl group-containing epoxy resin (internal Decrease in flexibility and adhesiveness due to stress) can be suppressed.
  • the elastomer examples include styrene elastomers, olefin elastomers, urethane elastomers, polyester elastomers, polyamide elastomers, acrylic elastomers, and silicone elastomers. These elastomers are composed of a hard segment component and a soft segment component. In general, the former contributes to heat resistance and strength, and the latter contributes to flexibility and toughness.
  • a rubber-modified epoxy resin can be used.
  • the rubber-modified epoxy resin includes, for example, a part or all of the epoxy groups of the above-described bisphenol F type epoxy resin, bisphenol A type epoxy resin, triphenolmethane type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin. It can be obtained by modification with a carboxylic acid-modified butadiene-acrylonitrile rubber or a terminal amino-modified silicone rubber.
  • both end carboxyl group-modified butadiene-acrylonitrile copolymers and Espel (Espel 1612, 1620, manufactured by Hitachi Chemical Co., Ltd.) which is a polyester elastomer having a hydroxyl group are preferable. Can be mentioned.
  • the amount of the elastomer is preferably 2 to 30 parts by mass, more preferably 4 to 20 parts by mass, and further preferably 10 to 20 parts by mass with respect to 100 parts by mass of the (A) acid-modified vinyl group-containing epoxy resin. . If it is 2 parts by mass or more, the elastic modulus in the high temperature region of the cured film tends to be low, and if it is 30 parts by mass or less, the unexposed part tends to be eluted with the developer.
  • the photosensitive resin composition of the present embodiment comprises the above components (A) to (D), the (E) component, the (F) component, and other various components used as desired. Etc., and can be obtained by uniformly kneading and mixing. Moreover, it is preferable that the photosensitive resin composition of this invention is a liquid form. By making it liquid, a permanent mask resist can be easily formed by various coating methods described later.
  • the photosensitive resin composition of the present embodiment is suitably used for forming a photosensitive element and a permanent mask resist, and the photosensitive element and the permanent mask resist of the present embodiment are the photosensitive resin composition of the present embodiment. It is formed using.
  • the photosensitive element of this embodiment includes a support and a photosensitive layer formed using the photosensitive resin composition of the present embodiment on the support.
  • a resin film having heat resistance and solvent resistance such as a polyester resin film such as polyethylene terephthalate, and a polyolefin resin film such as polyethylene and polypropylene, is preferably mentioned. From the viewpoint of transparency, a polyethylene terephthalate film Is preferably used.
  • the thickness of the support is preferably 1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and even more preferably 1 to 30 ⁇ m in view of mechanical strength, good resolution, and the like.
  • the photosensitive element of the present embodiment is, for example, carried out by carrying out the photosensitive resin composition of the present embodiment on the support by a method such as a dipping method, a spray method, a bar coating method, a roll coating method, or a spin method.
  • the photosensitive resin composition of the form is applied with a film thickness (after drying: 10 to 200 ⁇ m) according to the application to form a coating film, and dried at 70 to 150 ° C. for 5 to 30 minutes to form a photosensitive layer Can be obtained.
  • the permanent mask resist of this embodiment and the printed wiring board provided with the permanent mask resist are imaged as follows, for example.
  • a base material on which a resist is to be formed for example, a copper-clad laminate for a printed wiring board
  • a screen printing method for example, a spray method, a roll coating method, a curtain coating method, an electrostatic coating method, etc.
  • the photosensitive resin composition of the embodiment is applied at a film thickness (after drying: 10 to 200 ⁇ m) according to the application to form a coating film, and the coating film is dried at 60 to 110 ° C.
  • the photosensitive layer of the photosensitive element may be transferred (laminated) onto the substrate on which the resist is to be formed.
  • the dried coating film on the support is pasted on the substrate using an atmospheric laminator or a vacuum laminator as necessary.
  • the actinic rays such as ultraviolet rays are preferably exposed at an exposure dose of 10 to 1,000 mJ / cm 2 through direct contact with the negative film or through a transparent film.
  • the resin film is used, the film is peeled off, and the unexposed portion is dissolved and removed (developed) with a dilute alkaline aqueous solution.
  • the exposed portion is sufficiently cured by post-exposure (ultraviolet light exposure), post-heating, or post-exposure and post-overheating to obtain a cured film.
  • the post-exposure is preferably 800 to 5,000 mJ / cm 2
  • the post-heating is preferably 100 to 200 ° C. for 30 minutes to 12 hours.
  • the permanent mask resist obtained in this way is less likely to cause undercuts that cause the bottom to be removed, and less likely to lose the top of the resist. Since it is difficult to increase with respect to the line width of the surface portion, the pattern contour has a good linearity, an excellent resist shape, and a pattern with excellent resolution. In addition, this permanent mask resist has a pattern that is excellent in the formation stability of the finer hole diameter and the interval pitch between holes due to the recent downsizing and higher performance of electronic devices. In addition to PCT resistance (moisture heat resistance), reflow resistance, electrical insulation (HAST resistance), and electroless plating resistance, the pattern has heat resistance, solvent resistance, and chemical resistance (alkali resistance, acid resistance). Property) and adhesiveness.
  • a predetermined hole diameter size and an interval pitch between holes (a hole diameter size of 100 ⁇ m and an interval pitch of 100 ⁇ m, or a hole diameter size of 80 ⁇ m and an interval between holes of 80 ⁇ m) pattern
  • Each of the negative masks having a thickness of 2 was adhered to the coating film, and was exposed at an exposure amount of 600 mJ / cm 2 using an ultraviolet exposure apparatus (“HTE-5102S (trade name)”, manufactured by Hitec Corporation). Thereafter, spray development was performed with a 1% by mass aqueous sodium carbonate solution for 60 seconds at a pressure of 0.18 MPa (1.8 kgf / cm 2 ), and the unexposed area was dissolved and developed.
  • FIG. 1 schematically shows the cross-sectional shape of the resist.
  • the photosensitive resin compositions of the examples and comparative examples were 50 cm ⁇ 50 cm in size and 0.6 mm thick copper-clad laminate (“MCL-E-67 (trade name) ) ", Manufactured by Hitachi Chemical Co., Ltd.) by a screen printing method so that the film thickness after drying is 35 ⁇ m to form a coating film, and then using a hot air circulation dryer at 80 ° C. for 20 minutes. Dried.
  • MCL-E-67 trade name
  • a predetermined hole diameter size and an interval pitch between holes (a hole diameter size of 100 ⁇ m and an interval pitch of 100 ⁇ m, or a hole diameter size of 80 ⁇ m and an interval between holes of 80 ⁇ m) pattern
  • Each of the negative masks having a thickness of 2 was adhered to the coating film, and was exposed at an exposure amount of 600 mJ / cm 2 using an ultraviolet exposure apparatus (“HTE-5102S (trade name)”, manufactured by Hitec Corporation). Thereafter, spray development was performed with a 1% by mass aqueous sodium carbonate solution for 60 seconds at a pressure of 0.18 MPa (1.8 kgf / cm 2 ), and the unexposed portion was dissolved and developed to prepare a test piece.
  • the pattern of the obtained test piece was evaluated according to the following criteria.
  • the bottom of the pattern is 80 ⁇ m or more (80% or more with respect to the pattern diameter). The pattern was able to be reproduced when it was formed.
  • an 80 ⁇ m pattern the pattern was reproduced when the pattern bottom was formed with a size of 64 ⁇ m or more.
  • the determination of “A” and “B” the case where the total number of formed patterns was 80% or more with respect to the total number of patterns of 100 ⁇ m and 80 ⁇ m was evaluated as “A”.
  • E-67 (trade name), manufactured by Hitachi Chemical Co., Ltd.) and chemical polishing (polishing agent (“CZ8101 (trade name)”, manufactured by MEC Co., Ltd.)) 0.5 ⁇ m roughening in the depth direction )
  • a 0.6 mm thick copper-clad laminate (MCL-E-67, manufactured by Hitachi Chemical Co., Ltd.) is applied by screen printing to form a coating film so that the film thickness after drying is 35 ⁇ m.
  • a predetermined hole diameter size and an interval pitch between holes (a hole diameter size of 100 ⁇ m and an interval pitch of 100 ⁇ m, or a hole diameter size of 80 ⁇ m and an interval between holes of 80 ⁇ m) pattern
  • Each of the negative masks having a thickness of 2 was adhered to the coating film, and was exposed at an exposure amount of 600 mJ / cm 2 using an ultraviolet exposure apparatus (“HTE-5102S (trade name)”, manufactured by Hitec Corporation).
  • a test piece having a cured coating film of the conductive resin composition was prepared. This test piece was placed in a high-temperature and high-humidity tank under an atmosphere of 130 ° C. and humidity 85%, charged with a voltage of 5 V, and subjected to an in-chamber HAST test for 168 hours. The insulation resistance value in the tank when 168 hours passed was evaluated according to the following criteria.
  • a flask equipped with a thermometer, a dropping funnel, a condenser, and a stirrer was purged with nitrogen gas. 2 parts by mass of ammonium chloride was mixed and dissolved. Next, this was heated to 65 ° C., and the pressure was reduced to an azeotropic pressure, and then 90 parts by mass of an aqueous sodium hydroxide solution (49% by mass) was added dropwise over 5 hours at a constant dropping rate, followed by stirring for 30 minutes. During this time, the distillate distilled by azeotropic distillation was separated by a Dean-Stark trap, the aqueous layer was removed, and the reaction was carried out while returning the oil layer to the flask (reaction system).
  • Examples 1 to 6 and Comparative Examples 1 to 4 A composition was blended according to the blending composition shown in Table 1, and kneaded with a three-roll mill to prepare a photosensitive resin composition. Carbitol acetate was added so that the solid content concentration was 70% by mass to obtain a photosensitive resin composition. It evaluated based on said (evaluation method) using the obtained photosensitive resin composition. The evaluation results are shown in Table 1.
  • the unit of the compounding amount of each component in Table 1 is part by mass
  • the compounding amount of the component (A) is an amount including the epoxy resin and the solvent (carbitol acetate) obtained in each of the above synthesis examples. Means.
  • the permanent mask resist in the photosensitive resin compositions of the present invention of Examples 1 to 6, the permanent mask resist (solder resist) has a hole diameter size and a pitch between holes (hole diameter size of 100 ⁇ m and Even with high-definition patterns such as a pitch of 100 ⁇ m between holes or a size of 80 ⁇ m in hole diameter and 80 ⁇ m between holes, it maintains excellent surface and bottom curability, undercut and skirting In addition, it was confirmed that an excellent resist shape was obtained and the via diameter accuracy was excellent without being confirmed to be thick or to have a bad linearity of the pattern outline. Moreover, it was confirmed that it is excellent also in various performances including electrical insulation (HAST resistance) and electroless plating resistance. On the other hand, in Comparative Examples 1 to 4, the surface curability and the bottom curability are low, the problem of the resist shape is not solved, and the thickness around the pattern of the permanent mask resist (solder resist) is also generated. The result was satisfactory.
  • the present invention it is possible to form a pattern having excellent resist shape and excellent resolution, and in addition to PCT resistance (moisture heat resistance), reflow resistance, electrical insulation (HAST resistance), and electroless plating resistance.
  • PCT resistance moisture heat resistance
  • HAST resistance electrical insulation
  • electroless plating resistance Photosensitive resin composition that can form patterns with excellent heat resistance, solvent resistance, chemical resistance (alkali resistance, acid resistance), and adhesion, formation of finer hole diameters and pitches between holes
  • a permanent mask resist that is excellent in stability and capable of pattern formation can be obtained.
  • the permanent mask resist is suitably used for a printed wiring board, and in particular, is suitably used for a printed wiring board having a finer hole diameter and a pitch between holes due to recent miniaturization and higher performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】レジスト形状に優れ、解像性に優れたパターンを形成でき、耐PCT性(耐湿熱性)、耐リフロー性、電気絶縁性(HAST耐性)、及び無電解めっき耐性に加えて、耐熱性、耐溶剤性、耐薬品性(耐アルカリ性、耐酸性)、及び密着性に優れたパターンを形成できる感光性樹脂組成物、これを用いた永久マスクレジスト、及び該永久マスクレジストを具備するプリント配線板を提供すること。 【解決手段】(A)酸変性ビニル基含有エポキシ樹脂、(B)光重合開始剤、(C)含窒素複素環化合物、及び(D)光重合性化合物を含有し、該(C)含窒素複素環化合物の平均粒子径が0.01~10μmである感光性樹脂組成物、これを用いた永久マスクレジスト、及びプリント配線板である。

Description

感光性樹脂組成物
 本発明は、感光性樹脂組成物、該感光性樹脂組成物を用いた感光性エレメント、永久マスクレジスト、及びプリント配線板に関するものである。
 プリント配線板の製造分野において、プリント配線板上に永久マスクレジストを形成することが行われている。永久マスクレジストは、プリント配線板の使用時において、導体層の腐食を防止したり、導体層間の電気絶縁性を保持する役割を有している。近年、永久マスクレジストは、半導体素子をプリント配線板上にはんだを介してフリップチップ実装、ワイヤボンディング実装等を行う工程において、プリント配線板の導体層の不要な部分にはんだが付着することを防ぐ、はんだレジスト膜としての役割をも有するようになっている。
 従来、プリント配線板製造における永久マスクレジストは、熱硬化性樹脂組成物、あるいは紫外線硬化性樹脂組成物を用いてスクリーン印刷で作製されてきた。この樹脂組成物のスクリーン印刷による方法では、印刷時に滲み、ダレ等が発生するため、高精細なパターンの作製は困難である。そのため、従来の樹脂組成物のスクリーン印刷による方法では、近年の電子機器の小型化、軽量化、高性能化に伴う、プリント配線板における配線パターン、及び絶縁パターンの高精細化に応じた永久マスクレジストの形成が困難となっており、高精細化への要望に充分に対応できなくなっている。
 そこで、フォトリソグラフィーによる永久マスクレジストの形成方法が開発されるに至っている。この永久マスクレジストの形成方法は、具体的には、ドライフィルム型光硬化性レジストを基材上に熱圧着し、あるいは液状型光硬化性レジストを基材上にカーテン塗布又はスプレー塗布してレジスト層を形成し、該レジスト層にネガマスクを介して選択的に紫外線等の活性光線を照射して硬化させ、未照射部分のみを現像液で除去して像形成を行う、というものである。
 ドライフィルム型光硬化性レジストを用いる場合、基材への熱圧着時に空気を巻き込み気泡が生じやすくなり、レジスト層と基材との密着性の低下、又はレジストパターンの乱れが生じ、レジスト性能の低下が懸念される。そのため、ドライフィルム型ではなく、液状型光硬化性レジストの使用が検討されている。液状型光硬化性レジストとしては、溶剤現像型とアルカリ現像型とに大別されるが、作業環境保全、及び地球環境保全の観点から、アルカリ現像型が主流となっている。このようなアルカリ現像型の液状型光硬化性レジストで、塗膜の耐熱性、耐薬品性、電気特性を向上させるものが、提案されている(例えば、特許文献1~3)。
 しかし、特許文献1において提案されるアルカリ現像型の液状型光硬化性レジストでは、近年さらに優れる性能を要求されるようになっている耐熱性、及び耐PCT性(耐プレッシャークッカーテスト性)(以後、耐湿熱性と称することもある。)等の実用特性が充分に満足するものとなっているとはいない。アルカリ現像型の液状型光硬化性レジストは、アルカリ現像を可能とするために親水性基を有するものが主成分となっており、そのため、薬液及び水等がレジスト層に浸透しやすく、充分に優れるレジスト層の実用特性が得られないと考えられる。
 ところで、電子機器の小型化、軽量化、高性能化に伴い、半導体パッケージの小型化、多ピン化の実用化、量産化も急務となっている。例えば、電子部品に搭載されているBGA(Ball Grid Array)、CSP(Chip Size Package)等の半導体パッケージ基板においては、高い信頼性が求められている。また、高い信頼性を達成するために、耐PCT性(耐湿熱性)が要求されている。しかし、特許文献1等において提案される従来の液状型光硬化性レジストは、耐PCT性評価で用いるような厳しい環境(高温高湿環境)下では、数時間~数十時間程度しか実用に耐えられない傾向があり、耐PCT性(耐湿熱性)のさらなる改良が求められている。
 また、実装方法が、従来の挿入実装から、例えば、FC(Flip Chip)、TAB(Tape Automated Bonding)、COF(Chip On Film)等といった表面実装が採用されるようになり、実装時に半導体パッケージにかかる温度が高くなる傾向にある。表面実装の場合、より具体的には、はんだをリフローして固定する、すなわち、あらかじめクリームはんだを必要部分に印刷し、印刷したはんだ全体を赤外線等による高温炉で加熱し、はんだを溶かして表面実装部品と基板とをはんだ付けするので、パッケージ内外部の到達温度は220~280℃と極めて高くなる。
 このように高温に晒される場合、従来の液状型光硬化性レジストでは、熱衝撃により塗膜にクラックが発生したり、基板又は封止材から剥離してしまうという、耐リフロー性が低下するという問題もあった。
 また、プリント配線板における配線パターン及び絶縁パターン(永久マスクレジスト)の高精細化に伴い、配線間の間隔ピッチが微細化しているため、配線間の優れた電気絶縁性(特に、吸湿後の電気絶縁性(HAST耐性))が求められる。
 そして、その製造においては、リード線を必要としない無電解めっき法が採用されるようになっている。無電解めっき法は、めっき膜厚が均一であり、平滑性が高い等の特長を有している。しかし、めっき液のpHが大きく強アルカリ性を呈していること、めっき析出速度を向上させるために、液温を90℃程度という高温にすることから、永久マスクレジストに対するダメージが大きくなる傾向にある。そのため、永久マスクレジストには無電解めっきに用いられるめっき液によるダメージに強い、耐無電解めっき性も求められる。
 さらに、永久マスクレジストには良好なレジスト形状を有することが求められる。例えば、20~40μm以上という厚膜の永久マスクレジストを形成する場合、底部の光硬化性レジストの光硬化が充分に得られず、現像後に底部がえぐられるアンダーカットを生じたり、底部の光硬化性を向上させるために紫外線照射の露光量を多くすると、光回折やハレーションが大きくなり、パターン断面の表面部(上部)の線幅に対して中間部(中心部)及び最深部(底部)の線幅が大きくなるため、レジスト形状の悪化が生じる、あるいは解像性が低下するという問題が生じやすい。また、酸素阻害によりレジスト深さ方向で表面から3μm程度に至る領域において光硬化が不足することで、レジスト上部が欠落してしまい、レジスト形状が悪化するという問題もある。
特開平1-141904号公報 特開2009-300532号公報 特開2010-014767号公報
本発明の感光性樹脂組成物を用いて形成したレジストの断面の模式図である。 実施例で用いたネガマスクのパターン形状を示す図である。 耐リフロー性の評価で採用したリフロープロファイルを示す図である。
 本発明の目的は、このような課題を鑑みてなされたものであり、レジスト形状に優れ、解像性に優れたパターンを形成でき、耐PCT性(耐湿熱性)、耐リフロー性、電気絶縁性(HAST耐性)、及び無電解めっき耐性に加えて、耐熱性、耐溶剤性、耐薬品性(耐アルカリ性、耐酸性)、及び密着性に優れたパターンを形成できる感光性樹脂組成物を提供することである。
 また、本発明の感光性樹脂組成物を用いることで、近年の電子機器の小型化、及び高性能化に伴う微細化した穴径の大きさと穴間の間隔ピッチの形成安定性に優れた、パターン形成が可能な永久マスクレジスト、これを具備するプリント配線板、及び感光性エレメントを提供することである。
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、下記の発明により解決できることを見出した。すなわち本発明は、下記の感光性樹脂組成物、該感光性樹脂組成物を用いた感光性エレメント、永久マスクレジスト、及びプリント配線板を提供するものである。
1.(A)酸変性ビニル基含有エポキシ樹脂、(B)光重合開始剤、(C)含窒素複素環化合物、及び(D)光重合性化合物を含有し、該(C)含窒素複素環化合物の平均粒子径が0.01~10μmである感光性樹脂組成物。
2.さらに、(E)無機フィラーを含有する上記1に記載の感光性樹脂組成物。
3.さらに、(F)顔料を含有する上記1又は2に記載の感光性樹脂組成物。
4.支持体と、該支持体上に上記1~3のいずれか1項に記載の感光性樹脂組成物を用いてなる感光層とを備える感光性エレメント。
5.上記1~3のいずれか1項に記載の感光性樹脂組成物により形成される永久マスクレジスト。
6.上記5に記載の永久マスクレジストを具備するプリント配線板。
 本発明によれば、レジスト形状に優れ、解像性に優れたパターンを形成でき、耐PCT性(耐湿熱性)、耐リフロー性、電気絶縁性(HAST耐性)、及び無電解めっき耐性に加えて、耐熱性、耐溶剤性、耐薬品性(耐アルカリ性、耐酸性)、及び密着性に優れたパターンを形成できる感光性樹脂組成物、これを用いた永久マスクレジスト、及び該永久マスクレジストを具備するプリント配線板を得ることができる。
〔感光性樹脂組成物〕
 本発明における実施形態に係る(以後、単に本実施形態と称する場合がある。)感光性樹脂組成物は、(A)酸変性ビニル基含有エポキシ樹脂、(B)光重合開始剤、(C)含窒素複素環化合物、及び(D)光重合性化合物を含有し、該(C)含窒素複素環化合物の平均粒子径が0.01~10μmであることを特徴とするものである。各成分について、以下説明する。なお、本明細書において、これらの成分は、単に(A)成分、(B)成分、(C)成分、(D)成分と称することがある。
((A)酸変性ビニル基含有エポキシ樹脂)
 本実施形態の感光性樹脂組成物は、(A)成分として酸変性ビニル基含有エポキシ樹脂を含む。(A)酸変性ビニル基含有エポキシ樹脂は、エポキシ樹脂をビニル基含有の有機酸で変性したものであれば特に制限はなく、エポキシ樹脂(a)とビニル基含有モノカルボン酸(b)とを反応させて得られるエポキシ樹脂(a’)、さらに該エポキシ樹脂(a’)と飽和基又は不飽和基含有多塩基酸無水物(c)とを反応させて得られるエポキシ樹脂(a’’)が好ましい。
 エポキシ樹脂(a)としては、下記の一般式(I)~(V)で示される構成単位を有するエポキシ樹脂が好ましく挙げられ、これらから選ばれる少なくとも一種であることが好ましい。これらの一般式で示される構成単位を有するエポキシ樹脂について説明する。
 まず、エポキシ樹脂(a)としては、下記の一般式(I)で示される構成単位を有するエポキシ樹脂が好ましく挙げられ、このような構成単位を有するノボラック型エポキシ樹脂としては、例えば、一般式(I’)で示されるノボラック型エポキシ樹脂が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000006
 一般式(I)中、R11は水素原子又はメチル基を示し、Y1はグリシジル基を示す。また、一般式(I)で示される構成単位を有するノボラック型エポキシ樹脂中、該構成単位の含有量は、好ましくは70質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
 また、一般式(I’)中、R11’は水素原子又はメチル基を示し、Y1’は水素原子又はグリシジル基を示し、かつ水素原子とグリシジル基とのモル比は、好ましくは0:100~30:70、より好ましくは0:100~10:90、さらに好ましくは0:100である。水素原子とグリシジル基とのモル比から分かるように、少なくとも一つのY1’はグリシジル基を示すものである。n1は1以上の整数を示す。また、複数のR11’は各々同一でも異なっていてもよく、複数のY1’は同一でも異なっていてもよい。
 n1は、上記のように1以上の整数であり、好ましくは10~200、より好ましくは30~150、さらに好ましくは30~100である。n1が上記範囲内であると、レジスト形状、解像性、耐熱性、密着性、及び電気絶縁性のバランスにより優れるレジストパターンが得られる。
 一般式(I’)で示されるノボラック型エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等が好ましく挙げられる。これらのノボラック型エポキシ樹脂は、例えば、公知の方法でフェノールノボラック樹脂、クレゾールノボラック樹脂等のフェノール樹脂とエピクロルヒドリン等のエピハロヒドリンとを反応させることにより得ることができる。
 一般式(I’)で示されるノボラック型エポキシ樹脂としては、例えば、YDCN-701、YDCN-702、YDCN-703、YDCN-704、YDCN-704L、YDPN-638、YDPN-602(以上、新日鉄住金化学(株)製、商品名)、DEN-431、DEN-439(以上、ダウケミカル(株)製、商品名)、EOCN-120、EOCN-102S、EOCN-103S、EOCN-104S、EOCN-1012、EOCN-1025、EOCN-1027、BREN(以上、日本化薬(株)製、商品名)、EPN-1138、EPN-1235、EPN-1299(以上、BASFジャパン(株)製、商品名)、N-730、N-770、N-865、N-665、N-673、VH-4150、VH-4240(以上、DIC(株)製、商品名)等が商業的に入手可能である。
 エポキシ樹脂(a)として、一般式(II)で示される構成単位を有するエポキシ樹脂が好ましく挙げられ、このような構成単位を有するエポキシ樹脂としては、例えば、一般式(II’)で示されるビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000007
 一般式(II)中、R12は水素原子又はメチル基を示し、Y2はグリシジル基を示す。また、一般式(II)で示される構成単位を有するエポキシ樹脂中、該構成単位の含有量は、好ましくは70質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
 また、一般式(II’)中、R12’は水素原子又はメチル基を示し、Y2’は水素原子又はグリシジル基を示し、かつ水素原子とグリシジル基とのモル比は、好ましくは0:100~30:70、より好ましくは0:100~10:90、さらに好ましくは0:100である。水素原子とグリシジル基とのモル比から分かるように、少なくとも一つのY2’はグリシジル基を示すものである。n2は1以上の整数を示す。また、複数のR12’は同一でも異なっていてもよく、n2が2以上の場合、複数のY2’は同一でも異なっていてもよい。
 n2は、上記のように1以上の整数であり、好ましくは10~100、より好ましくは10~80、さらに好ましくは15~60である。n2が上記範囲内であると、優れたレジスト形状と解像性に優れたパターンとが得られ、また優れた密着性、耐熱性、及び電気絶縁性が得られる。
 一般式(II’)で示され、Y2’がグリシジル基であるビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂は、例えば、下記一般式(VI)で示されるビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂の水酸基とエピクロルヒドリン等のエピハロヒドリンとを反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000008
 一般式(VI)中、R12及びn2は、上記と同じである。
 エピハロヒドリンの使用量は、レジスト形状、解像性、塗膜強度、耐熱性、電気絶縁性(HAST耐性)、耐熱衝撃性、及び解像性のバランスにより優れるレジストパターンが得られることを考慮すると、一般式(VI)で示されるエポキシ樹脂中の水酸基1モルに対して2~10モルとすることが好ましい。
 これと同様の観点から、一般式(VI)で示されるエポキシ樹脂とエピハロヒドリンとの反応に際し、塩基性触媒を用いることが好ましい。塩基性触媒としては、例えば、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物等が好ましく挙げられ、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属水酸化物が触媒活性の観点からより好ましい。また、その使用量は、一般式(VI)で示されるエポキシ樹脂中の水酸基1モルに対して0.9~2モルであることが好ましい。
 一般式(VI)で示されるエポキシ樹脂とエピハロヒドリンとの反応において、反応速度をより高める観点から、有機溶媒として、例えば、メタノール、エタノール等のアルコール類;メチルセロソルブ、エチルセロソルブ等のセロソルブ類;テトラヒドロフラン、ジオキサン等のエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等の極性有機溶剤などを用いることが好ましい。これらの中から一種単独で、又は二種以上を組み合わせて用いることができ、極性調整の観点から二種以上を組み合わせて用いることが好ましい。
 また、反応温度は好ましくは20~120℃、より好ましくは50~120℃であり、反応時間は好ましくは0.5~10時間である。反応温度と反応時間が上記範囲内であると、反応が遅くなりにくく、また副反応が生じにくくなる。
 上記の反応の後、好ましくは加熱減圧下、蒸留により未反応のエピハロヒドリン、有機溶媒等を留去して、一般式(II’)で示されるエポキシ樹脂が得られる。
 また、より純度の高いエポキシ樹脂を得る観点から、得られたエポキシ樹脂を有機溶媒に再度溶解させて、上記のアルカリ金属水酸化物等の塩基性触媒を加えて反応させることができる。この際、反応速度を高める観点から、四級アンモニウム塩、クラウンエーテル等の相間移動触媒を、エポキシ樹脂に対して0.1~3質量%の範囲で用いることが好ましい。この場合、反応終了後に生成した塩等を、ろ過又は水洗等により除去し、さらに加熱減圧下で有機溶媒等を留去することで、高純度のエポキシ樹脂を得ることができる。
 一般式(II’)で示されるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂としては、例えば、エピコート807、815、825、827、828、834、1001、1004、1007及び1009(以上、三菱化学(株)製、商品名)、DER-330、DER-301、DER-361(以上、ダウケミカル(株)製、商品名)、YD-8125、YDF-170、YDF-175S、YDF-2001、YDF-2004、YDF-8170(以上、新日鉄住金化学(株)製、商品名)等が商業的に入手可能である。
 エポキシ樹脂(a)としては、下記の一般式(III)で示される構成単位を有するエポキシ樹脂が好ましく挙げられ、このような構成単位を有するエポキシ樹脂としては、例えば、一般式(III’)で示されるトリフェノールメタン型エポキシ樹脂が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000009
 一般式(III)及び(III’)中、Y3は水素原子又はグリシジル基を示し、かつ水素原子とグリシジル基とのモル比は好ましくは0:100~30:70である。水素原子とグリシジル基とのモル比から分かるように、少なくとも一つのY3はグリシジル基を示すものである。n3は1以上の整数を示す。また、複数のY3は同一でも異なっていてもよい。
 n3は、上記のように1以上の整数であり、好ましくは10~100、より好ましくは15~80、さらに好ましくは15~70である。n3が上記範囲内であると、レジスト形状、解像性、耐熱性、密着性、及び電気絶縁性のバランスにより優れるレジストパターンが得られる。
 また、一般式(III)で示される構成単位を有するエポキシ樹脂中、該構成単位の含有量は、好ましくは70質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
 一般式(III’)で示されるトリフェノールメタン型エポキシ樹脂としては、例えば、FAE-2500、EPPN-501H、EPPN-502H(以上、日本化薬(株)製、商品名)等が商業的に入手可能である。
 エポキシ樹脂(a)としては、一般式(IV)で示される構成単位を有するビスフェノールノボラック型エポキシ樹脂が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000010
 一般式(IV)中、R13は水素原子、アルキル基、アリール基、アラルキル基、スルホン基、又はトリハロメチル基を示し、Y4は水素原子又はグリシジル基を示す。少なくとも一つのY4はグリシジル基を示し、複数のR13は同一でも異なっていてもよい。
 R13のアルキル基としては、炭素数1~20のものが好ましく、炭素数1~12のものがより好ましく、1~3のものがさらに好ましい。また、アルキル基は直鎖状でも枝分かれ状でもよく、ハロゲン原子、アルキル基、アリール基、アラルキル基、アミノ基、アミド基、アルコキシ基等により置換されたものであってもよい。
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、sec-ペンチル基、イソペンチル基、ネオペンチル基等が好ましく挙げられ、これらの中でも、メチル基が好ましい。
 アリール基としては、フェニル基、ビフェニル基、ナフチル基、アントリル基、フェナントリル基等が挙げられ、好ましくは環形成炭素数6~20のアリール基、より好ましくは環形成炭素数6~14のアリール基である。また、アリール基は、ハロゲン原子、アルキル基、アリール基、アラルキル基、アミノ基、アミド基、アルコキシ基等により置換されたものであってもよい。
 アラルキル基としては、上記のアルキル基の水素原子の一つが上記のアリール基で置換されているものであれば特に制限はなく、例えば、ベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基等が挙げられ、ハロゲン原子、アルキル基、アリール基、アラルキル基、アミノ基、アミド基、アルコキシ基等により置換されたものであってよい。
 また、一般式(IV)で示される構成単位を有するエポキシ樹脂中、該構成単位の含有量は、好ましくは70質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。上記範囲内であると、レジスト形状、解像性、耐熱性、密着性、及び電気絶縁性のバランスにより優れるレジストパターンが得られる。
 また、エポキシ樹脂(a)としては、一般式(V)で示される構成単位を有するビスフェノールノボラック型エポキシ樹脂が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000011
 一般式(V)中、R14は水素原子、アルキル基、アリール基、アラルキル基、スルホン基、又はトリハロメチル基を示し、Y5は水素原子又はグリシジル基を示す。少なくとも一つのY5はグリシジル基を示し、複数のR14は同一でも異なっていてもよい。また、R14のアルキル基、アリール基、アラルキル基としては、R13で記載したものと同じものを例示でき、好ましい態様も同じである。
 また、一般式(V)で示される構成単位を有するエポキシ樹脂中、該構成単位の含有量は、好ましくは70質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。上記範囲内であると、レジスト形状、解像性、耐熱性、密着性、及び電気絶縁性のバランスにより優れるレジストパターンが得られる。
 一般式(V)において、R14が水素原子であり、Y5がグリシジル基のものは、EXA-7376シリーズ(DIC(株)製、商品名)として、また、R14がメチル基であり、Y5がグリシジル基のものは、EPON SU8シリーズ(三菱化学(株)製、商品名)として商業的に入手可能である。
 一般式(IV)及び(V)で示される構成単位を有するビスフェノールノボラック型エポキシ樹脂は、例えば、各々一般式(VII)及び(VIII)で示されるビスフェノールノボラック樹脂の水酸基とエピクロルヒドリン等のエピハロヒドリンとを反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000012
 一般式(VII)中、R13は、上記の一般式(IV)中のR13と同じであり、一般式(VIII)中、R14は、上記の一般式(V)中のR14と同じである。
 これらの一般式(VII)及び(VIII)で示される構成単位を有するビスフェノールノボラック樹脂は、好ましくは、例えば、ビスフェノール化合物とアルデヒド化合物又はケトン化合物とを、炭素数1~4のアルキル基を分子構造内に有するスルホン酸の存在下で反応させて得ることができる。
 ここで、ビスフェノール化合物としては、2つのヒドロキシフェニル基を有する化合物であれば特に制限はなく、例えば、ビスフェノールA、ビスフェノールAP、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールTMC、ビスフェノールZ等が好ましく挙げられ、ビスフェノールA、及びビスフェノールFがより好ましい。
 上記のビスフェノール化合物と反応させるアルデヒド化合物としては、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、4-メチルベンズアルデヒド、3,4-ジメチルベンズアルデヒド、ビフェニルアルデヒド、ナフチルアルデヒド等が好ましく挙げられ、ケトン化合物としては、ベンゾフェノン、フルオレノン、インダノン等が好ましく挙げられ、中でもホルムアルデヒドが好ましい。
 炭素数1~4のアルキル基を分子構造内に有するスルホン酸としては、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸等のアルカンスルホン酸、及びアルカン部分にフッ素原子を有するパーフルオロアルカンスルホン酸などが好ましく挙げられる。
 一般式(IV)及び(V)で示される構成単位を有するビスフェノールノボラック型エポキシ樹脂は、より具体的には、好ましくは以下のようにして得られる。上記のビスフェノール化合物とアルデヒド化合物又はケトン化合物とを反応容器内に仕込み、不活性ガス雰囲気下で撹拌しながら、20~200℃の範囲を維持するように、スルホン酸を連続的又は断続的に加えて、ビスフェノール化合物とアルデヒド化合物又はケトン化合物とを反応させて粗ビスフェノールノボラック樹脂を得る。次いで、該粗ビスフェノールノボラック樹脂を、非水溶性有機溶媒で抽出してビスフェノールノボラック樹脂溶液とし、これを水洗し、中和し、さらには該非水溶性有機溶媒を留去して、ビスフェノールノボラック型エポキシ樹脂が得られる。
 ここで、非水溶性有機溶媒としては、抽出、水洗及び中和の作業効率を向上させる観点から、沸点が100~130℃のものが好ましく、例えば、ブタノール、ペンチルアルコール、メトキシエタノール、エトキシエタノール、ジエチレングリコール、メチルイソブチルケトン等が好ましく挙げられ、ブタノール、メトキシエタノール、メチルイソブチルケトンがより好ましく、メチルイソブチルケトンがより好ましい。
 上記の水洗は、粗ビスフェノールノボラック樹脂溶液がpH3~7、より好ましくはpH5~7になるまで行い、必要に応じて、水酸化ナトリウム、炭酸ナトリウム、アンモニア、トリエチレンテトラミン等の塩基性物質を用いて中和してもよい。
 上記の留去は、例えば、好ましくは、温度170~200℃、圧力3kPa以下の条件にて加熱減圧蒸留で行うことで、純度の高いビスフェノールノボラック樹脂を得られる。
 エポキシ樹脂(a)としては、プロセス裕度が優れるとともに、耐溶剤性を向上できる観点からは、一般式(I)で示される構成単位を有するエポキシ樹脂、一般式(II)で示される構成単位を有するエポキシ樹脂、一般式(IV)で示される構成単位を有するビスフェノールノボラック型エポキシ樹脂が好ましく、一般式(I’)で示されるノボラック型エポキシ樹脂、一般式(II’)で示されるビスフェノールA型エポキシ樹脂、及び一般式(II’)で示されるビスフェノールF型エポキシ樹脂、並びに一般式(IV)で示される構成単位を有するビスフェノールノボラックA型エポキシ樹脂、及び一般式(IV)で示される構成単位を有するビスフェノールノボラックF型エポキシ樹脂がより好ましい。
 また、薄膜基板の反りをより低減できるとともに、耐熱衝撃性をより向上できる観点からは、一般式(IV)で示される構成単位を有するエポキシ樹脂と、一般式(V)で示される構成単位を有するエポキシ樹脂とを併用することが好ましい。
 上記のエポキシ樹脂(a)と反応させる、ビニル基含有モノカルボン酸(b)としては、例えば、アクリル酸、アクリル酸の二量体、メタクリル酸、β-フルフリルアクリル酸、β-スチリルアクリル酸、桂皮酸、クロトン酸、α-シアノ桂皮酸等のアクリル酸誘導体、水酸基含有アクリレートと二塩基酸無水物との反応生成物である半エステル化合物、ビニル基含有モノグリシジルエーテルもしくはビニル基含有モノグリシジルエステルと二塩基酸無水物との反応生成物である半エステル化合物などが好ましく挙げられる。
 半エステル化合物は、水酸基含有アクリレート、ビニル基含有モノグリシジルエーテルもしくはビニル基含有モノグリシジルエステルと二塩基酸無水物とを等モル比で反応させることで得られる。これらのビニル基含有モノカルボン酸(b)は、一種単独で又は二種以上を組み合わせて用いることができる。
 ビニル基含有モノカルボン酸(b)の一例である上記の半エステル化合物の合成に用いられる水酸基含有アクリレート、ビニル基含有モノグリシジルエーテル、ビニル基含有モノグリシジルエステルとしては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ビニルグリシジルエーテル、グリシジル(メタ)アクリレート等が好ましく挙げられる。
 上記の半エステル化合物の合成に用いられる二塩基酸無水物としては、飽和基を含有するもの、不飽和基を含有するものを用いることができる。二塩基酸無水物の具体例としては、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルテトラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、無水イタコン酸等が好ましく挙げられる。
 上述のエポキシ樹脂(a)とビニル基含有モノカルボン酸(b)との反応において、エポキシ樹脂(a)のエポキシ基1当量に対して、ビニル基含有モノカルボン酸(b)が0.6~1.05当量となる比率で反応させることが好ましく、0.8~1.0当量となる比率で反応させることがより好ましく、0.9~1.0当量となる比率で反応させることがさらに好ましい。このような比率で反応させることで、光重合性が向上する、すなわち光感度がより優れたものとなるので好ましい。
 エポキシ樹脂(a)とビニル基含有モノカルボン酸(b)との反応は、有機溶剤に溶解して行うことができる。
 有機溶剤としては、例えば、エチルメチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤などが好ましく挙げられる。
 さらに、反応を促進させるために触媒を用いることが好ましい。触媒としては、例えば、トリエチルアミン、ベンジルメチルアミン、メチルトリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルメチルアンモニウムアイオダイド、トリフェニルホスフィン等が好ましく挙げられる。触媒の使用量は、エポキシ樹脂(a)とビニル基含有モノカルボン酸(b)との合計100質量部に対して、好ましくは0.1~10質量部である。上記の使用量とすると、エポキシ樹脂(a)とビニル基含有モノカルボン酸(b)との反応が促進されるので好ましい。
 反応中の重合を防止する目的で、重合禁止剤を使用することが好ましい。重合禁止剤としては、例えば、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等が好ましく挙げられる。重合禁止剤の使用量は、エポキシ樹脂(a)とビニル基含有モノカルボン酸(b)の合計100質量部に対して、好ましくは0.01~1質量部である。上記の使用量とすると、組成物の貯蔵安定性(シェルフライフ)が向上するので好ましい。また、反応温度は、好ましくは60~150℃であり、より好ましくは80~120℃である。
 また、必要に応じて、ビニル基含有モノカルボン酸(b)と、p-ヒドロキシフェネチルアルコール等のフェノール系化合物、又は無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、ビフェニルテトラカルボン酸無水物等の多塩基酸無水物とを併用することができる。
 このようにして得られるエポキシ樹脂(a')は、エポキシ樹脂(a)のエポキシ基とビニル基含有モノカルボン酸(b)のカルボキシル基との付加反応により形成される水酸基を有しているものと推察される。
 本実施形態において、(A)酸変性ビニル基含有エポキシ樹脂としては、上述のエポキシ樹脂(a')に多塩基酸無水物(c)を反応させることにより得られるエポキシ樹脂(a’’)も好ましく挙げられる。エポキシ樹脂(a’’)においては、エポキシ樹脂(a')における水酸基(エポキシ樹脂(a)中にある元来ある水酸基も含む)と多塩基酸無水物(c)の酸無水物基とが半エステル化されているものと推察される。
 多塩基酸無水物(c)としては、飽和基を含有するもの、不飽和基を含有するものを好ましく用いることができる。多塩基酸無水物(c)の具体例としては、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルテトラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、無水イタコン酸等が好ましく挙げられる。
 エポキシ樹脂(a')と多塩基酸無水物(c)との反応において、エポキシ樹脂(a')中の水酸基1当量に対して、多塩基酸無水物(c)を0.1~1.0当量反応させることで、酸変性ビニル基含有エポキシ樹脂の酸価を調整することができる。
 (A)酸変性ビニル基含有エポキシ樹脂の酸価は30~150mgKOH/gであることが好ましく、40~120mgKOH/gであることがより好ましく、50~100mgKOH/gであることがさらに好ましい。酸価が30mgKOH/g以上であると感光性樹脂組成物の希アルカリ溶液への溶解性が低下しにくく、150mgKOH/g以下であると硬化膜の電気特性が低下しにくい。
 エポキシ樹脂(a')と多塩基酸無水物(c)との反応温度は、60~120℃とすることが好ましい。
 また、必要に応じて、エポキシ樹脂(a)として、例えば、水添ビスフェノールA型エポキシ樹脂を一部併用することもできる。さらに、(A)酸変性ビニル基含有エポキシ樹脂として、スチレン-無水マレイン酸共重合体のヒドロキシエチル(メタ)アクリレート変性物等のスチレン-マレイン酸系樹脂を一部併用することもできる。
 (A)酸変性ビニル基含有エポキシ樹脂の重量平均分子量は、3000~30000であることが好ましく、より好ましくは4000~25000、さらに好ましくは5000~18000である。(A)成分の重量平均分子量が上記範囲内であると、レジスト形状、解像性、耐熱性、密着性、及び電気絶縁性のバランスにより優れるレジストパターンが得られる。ここで、重量平均分子量は、テトラヒドロフランを溶媒としたゲルパーミエーションクロマトグラフィ(GPC)法により測定する、ポリエチレン換算の重量平均分子量である。より具体的には、例えば、下記のGPC測定装置及び測定条件で測定し、標準ポリスチレンの検量線を使用して換算した値を重量平均分子量とすることができる。また、検量線の作成は、標準ポリスチレンとして5サンプルセット(「PStQuick MP-H」及び「PStQuick B」、東ソー(株)製)を用いる。
(GPC測定装置)
 GPC装置:高速GPC装置「HCL-8320GPC」、検出器は示差屈折計、東ソー(株)製
 カラム  :カラムTSKgel SuperMultipore HZ-H(カラム長さ:15cm、カラム内径:4.6mm)、東ソー(株)製
(測定条件)
 溶媒   :テトラヒドロフラン(THF)
 測定温度 :40℃
 流量   :0.35ml/分
 試料濃度 :10mg/THF5ml
 注入量  :20μl
 (A)酸変性ビニル基含有エポキシ樹脂としては、エポキシ樹脂(a)として、一般式(I)で示される構成単位を有する、一般式(I’)で示されるノボラック型エポキシ樹脂、一般式(II)で示される構成単位を有する、一般式(II’)で示されるビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂とビニル基含有モノカルボン酸(b)とを反応させて得られるエポキシ樹脂(a’)、及びエポキシ樹脂(a’)と飽和基又は不飽和基含有多塩基酸無水物(c)とを反応させて得られるエポキシ樹脂(a’’)が好ましく、エポキシ樹脂(a’’)がより好ましい。
 これらのエポキシ樹脂(a’)及び(a’’)は、一種単独又は二種以上を組み合わせて用いることができ、複数種を組み合わせて用いることが好ましい。組み合わせとしては、一般式(I’)で示されるノボラック型エポキシ樹脂から得られるエポキシ樹脂(a’)又は(a’’)と、一般式(II’)で示されるビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂から得られるエポキシ樹脂(a’)又は(a’’)との二種の組み合わせが好ましく、一般式(I’)で示されるノボラック型エポキシ樹脂から得られるエポキシ樹脂(a’’)と、一般式(II’)で示されるビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂から得られるエポキシ樹脂(a’’)との二種の組み合わせがより好ましい。
 一般式(I’)で示されるノボラック型エポキシ樹脂から得られるエポキシ樹脂(a’)又は(a’’)と、一般式(II’)で示されるビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂から得られるエポキシ樹脂(a’)又は(a’’)との質量混合比は、95:5~30:70が好ましく、90:10~40:60であることがより好ましく、80:20~45:55であることがさらに好ましい。
 感光性樹脂組成物中の固形分全量を100質量部とする(A)成分の含有量は、20~80質量部であることが好ましく、30~75質量部であることがより好ましく、40~75質量部であることが特に好ましい。(A)成分の含有量が上記範囲内であると、耐熱性、電気特性、及び耐薬品性(耐アルカリ性、耐酸性)により優れた塗膜を得ることができる。ここで、本実施形態における固形分全量とは、(A)~(D)成分、(A)~(E)成分、又は(A)~(F)成分に含まれる固形分の合計量である。例えば、本実施形態の感光性樹脂組成物が(A)~(D)成分を含む場合は、(A)~(D)成分に含まれる固形分の合計量が、また本実施形態の感光性樹脂組成物がさらに(E)成分を含む場合は、(A)~(E)成分に含まれる固形分の合計量が、また、さらに(F)成分を含む場合は、(A)~(F)成分に含まれる固形分の合計量が、固形分全量である。
 本実施形態の感光性樹脂組成物は、(B)成分として光重合開始剤を含む。(B)光重合開始剤としては、特に制限なく、通常用いられる光重合開始剤から適宜選択して用いることができる。レジスト形状、及び耐リフロー性の観点から、アシルホスフィンオキサイド基(=P(=O)-C(=O)-基)を有するアシルホスフィンオキサイド系光重合開始剤を含有することが好ましい。アシルホスフィンオキサイド系光重合開始剤としては、例えば、(2,6-ジメトキシベンゾイル)-2,4,6-トリメチルベンゾイル-ペンチルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、エチル-2,4,6-トリメチルベンゾイルフェニルホスフィネイト、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、(2,5-ジヒドロキシフェニル)ジフェニルホスフィンオキサイド、(p-ヒドロキシフェニル)ジフェニルホスフィンオキサイド、ビス(p-ヒドロキシフェニル)フェニルホスフィンオキサイド、及びトリス(p-ヒドロキシフェニル)ホスフィンオキサイド等が好ましく挙げられる。
 また、アシルホスフィンオキサイド系光重合開始剤以外の光重合開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン系光重合開始剤;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン系光重合開始剤;2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン系光重合開始剤;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン系光重合開始剤;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール系光重合開始剤;ベンゾフェノン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、ミヒラーズケトン、4-ベンゾイル-4’-メチルジフェニルサルファイド等のベンゾフェノン;1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(o-ベンゾイルオキシム)等のオキシム系光重合開始剤も好ましく挙げられる。
 (B)光重合開始剤としては、上記のものを一種単独で又は二種以上を組み合わせて用いることができる。
 感光性樹脂組成物中の固形分全量を100質量部とする(B)光重合開始剤の含有量は、好ましく0.2~15質量部である。0.2質量部以上であると露光部が現像中に溶出しにくくなり、15質量部以下であると耐熱性が低下しにくくなる。また、同様の理由から、(B)光重合開始剤の含有量は、0.2~10質量部がより好ましく、0.5~5質量部がさらに好ましく、0.5~3質量部が特に好ましい。
 また、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等の三級アミン類などの光重合開始助剤を一種単独で又は二種以上を組合せて用いることができる。
 本実施形態の感光性樹脂組成物は、(C)成分として含窒素複素環化合物を含む。(C)含窒素複素環化合物は、平均粒子径が0.01~10μmである、少なくとも炭素と窒素を含む環式化合物であれば特に制限はなく、耐リフロー性、耐熱性、耐薬品性をより向上できる。これらの性能に加えて、ニッケル、金、パラジウムや錫等の無電解めっき耐性を向上させる観点から、イミダゾール化合物、トリアジン化合物、及びイミダゾリン化合物等が好ましく挙げられ、一種単独で又は二種以上を組み合わせて用いることができる。
 イミダゾール化合物としては、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-メチル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、2-フェニルイミダゾールイソシアヌル酸付加物等が好ましく挙げられる。これらのなかでも、4-メチル-2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール等が好ましい。これらのイミダゾール化合物は、一種単独で又は二種以上を組み合わせて用いてもよい。
 トリアジン化合物としては、トリアミノトリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-キシリル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2,4-ジアミノ-6-ビニル-s-トリアジン、2,4-ジアミノ-6-ビニル-s-トリアジンイソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-s-トリアジン等が好ましく挙げられる。これらのなかでも、2,4-ジアミノ-6-ビニル-s-トリアジン、トリアミノトリアジン等が好ましい。これらのイミダゾール化合物は、一種単独で又は二種以上を組み合わせて用いてもよい。
 イミダゾリン化合物としては、2-メチルイミダゾリン、2-フェニルイミダゾリン、2-ウンデシルイミダゾリン、2-ヘプタデシルイミダゾリン、2-エチルイミダゾリン、2-イソプロピルイミダゾリン、2、4-ジメチルイミダゾリン、2-フェニル-4-メチルイミダゾリン等が好ましく挙げられ、これらのなかでも、2-メチルイミダゾリン、2-フェニルイミダゾリン等が好ましい。これらのイミダゾリン化合物は、一種単独で又は二種以上を組み合わせて用いてもよい。
 本発明で用いられる(C)含窒素複素環化合物の平均粒子径は0.01~10μmであることを要する。平均粒子径が0.01μm未満であると、二次凝集が生じやすくなるので取り扱いが困難であり、10μmを超えると、優れた硬化性が得られないためレジスト形状が悪くなり、また優れたHAST耐性や無電解めっき耐性が得られない。また、(C)含窒素複素環化合物の平均粒子径としては、優れた耐リフロー性、耐熱性、耐薬品性が得られ、また間隔ピッチを微細化し、高精細化に対応する観点から、0.5~5μmであることが好ましい。ここで、平均粒子径は、レーザー回折法(JIS Z8825-1(2001年)準拠)により測定されるものとした。
 感光性樹脂組成物中の固形分全量を100質量部とする(C)含窒素複素環化合物の含有量は、好ましく0.05~10質量部である。0.05質量部以上であると優れた無電解めっき耐性が得られ、10質量部以下であると優れた電気絶縁性(HAST耐性)が得られる。また、同様の理由から、(C)含窒素複素環化合物の含有量は、0.1~10質量部がより好ましく、0.1~5質量部がさらに好ましく、0.3~5質量部が特に好ましい。
 本実施形態の感光性樹脂組成物は、(D)成分として光重合性化合物を含む。(D)光重合性化合物は、光重合性を示す官能基、例えばビニル基、アリル基、プロパギル基、ブテニル基、エチニル基、フェニルエチニル基、マレイミド基、ナジイミド基、(メタ)アクリロイル基等のエチレンオキサイド性不飽和基を有する化合物であれば特に制限はなく、反応性の観点から、(メタ)アクリロイル基を有する化合物であることが好ましい。
 (D)光重合性化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール等のグリコールのモノ又はジ(メタ)アクリレート類;N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等の(メタ)アクリルアミド類;N,N-ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリス-ヒドロキシエチルイソシアヌレート等の多価アルコール又はこれらのエチレンオキサイド又はプロピレンオキサイド付加物の多価(メタ)アクリレート類;フェノキシエチル(メタ)アクリレート、ビスフェノールΑのポリエトキシジ(メタ)アクリレート等のフェノール類のエチレンオキサイド又はプロピレンオキサイド付加物の(メタ)アクリレート類;グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレート等のグリシジルエーテルの(メタ)アクリレート類;メラミン(メタ)アクリレート等が好ましく挙げられる。これらの(D)光重合性化合物は、一種単独で又は二種以上を組み合わせて用いることができる。
 感光性樹脂組成物中の固形分全量を100質量部とする(D)光重合性化合物の含有量は、好ましくは0.1~30質量部、より好ましくは1~20質量部であり、さらに好ましくは1~15質量部である。(D)成分の含有量が0.1質量部以上であると露光部が現像中に溶出しにくく、感光性樹脂組成物の感度及び解像性が向上する傾向にあり、30質量部以下であると耐熱性が向上する。
 本実施形態の感光性樹脂組成物は、(E)成分として無機フィラーを含むことが好ましい。(E)無機フィラーは、感光性樹脂組成物の密着性、耐熱性、塗膜強度等の諸特性を向上させる目的で好ましく用いられるものである。(E)無機フィラーとしては、例えば、シリカ(SiO2)、アルミナ(Al23)、チタニア(TiO2)、酸化タンタル(Ta25)、ジルコニア(ZrO2)、窒化ケイ素(Si34)、チタン酸バリウム(BaO・TiO2)、炭酸バリウム(BaCO3)、炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、チタン酸鉛(PbO・TiO2)、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン鉛(PLZT)、酸化ガリウム(Ga23)、スピネル(MgO・Al23)、ムライト(3Al23・2SiO2)、コーディエライト(2MgO・2Al23・5SiO2)、タルク(3MgO・4SiO2・H2O)、チタン酸アルミニウム(TiO2・Al23)、イットリア含有ジルコニア(Y23・ZrO2)、ケイ酸バリウム(BaO・8SiO2)、窒化ホウ素(BN)、炭酸カルシウム(CaCO3)、硫酸バリウム(BaSO4)、硫酸カルシウム(CaSO4)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO2)、ハイドロタルサイト、雲母、焼成カオリン、カーボン等が好ましく挙げられる。これらの(E)無機フィラーは、一種単独で又は二種以上を組み合わせて使用することができる。
 (E)無機フィラーは、その最大粒子径が0.1~20μmであると好ましく、0.1~10μmであるとより好ましく、0.1~5μmであるとさらに好ましく、0.1~1μmであると特に好ましい。最大粒子径が20μm以下であると、電気絶縁性(HAST耐性)の低下を抑制することができる。ここで、(E)無機フィラーの最大粒子径は、レーザー回折法(JIS Z8825-1(2001年)準拠)により測定されるものとした。
 (E)無機フィラーの中でも、耐熱性を向上できる観点から、シリカを使用することが好ましく、はんだ耐熱性、耐クラック性(耐熱衝撃性)、及び耐PCT性を向上できる観点から、硫酸バリウムを使用することが好ましい。また、上記硫酸バリウムは、凝集防止効果を向上できる観点から、アルミナ及び有機シラン系化合物から選ばれる一種以上で表面処理しているものであることが好ましい。
 アルミナ及び有機シラン系化合物から選ばれる一種以上で表面処理している硫酸バリウムの表面におけるアルミニウムの元素組成は、0.5~10原子%であることが好ましく、1~5原子%であることがより好ましく、1.5~3.5原子%であることがさらに好ましい。硫酸バリウムの表面におけるケイ素の元素組成は、0.5~10原子%であることが好ましく、1~5原子%であることがより好ましく、1.5~3.5原子%であることがさらに好ましい。また、硫酸バリウムの表面における炭素の元素組成は、10~30原子%であることが好ましく、15~25原子%であることがより好ましく、18~23原子%であることがさらに好ましい。これらの元素組成は、XPSを用いて測定することができる。
 アルミナ及び有機シラン系化合物から選ばれる一種以上で表面処理している硫酸バリウムとしては、例えば、NanoFine BFN40DC(日本ソルベイ(株)製、商品名)が商業的に入手可能である。
 本実施形態の感光性樹脂組成物が(E)無機フィラーを含有する場合、感光性樹脂組成物中の固形分全量を100質量部とする(E)無機フィラーの含有量は、10~80質量部であることが好ましく、20~70質量部であることがより好ましく、20~50質量部であることがさらに好ましく、20~45質量部であることが特に好ましい。ここで、(E)無機フィラーの含有量が上記範囲内であると、感光性樹脂組成物の塗膜強度、耐熱性、電気絶縁性(HAST耐性)、耐熱衝撃性、解像性等をより向上させることができる。
 また、(E)無機フィラーとして硫酸バリウムを用いる場合の、感光性樹脂組成物中の固形分全量を100質量部とする硫酸バリウムの含有量は、5~60質量部であることが好ましく、10~50質量部であることがより好ましく、10~40質量部であることがさらに好ましく、10~35質量部であることが特に好ましい。硫酸バリウム微粒子の含有量が上記範囲内であると、耐熱性、及び耐PCT性をより向上させることができる。
 本実施形態の感光性樹脂組成物は、(F)成分として顔料を含むことが好ましい。(F)顔料としては、配線パターンを隠蔽する際等に所望の色に応じて好ましく用いられるものである。(F)顔料としては、所望の色を発色する着色剤を適宜選択して用いればよく、着色剤としては、例えば、フタロシアニンブルー、フタロシアニングリーン、アイオディングリーン、ジアゾイエロー、クリスタルバイオレット等の公知の着色剤が好ましく挙げられる。
 感光性樹脂組成物中の固形分全量を100質量部とする(F)顔料の含有量は、0.1~5質量部が好ましく、より好ましくは0.1~3質量部である。(F)顔料の含有量が上記範囲内であると、配線パターンを隠蔽することができる。
 本実施形態の感光性樹脂組成物は、必要に応じて、粘度を調整するために、希釈剤を用いることができる。希釈剤としては、例えば、有機溶剤、又は光重合性モノマーが好ましく挙げられる。有機溶剤は、例えば、上記のエポキシ樹脂(a)とビニル基含有モノカルボン酸(b)との反応において用い得る有機溶剤として例示した溶剤の中から適宜選択して用いることができる。また、光重合性モノマーとしては、上記の(D)光重合性化合物で例示したものが好ましく挙げられる。
 希釈剤の使用量は、感光性樹脂組成物中の固形分全量と(A)~(F)成分以外の固形分との合計の含有量が50~90質量%となるような量とすることが好ましく、60~80質量%となるような量とすることがより好ましく、65~75質量%となるような量とすることがさらに好ましい。すなわち、希釈剤を用いる場合の感光性樹脂組成物中の希釈剤の含有量は、10~50質量%が好ましく、20~40質量%がより好ましく、25~35質量%がさらに好ましい。希釈剤の使用量を上記範囲とすることで、感光性樹脂組成物の塗布性が向上し、より高精細なパターンの形成が可能となる。
 本実施形態の感光性樹脂組成物は、耐熱性、耐リフロー性、耐薬品性等を向上させるため、酸化防止剤を含んでいてもよい。酸化防止剤としては、ヒンダードフェノール系酸化防止剤や、キノン系酸化防止剤が好ましく挙げられる。
 ヒンダードフェノール系酸化防止剤としては、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](BASFジャパン(株)、イルガノックス1010(商品名))、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](BASFジャパン(株)、イルガノックス1035(商品名))、オクタデシル[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](BASFジャパン(株)、イルガノックス1076(商品名))、オクチル1-3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロ肉桂酸(BASFジャパン(株)製、イルガノックス1135(商品名))、4,6-ビス(オクチルチオメチル-o-クレゾール)(BASFジャパン(株)、イルガノックス1520L)等が好ましく挙げられ、キノン系酸化防止剤としては、ヒドロキノン、2-t-ブチルヒドロキノン、ヒドロキノンモノメチルエーテル、メタキノン、ベンゾキノン等が好ましく挙げられる。これらの酸化防止剤は、一種単独で又は二種以上を組み合わせて使用することができる。
 本実施形態の感光性樹脂組成物は、硬化剤を含んでいてもよい。硬化剤としては、それ自体が熱、紫外線等により硬化する化合物、又は本実施形態の組成物中の光硬化性樹脂成分である(A)酸変性ビニル基含有エポキシ樹脂のカルボキシ基、水酸基と熱、紫外線等で硬化する化合物が好ましく挙げられる。硬化剤を用いることで、最終硬化膜の耐熱性、耐リフロー性、耐薬品性等を向上させることができる。
 硬化剤としては、例えば、熱硬化性化合物として、エポキシ化合物、メラミン化合物、尿素化合物、オキサゾリン化合物等が好ましく挙げられる。エポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;トリグリシジルイソシアヌレート等の複素環式エポキシ樹脂;ビキシレノール型エポキシ樹脂などが好ましく挙げられる。メラミン化合物としては、例えば、トリアミノトリアジン、ヘキサメトキシメラミン、ヘキサブトキシ化メラミン等が好ましく挙げられる。尿素化合物としては、ジメチロール尿素等が好ましく挙げられる。
 硬化剤としては、耐熱性をより向上させることができる観点から、エポキシ化合物(エポキシ樹脂)及びブロック型イソシアネートから選ばれる少なくとも一種を含むことが好ましく、エポキシ化合物とブロック型イソシアネートとを併用することがより好ましい。
 ブロック型イソシアネートとしては、ポリイソシアネート化合物とイソシアネートブロック剤との付加反応生成物が用いられる。このポリイソシアネート化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、ナフチレンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート等のポリイソシアネート化合物、並びにこれらのアダクト体、ビューレット体及びイソシアヌレート体などが好ましく挙げられる。
 イソシアネートブロック剤としては、例えば、フェノール、クレゾール、キシレノール、クロロフェノール及びエチルフェノール等のフェノール系ブロック剤;ε-カプロラクタム、δ-パレロラクタム、γ-ブチロラクタム及びβ-プロピオラクタム等のラクタム系ブロック剤;アセト酢酸エチル及びアセチルアセトン等の活性メチレン系ブロック剤;メタノール、エタノール、プロパノール、ブタノール、アミルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ベンジルエーテル、グリコール酸メチル、グリコール酸ブチル、ジアセトンアルコール、乳酸メチル、及び乳酸エチル等のアルコール系ブロック剤;ホルムアルデヒドキシム、アセトアルドキシム、アセトキシム、メチルエチルケトキシム、ジアセチルモノオキシム、シクロヘキサンオキシム等のオキシム系ブロック剤;ブチルメルカプタン、ヘキシルメルカプタン、t-ブチルメルカプタン、チオフェノール、メチルチオフェノール、エチルチオフェノール等のメルカプタン系ブロック剤;酢酸アミド、ベンズアミド等の酸アミド系ブロック剤;コハク酸イミド及びマレイン酸イミド等のイミド系ブロック剤;キシリジン、アニリン、ブチルアミン、ジブチルアミン等のアミン系ブロック剤;イミダゾール、2-エチルイミダゾール等のイミダゾール系ブロック剤;メチレンイミン及びプロピレンイミン等のイミン系ブロック剤などが好ましく挙げられる。
 硬化剤は一種単独で又は二種以上を組み合わせて用いられる。硬化剤を用いる場合、その含有量は、感光性樹脂組成物中の固形分全量100質量部に対して、2~50質量部であることが好ましく、2~40質量部がより好ましく、3~30質量部がさらに好ましく、特に好ましくは5~20質量部である。硬化剤の含有量を、上記範囲内にすることにより、良好な現像性を維持しつつ、形成される硬化膜の耐熱性をより向上することができる。
 本実施形態の感光性樹脂組成物には、最終硬化膜の耐熱性、密着性、耐薬品性等の諸特性を更に向上させる目的でエポキシ樹脂硬化剤を併用することができる。
 このようなエポキシ樹脂硬化剤の具体例としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類;アセトグアナミン、ベンゾグアナミン等のグアナミン類;ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルフォン、ジシアンジアミド、尿素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリアミン類;これらの有機酸塩及びエポキシアダクトから選ばれる少なくとも一種;三フッ化ホウ素のアミン錯体;エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体類;トリメチルアミン、N,N-ジメチルオクチルアミン、N-ベンジルジメチルアミン、ピリジン、N-メチルモルホリン、ヘキサ(N-メチル)メラミン、2,4,6-トリス(ジメチルアミノフェノール)、テトラメチルグアニジン、m-アミノフェノール等の三級アミン類;ポリビニルフェノール、ポリビニルフェノール臭素化物、フェノールノボラック、アルキルフェノールノボラック等のポリフェノール類;トリブチルホスフィン、トリフェニルホスフィン、トリス-2-シアノエチルホスフィン等の有機ホスフィン類;トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、ヘキサデシルトリブチルホスニウムクロライド等のホスホニウム塩類;ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド等の4級アンモニウム塩類;前記の多塩基酸無水物;ジフェニルヨードニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート、2,4,6-トリフェニルチオピリリウムヘキサフルオロホスフェートなどが好ましく挙げられる。
 エポキシ樹脂硬化剤は、一種単独又は二種以上を組み合わせて用いられ、感光性樹脂組成物中に含まれるエポキシ樹脂硬化剤の含有量は、好ましくは0.01~20質量%、より好ましくは0.1~10質量%である。
 本実施形態の感光性樹脂組成物は、必要に応じて、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等の重合禁止剤;ベントン、モンモリロナイト等の増粘剤;シリコーン系、フッ素系、ビニル樹脂系等の消泡剤;シランカップリング剤などの公知慣用の各種添加剤を用いることができる。さらに、臭素化エポキシ化合物、酸変性臭素化エポキシ化合物、アンチモン化合物、及びリン系化合物のホスフェート化合物、芳香族縮合リン酸エステル、含ハロゲン縮合リン酸エステル等の難燃剤を用いることができる。
 本実施形態の感光性樹脂組成物は、エラストマーを含有することができる。エラストマーは、特に、本実施形態の感光性樹脂組成物を半導体パッケージ基板の製造に用いる場合に好ましく用いられる。本実施形態の感光性樹脂組成物にエラストマーを添加することにより、紫外線又は熱等により硬化反応が進行することで、(A)酸変性ビニル基含有エポキシ樹脂の硬化収縮による樹脂内部の歪み(内部応力)に起因した、可とう性及び接着性の低下を抑えることができる。
 エラストマーとしては、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー及びシリコーン系エラストマー等が好ましく挙げられる。これらのエラストマーは、ハードセグメント成分とソフトセグメント成分とから成り立っており、一般に前者が耐熱性、及び強度に、後者が柔軟性、及び強靭性に寄与している。
 また、上記のエラストマー以外に、ゴム変性したエポキシ樹脂を用いることができる。ゴム変性したエポキシ樹脂は、例えば、上述のビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂の一部又は全部のエポキシ基を両末端カルボン酸変性型ブタジエン-アクリロニトリルゴム、末端アミノ変性シリコーンゴム等で変性することによって得られる。これらのエラストマーの中で、せん断接着性の観点から、両末端カルボキシル基変性ブタジエン-アクリロニトリル共重合体、水酸基を有するポリエステル系エラストマーであるエスペル(日立化成(株)製、エスペル1612、1620)が好ましく挙げられる。
 エラストマーの配合量は、(A)酸変性ビニル基含有エポキシ樹脂100質量部に対して、好ましくは2~30質量部、より好ましくは4~20質量部、さらに好ましくは10~20質量部である。2質量部以上であると硬化膜の高温領域での弾性率が低くなる傾向となり、30質量部以下であると未露光部が現像液で溶出する傾向となる。
 本実施形態の感光性樹脂組成物は、上記の(A)~(D)成分をはじめ、所望に応じて用いられる(E)成分、(F)成分、及びその他の各種成分を、ロールミル、ビーズミル等で均一に混練、混合することにより得ることができる。
 また、本発明の感光性樹脂組成物は、液体状であることが好ましい。液体状とすることで、後述する各種塗布方法により容易に永久マスクレジストを形成することができる。
〔感光性エレメント、永久マスクレジスト及びプリント配線板〕
 本実施形態の感光性樹脂組成物は、感光性エレメント、及び永久マスクレジストの形成に好適に用いられ、本実施形態の感光性エレメント、及び永久マスクレジストは、本実施形態の感光性樹脂組成物を用いて形成されるものである。
 本実施態様の感光性エレメントは、支持体と、該支持体上に本実施形態の感光性樹脂組成物を用いてなる感光層とを備えるものである。支持体としては、例えば、ポリエチレンテレフタレート等のポリエステル樹脂フィルム、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂フィルムなどの耐熱性及び耐溶剤性を有する樹脂フィルムが好ましく挙げられ、透明性の見地からは、ポリエチレンテレフタレートフィルムを用いることが好ましい。また、支持体の厚さは、機械的強度、良好な解像度を得ること等を考慮すると、1~100μmが好ましく、1~50μmがより好ましく、1~30μmがさらに好ましい。
 本実施態様の感光性エレメントは、例えば、上記支持体の上に、本実施形態の感光性樹脂組成物をディッピング法、スプレー法、バーコート法、ロールコート法、スピン法等の方法で本実施形態の感光性樹脂組成物を用途に応じた膜厚(乾燥後:10~200μm)で塗布して塗膜を形成し、70~150℃、5~30分程度で乾燥して感光層を形成して得ることができる。
 本実施形態の永久マスクレジスト及び該永久マスクレジストを具備するプリント配線板は、例えば、以下のようにして像形成される。まず、レジストを形成すべき基材(例えば、プリント配線板用の銅張積層板等)上に、スクリーン印刷法、スプレー法、ロールコート法、カーテンコート法、静電塗装法等の方法で本実施形態の感光性樹脂組成物を用途に応じた膜厚(乾燥後:10~200μm)で塗布して塗膜を形成し、該塗膜を60~110℃で乾燥させる。また、該塗膜の代わりに、感光性エレメントの感光層を、該レジストを形成すべき基材上に転写(ラミネート)してもよい。この場合、必要に応じて常圧ラミネーター、真空ラミネーターを用いて、支持体上の乾燥させた塗膜を、基材上に貼り付ける。
 感光層(塗膜)を基材上に形成した後、ネガフィルムを直接接触させて、又は透明なフィルムを介し、紫外線等の活性線を好ましくは10~1,000mJ/cm2の露光量で照射し、樹脂フィルムを用いた場合は該フィルムを剥離して、未露光部を希アルカリ水溶液で溶解除去(現像)する。
 次に、露光部分を後露光(紫外線露光)、後加熱、又は後露光及び後過熱によって充分硬化させて硬化膜を得る。後露光は、例えば、800~5,000mJ/cm2が好ましく、後加熱は、100~200℃で30分間~12時間が好ましい。
 このようにして得られた永久マスクレジストは、底部がえぐられるアンダーカットが発生しにくく、レジスト上部の欠落が発生しにくく、パターン断面の中間部(中心部)及び最深部(底部)の線幅が表面部の線幅に対して大きくなりにくいので、パターン輪郭の直線性が良くレジスト形状に優れ、解像性に優れたパターンを有する。また、この永久マスクレジストは、近年の電子機器の小型化及び高性能化に伴う微細化した穴径の大きさと穴間の間隔ピッチの形成安定性に優れた、パターンを有するものとなる。また、当該パターンは、耐PCT性(耐湿熱性)、耐リフロー性、電気絶縁性(HAST耐性)、及び無電解めっき耐性に加えて、耐熱性、耐溶剤性、耐薬品性(耐アルカリ性、耐酸性)、及び密着性に優れたものとなる。
 以下に、本実施形態を実施例によりさらに具体的に説明するが、本実施形態は、これらの実施例によってなんら限定されるものではない。
(評価方法)
(1)表面硬化性の評価
 各実施例及び比較例の感光性樹脂組成物を、厚さ35μmのPETフィルムに、乾燥後の膜厚が35μmになるようにアプリケータで塗布して塗膜を形成した。次いで、熱風循環式乾燥機を用いて、80℃で20分間乾燥させた。得られた塗膜の表面の赤外吸収スペクトル(ATR(Attenuated Total reflection)法)を下記条件にて測定した。
 ・測定装置:「Nicolet iS50R(商品名)」、サーモフィッシャーサイエンティフィック(株)製
 ・積算回数:128回
 次に、紫外線露光装置(「HTE-5102S(商品名)」、(株)ハイテック製)を用いて600mJ/cm2の露光量で露光した。露光前後の塗膜の表面について、赤外吸収スペクトル(ATR法)を前記と同じ条件で測定し、塗工前後における、1470cm-1に現れる炭素―炭素二重結合の変化率を下記式から求め、露光後の塗膜の表面硬化性を測定し、積算回数3回の平均値を表面硬化性(%)とした。
 二重結合の変化率(%)=100-(露光後の炭素-炭素二重結合量/露光前の炭素-炭素二重結合量×100)
(2)底部硬化性の評価
 各実施例及び比較例の感光性樹脂組成物を、厚さ35μmのPETフィルムに、乾燥後の膜厚が35μmになるようにアプリケータで塗布して塗膜を形成した。次いで、熱風循環式乾燥機を用いて、80℃で20分間乾燥させた。得られた塗膜の表面の赤外吸収スペクトル(ATR(Attenuated Total reflection)法)を下記条件にて測定した。
 ・測定装置:「Nicolet iS50R(商品名)」、サーモフィッシャーサイエンティフィック(株)製
 ・積算回数:128回
 次に、紫外線露光装置(「HTE-5102S(商品名)」、(株)ハイテック製)を用いて600mJ/cm2の露光量で露光した。露光前後の塗膜の表面について、赤外吸収スペクトル(ATR法)を前記と同じ条件で測定し、塗工前後における、1470cm-1に現れる炭素―炭素二重結合の変化率を下記式から求め、露光後の塗膜の表面硬化性を測定し、積算回数3回の平均値を表面硬化性(%)とした。
 二重結合の変化率(%)=100-(露光後の炭素-炭素二重結合量/露光前の炭素-炭素二重結合量×100)
(3)レジスト形状の評価
 各実施例及び比較例の感光性樹脂組成物を、50cm×50cmの大きさで、厚さ0.6mmの銅張積層基板(「MCL-E-67(商品名)」、日立化成(株)製)に、乾燥後の膜厚が35μmになるようにスクリーン印刷法で塗布して塗膜を形成した後、80℃で20分間熱風循環式乾燥機を用いて乾燥させた。
 次いで、図2に示される、所定の穴径の大きさと穴間の間隔ピッチ(穴径の大きさ100μmかつ穴間の間隔ピッチ100μm、又は穴径の大きさ80μmかつ穴間の間隔80μm)パターンを有するネガマスクを各々塗膜に密着させ、紫外線露光装置(「HTE-5102S(商品名)」、(株)ハイテック製)を用いて600mJ/cm2の露光量で露光した。その後、1質量%の炭酸ナトリウム水溶液で60秒間、0.18MPa(1.8kgf/cm2)の圧力でスプレー現像し、未露光部を溶解現像した。次に、紫外線露光装置(「コンベア型UV照射装置(商品名)」、(株)ジーエス・ユアサ ライティング製)を用いて1000mJ/cm2の露光量で露光した後、150℃で1時間加熱して、試験片を作製した。
 パターンが形成された試験片をエポキシ樹脂(「エピコート828(商品名)」(三菱化学(株)製))と、硬化剤としてトリエチレンテトラミンを使用した熱硬化性樹脂で注型し充分硬化後に、研磨機(「リファインポリッシャー(商品名)」,リファインテック(株)製)で研磨してパターンの断面を削り出してレジスト形状を金属顕微鏡で観察し、以下の基準で評価した。図1にレジストの断面形状を模式的に示す。
  A(優良):レジスト形状は矩形又は台形を呈し、かつパターン輪郭の直線性が良かった。
  B(不良):レジスト形状はアンダーカット、裾引き、若しくは太りが確認された、又はパターン輪郭の直線性が悪かった。
(4)ビア径精度の評価
 各実施例及び比較例の感光性樹脂組成物を、50cm×50cmの大きさで、厚さ0.6mmの銅張積層基板(「MCL-E-67(商品名)」、日立化成(株)製)に、乾燥後の膜厚が35μmになるようにスクリーン印刷法で塗布して塗膜を形成した後、80℃で20分間熱風循環式乾燥機を用いて乾燥させた。
 次いで、図2に示される、所定の穴径の大きさと穴間の間隔ピッチ(穴径の大きさ100μmかつ穴間の間隔ピッチ100μm、又は穴径の大きさ80μmかつ穴間の間隔80μm)パターンを有するネガマスクを各々塗膜に密着させ、紫外線露光装置(「HTE-5102S(商品名)」、(株)ハイテック製)を用いて600mJ/cm2の露光量で露光した。その後、1質量%の炭酸ナトリウム水溶液で60秒間、0.18MPa(1.8kgf/cm2)の圧力でスプレー現像し、未露光部を溶解現像して試験片を作製した。得られた試験片のパターンについて、以下の基準で評価した。
  A(優良):100μm及び80μmのパターンが80%以上再現された。
  B(不良):100μm及び80μmのパターンが80%未満しか再現されなかった。
 ここで、マイクロスコープを用いて、700倍に拡大して、100μm及び80μmのパターンを観察し、100μmのパターンの場合、パターン底部が80μm以上(パターン径に対して80%以上)の大きさで形成できている場合を、パターンが再現できたものとした。80μmのパターンの場合、パターン底部が64μm以上の大きさで形成できている場合を、パターンが再現できたものとした。なお、「A」、「B」の判断において、100μm及び80μmのパターンの総数に対して、形成できたパターンの総数が80%以上である場合を、「A」として評価した。
(5)密着性の評価
 各実施例及び比較例の感光性樹脂組成物を、銅表面をバフ研磨(深さ方向で5μm粗化)した厚さ0.6mmの銅張積層基板(「MCL-E-67(商品名)」、日立化成(株)製)と化学研磨(研磨剤(「CZ8101(商品名)」、メック(株)製)を使用して深さ方向で0.5μm粗化)した厚さ0.6mmの銅張積層基板(MCL-E-67、日立化成(株)製)に、乾燥後の膜厚が35μmになるようにスクリーン印刷法で塗布して塗膜を形成した後、80℃で20分間熱風循環式乾燥機を用いて乾燥させた。
 次いで、図2に示される、所定の穴径の大きさと穴間の間隔ピッチ(穴径の大きさ100μmかつ穴間の間隔ピッチ100μm、又は穴径の大きさ80μmかつ穴間の間隔80μm)パターンを有するネガマスクを各々塗膜に密着させ、紫外線露光装置(「HTE-5102S(商品名)」、(株)ハイテック製)を用いて600mJ/cm2の露光量で露光した。その後、1質量%の炭酸ナトリウム水溶液で60秒間、0.18MPa(1.8kgf/cm2)の圧力でスプレー現像し、未露光部を溶解現像した。次に、紫外線露光装置(「コンベア型UV照射装置(商品名)」、(株)ジーエス・ユアサ ライティング製)を用いて1000mJ/cm2の露光量で露光し、150℃で1時間加熱して、試験片を作製した。
 得られた試験片について、JIS K5600に準じて、1mmのごばん目を100個作製し、セロハンテープ(「セロテープ(商品名)(登録商標)」、ニチバン(株)製)を貼り付けた後、90°の方向にセロハンテープを強制的に剥離する剥離試験を行った。ごばん目の剥離状態を観察し、以下の基準で評価した。
  A(優良):90/100以上で剥離がなかった。
  B(良):50/100以上、90/100未満で剥離がなかった。
  C(不良):0/100以上、50/100未満で剥離がなかった。
(6)耐溶剤性の評価
 上記(3)レジスト形状の評価で用いた試験片と同じ条件で作製した試験片を、イソプロピルアルコールに室温で30分間浸漬し、外観に異常がないかを目視確認した。次いで、セロハンテープ(「セロテープ(商品名)(登録商標)」、ニチバン(株)製)を貼り付けた後、90°の方向にセロハンテープを強制的に剥離する剥離試験を行い、塗膜の剥離の有無を目視確認し、以下の基準で評価した。
  A(優良):塗膜外観に異常が確認されず、かつ剥離がなかった。
  B(不良):塗膜外観に異常が確認された、又は剥離した。
(7)耐酸性の評価
 上記(3)レジスト形状の評価で用いた試験片と同じ条件で作製した試験片を10質量%塩酸水溶液に室温で30分間浸漬し、外観に異常がないかを目視確認した。次いで、セロハンテープ(「セロテープ(商品名)(登録商標)」、ニチバン(株)製)を貼り付けた後、90°の方向にセロハンテープを強制的に剥離する剥離試験を行い、塗膜の剥離の有無を目視確認し、以下の基準で評価した。
  A(優良):塗膜外観に異常が確認されず、かつ剥離がなかった。
  B(不良):塗膜外観に異常が確認された、又は剥離した。
(8)耐アルカリ性の評価
 上記(3)レジスト形状の評価で用いた試験片と同じ条件で作製した試験片を5質量%水酸化ナトリウム水溶液に室温で30分間浸漬し、外観に異常がないかを目視確認した。次いで、セロハンテープ(「セロテープ(商品名)(登録商標)」、ニチバン(株)製)を貼り付けた後、90°の方向にセロハンテープを強制的に剥離する剥離試験を行い、塗膜の剥離の有無を目視確認し、以下の基準で評価した。
  A(優良):塗膜外観に異常が確認されず、かつ剥離がなかった。
  B(不良):塗膜外観に異常が確認された、又は剥離した。
(9)電気絶縁性(HAST耐性)の評価
 クシ型電極(ライン/スペース=10μm/10μm)が形成されたビスマレイミドトリアジン基板(BT基板)上に、乾燥後の膜厚が35μmになるように、スクリーン印刷法で各実施例及び比較例の感光性樹脂組成物を塗布して塗膜を形成した後、熱風循環式乾燥機を用いて80℃で20分間乾燥させた。次いで、紫外線露光装置(「HTE-5102S(商品名)」、(株)ハイテック製)を用いて1000mJ/cm2の露光量で露光し、150℃で1時間加熱して、BT基板上に感光性樹脂組成物の硬化塗膜を有する試験片を作製した。この試験片を、130℃、湿度85%の雰囲気下の高温高湿槽に入れ、電圧5Vを荷電し、168時間、槽内HAST試験を行った。168時間経過時の槽内絶縁抵抗値について、以下の基準で評価した。
 A:108Ω以上
 B:107Ω以上108Ω未満
 C:106Ω以上107Ω未満
 D:105Ω以上106Ω未満
 E:105Ω未満
(10)無電解めっき耐性の評価
 上記(3)レジスト形状の評価で用いた試験片と同じ条件で作製した試験片に対して、市販品の無電解ニッケルめっき浴及び無電解金めっき浴を用いて、ニッケル5μm、金0.05μmの条件でめっきを行い、テープピーリングにより、感光性樹脂組成物の硬化塗膜の剥がれの有無やめっきのしみ込みの有無を下記の基準で評価し、テープピーリングによりレジスト層の剥がれの有無を下記の基準で評価した。
 A:染み込み、剥がれがなかった。
 B:めっき後に若干の少し染み込み確認されるが、テープピール後は剥がれなかった。
 C:めっき後に僅かなしみ込みが確認され、テープピール後に剥がれも確認されたが、実用上問題ない程度であった。
 D:めっき後にしみ込みが確認され、テープピール後に剥がれも確認された。
 E:めっき後に著しい剥がれが確認された。
(11)耐PCT性の評価
 上記(3)レジスト形状の評価で用いた試験片と同じ条件で作製した試験片を、121℃の飽和水蒸気中に50時間放置した際の、感光性樹脂組成物の硬化塗膜のふくれ、剥がれ、及び変色について下記の基準で評価した。
  A(優良):塗膜にふくれ、剥がれ、及び変色がなかった。
  B(良):塗膜にふくれ、剥がれ、又は変色がわずかに確認された。
  C(不良):塗膜に著しいふくれ、剥がれ、又は変色が確認された。
(12)耐リフロー性の評価
 上記(3)レジスト形状の評価で用いた試験片と同じ条件で作製した試験片を、図3に示されるリフロープロファイルに基づき処理した際の、感光性樹脂組成物の硬化塗膜の外観について下記の基準で評価した。
  A(優良):塗膜外観に変化がなく、亀裂の発生も確認されなかった。
  B(良):塗膜に亀裂がわずかに確認された。
  C(不良):塗膜に亀裂、浮き、又は剥がれが確認された。
(13)はんだ耐熱性の評価
 上記(3)レジスト形状の評価で用いた試験片と同じ条件で作製した試験片に、無洗浄型フラックス(「RMA SR-209(商品名)」、千住金属工業(株)製)を塗布し、280℃に設定したはんだ槽に10秒間浸漬し、塗膜外観を目視観察し、以下の基準で評価した。
 A:10秒間の浸漬を10回以上繰り返しても、レジストの塗膜の外観変化は確認されなかった。
 B:10秒間の浸漬を10回繰り返えしたところ、わずかにレジストの塗膜の剥がれが確認されたが、実用上問題ない程度であった。
 C:10秒間の浸漬を10回繰り返したところ、レジストの塗膜の膨れ及び剥がれが確認された。
(合成例1;酸変性ビニル基含有エポキシ樹脂(I)の合成)
 クレゾールノボラック型エポキシ樹脂(新日鉄住金化学(株)製、「YDCN704(商品名)」、一般式(I)において、Y1=グリシジル基、R11=メチル基)220質量部、アクリル酸72質量部、ハイドロキノン1.0質量部、カルビトールアセテート180質量部を混合し、90℃に加熱、撹拌して反応混合物を溶解した。次いで、60℃に冷却した後、塩化ベンジルトリメチルアンモニウム1質量部を添加し、さらに100℃に加熱して、固形分酸価が1mgKOH/gになるまで反応させた。次いで、テトラヒドロ無水フタル酸152質量部とカルビトールアセテート100質量部とを添加し、80℃に加熱し、6時間撹拌した。室温まで冷却した後、固形分濃度が60質量%になるようにカルビトールアセテートで希釈して酸変性ビニル基含有エポキシ樹脂(I)を得た。
(合成例2;酸変性ビニル基含有エポキシ樹脂(II)の合成)
 ビスフェノールF型エポキシ樹脂(新日鉄住金化学(株)製、「YDF2001(商品名)」、一般式(II)において、Y2=グリシジル基、R12=H)475質量部、アクリル酸72質量部、ハイドロキノン0.5質量部、カルビトールアセテート120質量部を混合し、90℃に加熱、撹拌して反応混合物を溶解した。次いで、60℃に冷却した後、塩化ベンジルトリメチルアンモニウム2質量部を添加し、さらに100℃に加熱して、酸価が1mgKOH/gになるまで反応させた。次いで、テトラヒドロ無水フタル酸230質量部とカルビトールアセテート85質量部とを添加し、80℃に加熱し、6時間撹拌した。室温まで冷却した後、固形分濃度が60質量%になるようにカルビトールアセテートで希釈して酸変性ビニル基含有エポキシ樹脂(II)を得た。
(合成例3;酸変性ビニル基含有エポキシ樹脂(IV)の合成)
 温度計、滴下ロート、冷却管、及び撹拌機を設けたフラスコに、80℃で溶解させたビス(4-ヒドロキシフェニル)メタン272質量部を仕込み、80℃で撹拌を開始した。これにメタンスルホン酸3質量部を添加し、液温が80~90℃の範囲を維持するように、パラホルムアルデヒド(92質量%)16.3質量部を1時間かけて滴下した。滴下が終了した後、110℃まで加熱し、2時間撹拌した。次いで、メチルイソブチルケトン1000質量部を加え、分液ロートに移して水洗した。洗浄水が中性を示すまで水洗を続けた後、有機層から溶媒及び未反応のビス(4-ヒドロキシフェニル)メタンを加熱減圧下(温度:220℃、圧力:66.7Pa)で除去し、褐色固体であるビスフェノール系ノボラック樹脂164質量部を得た。得られたビスフェノール系ノボラック樹脂の軟化点は74℃、水酸基当量は154g/eqであった。
 温度計、滴下ロート、冷却管、及び撹拌機を設けたフラスコに、窒素ガスパージをしながら、得られたビスフェノール系ノボラック樹脂154質量部、エピクロルヒドリン463質量部、n-ブタノール139質量部、及びテトラエチルベンジルアンモニウクロライド2質量部を混合し、溶解させた。次いで、これを65℃まで加熱し、共沸する圧力まで減圧した後、水酸化ナトリウム水溶液(49質量%)90質量部を5時間かけて滴下速度を一定にして滴下し、30分間撹拌した。この間、共沸により留出してきた留出分を、ディーンスタークトラップで分離し、水層を除去し、油層をフラスコ(反応系)に戻しながら、反応させた。その後、未反応のエピクロルヒドリンを減圧蒸留(温度:22℃、圧力:1.87kPa)により留去して得られた粗エポキシ樹脂に、メチルイソブチルケトン590質量部、n-ブタノール177質量部を加えて溶解させた。次いで、水酸化ナトリウム水溶液(10質量%)10質量部を加えて、80℃で2時間撹拌した。さらに、水150質量部で水洗を三回繰り返した。三回目の水洗で用いた洗浄液のpHが中性であることを確認した。次いで、共沸によりフラスコ内(反応系内)を脱水し、精密ろ過を行った後、溶媒を減圧下(圧力:1.87kPa)で留去した。このようにして、褐色の粘稠な液体である、本実施形態で用いられるビスフェノール系ノボラック型エポキシ樹脂(一般式(IV)においてY4=グリシジル基、R13=Hの構成単位を有するエポキシ樹脂(a))を得た。このエポキシ樹脂の水酸基当量は233g/eqであった。
 得られたエポキシ樹脂(a)450質量部に、アクリル酸124質量部、ハイドロキノン1.5質量部、カルビトールアセテート250質量部を混合し、90℃に加熱し、撹拌して反応混合物を溶解した。次いで、60℃に冷却した後、塩化ベンジルトリメチルアンモニウム2質量部を添加し、100℃に加熱して、酸価が1mgKOH/gになるまで反応させた。次に、テトラヒドロ無水フタル酸230質量部とカルビトールアセテート180質量部とを添加し、80℃に加熱し、6時間反応させた。次いで、室温まで冷却した後、固形分濃度が60質量%になるようにカルビトールアセテートで希釈して、酸変性ビニル基含有エポキシ樹脂(IV)を得た。
 なお、樹脂の軟化点は、JIS-K7234:1986に定める環球法に準拠して測定し(昇温速度:5℃/分)、樹脂の酸価は中和滴定法によって測定した。具体的には、酸変性ビニル其含有エポキシ樹脂1gにアセトン30gを添加し、さらに均一に溶解させた後、指示薬であるフェノールフタレインを、上記酸変性ビニル基含有エポキシ樹脂を含む溶液に適量添加して、0.1Nの水酸化カリウム水溶液を用いて滴定を行うことで測定した。
実施例1~6、及び比較例1~4
 表1に示す配合組成に従って組成物を配合し、3本ロールミルで混練し感光性樹脂組成物を調製した。固形分濃度が70質量%になるようにカルビトールアセテートを加えて、感光性樹脂組成物を得た。得られた感光性樹脂組成物を用いて、上記の(評価方法)に基づき評価した。評価結果を表1に示す。なお、表1中の各成分の配合量の単位は質量部であり、また(A)成分の配合量は上記の各合成例で得られたエポキシ樹脂と溶媒(カルビトールアセテート)とを含む量を意味する。
Figure JPOXMLDOC01-appb-T000013
*1,エポキシ樹脂(I)、(II)及び(IV)を含有する溶液(固形分濃度:60質量%)の配合量である。
註)表1中の各材料の詳細は以下の通りである。
イルガキュア819:ビス(2,4,6‐トリメチルベンゾイル)フェニルホスフィンオキサイド(BASFジャパン(株)製、商品名)
ダロキュアTPO:2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド(BASFジャパン(株)製、商品名)
イルガキュア907:2-メチル-[4-(メチルチオ)フェニル]モルフォリノ-1-プロパノン(BASFジャパン(株)製、商品名)
含窒素複素環化合物1:トリアミノトリアジン、平均粒子径:4μm
含窒素複素環化合物2:2,4-ジアミノ-6-ビニル-s-トリアジン、平均粒子径:4μm
含窒素複素環化合物3:2-フェニル-4-メチルイミダゾール、平均粒子径:3μm
含窒素複素環化合物4:2-フェニルイミダゾリン、平均粒子径:3μm
含窒素複素環化合物1’:トリアミノトリアジン、平均粒子径:18μm
含窒素複素環化合物2’:2,4-ジアミノ-6-ビニル-s-トリアジン、平均粒子径:20μm
含窒素複素環化合物3’:2-フェニル-4-メチルイミダゾール、平均粒子径:15μm
カヤラッドDPHA:ジペンタエリスリトールペンタアクリレート(日本化薬(株)製、商品名)
エピコート828:ビスフェノールA型エポキシ樹脂(三菱化学(株)製、商品名)
 表1に示される結果から、実施例1~6の本発明の感光性樹脂組成物は、永久マスクレジスト(はんだレジスト)が穴径の大きさと穴間の間隔ピッチ(穴径の大きさ100μmかつ穴間の間隔ピッチ100μm、又は穴径の大きさ80μmかつ穴間の間隔80μm)という高精細なパターンであっても、優れた表面硬化性と底部硬化性とを維持し、アンダーカット、裾引き、又は太りが確認される、またはパターン輪郭の直線性が悪いといったことがなく、優れたレジスト形状が得られ、ビア径精度に優れることが確認された。また、電気絶縁性(HAST耐性)や無電解めっき耐性をはじめとする各種性能にも優れていることが確認された。
 これに対して比較例1~4では、表面硬化性及び底部硬化性が低く、レジスト形状の問題が解消されず、また、永久マスクレジスト(はんだレジスト)のパターン周囲の太りも発生しており不充分な結果であった。
 本発明によれば、レジスト形状に優れ、解像性に優れたパターンを形成でき、耐PCT性(耐湿熱性)、耐リフロー性、電気絶縁性(HAST耐性)、及び無電解めっき耐性に加えて、耐熱性、耐溶剤性、耐薬品性(耐アルカリ性、耐酸性)、及び密着性に優れたパターンを形成できる感光性樹脂組成物、微細化した穴径の大きさと穴間の間隔ピッチの形成安定性に優れた、パターン形成が可能な永久マスクレジストを得ることができる。永久マスクレジストは、プリント配線板に好適に用いられ、とりわけ、近年の小型化や高性能化に伴う微細化した穴径の大きさと穴間の間隔ピッチを有するプリント配線板に好適に用いられる。

Claims (17)

  1.  (A)酸変性ビニル基含有エポキシ樹脂、(B)光重合開始剤、(C)含窒素複素環化合物、及び(D)光重合性化合物を含有し、該(C)含窒素複素環化合物の平均粒子径が0.01~10μmである感光性樹脂組成物。
  2.  (C)含窒素複素環化合物が、イミダゾール化合物、トリアジン化合物、及びイミダゾリン化合物から選ばれる少なくとも一種である請求項1に記載の感光性樹脂組成物。
  3.  感光性樹脂組成物中の固形分全量を100質量部とする(C)含窒素複素環化合物の含有量が、0.05~10質量部である請求項1又は2に記載の感光性樹脂組成物。
  4.  (A)酸変性ビニル基含有エポキシ樹脂が、一般式(I)で示される構成単位を有するエポキシ樹脂、一般式(II)で示される構成単位を有するエポキシ樹脂、一般式(III)で示される構成単位を有するエポキシ樹脂、一般式(IV)で示される構成単位を有するビスフェノールノボラック型エポキシ樹脂、及び一般式(V)で示される構成単位を有するビスフェノールノボラック型エポキシ樹脂から選ばれる少なくとも一種のエポキシ樹脂(a)とビニル基含有モノカルボン酸(b)とを反応させて得られる樹脂(a’)と、飽和基又は不飽和基含有多塩基酸無水物(c)とを反応させて得られる樹脂である請求項1~3のいずれか1項に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    〔式(I)中、R11は水素原子又はメチル基を示し、Y1はグリシジル基を示す。〕
    Figure JPOXMLDOC01-appb-C000002
    〔式(II)中、R12は水素原子又はメチル基を示し、Y2はグリシジル基を示す。複数のR12は同一でも異なっていてもよい。〕
    Figure JPOXMLDOC01-appb-C000003
    〔式(III)中、Y3は水素原子又はグリシジル基を示し、少なくとも一つのY3はグリシジル基を示し、複数のY3は同一でも異なっていてもよい。〕
    Figure JPOXMLDOC01-appb-C000004
    〔式(IV)中、R13は水素原子、アルキル基、アリール基、アラルキル基、スルホン基、又はトリハロメチル基を示し、Y4は水素原子又はグリシジル基を示し、少なくとも一つのY4はグリシジル基を示し、複数のR13は同一でも異なっていてもよい。〕
    Figure JPOXMLDOC01-appb-C000005
    〔式(V)中、R14は水素原子、アルキル基、アリール基、アラルキル基、スルホン基、又はトリハロメチル基を示し、Y5は水素原子又はグリシジル基を示し、少なくとも一つのY5はグリシジル基を示し、複数のR14は同一でも異なっていてもよい。〕
  5.  エポキシ樹脂(a)が、一般式(I)で示される構成単位を有するエポキシ樹脂、一般式(II)で示される構成単位を有するエポキシ樹脂、及び一般式(IV)で示される構成単位を有するビスフェノールノボラック型エポキシ樹脂から選ばれる少なくとも一種である請求項4に記載の感光性樹脂組成物。
  6.  (B)光重合開始剤が、アシルホスフィンオキサイド類である請求項1~5のいずれか1項に記載の感光性樹脂組成物。
  7.  (D)光重合性化合物が、(メタ)アクリロイル基を含有する化合物である請求項1~6のいずれか1項に記載の感光性樹脂組成物。
  8.  さらに、(E)無機フィラーを含有する請求項1~7のいずれか1項に記載の感光性樹脂組成物。
  9.  さらに、(F)顔料を含有する請求項1~8のいずれか1項に記載の感光性樹脂組成物。
  10.  感光性樹脂組成物中の固形分全量を100質量部とする(A)酸変性ビニル基含有エポキシ樹脂の含有量が20~80質量部であり、(B)光重合開始剤の含有量が0.2~15質量部であり、(C)含窒素複素環化合物の含有量が0.05~10質量部であり、(D)光重合性化合物の含有量が0.1~30質量部である請求項1~7のいずれか1項に記載の感光性樹脂組成物。
  11.  感光性樹脂組成物中の固形分全量を100質量部とする(A)酸変性ビニル基含有エポキシ樹脂の含有量が20~80質量部であり、(B)光重合開始剤の含有量が0.2~15質量部であり、(C)含窒素複素環化合物の含有量が0.05~10質量部であり、(D)光重合性化合物の含有量が0.1~30質量部であり、(E)無機フィラーの含有量が10~80質量部である請求項8に記載の感光性樹脂組成物。
  12.  感光性樹脂組成物中の固形分全量を100質量部とする(A)酸変性ビニル基含有エポキシ樹脂の含有量が20~80質量部であり、(B)光重合開始剤の含有量が0.2~15質量部であり、(C)含窒素複素環化合物の含有量が0.2~15質量部であり、(D)光重合性化合物の含有量が0.1~30質量部であり、(E)無機フィラーの含有量が10~80質量部であり、(F)顔料の含有量が0.1~5質量部である請求項9に記載の感光性樹脂組成物。
  13.  液体状である、請求項1~12のいずれか1項に記載の感光性樹脂組成物。
  14.  永久マスクレジストの形成に用いられる請求項1~13のいずれか1項に記載の感光性樹脂組成物。
  15.  支持体と、該支持体上に請求項1~13のいずれか1項に記載の感光性樹脂組成物を用いてなる感光層とを備える感光性エレメント。
  16.  請求項1~14のいずれか1項に記載の感光性樹脂組成物により形成される永久マスクレジスト。
  17.  請求項16に記載の永久マスクレジストを具備するプリント配線板。
PCT/JP2014/070397 2013-08-02 2014-08-01 感光性樹脂組成物 WO2015016360A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217023762A KR102440445B1 (ko) 2013-08-02 2014-08-01 감광성 수지 조성물
KR1020157037169A KR102284557B1 (ko) 2013-08-02 2014-08-01 감광성 수지 조성물
CN201480042171.9A CN105408816B (zh) 2013-08-02 2014-08-01 感光性树脂组合物
KR1020227030260A KR102666147B1 (ko) 2013-08-02 2014-08-01 감광성 수지 조성물
JP2015529633A JP6455432B2 (ja) 2013-08-02 2014-08-01 感光性樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013161891 2013-08-02
JP2013-161891 2013-08-02

Publications (1)

Publication Number Publication Date
WO2015016360A1 true WO2015016360A1 (ja) 2015-02-05

Family

ID=52431883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070397 WO2015016360A1 (ja) 2013-08-02 2014-08-01 感光性樹脂組成物

Country Status (5)

Country Link
JP (1) JP6455432B2 (ja)
KR (2) KR102284557B1 (ja)
CN (1) CN105408816B (ja)
TW (1) TWI634387B (ja)
WO (1) WO2015016360A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030351A1 (ja) * 2016-08-10 2018-02-15 日産化学工業株式会社 インプリント材料
WO2021255907A1 (ja) * 2020-06-18 2021-12-23 昭和電工マテリアルズ株式会社 感光性樹脂組成物、ドライフィルム、プリント配線板、及びプリント配線板の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684011B (zh) * 2018-02-08 2023-09-01 关西涂料株式会社 抗蚀剂组合物和抗蚀膜
JP6987011B2 (ja) * 2018-03-30 2021-12-22 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
EP3702387B1 (en) * 2019-02-28 2023-05-10 Tokyo Ohka Kogyo Co., Ltd. Photosensitive resin composition, and method for etching glass substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084857A (ja) * 2004-09-16 2006-03-30 Hitachi Chem Co Ltd 感光性樹脂組成物、ソルダレジストの形成方法及びプリント配線板
JP2012103537A (ja) * 2010-11-11 2012-05-31 Hitachi Chem Co Ltd 感光性樹脂組成物及びこれを用いた感光性エレメント
JP2012181509A (ja) * 2011-02-08 2012-09-20 Mitsubishi Chemicals Corp 着色感光性組成物、着色スペーサ、カラーフィルター、及び液晶表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717737B2 (ja) 1987-11-30 1995-03-01 太陽インキ製造株式会社 感光性熱硬化性樹脂組成物及びソルダーレジストパターン形成方法
JPH01141904U (ja) 1988-03-23 1989-09-28
JP4367075B2 (ja) * 2003-10-07 2009-11-18 三菱化学株式会社 光硬化性組成物、並びにそれを用いた光硬化性画像形成材料、光硬化性画像形成材、及び画像形成方法
KR20100014767A (ko) 2007-03-30 2010-02-11 쌘디스크 코포레이션 디지털 콘텐트에 대한 액세스를 제어하기 위한 방법과 시스템
US8361605B2 (en) * 2007-04-24 2013-01-29 Mitsui Chemicals, Inc. Photosensitive resin composition, dry film, and processed product made using the same
JP5150287B2 (ja) * 2008-02-06 2013-02-20 富士フイルム株式会社 平版印刷版の作製方法及び平版印刷版原版
JP5134449B2 (ja) 2008-06-10 2013-01-30 互応化学工業株式会社 水系感光性樹脂組成物、水系感光性樹脂組成物の製造方法、及びプリント配線板の製造方法
WO2010026927A1 (ja) * 2008-09-04 2010-03-11 日立化成工業株式会社 半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物
JP5657914B2 (ja) * 2010-05-10 2015-01-21 株式会社カネカ 新規な感光性樹脂組成物及びその利用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084857A (ja) * 2004-09-16 2006-03-30 Hitachi Chem Co Ltd 感光性樹脂組成物、ソルダレジストの形成方法及びプリント配線板
JP2012103537A (ja) * 2010-11-11 2012-05-31 Hitachi Chem Co Ltd 感光性樹脂組成物及びこれを用いた感光性エレメント
JP2012181509A (ja) * 2011-02-08 2012-09-20 Mitsubishi Chemicals Corp 着色感光性組成物、着色スペーサ、カラーフィルター、及び液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030351A1 (ja) * 2016-08-10 2018-02-15 日産化学工業株式会社 インプリント材料
CN109563194A (zh) * 2016-08-10 2019-04-02 日产化学株式会社 压印材料
JPWO2018030351A1 (ja) * 2016-08-10 2019-06-13 日産化学株式会社 インプリント材料
CN109563194B (zh) * 2016-08-10 2021-06-22 日产化学株式会社 压印材料
WO2021255907A1 (ja) * 2020-06-18 2021-12-23 昭和電工マテリアルズ株式会社 感光性樹脂組成物、ドライフィルム、プリント配線板、及びプリント配線板の製造方法

Also Published As

Publication number Publication date
KR20210095968A (ko) 2021-08-03
KR20220125374A (ko) 2022-09-14
CN105408816A (zh) 2016-03-16
KR102284557B1 (ko) 2021-07-30
KR20160040474A (ko) 2016-04-14
CN105408816B (zh) 2019-11-08
KR102440445B1 (ko) 2022-09-06
JPWO2015016360A1 (ja) 2017-03-02
TWI634387B (zh) 2018-09-01
JP6455432B2 (ja) 2019-01-23
TW201523146A (zh) 2015-06-16

Similar Documents

Publication Publication Date Title
KR102570738B1 (ko) 감광성 수지 조성물
JP7070743B2 (ja) 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
US9389504B2 (en) Photo-curable and thermo-curable resin composition, and dry film solder resist
JP6455432B2 (ja) 感光性樹脂組成物
JP2017161859A (ja) アルカリ現像型ソルダーレジストインキ及びそのプリント配線板加工法とその配線板
JP2013125138A (ja) 半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物及び半導体パッケージ
JP6398532B2 (ja) 感光性樹脂組成物
JPWO2020066601A1 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、プリント配線板および電子部品
TW202112831A (zh) 感光性樹脂組成物、感光性樹脂薄膜、印刷線路板及半導體封裝體、以及印刷線路板的製造方法
JP6582804B2 (ja) 感光性樹脂組成物
JP6953758B2 (ja) 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
JP6519134B2 (ja) 感光性樹脂組成物
JP6398533B2 (ja) 感光性樹脂組成物
JP2016066005A (ja) 感光性樹脂組成物
JP2015031849A (ja) 感光性樹脂組成物
KR102666147B1 (ko) 감광성 수지 조성물
KR20230028266A (ko) 감광성 수지 조성물, 드라이 필름, 프린트 배선판, 및 프린트 배선판의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042171.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529633

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157037169

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832258

Country of ref document: EP

Kind code of ref document: A1