WO2015016112A1 - 変倍光学系、光学装置及び変倍光学系の製造方法 - Google Patents

変倍光学系、光学装置及び変倍光学系の製造方法 Download PDF

Info

Publication number
WO2015016112A1
WO2015016112A1 PCT/JP2014/069448 JP2014069448W WO2015016112A1 WO 2015016112 A1 WO2015016112 A1 WO 2015016112A1 JP 2014069448 W JP2014069448 W JP 2014069448W WO 2015016112 A1 WO2015016112 A1 WO 2015016112A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
optical system
end state
distance
Prior art date
Application number
PCT/JP2014/069448
Other languages
English (en)
French (fr)
Inventor
幸介 町田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013157111A external-priority patent/JP6281200B2/ja
Priority claimed from JP2014027494A external-priority patent/JP6264924B2/ja
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201480042932.0A priority Critical patent/CN105452929B/zh
Publication of WO2015016112A1 publication Critical patent/WO2015016112A1/ja
Priority to US15/004,879 priority patent/US10670848B2/en
Priority to US16/878,599 priority patent/US20200278521A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to a variable magnification optical system, an optical device, and a method for manufacturing the variable magnification optical system.
  • the focusing lens group is not sufficiently lightened to achieve AF, that is, sufficient quietness during auto-focusing. Due to the large weight, if AF is performed at high speed, a large motor or actuator is required, and the size of the lens barrel increases.
  • the present invention has been made in view of such a problem.
  • a variable power optical system, an optical apparatus, and the variable power system that satisfactorily suppress aberration fluctuations during zooming from the wide-angle end state to the telephoto end state and aberration fluctuations during focusing from an object at infinity to a short distance object. It is an object of the present invention to provide a method for manufacturing a double optical system.
  • a variable magnification optical system includes: From the object side, A first lens group having a positive refractive power; A second lens group having negative refractive power; A third lens group having positive refractive power; A fourth lens group; A subsequent lens group including at least one lens group;
  • the distance between the first lens group and the second lens group changes, and the distance between the second lens group and the third lens group changes,
  • the distance between the third lens group and the fourth lens group changes, the distance between the fourth lens group and the subsequent lens group changes, and the subsequent lens group is composed of a plurality of lens groups
  • the interval between each of the plurality of lens groups changes, When focusing from infinity to a close object, the third lens group moves along the optical axis, It satisfies the following condition: 0.60 ⁇ f3 / f4 ⁇ 1.30
  • f3 focal length of the third lens group
  • variable magnification optical system includes: A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refractive power in order from the object side along the optical axis.
  • a fourth lens group having: and a fifth lens group having positive refractive power;
  • An optical device is characterized by including any of the above-described variable magnification optical systems.
  • a method for manufacturing a variable magnification optical system includes In order from the object side, at least one of a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group A subsequent lens group including a lens group, and a method of manufacturing a variable magnification optical system, During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, and the distance between the second lens group and the third lens group changes, When the distance between the third lens group and the fourth lens group changes, the distance between the fourth lens group and the subsequent lens group changes, and the subsequent lens group is composed of a plurality of lens groups, Arranged so that the interval between each of the plurality of lens groups changes, When focusing from infinity to a short distance object, the third lens group is arranged to move along the optical axis, It arrange
  • variable magnification optical system A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refractive power in order from the object side along the optical axis.
  • a variable power optical system having a fourth lens group having a positive refractive power and a fifth lens group having a positive refractive power, At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, and the third lens group changes.
  • An interval between the lens group and the fourth lens group is changed, an interval between the fourth lens group and the fifth lens group is changed, and the first lens group is moved toward the object side;
  • the third lens group is moved when focusing from an infinite object point to a close object point, The following conditional expression is satisfied. 0.23 ⁇ f3 / ft ⁇ 0.35 2.60 ⁇ ( ⁇ f3) / f2 ⁇ 3.60
  • f2 focal length of the second lens group
  • f3 focal length of the third lens group
  • ft focal length of the entire system in the telephoto end state
  • variable magnification optical system by reducing the size and weight of the focusing lens group, high-speed AF without increasing the size of the lens barrel and quietness at the time of AF are realized, and further, from the wide-angle end state to the telephoto end state
  • a variable magnification optical system, an optical apparatus, and a method of manufacturing the variable magnification optical system which can satisfactorily suppress aberration fluctuation during zooming and aberration fluctuation during focusing from an object at infinity to a short distance object Can do.
  • FIG. 1 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the first example.
  • 2A, 2B, and 2C are graphs showing various aberrations of the zoom optical system according to the first example when focusing on infinity.
  • FIG. 2A shows a wide-angle end state
  • FIG. 2B shows an intermediate focal length state
  • 2C shows the telephoto end state.
  • 3A, 3B, and 3C are graphs showing various aberrations when the zooming optical system according to the first example is in focus at short distance.
  • FIG. 3A shows a wide-angle end state
  • FIG. 3B shows an intermediate focal length state.
  • 3C shows the telephoto end state.
  • FIG. 1 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the first example.
  • 2A, 2B, and 2C are graphs showing various aberrations of the zoom optical system according to the first example when focusing on infinity.
  • FIGS. 5A, 5B and 5C are graphs showing various aberrations of the variable magnification optical system according to Example 2 during focusing on infinity.
  • FIG. 5A shows a wide-angle end state
  • FIG. 5B shows an intermediate focal length state.
  • 5C shows the telephoto end state.
  • 6A, 6B, and 6C are graphs showing various aberrations when the zoom optical system according to Example 2 is in focus at short distance.
  • FIG. 6A shows a wide-angle end state
  • FIG. 6B shows an intermediate focal length state.
  • FIG. 6C shows the telephoto end state.
  • FIG. 7 is a diagram showing a lens configuration of a variable magnification optical system according to the third example of the present application.
  • FIGS. 8A, 8B, and 8C are graphs showing various aberrations during focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • FIGS. 9A, 9B, and 9C are graphs showing various aberrations in focusing at a short distance in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • FIG. 10 is a diagram showing a lens configuration of a variable magnification optical system according to the fourth example of the present application.
  • FIGS. 12A, 12B, and 12C are graphs showing various aberrations of the zoom optical system according to the fourth example when focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state.
  • FIGS. 12A, 12B, and 12C are graphs showing various aberrations in focusing at a short distance in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom optical system according to the fourth example.
  • FIG. 13 is a diagram showing a lens configuration of a variable magnification optical system according to the fifth example of the present application.
  • FIGS. 14C are graphs showing various aberrations during focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • FIGS. 15A, 15B, and 15C are graphs showing various aberrations in focusing at a short distance in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • FIG. 16 is a sectional view of a camera equipped with the variable magnification optical system.
  • FIG. 17 is a flowchart for explaining a method of manufacturing the variable magnification optical system.
  • FIG. 18 is a flowchart for explaining a method of manufacturing the variable magnification optical system.
  • variable magnification optical system ZL includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group having a negative refractive power. G2, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and a subsequent lens group GR including at least one lens group. .
  • the zoom optical system ZL when the zoom is changed from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 changes, and the second lens group G2 and the third lens are changed.
  • Is composed of a plurality of lens groups it is possible to achieve good aberration correction at the time of zooming by changing the interval between the plurality of lens groups.
  • variable magnification optical system ZL the distance between the first lens group G1 and the second lens group G2 increases during the magnification change from the wide-angle end state to the telephoto end state, and the second lens group G2 and the third lens group G3. , The distance between the third lens group G3 and the fourth lens group G4 is increased, and the distance between the fourth lens group G4 and the fifth lens group G5 is increased. Can be secured. Furthermore, the zoom optical system ZL is configured to move the first lens group G1 in the object direction when zooming from the wide-angle end state to the telephoto end state, thereby reducing the total lens length in the wide-angle end state. The effective diameter of the first lens group can be reduced, and the variable magnification optical system ZL can be reduced in size.
  • the zoom optical system ZL is configured such that the third lens group G3 moves along the optical axis when focusing from an object at infinity to an object at a short distance.
  • the third lens group G3 moves along the optical axis when focusing from an object at infinity to an object at a short distance.
  • variable magnification optical system ZL satisfies the following conditional expression (1).
  • (1) 0.60 ⁇ f3 / f4 ⁇ 1.30
  • f3 Focal length of the third lens group
  • G3 f4 Focal length of the fourth lens group G4
  • Conditional expression (1) indicates that the focal point of the third lens group G3 with respect to the focal length of the fourth lens group G4, which is suitable for suppressing aberration fluctuations during focusing from an object at infinity to an object at a short distance and correcting various aberrations favorably. It defines the distance. If the upper limit of conditional expression (1) is exceeded, the refractive power of the fourth lens group G4 will increase, and it will be difficult to correct various aberrations including spherical aberration. In addition, the refractive power of the third lens group G3 decreases, and the amount of movement of the third lens group G3 during focusing from an object at infinity to an object at a short distance increases, leading to an increase in the total lens length.
  • the effect of this application can be made more reliable by setting the upper limit of conditional expression (1) to 1.10.
  • the lower limit of conditional expression (1) is not reached, the refractive power of the third lens group G3 becomes large, and the aberration fluctuation at the time of focusing from an object at infinity to an object at short distance becomes large.
  • the effect of this application can be made more reliable by setting the lower limit of conditional expression (1) to 0.80.
  • the zoom optical system ZL it is desirable that the third lens group G3, which is a focusing lens group, is composed of only one positive lens or one cemented lens having a positive refractive power.
  • the focusing lens group is reduced in weight, and high-speed AF and quietness during AF can be achieved without increasing the size of the lens barrel.
  • the zoom optical system ZL it is desirable that the most object side surface of the third lens group G3 which is a focusing lens group is an aspherical surface.
  • the aspherical shape be a shape that weakens the positive refractive power as the distance from the optical axis increases.
  • variable magnification optical system ZL satisfies the following conditional expression (2).
  • (2) 0.11 ⁇ ( ⁇ f2) / f1 ⁇ 0.19
  • f2 Focal length of the second lens group G2
  • f1 Focal length of the first lens group G1
  • Conditional expression (2) defines the focal length of the second lens group G2 with respect to the focal length of the first lens group G1 in order to ensure a sufficient zoom ratio and realize good optical performance. If the upper limit value of conditional expression (2) is exceeded, the refractive power of the first lens group G1 becomes strong, and the spherical aberration at the telephoto end is significantly deteriorated. Further, the deterioration of lateral chromatic aberration at the wide-angle end becomes remarkable, which is not preferable. In addition, the effect of this application can be made more reliable by making the upper limit of conditional expression (2) 0.16.
  • the refractive power of the second lens group G2 becomes strong, and it becomes difficult to correct off-axis aberrations, particularly field curvature and astigmatism, at the wide-angle end.
  • the effect of this application can be made more reliable by setting the lower limit of conditional expression (2) to 0.14.
  • variable magnification optical system ZL satisfies the following conditional expression (3).
  • f1 Focal length of the first lens group G1
  • fw Focal length of the entire system in the wide-angle end state
  • Conditional expression (3) defines an appropriate focal length of the first lens group G1 with respect to the focal length of the variable magnification optical system ZL in the wide-angle end state.
  • variable magnification optical system ZL is a lens group that corrects displacement of the imaging position due to camera shake or the like by moving at least a part of the subsequent lens group GR so as to have a component in a direction orthogonal to the optical axis. It is desirable to have With this configuration, it is possible to effectively correct the displacement of the imaging position due to camera shake or the like.
  • the variable magnification optical system includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A third lens group having a refractive power, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power, and at the time of zooming from the wide-angle end state to the telephoto end state,
  • the first lens group moves toward the object side, the distance between the first lens group and the second lens group is enlarged, the distance between the second lens group and the third lens group is reduced, and the third lens group And the distance between the fourth lens group and the distance between the fourth lens group and the fifth lens group are changed, and the third lens group is in focus when focusing from an infinite object point to a short-distance object point. It is a configuration that moves.
  • variable magnification optical system of the present application has five lens groups, and by changing the distance between the lens groups at the time of zooming from the wide-angle end state to the telephoto end state, good aberrations at the time of zooming are achieved. Corrections can be made. Further, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group is enlarged, and the distance between the second lens group and the third lens group is reduced to about 4 times. The above zoom ratio can be ensured.
  • the total lens length in the wide-angle end state can be shortened and the effective diameter of the first lens group can be reduced. Reduction can be achieved, and miniaturization of the variable magnification optical system can be achieved.
  • variable magnification optical system of the present application is configured to satisfy the following conditional expression (4) when the focal length of the third lens group is f3 and the focal length of the entire system in the telephoto end state is ft. Has been. (4) 0.23 ⁇ f3 / ft ⁇ 0.35
  • the above conditional expression (4) is for the zooming optical system in the telephoto end state in order to suppress the enlargement of the zooming optical system and the aberration variation at the time of focusing from the object point at infinity to the object point at short distance. It defines an appropriate focal length of the third lens group with respect to the focal length.
  • the refractive power of the third lens group will decrease, and zooming from the wide-angle end state to the telephoto end state or focusing from an infinite object point to a short-distance object point will occur.
  • the amount of movement of the third lens group increases, and the optical system becomes large.
  • the upper limit of conditional expression (4) is exceeded, the amount of movement of the third lens group for focusing from an infinite object point to a short-distance object point increases, so that an infinite object in the telephoto end state Variations in various aberrations including spherical aberration during focusing from a point to a short distance object point increase.
  • the effect of this application can be made more reliable by setting the upper limit of conditional expression (4) to 0.32.
  • the effect of the present application can be further ensured by setting the upper limit value of conditional expression (4) to 0.31.
  • conditional expression (4) On the other hand, if the lower limit value of conditional expression (4) is not reached, the refractive power of the third lens group becomes large, and the change in spherical aberration during focusing from an infinite object point to a short distance object point in the telephoto end state. Increase.
  • the effect of this application can be made more reliable by setting the lower limit of conditional expression (4) to 0.26. Further, by setting the lower limit value of conditional expression (4) to 0.27, the effect of the present application can be further ensured.
  • the zoom optical system of the present application is configured to satisfy the following conditional expression (5), where f2 is the focal length of the second lens group and f3 is the focal length of the third lens group. ing. (5) 2.60 ⁇ ( ⁇ f3) / f2 ⁇ 3.60
  • the above conditional expression (5) is the third lens group with respect to the focal length of the second lens group, which is suitable for suppressing aberration fluctuations during focusing from an infinite object point to a short distance object point and favorably correcting various aberrations. This defines the appropriate focal length.
  • the refractive power of the second lens group will increase, making it difficult to correct various aberrations including spherical aberration.
  • the overall length of the lens is increased.
  • the effect of this application can be made more reliable by setting the upper limit of conditional expression (5) to 3.40.
  • the effect of this application can be made still more reliable by setting the upper limit of conditional expression (5) to 3.20.
  • conditional expression (5) if the lower limit value of conditional expression (5) is not reached, the refractive power of the third lens group will increase, and the aberration fluctuation during focusing from an infinite object point to a close object point will increase.
  • the effect of this application can be made more reliable by setting the lower limit of conditional expression (5) to 2.80. Further, by setting the lower limit value of conditional expression (5) to 2.90, the effect of the present application can be further ensured.
  • the present application achieves high-speed and quiet autofocus without increasing the size of the lens barrel by reducing the size and weight of the focusing lens group.
  • the present application is capable of satisfactorily suppressing aberration fluctuations during zooming from the wide-angle end state to the telephoto end state, and aberration fluctuations during focusing from an infinite object point to a short-distance object point.
  • An optical system can be realized.
  • the fourth lens group and the fifth lens group move to the object side during zooming from the wide-angle end state to the telephoto end state, and the third lens group and the fourth lens group It is desirable that the distance between the fourth lens group and the fifth lens group be reduced.
  • the third lens group includes a cemented lens of a biconvex positive lens and a negative meniscus lens having a concave surface facing the object side in order from the object side along the optical axis. It is desirable that
  • the focusing lens group is further reduced in weight, and autofocus with higher speed and quietness can be realized without increasing the size of the lens barrel.
  • the third lens group is a cemented lens, it is possible to satisfactorily correct chromatic aberration fluctuations during focusing from an infinite object point to a short distance object point.
  • variable power optical system of the present application it is preferable that the following conditional expression (6) is satisfied when the refractive index of the negative meniscus lens is nN and the refractive index of the biconvex positive lens is nP. (6) 0.15 ⁇ nN-nP ⁇ 0.45
  • Conditional expression (6) indicates that a biconvex positive lens and a negative meniscus of the cemented lens constituting the third lens group are used in order to suppress aberration fluctuations during focusing from an infinite object point to a close object point. It defines the appropriate refractive index difference of the lens.
  • conditional expression (6) If the upper limit of conditional expression (6) is exceeded, spherical aberration correction by the cemented surface becomes excessive. Therefore, the spherical aberration variation at the time of focusing from an infinite object point to a short distance object point becomes large, and it becomes difficult to correct the aberration.
  • the effect of this application can be made more reliable by setting the upper limit of conditional expression (6) to 0.38. Further, by setting the upper limit value of conditional expression (6) to 0.35, the effect of the present application can be further ensured.
  • variable power optical system of the present application it is desirable that the following conditional expression (7) is satisfied, where the Abbe number of the biconvex positive lens is ⁇ P and the Abbe number of the negative meniscus lens is ⁇ N. (7) 25.00 ⁇ P ⁇ N ⁇ 45.00
  • Conditional expression (7) defines the difference between the Abbe numbers of the biconvex positive lens and the negative meniscus lens of the cemented lens constituting the third lens group in order to achieve good chromatic aberration correction of the third lens group. Is.
  • the effect of this application can be made more reliable by setting the upper limit of conditional expression (7) to 40.00. Further, by setting the upper limit value of conditional expression (7) to 36.00, the effect of the present application can be further ensured.
  • the effect of this application can be made more reliable by setting the lower limit of conditional expression (7) to 30.00. Further, by setting the lower limit value of conditional expression (7) to 32.00, the effect of the present application can be further ensured.
  • variable power optical system of the present application it is desirable that the following conditional expression (8) is satisfied, where f1 is the focal length of the first lens group and fw is the focal length of the entire system in the wide-angle end state. (8) 3.50 ⁇ f1 / fw ⁇ 5.30
  • Conditional expression (8) defines an appropriate focal length of the first lens group with respect to the focal length of the entire system in the wide-angle end state.
  • the effect of this application can be made more reliable by setting the lower limit of conditional expression (8) to 3.90.
  • the effect of the present application can be further ensured by setting the lower limit value of conditional expression (8) to 4.20.
  • the effect of this application can be made more reliable by setting the upper limit of conditional expression (8) to 4.90.
  • the effect of the present application can be further ensured by setting the upper limit value of conditional expression (8) to 4.70.
  • the zoom optical system of the present application has a structure in which the fourth lens group and the fifth lens group are substantially afocal in the wide-angle end state, and reduces the distance between the lens groups when zooming from the wide-angle end to the telephoto end. By changing in this way, it is possible to obtain a structure in which various aberrations are corrected more favorably from the wide-angle end to the telephoto end.
  • Conditional expression (9) defines an appropriate ratio between the focal length of the fourth lens group and the focal length of the fifth lens group.
  • the variable power optical system of the present application can achieve good correction of field curvature, distortion, and spherical aberration by satisfying conditional expression (9).
  • the refractive power of the fourth lens group becomes larger than the refractive power of the fifth lens group, and it becomes difficult to correct various aberrations including spherical aberration.
  • the effect of this application can be made more reliable by setting the lower limit of conditional expression (9) to 2.50. Further, by setting the lower limit value of conditional expression (9) to 2.70, the effect of the present application can be further ensured.
  • the refractive power of the fourth lens group becomes smaller than the refractive power of the fifth lens group, and it is difficult to correct various aberrations such as field curvature. It becomes.
  • the effect of this application can be made more reliable by setting the upper limit of conditional expression (9) to 3.50. Further, by setting the upper limit value of conditional expression (9) to 3.30, the effect of the present application can be further ensured.
  • the distance between the fourth lens group and the fifth lens group in the wide-angle end state is D45w
  • the distance between the fourth lens group and the fifth lens group in the telephoto end state is D45t.
  • Conditional expression (10) defines an appropriate range of the difference between the air gap between the fourth lens group and the fifth lens group in the wide-angle end state and the air gap between the fourth lens group and the fifth lens group in the telephoto end state. Is. By satisfying conditional expression (10), it is possible to suppress a change in field curvature upon zooming from the wide-angle end to the telephoto end, and to further reduce the overall lens length.
  • the lower limit of conditional expression (10) If the lower limit of conditional expression (10) is not reached, the difference between the air gap between the fourth lens group and the fifth lens group in the wide-angle end state and the air gap between the fourth lens group and the fifth lens group in the telephoto end state is small. Therefore, it is difficult to satisfactorily correct the change in field curvature during zooming from the wide-angle end to the telephoto end.
  • the effect of this application can be made more reliable by setting the lower limit of conditional expression (10) to 0.22.
  • the effect of the present application can be further ensured by setting the lower limit value of conditional expression (10) to 0.25.
  • the upper limit of conditional expression (10) when the upper limit of conditional expression (10) is exceeded, the difference between the air gap between the fourth lens group and the fifth lens group in the wide-angle end state and the air gap between the fourth lens group and the fifth lens group in the telephoto end state. Increases, and the total lens length in the wide-angle end state becomes longer.
  • the effect of this application can be made more reliable by setting the upper limit of conditional expression (10) to 0.33.
  • the effect of the present application can be further ensured by setting the upper limit value of conditional expression (10) to 0.32.
  • variable magnification optical system of the present application it is desirable that the most object side surface of the third lens group is an aspherical surface.
  • This camera 1 is a so-called mirrorless camera of interchangeable lens provided with a variable magnification optical system ZL according to the present embodiment as a photographing lens 2.
  • a photographing lens 2 In the camera 1, light from an object (subject) (not shown) is collected by the taking lens 2, and an object image is formed on the imaging surface of the imaging unit 3 via an OLPF (not shown), that is, an optical low-pass filter. Form.
  • the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject.
  • This image is displayed on the EVF 4 provided in the camera 1, that is, an electronic viewfinder.
  • the photographer can observe the subject via the EVF 4.
  • variable power optical system ZL is applied to a single-lens reflex camera that has a quick return mirror in the camera body and observes a subject with a finder optical system. Even when the camera is mounted, the same effect as the camera 1 can be obtained.
  • the optical apparatus according to the present embodiment includes the variable magnification optical system ZL having the above-described configuration, thereby realizing high-speed AF without increasing the size of the lens barrel and quietness during AF, Furthermore, it is possible to realize an optical apparatus that can satisfactorily suppress aberration fluctuations during zooming from the wide-angle end state to the telephoto end state and during focusing from an object at infinity to a short-distance object.
  • variable magnification optical system ZL having the five-group configuration is shown, but the above-described configuration conditions and the like can be applied to other group configurations such as the sixth group and the seventh group. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
  • the focusing lens group may be a focusing lens group that performs focusing from an object at infinity to a short distance object by moving a single lens group, a plurality of lens groups, or a partial lens group in the optical axis direction.
  • the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor).
  • the third lens group G3 is a focusing lens group as described above.
  • the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or is rotated (swayed) in the in-plane direction including the optical axis to reduce image blur caused by camera shake.
  • a vibration-proof lens group to be corrected may be used.
  • the lens surface may be formed of a spherical surface, a flat surface, or an aspheric surface. It is preferable that the lens surface is a spherical surface or a flat surface because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment is prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop S is preferably disposed in the vicinity of the third lens group G3.
  • the role of the aperture stop may be substituted by a lens frame without providing a member as an aperture stop.
  • each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast.
  • the zoom optical system ZL of the first embodiment has a zoom ratio of about 5 to 15 times.
  • step S100 the first to fourth lens groups G1 to G4 and the subsequent lens group GR are prepared by arranging each lens.
  • step S200 during zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 changes, and the distance between the second lens group G2 and the third lens group G3. Is changed, the distance between the third lens group G3 and the fourth lens group G4 is changed, and the distance between the fourth lens group G4 and the subsequent lens group GR is changed.
  • step S300 the third lens group G3 is arranged so as to move along the optical axis when focusing from infinity to a close object.
  • step S400 the lens groups G1 to G4 and GR are arranged so as to satisfy the conditional expression (1).
  • a positive meniscus lens L13 having a convex surface facing the object side is arranged as the first lens group G1, and an aspheric surface made of plastic resin is formed on the object side surface of the negative meniscus lens having a convex surface facing the object side.
  • the provided negative lens L21, biconcave negative lens L22, biconvex positive lens L23, and biconcave negative lens L24 are arranged as a second lens group G2, and the object side lens surface is aspheric.
  • a cemented lens of a positive lens L31 having a shape and a negative meniscus lens L32 having a concave surface facing the object side is arranged as a third lens group G3, and a negative meniscus lens L41 having a convex surface facing the object side and a biconvex shape
  • a positive lens L42 is disposed to form a fourth lens group G4, and a negative lens L51 having an aspheric object side lens surface and a positive meniscus lens L52 having a convex surface facing the object side.
  • a sixth lens unit composed of a positive lens L61 having a biconvex shape, a positive lens L62 having a biconvex shape, and a negative meniscus lens L63 having a concave surface facing the object side.
  • a group is arranged to be a subsequent lens group GR.
  • the lens groups thus prepared are arranged in the above-described procedure to manufacture the variable magnification optical system ZL.
  • variable magnification optical system According to the second embodiment of the present application, an outline of a method for manufacturing the variable magnification optical system according to the second embodiment of the present application will be described with reference to FIG.
  • the variable power optical system manufacturing method shown in FIG. 18 includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, And a fourth lens group having negative refracting power, and a fifth lens group having positive refracting power. Steps S100 to S300 are included.
  • Step S100 At the time of zooming from the wide-angle end state to the telephoto end state, the first lens group moves to the object side, the distance between the first lens group and the second lens group is increased, and the second lens group And the distance between the third lens group is reduced, the distance between the third lens group and the fourth lens group is changed, and the distance between the fourth lens group and the fifth lens group is changed.
  • Step S200 The third lens group is configured to move when focusing from an object point at infinity to an object point at a short distance.
  • Step S300 When the focal length of the second lens group is f2, the focal length of the third lens group is f3, and the focal length of the entire system in the telephoto end state is ft, the following conditional expression (4) (5) is satisfied. (4) 0.23 ⁇ f3 / ft ⁇ 0.35 (5) 2.60 ⁇ ( ⁇ f3) / f2 ⁇ 3.60
  • the first and second examples correspond to the first embodiment
  • the third, fourth, and fifth examples correspond to the second embodiment.
  • 1 and 4 are cross-sectional views showing the configuration and refractive power distribution of the variable magnification optical system ZL according to the first and second examples, that is, the variable magnification optical system ZL1 and the variable magnification optical system ZL2, respectively. is there.
  • the GR of the lens groups G1 to G4 and the lens groups G5 and G6 when changing magnification from the wide-angle end state W to the telephoto end state T is shown.
  • the direction of movement along the optical axis is indicated by arrows.
  • the aspherical surface has a height in the direction perpendicular to the optical axis as y, and the distance along the optical axis from the tangential plane of each aspherical vertex to the aspherical surface at the height y, that is, the sag.
  • the secondary aspheric coefficient A2 is zero.
  • an aspherical surface is marked with * on the right side of the surface number.
  • FIG. 1 is a diagram showing a configuration of a variable magnification optical system ZL1 according to the first example.
  • the zoom optical system ZL1 shown in FIG. 1 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive
  • the lens unit includes a third lens group G3 having a refractive power, a fourth lens group G4 having a positive refractive power, and a subsequent lens group GR.
  • the subsequent lens group GR includes, in order from the object side, a fifth lens group G5 having a negative refractive power and a sixth lens group G6 having a positive refractive power.
  • the first lens group G1 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and an object side. It is composed of a positive meniscus lens L13 having a convex surface.
  • the second lens group G2 includes, in order from the object side, a negative lens L21 provided with an aspheric surface made of plastic resin on the object side surface of a negative meniscus lens having a convex surface facing the object side, and a biconcave shape.
  • the lens includes a negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24.
  • the third lens group G3 includes, in order from the object side, a cemented lens of a positive lens L31 having an aspheric object side lens surface and a negative meniscus lens L32 having a concave surface facing the object side.
  • the fourth lens group G4 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42.
  • the fifth lens group G5 includes, in order from the object side, a cemented negative lens of a negative lens L51 having an aspheric object side lens surface and a positive meniscus lens L52 having a convex surface facing the object side.
  • the sixth lens group G6 includes, in order from the object side, a biconvex positive lens L61, and a cemented positive lens of a biconvex positive lens L62 and a negative meniscus lens L63 with a concave surface facing the object side. Has been.
  • the air gap between the first lens group G1 and the second lens group G2 increases when zooming from the wide-angle end state to the telephoto end state, and the second lens group.
  • the air gap between G2 and the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the fourth lens group G4 and the fifth lens group G5 increases.
  • Each lens group from the first lens group G1 to the sixth lens group G6 moves in the object direction so that the air gap between the fifth lens group G5 and the sixth lens group G6 decreases and increases.
  • the aperture stop S moves integrally with the fourth lens group G4, that is, with the same movement amount.
  • variable magnification optical system ZL1 moves the third lens group G3 that is a focusing lens group from the long-distance object to the short-distance object by moving the third lens group G3 along the optical axis in the image plane direction. Is focused.
  • variable magnification optical system ZL1 corrects the displacement of the imaging position due to camera shake or the like by moving the fifth lens group G5 so as to have a component in a direction orthogonal to the optical axis. To do.
  • Table 1 below lists values of specifications of the variable magnification optical system ZL1 according to the first example.
  • f is the focal length of the entire system
  • FNO is the F number
  • 2 ⁇ is the angle of view
  • Ymax is the maximum image height
  • TL is the total length
  • OP is the object plane
  • I is the image plane.
  • the total length TL represents the distance on the optical axis from the first surface of the lens surface to the image plane I when focusing on infinity.
  • W indicates the wide-angle end state
  • M indicates the intermediate focal length state
  • T indicates the telephoto end state.
  • the first column m in the lens data indicates the order of the lens surfaces from the object side along the light traveling direction, that is, the surface number
  • the second column r indicates the curvature radius of each lens surface.
  • Column d is the distance on the optical axis from each optical surface to the next optical surface, that is, the surface spacing.
  • the radius of curvature ⁇ indicates a plane, and the refractive index of air 1.000 is omitted.
  • the surface numbers 1 to 29 shown in Table 1 correspond to the numbers 1 to 29 shown in FIG.
  • the lens group focal length indicates the start surface ST of each of the first to sixth lens groups G1 to G6, that is, the surface number of the lens surface closest to the object, and the focal length f.
  • the focal length f, the radius of curvature r, the surface interval d, and other length units listed in all the following specification values are generally “mm”, but the optical system is proportionally enlarged or proportional. Since the same optical performance can be obtained even if the image is reduced, the present invention is not limited to this.
  • the description of these symbols and the description of the specification table are the same in the second embodiment.
  • the sixth surface, the sixteenth surface, and the twenty-second surface are formed in an aspherical shape.
  • Table 2 below shows aspheric data, that is, the values of the conical constant K and the aspheric constants A4 to A10.
  • m represents the order (surface number) of the lens surfaces from the object side along the traveling direction of the light beam.
  • variable magnification optical system ZL1 In the variable magnification optical system ZL1 according to the first example, the axial air distance d5 between the first lens group G1 and the second lens group G2, the axial air distance d14 between the second lens group G2 and the aperture stop S, The axial air gap d15 between the aperture stop S and the third lens group G3, the axial air gap d18 between the third lens group G3 and the fourth lens group G4, and the axes of the fourth lens group G4 and the fifth lens group G5 The upper air interval d21, the on-axis air interval d24 between the fifth lens group G5 and the sixth lens group G6, and the back focus BF change as described above.
  • Table 3 shows the values of the variable interval and the back focus BF at the respective focal lengths in the wide-angle end state W, the intermediate focal length state M, and the telephoto end state T when focusing at infinity and when focusing at close range. Show. Note that the back focus BF indicates the distance on the optical axis from the most image side lens surface (the 29th surface in FIG. 1) to the image surface I. The same applies to the second embodiment.
  • Table 4 below shows values corresponding to the conditional expressions in the variable magnification optical system ZL1 according to the first example.
  • f1 is the focal length of the first lens group G1
  • f2 is the focal length of the second lens group G2
  • f3 is the focal length of the third lens group G3
  • f4 is the fourth lens group G4.
  • Fw represents the focal length of the entire system in the wide-angle end state of the variable magnification optical system ZL1. The description of the above symbols is the same in the second embodiment.
  • variable magnification optical system ZL1 satisfies all the conditional expressions (1) to (3).
  • FIG. 2 shows various aberration diagrams of the variable magnification optical system ZL1 according to the first example when focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state, and shows the wide-angle end state and the intermediate focal length state.
  • FIG. 3 is a diagram showing various aberrations when focusing at a short distance in the telephoto end state.
  • FNO represents an F number
  • NA represents a numerical aperture
  • Y represents an image height.
  • the spherical aberration diagram shows the F-number or numerical aperture value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the coma diagram shows the value of each image height. .
  • variable magnification optical system ZL1 according to the first example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that the imaging performance is excellent even during focusing.
  • FIG. 4 is a diagram showing a configuration of the variable magnification optical system ZL2 according to the second example.
  • the zoom optical system ZL2 shown in FIG. 4 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive
  • the lens unit includes a third lens group G3 having a refractive power, a fourth lens group G4 having a positive refractive power, and a subsequent lens group GR.
  • the subsequent lens group GR includes, in order from the object side, a fifth lens group G5 having a negative refractive power and a sixth lens group G6 having a positive refractive power.
  • the first lens group G1 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L11 having a convex surface directed toward the object side and a biconvex positive lens L12, and an object side. It is composed of a positive meniscus lens L13 having a convex surface.
  • the second lens group G2 includes, in order from the object side, a negative lens L21 provided with an aspheric surface made of plastic resin on the object side surface of a negative meniscus lens having a convex surface facing the object side, and a biconcave shape.
  • the lens includes a negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24.
  • the third lens group G3 includes a positive lens L31 having an aspheric object side lens surface.
  • the fourth lens group G4 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L41 having a convex surface facing the object side and a biconvex positive lens L42.
  • the fifth lens group G5 includes, in order from the object side, a cemented negative lens of a negative lens L51 having an aspheric object side lens surface and a positive meniscus lens L52 having a convex surface facing the object side.
  • the sixth lens group G6 includes, in order from the object side, a biconvex positive lens L61, and a cemented positive lens of a biconvex positive lens L62 and a negative meniscus lens L63 having a concave surface facing the object side. Has been.
  • the air gap between the first lens group G1 and the second lens group G2 increases during zooming from the wide-angle end state to the telephoto end state, and the second lens group.
  • the air gap between G2 and the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the fourth lens group G4 and the fifth lens group G5 increases.
  • Each lens group from the first lens group G1 to the sixth lens group G6 moves in the object direction so that the air gap between the fifth lens group G5 and the sixth lens group G6 decreases and increases.
  • the aperture stop S moves together with the fourth lens group G4 (with the same movement amount).
  • variable magnification optical system ZL2 moves the third lens group G3 that is a focusing lens group from the long-distance object to the short-distance object by moving in the image plane direction along the optical axis. Is focused.
  • variable magnification optical system ZL2 corrects the displacement of the imaging position due to camera shake or the like by moving the fifth lens group G5 so as to have a component in a direction orthogonal to the optical axis. To do.
  • Table 5 below lists values of specifications of the variable magnification optical system ZL2 according to the second example.
  • the surface numbers 1 to 28 shown in Table 5 correspond to the numbers 1 to 28 shown in FIG.
  • the sixth surface, the sixteenth surface, and the twenty-first surface are formed in an aspherical shape.
  • Table 6 below shows the aspheric data, that is, the values of the conic constant K and the aspheric constants A4 to A10.
  • m represents the order of the lens surfaces from the object side along the traveling direction of the light beam, that is, the surface number.
  • variable magnification optical system ZL2 In the variable magnification optical system ZL2 according to the second example, the axial air distance d5 between the first lens group G1 and the second lens group G2, the axial air distance d14 between the second lens group G2 and the aperture stop S, The axial air gap d15 between the aperture stop S and the third lens group G3, the axial air gap d17 between the third lens group G3 and the fourth lens group G4, and the axes of the fourth lens group G4 and the fifth lens group G5
  • the upper air gap d20, the axial air gap d23 between the fifth lens group G5 and the sixth lens group G6, and the back focus BF change as described above.
  • Table 7 below shows the values of the variable interval and the back focus BF at the respective focal lengths in the wide-angle end state W, the intermediate focal length state M, and the telephoto end state T when focusing at infinity and focusing at a short distance. Show.
  • Table 8 shows values corresponding to the conditional expressions in the variable magnification optical system ZL2 according to the second example.
  • variable magnification optical system ZL2 satisfies all the conditional expressions (1) to (3).
  • FIG. 5 shows various aberration diagrams of the variable magnification optical system ZL2 according to the second example when focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state, and shows the wide-angle end state and the intermediate focal length state.
  • FIG. 6 is a diagram showing various aberrations when focusing at a short distance in the telephoto end state. From these respective aberration diagrams, the variable magnification optical system ZL2 according to the second example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that the imaging performance is excellent even during focusing.
  • variable magnification optical system according to the third to fifth examples of the present application corresponding to the second embodiment will be described with reference to the accompanying drawings.
  • FIG. 7 is a diagram showing a lens configuration of a variable magnification optical system according to the third example of the present application.
  • the variable magnification optical system includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and an aperture.
  • the aperture stop S includes a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 has, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L13.
  • the second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and an object side. And a negative meniscus lens L24 having a concave surface facing the surface.
  • the negative meniscus lens L21 of the second lens group G2 includes an aspheric thin plastic resin layer on the object side lens surface.
  • the third lens group G3 is composed of a cemented positive lens composed of a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface directed toward the object side.
  • the positive lens L31 of the third lens group G3 has an aspheric object side lens surface.
  • the fourth lens group G4 includes, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42, and a biconcave negative lens L43. And a negative lens cemented with a positive meniscus lens L44 having a convex surface facing the object side.
  • the negative lens L43 of the fourth lens group G4 has an aspheric object side lens surface.
  • the fifth lens group G5 includes, in order from the object side along the optical axis, a biconvex positive lens L51, a biconvex positive lens L52, and a negative meniscus lens L53 having a concave surface facing the object side. It consists of.
  • the air gap between the first lens group G1 and the second lens group G2 increases during zooming from the wide-angle end state to the telephoto end state, and the second lens group G2 and the third lens group G3.
  • the first air gap is reduced so that the air gap between the lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the fourth lens group G4 and the fifth lens group G5 decreases.
  • Each lens group from the lens group G1 to the fifth lens group G5 moves to the object side.
  • the aperture stop S moves together with the fourth lens group G4.
  • focusing from an infinite object point to a short-distance object point is performed by moving the third lens group G3 to the image plane side.
  • variable magnification optical system the negative lens L43 and the positive meniscus lens L44 in the fourth lens group G4 are moved in a direction including a direction component perpendicular to the optical axis by moving the camera shake.
  • the imaging position displacement due to the above is corrected.
  • Table 9 lists values of specifications of the variable magnification optical system according to the present example.
  • m is the order of the lens surfaces counted from the object side along the optical axis
  • r is the radius of curvature
  • d is the interval, that is, n is an integer.
  • OP indicates an object plane
  • variable indicates a variable surface interval
  • aperture indicates an aperture stop S
  • BF indicates a back focus
  • I indicates an image plane.
  • “*” is attached to the surface number of the aspherical surface, and the paraxial radius of curvature is shown in the column of the radius of curvature r.
  • [Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
  • x (h 2 / r) / [1+ ⁇ 1- ⁇ (h / r) 2 ⁇ 1/2 ] + A4h 4 + A6h 6 + A8h 8 + A10h 10
  • x is the distance along the optical axis direction from the tangent plane of each aspheric surface at a height h in the vertical direction from the optical axis, that is, the sag amount
  • is the conic constant
  • A4”, “A6”, “A8”, and “A10” are aspherical coefficients
  • r is a radius of curvature of the reference spherical surface, that is, a paraxial radius of curvature.
  • E ⁇ n indicates “ ⁇ 10 ⁇ n ”
  • 1.234E-05 indicates “1.234 ⁇ 10 ⁇ 5 ”.
  • f is the focal length
  • FNO is the F number
  • 2 ⁇ is the angle of view with the unit “°”
  • Ymax is the maximum image height
  • TL is “BF” indicates the total length of the optical system, that is, the distance on the optical axis from the first surface of the lens surface to the image plane I
  • BF indicates the back focus.
  • dn indicates a variable interval between the n-th surface and the (n + 1) -th surface.
  • [Lens group data] indicates the start surface ST and focal length f of each lens group.
  • mm is generally used as a unit of focal length f, radius of curvature r, surface interval, and other lengths listed in Table 9.
  • the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
  • FIGS. 8A, 8B, and 8C are graphs showing various aberrations during focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • FIGS. 9A, 9B, and 9C are graphs showing various aberrations at the time of focusing at a short distance in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • the spherical aberration diagram shows the F-number or numerical aperture value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the coma diagram shows the value of each image height.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane. Note that the same reference numerals as in this example are also used in the aberration diagrams of the examples shown below.
  • variable magnification optical system has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • FIG. 10 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the fourth example of the present application.
  • the variable magnification optical system includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and an aperture.
  • the aperture stop S includes a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 has, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L13.
  • the second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and an object side. And a negative meniscus lens L24 having a concave surface facing the surface.
  • the third lens group G3 is composed of a cemented positive lens composed of a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface directed toward the object side.
  • the positive lens L31 of the third lens group G3 has an aspheric object side lens surface.
  • the fourth lens group G4 includes, in order from the object side along the optical axis, a biconvex positive lens L41, a biconcave negative lens L42, and a positive meniscus lens L43 having a convex surface facing the object side. It consists of.
  • the negative lens L42 of the fourth lens group G4 has an aspheric object side lens surface.
  • the air gap between the first lens group G1 and the second lens group G2 increases, and the second lens group G2
  • the air gap between the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the fourth lens group G4 and the fifth lens group G5 decreases.
  • Each lens group from the first lens group G1 to the fifth lens group G5 moves to the object side.
  • the aperture stop S moves together with the fourth lens group G4.
  • variable magnification optical system focusing from an infinite object point to a short-distance object point is performed by moving the third lens group G3 to the image plane side.
  • variable magnification optical system the negative lens L42 and the positive meniscus lens L43 in the fourth lens group G4 are moved in a direction including a direction component orthogonal to the optical axis by moving the camera shake.
  • the imaging position displacement due to the above is corrected.
  • Table 10 lists values of specifications of the variable magnification optical system according to the fourth example.
  • FIGS. 11A, 11B, and 11C are graphs showing various aberrations during focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example.
  • FIGS. 12A, 12B, and 12C are graphs showing various aberrations during focusing at a short distance in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom optical system according to the fourth example.
  • variable magnification optical system has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • FIG. 13 is a diagram showing a lens configuration of a variable magnification optical system according to the fifth example of the present application.
  • the variable magnification optical system includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and an aperture.
  • the aperture stop S includes a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 has, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L13.
  • the second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave And a negative lens L24 having a shape.
  • the negative meniscus lens L21 of the second lens group G2 includes an aspheric thin plastic resin layer on the object side lens surface.
  • the third lens group G3 is composed of a cemented positive lens composed of a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface directed toward the object side.
  • the positive lens L31 of the third lens group G3 has an aspheric object side lens surface.
  • the fourth lens group G4 includes, in order from the object side along the optical axis, a biconvex positive lens L41, a biconcave negative lens L42, and a positive meniscus lens L43 having a convex surface facing the object side. It consists of.
  • the negative lens L42 of the fourth lens group G4 has an aspheric object side lens surface.
  • the fifth lens group G5 includes, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L51 having a convex surface directed toward the object side and a biconvex positive lens L52, and a biconvex positive lens L53. And a cemented positive lens with a negative meniscus lens L54 having a concave surface facing the object side.
  • the air gap between the first lens group G1 and the second lens group G2 increases during zooming from the wide-angle end state to the telephoto end state, and the second lens group G2
  • the air gap between the third lens group G3 decreases
  • the air gap between the third lens group G3 and the fourth lens group G4 increases
  • the air gap between the fourth lens group G4 and the fifth lens group G5 decreases.
  • Each lens group from the first lens group G1 to the fifth lens group G5 moves to the object side.
  • the aperture stop S moves together with the fourth lens group G4.
  • variable magnification optical system focusing from an infinite object point to a short-distance object point is performed by moving the third lens group G3 to the image plane side.
  • variable magnification optical system the negative lens L42 and the positive meniscus lens L43 in the fourth lens group G4 are moved in a direction including a direction component orthogonal to the optical axis by moving the camera shake.
  • the imaging position displacement due to the above is corrected.
  • Table 11 lists values of specifications of the variable magnification optical system according to the fifth example.
  • FIGS. 14A, 14B, and 14C are graphs showing various aberrations during focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • FIGS. 15A, 15B, and 15C are graphs showing various aberrations in focusing at a short distance in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • variable magnification optical system has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • the focusing lens group is reduced in size and weight, thereby realizing high-speed and quiet autofocus without increasing the size of the lens barrel. Further, from the wide-angle end state to the telephoto end state It is possible to realize a variable magnification optical system that satisfactorily suppresses aberration fluctuations during zooming and aberration fluctuations during focusing from an infinite object point to a short distance object point.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Nonlinear Science (AREA)

Abstract

 物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、第4レンズ群G4と、後続レンズ群GRと、を有し、変倍に際し、第1レンズ群G1と第2レンズ群G2、第2レンズ群G2と第3レンズ群G3、第3レンズ群G3と第4レンズ群G4、第4レンズ群G4と後続レンズ群GR、の間隔が変化し、合焦に際し、第3レンズ群G3が光軸に沿って移動し、所定の条件を満足することにより、合焦レンズ群を小型軽量化することで、鏡筒を大型化することなく高速なAF、及び、AF時の静粛性を実現し、さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた変倍光学系、光学装置及びこの変倍光学系の製造方法を提供することができる。

Description

変倍光学系、光学装置及び変倍光学系の製造方法
 本発明は、変倍光学系、光学装置及び変倍光学系の製造方法に関する。
 従来、IF、即ち、インナー・フォーカス方式の導入で、合焦レンズ群の軽量化がなされた写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1、2参照)。
特許第4876509号公報 特開2010-237453号公報
 しかしながら、従来の変倍光学系において、AF、即ち、オート・フォーカス時の十分な静粛性を実現するためには合焦レンズ群の軽量化が、不十分であり、また、合焦レンズ群の重量が大きいために、高速にAFを行おうとすると、大きなモータやアクチュエータが必要となり、鏡筒が大型化してしまうという課題があった。
 本発明はこのような課題に鑑みてなされたものであり、合焦レンズ群を小型軽量化することで、鏡筒を大型化することなく高速なAF、及び、AF時の静粛性を実現し、さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた変倍光学系、光学装置及びこの変倍光学系の製造方法を提供することを目的とする。
 前記課題を解決するために、本発明の第1の態様に係る変倍光学系は、
 物体側から順に、
 正の屈折力を有する第1レンズ群と、
 負の屈折力を有する第2レンズ群と、
 正の屈折力を有する第3レンズ群と、
 第4レンズ群と、
 少なくとも1つのレンズ群を含む後続レンズ群と、を有し、
 広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記後続レンズ群との間隔が変化し、前記後続レンズ群が複数のレンズ群から構成されるときは、前記複数のレンズ群の各々の間隔が変化し、
 無限遠から近距離物体への合焦に際し、前記第3レンズ群が光軸に沿って移動し、
 次式の条件を満足することを特徴とする。
  0.60 < f3/f4 < 1.30
 但し、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
 前記課題を解決するために、本発明の第2の態様に係る変倍光学系は、
 光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有し、
 広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群の間隔が変化し、前記第2レンズ群と前記第3レンズ群の間隔が変化し、前記第3レンズ群と前記第4レンズ群の間隔が変化し、前記第4レンズ群と前記第5レンズ群の間隔が変化し、前記第1レンズ群が物体側へ移動し、
 無限遠物点から近距離物点への合焦時に、前記第3レンズ群が移動し、
 以下の条件式を満足することを特徴とする。
  0.23<f3/ft<0.35
  2.60<(-f3)/f2<3.60
 但し、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
ft:望遠端状態における全系の焦点距離
 本発明に係る光学装置は、上記いずれかの変倍光学系を備えたことを特徴とする。
 また、本発明の第1の態様に係る変倍光学系の製造方法は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、第4レンズ群と、少なくとも1つのレンズ群を含む後続レンズ群と、を有する変倍光学系の製造方法であって、
 広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記後続レンズ群との間隔が変化し、前記後続レンズ群が複数のレンズ群から構成されるときは、前記複数のレンズ群の各々の間隔が変化するように配置し、
 無限遠から近距離物体への合焦に際し、前記第3レンズ群が光軸に沿って移動するように配置し、
 次式の条件を満足するように配置することを特徴とする。
  0.60 < f3/f4 < 1.30
 但し、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
 本発明の第2の態様に係る変倍光学系の製造方法は、
 光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有する変倍光学系の製造方法であって、
 広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群の間隔が変化し、前記第2レンズ群と前記第3レンズ群の間隔が変化し、前記第3レンズ群と前記第4レンズ群の間隔が変化し、前記第4レンズ群と前記第5レンズ群の間隔が変化し、前記第1レンズ群が物体側へ移動するようにし、
 無限遠物点から近距離物点への合焦時に、前記第3レンズ群が移動するようにし、
 以下の条件式を満足するようにすることを特徴とする。
  0.23<f3/ft<0.35
  2.60<(-f3)/f2<3.60
 但し、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
ft:望遠端状態における全系の焦点距離
 本発明によれば、合焦レンズ群を小型軽量化することで、鏡筒を大型化することなく高速なAF、及び、AF時の静粛性を実現し、さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた変倍光学系、光学装置及びこの変倍光学系の製造方法を提供することができる。
図1は第1実施例に係る変倍光学系のレンズ構成を示す断面図である。 図2A、図2B及び図2Cは第1実施例に係る変倍光学系の無限遠合焦時の諸収差図であって、図2Aは広角端状態を示し、図2Bは中間焦点距離状態を示し、図2Cは望遠端状態を示す。 図3A、図3B及び図3Cは第1実施例に係る変倍光学系の近距離合焦時の諸収差図であって、図3Aは広角端状態を示し、図3Bは中間焦点距離状態を示し、図3Cは望遠端状態を示す。 図4は第2実施例に係る変倍光学系のレンズ構成を示す断面図である。 図5A、図5B及び図5Cは第2実施例に係る変倍光学系の無限遠合焦時の諸収差図であって、図5Aは広角端状態を示し、図5Bは中間焦点距離状態を示し、図5Cは望遠端状態を示す。 図6A、図6B及び図6Cは第2実施例に係る変倍光学系の近距離合焦時の諸収差図であって、図6Aは広角端状態を示し、図6Bは中間焦点距離状態を示し、図6Cは望遠端状態を示す。 図7は本願の第3実施例に係る変倍光学系のレンズ構成を示す図である。 図8A、図8B、及び図8Cはそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 図9A、図9B及び図9Cはそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 図10は本願の第4実施例に係る変倍光学系のレンズ構成を示す図である。 図11A、図11B及び図11Cはそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 図12A、図12B及び図12Cはそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 図13は本願の第5実施例に係る変倍光学系のレンズ構成を示す図である。 図14A、図14B、及び図14Cはそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 図15A、図15B、及び図15Cはそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 図16は上記変倍光学系を搭載するカメラの断面図である。 図17は上記変倍光学系の製造方法を説明するためのフローチャートである。 図18は上記変倍光学系の製造方法を説明するためのフローチャートである。
(第1実施形態)
 以下、本発明の好ましい実施形態について図面を参照して説明する。図1に示すように、本願の第1実施形態に係る変倍光学系ZLは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、少なくとも1つのレンズ群を含む後続レンズ群GRと、を有して構成されている。また、この変倍光学系ZLは、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と後続レンズ群GRとの間隔が変化し、さらに、後続レンズ群GRが複数のレンズ群から構成されるときは、この複数のレンズ群の各々の間隔が変化させることで、変倍時の良好な収差補正を図ることができる。
 この変倍光学系ZLは、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が増大することで、所定の変倍比を確保することができる。さらに、この変倍光学系ZLは、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1を物体方向に移動させる構成とすることで、広角端状態でのレンズ全長の短縮と、第1レンズ群の有効径の縮小ができ、変倍光学系ZLの小型化を図ることができる。
 また、この変倍光学系ZLは、無限遠物体から近距離物体への合焦時に、第3レンズ群G3が光軸に沿って移動するように構成されている。このような構成にすることで、ピント合わせの際の像の大きさの変化を抑えることができ、また、球面収差等の収差変動を良好に抑えることができる。なお、以降の説明においては、この第3レンズ群G3を「合焦レンズ群」とも呼ぶ。
 また、この変倍光学系ZLは、以下に示す条件式(1)を満足することが望ましい。
(1) 0.60 < f3/f4 < 1.30      
 但し、
  f3:第3レンズ群G3の焦点距離
  f4:第4レンズ群G4の焦点距離
 条件式(1)は、無限遠物体から近距離物体への合焦時の収差変動の抑制と諸収差の良好な補正に適した第4レンズ群G4の焦点距離に対する第3レンズ群G3の焦点距離を規定するものである。この条件式(1)の上限値を上回ると、第4レンズ群G4の屈折力が大きくなり、球面収差をはじめとする諸収差を補正することが困難となる。また、第3レンズ群G3の屈折力が小さくなり、無限遠物体から近距離物体への合焦時の第3レンズ群G3の移動量が大きくなるため、レンズ全長の大型化につながってしまう。なお、条件式(1)の上限値を1.10に設定することで、本願の効果をより確実なものにすることができる。一方、この条件式(1)の下限値を下回ると、第3レンズ群G3の屈折力が大きくなり、無限遠物体から近距離物体への合焦時の収差変動が大きくなってしまう。なお、条件式(1)の下限値を0.80に設定することで、本願の効果をより確実なものにすることができる。
 また、この変倍光学系ZLは、合焦レンズ群である第3レンズ群G3が1枚の正レンズ、もしくは、1つの正の屈折力を有する接合レンズのみで構成されていることが望ましい。この構成により、合焦レンズ群が軽量化され、鏡筒を大型化することなく高速なAF、及び、AF時の静粛性を実現することができる。
 また、この変倍光学系ZLは、合焦レンズ群である第3レンズ群G3の最も物体側の面が非球面であることが望ましい。このとき、その非球面形状が、光軸から離れるに従い正の屈折力を弱くするような形状であるとさらに望ましい。この構成により、合焦レンズ群の軽量化と無限遠物体から近距離物体への合焦時の収差変動の抑制が両立でき、鏡筒を大型化することなく高速なAF、及び、AF時の静粛性を実現することができる。
 また、この変倍光学系ZLは、以下に示す条件式(2)を満足することが望ましい。
(2) 0.11 < (-f2)/f1 < 0.19
 但し、
  f2:第2レンズ群G2の焦点距離
  f1:第1レンズ群G1の焦点距離
 条件式(2)は、十分な変倍比を確保し、良好な光学性能を実現するための第1レンズ群G1の焦点距離に対する第2レンズ群G2の焦点距離を規定するものである。この条件式(2)の上限値を上回ると、第1レンズ群G1の屈折力が強くなり、望遠端における球面収差の劣化が著しくなる。また、広角端における倍率色収差の劣化も顕著となるため好ましくない。なお、条件式(2)の上限値を0.16とすることで、本願の効果をより確実なものとすることができる。一方、この条件式(2)の下限値を下回ると、第2レンズ群G2の屈折力が強くなり、広角端における軸外収差、特に像面湾曲と非点収差の補正が困難となる。なお、条件式(2)の下限値を0.14に設定することで、本願の効果をより確実なものとすることができる。
 また、この変倍光学系ZLは、以下に示す条件式(3)を満足することが望ましい。
(3) 3.00 < f1/fw < 6.00      
 但し、
  f1:第1レンズ群G1の焦点距離
  fw:広角端状態における全系の焦点距離
 条件式(3)は、広角端状態における変倍光学系ZLの焦点距離に対する第1レンズ群G1の適正な焦点距離を規定するものである。この条件式(3)を満足することにより、レンズ全長の小型化と、像面湾曲、歪曲収差、及び球面収差の良好な補正を両立することができる。条件式(3)の下限値を下回ると、第1レンズ群G1の屈折力が大きくなり、球面収差をはじめとする諸収差を補正することが困難となる。なお、条件式(3)の下限値を4.00に設定することで、本願の効果をより確実なものとすることができる。一方、この条件式(3)の上限値を上回ると、第1レンズ群G1の屈折力が小さくなり、レンズ全長の小型化が困難となる。なお、条件式(3)の上限値を5.00に設定することで、本願の効果をより確実なものとすることができる。
 また、この変倍光学系ZLは、後続レンズ群GRの少なくとも一部を光軸と直交する方向の成分を持つように移動させることによって、手ブレ等による結像位置の変位を補正するレンズ群を有することが望ましい。この構成により、効果的に手ブレ等による結像位置の変位を補正することができる。
(第2実施形態)
 本願の第2実施形態に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群を有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群が物体側に移動し、前記第1レンズ群と前記第2レンズ群の間隔が拡大し、前記第2レンズ群と前記第3レンズ群の間隔が縮小し、前記第3レンズ群と前記第4レンズ群の間隔が変化し、前記第4レンズ群と前記第5レンズ群の間隔が変化し、無限遠物点から近距離物点への合焦時に、前記第3レンズ群が移動する構成である。
 このように、本願の変倍光学系は、5つのレンズ群を有し、広角端状態から望遠端状態への変倍時に、各レンズ群間隔を変化させることで、変倍時の良好な収差補正をすることができる。また、広角端状態から望遠端状態への変倍時に、第1レンズ群と第2レンズ群の間隔を拡大し、第2レンズ群と第3レンズ群の間隔を縮小することで、4倍程度以上の変倍比を確保することができる。さらに、広角端状態から望遠端状態への変倍時に、第1レンズ群を物体側に移動させる構成とすることで、広角端状態でのレンズ全長の短縮と、第1レンズ群の有効径の縮小ができ、変倍光学系の小型化を図ることができる。
 また、本願の変倍光学系は、前記第3レンズ群の焦点距離をf3とし、望遠端状態における全系の焦点距離をftとしたとき、以下の条件式(4)を満足するように構成されている。
(4) 0.23<f3/ft<0.35
 上記条件式(4)は、変倍光学系の大型化の抑制と無限遠物点から近距離物点への合焦時の収差変動を抑制するために、望遠端状態における変倍光学系の焦点距離に対する第3レンズ群の適正な焦点距離を規定するものである。
 条件式(4)の上限値を上回ると、第3レンズ群の屈折力が小さくなり、広角端状態から望遠端状態への変倍や無限遠物点から近距離物点への合焦のための第3レンズ群の移動量が増大し、光学系が大型化してしまう。また、条件式(4)の上限値を上回ると、無限遠物点から近距離物点への合焦のための第3レンズ群の移動量が増大するため、望遠端状態での無限遠物点から近距離物点への合焦時の球面収差をはじめとする諸収差の変動が増大する。なお、条件式(4)の上限値を0.32に設定することで、本願の効果をより確実なものとすることができる。また、条件式(4)の上限値を0.31に設定することで、本願の効果を更に確実なものとすることができる。
 一方、条件式(4)の下限値を下回ると、第3レンズ群の屈折力が大きくなり、望遠端状態での無限遠物点から近距離物点への合焦時の球面収差の変化が増大する。なお、条件式(4)の下限値を0.26に設定することで、本願の効果をより確実なものとすることができる。また、条件式(4)の下限値を0.27に設定することで、本願の効果を更に確実なものとすることができる。
 また、本願の変倍光学系は、前記第2レンズ群の焦点距離をf2とし、前記第3レンズ群の焦点距離をf3としたとき、以下の条件式(5)を満足するように構成されている。
(5) 2.60<(-f3)/f2<3.60
 上記条件式(5)は、無限遠物点から近距離物点への合焦時の収差変動の抑制と諸収差の良好な補正に適した、第2レンズ群の焦点距離に対する第3レンズ群の適正な焦点距離を規定するものである。
 条件式(5)の上限値を上回ると、第2レンズ群の屈折力が大きくなり、球面収差をはじめとする諸収差を補正することが困難となる。また、第3レンズ群の移動量が大きくなるため、レンズ全長の大型化につながってしまう。なお、条件式(5)の上限値を3.40に設定することで、本願の効果をより確実なものにすることができる。また、条件式(5)の上限値を3.20に設定することで、本願の効果を更に確実なものにすることができる。
 一方、条件式(5)の下限値を下回ると、第3レンズ群の屈折力が大きくなり、無限遠物点から近距離物点への合焦時の収差変動が大きくなってしまう。なお、条件式(5)の下限値を2.80に設定することで、本願の効果をより確実なものにすることができる。また、条件式(5)の下限値を2.90に設定することで、本願の効果を更に確実なものにすることができる。
 以上の構成により、本願は合焦用レンズ群を小型軽量化することで、鏡筒を大型化することなく、高速で静粛性の高いオートフォーカスを実現している。さらに、以上の構成によって、本願は広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物点から近距離物点への合焦時の収差変動を良好に抑えた変倍光学系を実現することができる。
 本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第4レンズ群と前記第5レンズ群が物体側に移動し、前記第3レンズ群と前記第4レンズ群の間隔が拡大し、前記第4レンズ群と前記第5レンズ群の間隔が縮小することが望ましい。
 この構成により、広角端状態から望遠端状態への変倍時の収差補正と、無限遠物点から近距離物点への合焦時の収差変動の抑制と、4倍程度以上の変倍比の確保を、より確実なものとすることができる。
 また本願の変倍光学系は、前記第3レンズ群が、光軸に沿って物体側から順に、両凸形状の正レンズと、物体側に凹面を向けた負メニスカスレンズとの接合レンズから構成されることが望ましい。
 この構成により、更に合焦用レンズ群が軽量化され、鏡筒を大型化することなく、更に高速で静粛性の高いオートフォーカスを実現することができる。また、前記第3レンズ群が貼り合せレンズであることにより、無限遠物点から近距離物点への合焦時の色収差変動を良好に補正することができる。
 本願の変倍光学系は、前記負メニスカスレンズの屈折率をnNとし、前記両凸形状の正レンズの屈折率をnPとしたとき、以下の条件式(6)を満足することが望ましい。 
(6) 0.15<nN-nP<0.45
 条件式(6)は、無限遠物点から近距離物点への合焦時の収差変動を抑制するために、第3レンズ群を構成する接合レンズの、両凸形状の正レンズと負メニスカスレンズの適切な屈折率差を規定するものである。
 条件式(6)の上限値を上回ると、接合面による球面収差補正が過大となってしまう。そのため、無限遠物点から近距離物点への合焦時の球面収差変動が大きくなり、収差補正が困難となる。なお、条件式(6)の上限値を0.38に設定することで、本願の効果をより確実なものとすることができる。また、条件式(6)の上限値を0.35に設定することで、本願の効果を更に確実なものとすることができる。
 一方、条件式(6)の下限値を下回ると、前記接合レンズの接合面による球面収差補正が不足してしまう。そのため、無限遠物点から近距離物点への合焦時の球面収差変動が大きくなり、収差補正が困難となる。なお、条件式(6)の下限値を0.22に設定することで、本願の効果をより確実なものとすることができる。また、条件式(6)の下限値を0.23に設定することで、本願の効果を更に確実なものとすることができる。
 本願の変倍光学系は、前記両凸形状の正レンズのアッベ数をνPとし、前記負メニスカスレンズのアッベ数をνNとしたとき、以下の条件式(7)を満足することが望ましい。
(7) 25.00<νP-νN<45.00
 条件式(7)は、第3レンズ群の良好な色収差補正を実現するため、第3レンズ群を構成する接合レンズの、両凸形状の正レンズと負メニスカスレンズのアッベ数の差を規定するものである。
 条件式(7)の上限値を上回ると、第3レンズ群の色収差補正が過大となってしまう。そのため、無限遠物点から近距離物点への合焦時の色収差変動が過大となる。なお、条件式(7)の上限値を40.00に設定することで、本願の効果をより確実なものとすることができる。また、条件式(7)の上限値を36.00に設定することで、本願の効果を更に確実なものとすることができる。
 一方、条件式(7)の下限値を下回ると、第3レンズ群の色収差補正が不足してしまう。そのため、無限遠物点から近距離物点への合焦時の色収差変動が過大となる。なお、条件式(7)の下限値を30.00に設定することで、本願の効果をより確実なものとすることができる。また、条件式(7)の下限値を32.00に設定することで、本願の効果を更に確実なものとすることができる。
 また本願の変倍光学系は、前記第1レンズ群の焦点距離をf1とし、広角端状態における全系の焦点距離をfwとしたとき、以下の条件式(8)を満足することが望ましい。 
(8) 3.50<f1/fw<5.30
 条件式(8)は、広角端状態における全系の焦点距離に対する第1レンズ群の適正な焦点距離を規定するものである。条件式(8)を満足することにより、レンズ全長の小型化と、像面湾曲、歪曲収差、及び球面収差の良好な補正とを両立することができる。
 条件式(8)の下限値を下回ると、第1レンズ群の屈折力が大きくなり、球面収差をはじめとする諸収差を補正することが困難となる。なお、条件式(8)の下限値を3.90に設定することで、本願の効果をより確実なものとすることができる。 また、条件式(8)の下限値を4.20に設定することで、本願の効果を更に確実なものとすることができる。
 一方、条件式(8)の上限値を上回ると、第1レンズ群の屈折力が小さくなり、レンズ全長の小型化が困難となる。なお、条件式(8)の上限値を4.90に設定することで、本願の効果をより確実なものとすることができる。また、条件式(8)の上限値を4.70に設定することで、本願の効果を更に確実なものとすることができる。
 本願の変倍光学系は、第4レンズ群、第5レンズ群が広角端状態で略アフォーカルとなるような構造を持ち、広角端から望遠端への変倍時にレンズ群の間隔を縮小するよう変化させることによって、広角端から望遠端にわたって諸収差を更に良好に補正する構造とすることができる。本願の変倍光学系は、第4レンズ群の焦点距離をf4とし、第5レンズ群の焦点距離をf5としたとき、以下の条件式(9)を満足することが望ましい。 
(9) 2.00<(-f4)/f5<4.00
 条件式(9)は、第4レンズ群の焦点距離と第5レンズ群の焦点距離の適正な比率を規定するものである。本願の変倍光学系は、条件式(9)を満足することにより、像面湾曲、歪曲収差、及び球面収差の良好な補正を実現することができる。
 条件式(9)の下限値を下回ると、第4レンズ群の屈折力が第5レンズ群の屈折力に対して大きくなり、球面収差をはじめとする諸収差を補正することが困難となる。なお、条件式(9)の下限値を2.50に設定することで、本願の効果をより確実なものとすることができる。また、条件式(9)の下限値を2.70に設定することで、本願の効果を更に確実なものとすることができる。 
 一方、条件式(9)の上限値を上回ると、第4レンズ群の屈折力が第5レンズ群の屈折力に対して小さくなり、像面湾曲をはじめとする諸収差を補正することが困難となる。なお、条件式(9)の上限値を3.50に設定することで、本願の効果をより確実なものとすることができる。また、条件式(9)の上限値を3.30に設定することで、本願の効果を更に確実なものとすることができる。
 本願の変倍光学系は、広角端状態での前記第4レンズ群と前記第5レンズ群の間隔をD45wとし、望遠端状態での前記第4レンズ群と前記第5レンズ群の間隔をD45tとし、広角端状態における全系の焦点距離をfwとしたとき、以下の条件式(10)を満足することが望ましい。
(10) 0.15<(D45w-D45t)/fw<0.40
 条件式(10)は、広角端状態における第4レンズ群と第5レンズ群の空気間隔と望遠端状態における第4レンズ群と第5レンズ群の空気間隔との差の適正な範囲を規定するものである。条件式(10)を満足することにより、広角端から望遠端への変倍の際の像面湾曲の変化を抑え、レンズ全長を更に小型化することができる。
 条件式(10)の下限値を下回ると、広角端状態における第4レンズ群と第5レンズ群の空気間隔と望遠端状態における第4レンズ群と第5レンズ群の空気間隔との差が小さくなり、広角端から望遠端への変倍の際の像面湾曲の変化を良好に補正することが困難となる。なお、条件式(10)の下限値を0.22に設定することで、本願の効果をより確実なものとすることができる。 また、条件式(10)の下限値を0.25に設定することで、本願の効果を更に確実なものとすることができる。
 一方、条件式(10)の上限値を上回ると、広角端状態における第4レンズ群と第5レンズ群の空気間隔と望遠端状態における第4レンズ群と第5レンズ群の空気間隔との差が大きくなり、広角端状態でのレンズ全長が長くなる。なお、条件式(10)の上限値を0.33に設定することで、本願の効果をより確実なものとすることができる。また、条件式(10)の上限値を0.32に設定することで、本願の効果を更に確実なものとすることができる。 
 また本願の変倍光学系は、前記第3レンズ群の最も物体側の面が非球面であることが望ましい。この構成により、合焦用レンズ群の軽量化と無限遠物点から近距離物点への合焦時の収差変動の抑制とが両立でき、鏡筒を大型化することなく、更に高速で、更に静粛性の高いオートフォーカスを実現することができる。
 また本願の変倍光学系は、前記第4レンズ群の一部を光軸と直交する方向成分を含む方向へ移動させることによって、像ブレを補正することが望ましい。この構成により、像ブレ、すなわち、手ブレ等による結像位置変位を効果的に補正することができる。
 次に、上記実施形態に係る変倍光学系ZLを備えた光学装置であるカメラを図16に基づいて説明する。このカメラ1は、撮影レンズ2として本実施形態に係る変倍光学系ZLを備えたレンズ交換式の所謂ミラーレスカメラである。本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF、即ち、光学ローパスフィルタを介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子により被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF4、即ち、電子ビューファインダに表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
 また、撮影者によって不図示のレリーズボタンが押されると、撮像部3により光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。なお、本実施形態では、ミラーレスカメラの例を説明したが、カメラ本体にクイックリターンミラーを有しファインダー光学系により被写体を観察する一眼レフタイプのカメラに本実施形態に係る変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
 このように、本実施形態に係る光学装置は、上述した構成の変倍光学系ZLを備えることにより、鏡筒を大型化することなく高速なAF、及び、AF時の静粛性を実現し、さらに、広角端状態から望遠端状態への変倍時、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた光学装置を実現することができる。
 なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。
 本実施形態では、5群構成の変倍光学系ZLを示したが、上記の構成条件等は、6群、7群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 また、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この場合、合焦レンズ群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、前述のように第3レンズ群G3を合焦レンズ群とするのが好ましい。
 また、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、前述のように後続レンズ群GRの少なくとも一部を防振レンズ群とするのが好ましい。
 また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を妨げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしても良い。
 開口絞りSは、第3レンズ群G3の近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。
 さらに、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。
 また、上記第1実施形態の変倍光学系ZLは、変倍比が5~15倍程度である。
 以下、本願の第1実施形態に係る変倍光学系ZLの製造方法の概略を、図17を参照して説明する。まず、ステップS100として、各レンズを配置して第1~第4レンズ群G1~G4及び後続レンズ群GRをそれぞれ準備する。また、ステップS200として広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と後続レンズ群GRとの間隔が変化するように配置する。また、ステップS300として、無限遠から近距離物体への合焦に際し、第3レンズ群G3が光軸に沿って移動するように配置する。さらにまた、ステップS400として、各レンズ群G1~G4,GRが、前述の条件式(1)を満足するように配置する。
 具体的には、本願の第1実施形態では、例えば図1に示すように、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13を配置して第1レンズ群G1とし、物体側に凸面を向けた負メニスカスレンズの物体側の面にプラスチック樹脂で形成された非球面が設けられた負レンズL21、両凹形状の負レンズL22、両凸形状の正レンズL23、及び、両凹形状の負レンズL24を配置して第2レンズ群G2とし、物体側レンズ面が非球面形状である正レンズL31と物体側に凹面を向けた負メニスカスレンズL32との接合レンズを配置して第3レンズ群G3とし、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズを配置して第4レンズ群G4とし、物体側レンズ面が非球面形状である負レンズL51と物体側に凸面を向けた正メニスカスレンズL52との接合負レンズとからなる第5レンズ群G5、並びに、両凸形状の正レンズL61、及び、両凸形状の正レンズL62と物体側に凹面を向けた負メニスカスレンズL63との接合正レンズからなる第6レンズ群を配置して後続レンズ群GRとする。このように準備した各レンズ群を上述の手順で配置して変倍光学系ZLを製造する。
 以下、本願の第2実施形態に係る変倍光学系の製造方法の概略を図18に基づいて説明する。
 図18に示す本願の変倍光学系の製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有する変倍光学系の製造方法であって、以下のステップS100ないしS300を含むものである。
 ステップS100:広角端状態から望遠端状態への変倍時に、前記第1レンズ群が物体側に移動し、前記第1レンズ群と前記第2レンズ群の間隔が拡大し、前記第2レンズ群と前記第3レンズ群の間隔が縮小し、前記第3レンズ群と前記第4レンズ群の間隔が変化し、前記第4レンズ群と前記第5レンズ群の間隔が変化するように構成する。
 ステップS200:無限遠物点から近距離物点への合焦時に、前記第3レンズ群が移動するように構成する。
 ステップS300:前記第2レンズ群の焦点距離をf2とし、前記第3レンズ群の焦点距離をf3とし、望遠端状態における全系の焦点距離をftとしたときに、以下の条件式(4)、(5)を満足するようにする。
(4) 0.23<f3/ft<0.35
(5) 2.60<(-f3)/f2<3.60
 以上の製造方法によれば、合焦用レンズ群を小型軽量化することで、鏡筒を大型化することなく高速で静粛性の高いオートフォーカスを実現し、さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物点から近距離物点への合焦時の収差変動を良好に抑え、良好な光学性能を実現する変倍光学系を製造することができる。
 以下、本願の各実施例を、図面に基づいて説明する。第1実施例及び第2実施例は上記第1実施形態に対応し、第3実施例、第4実施例及び第5実施例は上記第2実施形態に対応している。図1及び図4は、それぞれ、第1実施例、第2実施例に係る変倍光学系ZL、即ち、変倍光学系ZL1,変倍光学系ZL2の構成及び屈折力配分を示す断面図である。また、これらの変倍光学系ZL1,ZL2の断面図の下部には、広角端状態Wから望遠端状態Tに変倍する際の各レンズ群G1~G4,レンズ群G5及びG6から成るGRの光軸に沿った移動方向が矢印で示されている。
 各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離、即ち、サグ量をS(y)とし、基準球面の曲率半径、即ち、近軸曲率半径をrとし、円錐定数をKとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「E-n」は「×10-n」を示す。
(a)  S(y)=(y2/r)/{1+(1-K×y2/r21/2
          +A4×y4+A6×y6+A8×y8+A10×y10
 なお、各実施例において、2次の非球面係数A2は0である。また、各実施例の表中において、非球面には面番号の右側に*印を付している。
(第1実施例)
 図1は、第1実施例に係る変倍光学系ZL1の構成を示す図である。この図1に示す変倍光学系ZL1は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、後続レンズ群GRとから構成されている。また、後続レンズ群GRは、物体側から順に、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。
 この変倍光学系ZL1において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズの物体側の面にプラスチック樹脂で形成された非球面が設けられた負レンズL21、両凹形状の負レンズL22、両凸形状の正レンズL23、及び、両凹形状の負レンズL24から構成されている。また、第3レンズ群G3は、物体側から順に、物体側レンズ面が非球面形状である正レンズL31と物体側に凹面を向けた負メニスカスレンズL32との接合レンズから構成されている。また、第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズから構成されている。また、第5レンズ群G5は、物体側から順に、物体側レンズ面が非球面形状である負レンズL51と物体側に凸面を向けた正メニスカスレンズL52との接合負レンズから構成されている。また、第6レンズ群G6は、物体側から順に、両凸形状の正レンズL61、及び、両凸形状の正レンズL62と物体側に凹面を向けた負メニスカスレンズL63との接合正レンズから構成されている。
 この第1実施例に係る変倍光学系ZL1は、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増大し、第4レンズ群G4と第5レンズ群G5との空気間隔が増大し、第5レンズ群G5と第6レンズ群G6との空気間隔が減少するように、第1レンズ群G1から第6レンズ群G6の各レンズ群が物体方向へ移動する。なお、このとき、開口絞りSは第4レンズ群G4と一体に、即ち、同じ移動量で移動する。
 また、この第1実施例に係る変倍光学系ZL1は、合焦レンズ群である第3レンズ群G3を光軸に沿って像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。
 また、この第1実施例に係る変倍光学系ZL1は、第5レンズ群G5を光軸と直交する方向の成分を持つように移動させることによって、手ブレ等による結像位置の変位を補正する。
 以下の表1に、第1実施例に係る変倍光学系ZL1の諸元の値を掲げる。この表1において、全体諸元におけるfは全系の焦点距離、FNOはFナンバー、2ωは画角、Ymaxは最大像高、及び、TLは全長、OPは物面、Iは像面をそれぞれ表している。ここで、全長TLは、無限遠合焦時のレンズ面の第1面から像面Iまでの光軸上の距離を表している。Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示している。また、レンズデータにおける第1欄mは、光線の進行する方向に沿った物体側からのレンズ面の順序、即ち、面番号を、第2欄rは、各レンズ面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の距離、即ち、面間隔を、第4欄nd及び第5欄νdは、d線(波長λ=587.6nm)に対する屈折率及びアッベ数を示している。また、曲率半径∞は平面を示し、空気の屈折率1.00000は省略してある。なお、表1に示す面番号1~29は、図1に示す番号1~29に対応している。また、レンズ群焦点距離は第1~第6レンズ群G1~G6の各々の始面ST、即ち、最も物体側のレンズ面の面番号と、焦点距離fを示している。
 ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、これらの符号の説明及び諸元表の説明は第2実施例においても同様である。
(表1)第1実施例
[全体諸元]
変倍比=7.44
       W       M      T
f   =  18.5  ~    69.5   ~ 137.5
FNO =  3.37 ~    5.07  ~  5.87
2ω  =  78.10 ~    22.38  ~  11.42
Ymax=  14.25 ~    14.25  ~  14.25
TL  = 149.23 ~   191.09  ~ 211.23
 
[レンズデータ]
m    r    d    nd  νd
OP   ∞
1   198.0585  2.000  1.84666  23.78
2    71.0593  8.436  1.59319  67.90
3   -281.2745  0.100
4    64.3516  4.808  1.81600  46.62
5   209.7899  d5
6*   91.7725  0.150  1.55389  38.23
7    87.5466  1.200  1.77250  49.61
8    13.5061  5.769
9   -35.0552  1.000  1.81600  46.62
10    42.8672  0.839
11    31.6462  5.245  1.84666  23.78
12   -26.4739  0.392
13   -23.1802  1.000  1.88300  40.76
14   937.7494  d14
15    ∞    d15           開口絞りS
16*   28.1133  5.000  1.48749  70.40
17   -30.8336  1.000  1.84666  23.78
18   -46.1545  d18
19    34.2511  1.000  2.00069  25.45
20    23.7294  5.400  1.49782  82.51
21   -34.5514  d21
22*   -77.1085  1.400  1.77250  49.61
23    17.7029  2.768  1.84666  23.78
24    31.2636  d24
25   182.8242  3.970  1.57221  46.67
26   -34.4813  0.100
27    37.3517  6.951  1.48749  70.40
28   -21.1812  1.300  1.90265  35.70
29  -119.3320  BF
I    ∞
 
[レンズ群焦点距離]
    ST    f
G1   1    85.560
G2   6   -13.001
G3   16    42.405
G4   19    45.251
G5   22   -30.006
G6   25    44.754
 
 この第1実施例に係る変倍光学系ZL1において、第6面、第16面及び第22面は非球面形状に形成されている。次の表2に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A10の値を示す。mは、光線の進行する方向に沿った物体側からのレンズ面の順序(面番号)を示す。
(表2)
[非球面データ]
m   K     A4      A6      A8      A10
6   11.2598  6.09566E-06 -4.17845E-08  1.53230E-10 -3.43299E-13
16  -0.5485 -1.67764E-05  1.74753E-08 -1.42820E-10  0.00000E+00
22    0.6725  8.48847E-06 -1.22182E-08  1.81567E-10  0.00000E+00
 
 この第1実施例に係る変倍光学系ZL1において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d5、第2レンズ群G2と開口絞りSとの軸上空気間隔d14、開口絞りSと第3レンズ群G3との軸上空気間隔d15、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d18、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d21、第5レンズ群G5と第6レンズ群G6との軸上空気間隔d24、及び、バックフォーカスBFは、上述したように、変倍に際して変化する。次の表3に無限遠合焦時及び近距離合焦時のそれぞれにおける広角端状態W、中間焦点距離状態M、及び、望遠端状態Tの各焦点距離における可変間隔及びバックフォーカスBFの値を示す。なお、バックフォーカスBFは、最も像側のレンズ面(図1における第29面)から像面Iまでの光軸上の距離を示している。この説明は第2実施例においても同様である。
(表3)
[可変間隔データ]
      無限遠合焦状態         近距離合焦状態
     W    M    T       W   M    T
f   18.5   69.5  137.5     18.5   69.5  137.5
d5   1.500  28.095  44.228    1.500  28.095  44.228
d14 21.923  5.441  3.000    21.923  5.441  3.000
d15  6.423  4.512  2.000    6.862  4.833  2.504
d18  3.063  4.974  7.486    2.624  4.653  6.982
d21  2.500  6.346  7.564    2.500  6.346  7.564
d24 10.064  6.218  5.000    10.064  6.218  5.000
BF  38.02  69.76  76.21    38.02  69.76  76.21
 
 次の表4に、この第1実施例に係る変倍光学系ZL1における各条件式対応値を示す。なお、この表4において、f1は第1レンズ群G1の焦点距離を、f2は第2レンズ群G2の焦点距離を、f3は第3レンズ群G3の焦点距離を、f4は第4レンズ群G4の焦点距離を、fwはこの変倍光学系ZL1の広角端状態における全系の焦点距離を、それぞれ表している。以上の符号の説明は第2実施例においても同様である。
(表4)
[条件対応値]
(1)f3/f4   = 0.937
(2)(-f2)/f1= 0.152
(3)f1/fw   = 4.627
 
 このように、この第1実施例に係る変倍光学系ZL1は、上記条件式(1)~(3)を全て満足している。
 この第1実施例に係る変倍光学系ZL1の、広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図を図2に示し、広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図を図3に示す。各収差図において、FNOはFナンバー、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。また、以下に示す第2実施例の収差図においても、本実施例と同様の符号を用いる。これらの各収差図より、この第1実施例に係る変倍光学系ZL1は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第2実施例)
 図4は、第2実施例に係る変倍光学系ZL2の構成を示す図である。この図4に示す変倍光学系ZL2は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、後続レンズ群GRとから構成されている。また、後続レンズ群GRは、物体側から順に、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。
 この変倍光学系ZL2において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズの物体側の面にプラスチック樹脂で形成された非球面が設けられた負レンズL21、両凹形状の負レンズL22、両凸形状の正レンズL23、及び、両凹形状の負レンズL24から構成されている。また、第3レンズ群G3は、物体側レンズ面が非球面形状である正レンズL31で構成されている。また、第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズで構成されている。また、第5レンズ群G5は、物体側から順に、物体側レンズ面が非球面形状である負レンズL51と物体側に凸面を向けた正メニスカスレンズL52との接合負レンズで構成されている。また、第6レンズ群G6は、物体側から順に、両凸形状の正レンズL61、及び、両凸形状の正レンズL62と物体側に凹面を向けた負メニスカスレンズL63との接合正レンズで構成されている。
 この第2実施例に係る変倍光学系ZL2は、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増大し、第4レンズ群G4と第5レンズ群G5との空気間隔が増大し、第5レンズ群G5と第6レンズ群G6との空気間隔が減少するように、第1レンズ群G1から第6レンズ群G6の各レンズ群が物体方向へ移動する。なお、このとき、開口絞りSは第4レンズ群G4一体に(同じ移動量で)移動する。
 また、この第2実施例に係る変倍光学系ZL2は、合焦レンズ群である第3レンズ群G3を光軸に沿って像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。
 また、この第2実施例に係る変倍光学系ZL2は、第5レンズ群G5を光軸と直交する方向の成分を持つように移動させることによって、手ブレ等による結像位置の変位を補正する。
 以下の表5に、第2実施例に係る変倍光学系ZL2の諸元の値を掲げる。なお、表5に示す面番号1~28は、図4に示す番号1~28に対応している。
(表5)第2実施例
[全体諸元]
変倍比=7.41
       W       M      T
f   =  18.5  ~    70.1   ~ 137.2
FNO =  3.45 ~    5.13  ~  5.89
2ω  =  78.06 ~    22.18  ~  11.50
Ymax=  14.25 ~    14.25  ~  14.25
TL  = 150.24 ~   192.79  ~ 211.18
 
[レンズデータ]
m    r    d    nd  νd
OP   ∞
1   164.7224  2.000  1.84666  23.78
2    69.2610  9.569  1.49782  82.51
3   -215.6328  0.100
4    59.9128  5.133  1.77250  49.61
5   210.3577  d5
6*   151.4197  0.150  1.55389  38.23
7   141.4818  1.200  1.77250  49.61
8    13.4456  5.852
9   -46.9540  1.000  1.81600  46.62
10    50.1225  0.500
11    27.2349  5.330  1.84666  23.78
12   -29.7129  0.313
13   -26.7614  1.000  1.88300  40.76
14    69.1420  d14
15    ∞    d15           開口絞りS
16*   28.2763  4.500  1.49782  82.51
17   -63.7625  d17
18    41.6479  1.000  1.84666  23.78
19    25.3852  6.300  1.48749  70.40
20   -26.7000  d20
21*   -67.5835  1.400  1.77250  49.61
22    18.4411  2.600  1.85026  32.35
23    30.5414  d23
24   126.3398  3.816  1.54282  48.67
25   -47.7988  0.100
26    42.8945  7.746  1.48749  70.40
27   -20.5949  1.300  1.90265  35.70
28   -57.7623  BF
I   ∞
 
[レンズ群焦点距離]
    ST    f
G1   1    85.126
G2   6   -12.427
G3   16    40.000
G4   18    41.836
G5   21   -28.132
G6   24    43.839
 
 この第2実施例に係る変倍光学系ZL2において、第6面、第16面及び第21面は非球面形状に形成されている。次の表6に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A10の値を示す。mは、光線の進行する方向に沿った物体側からのレンズ面の順序、即ち、面番号を示す。
(表6)
[非球面データ]
m  K    A4      A6      A8      A10
 6  3.5648  8.42661E-06 -5.67193E-08  2.35593E-10 -4.71958E-13
16 -0.6804 -2.20261E-05  1.26254E-08 -2.16161E-10  0.00000E+00
21  1.4368  7.94766E-06  4.75605E-09  1.24853E-10  0.00000E+00
 
 この第2実施例に係る変倍光学系ZL2において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d5、第2レンズ群G2と開口絞りSとの軸上空気間隔d14、開口絞りSと第3レンズ群G3との軸上空気間隔d15、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d17、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d20、第5レンズ群G5と第6レンズ群G6との軸上空気間隔d23、及び、バックフォーカスBFは、上述したように、変倍に際して変化する。次の表7に無限遠合焦時及び近距離合焦時のそれぞれにおける広角端状態W、中間焦点距離状態M、及び、望遠端状態Tの各焦点距離における可変間隔及びバックフォーカスBFの値を示す。
(表7)
[可変間隔データ]
      無限遠合焦状態         近距離合焦状態
     W    M    T     W    M   T
f   18.5   70.1  137.2     18.5   70.1  137.2
d5   1.500  29.460  43.956    1.500  29.460  43.956
d14 21.129  6.175  3.000    21.129  6.175  3.000
d15  5.970  3.536  2.000    6.367  3.851  2.459
d17  3.062  5.497  7.033    2.665  5.182  6.573
d20  2.500  6.941  8.730    2.500  6.941  8.730
d23 11.230  6.789  5.000    11.230  6.789  5.000
BF  38.02  67.56  74.63    38.02  67.56  74.63
 
 次の表8に、この第2実施例に係る変倍光学系ZL2における各条件式対応値を示す。
(表8)
[条件対応値]
(1)f3/f4   = 0.956
(2)(-f2)/f1= 0.146
(3)f1/fw   = 4.602
 
 このように、この第2実施例に係る変倍光学系ZL2は、上記条件式(1)~(3)を全て満足している。
 この第2実施例に係る変倍光学系ZL2の、広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図を図5に示し、広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図を図6に示す。これらの各収差図より、この第2実施例に係る変倍光学系ZL2は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
 以下、上記第2実施形態に対応する本願の第3ないし第5実施例に係る変倍光学系を添付図面に基づいて説明する。
(第3実施例)
 図7は、本願の第3実施例に係る変倍光学系のレンズ構成を示す図である。
 本第3実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
 第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。 
 第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。第2レンズ群G2の負メニスカスレンズL21は、物体側レンズ面に非球面形状の薄いプラスチック樹脂層を備えている。
 第3レンズ群G3は、両凸形状の正レンズL31と物体側に凹面を向けた負メニスカスレンズL32との接合正レンズからなる。第3レンズ群G3の正レンズL31は、物体側レンズ面が非球面形状である。
 第4レンズ群G4は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズと、両凹形状の負レンズL43と物体側に凸面を向けた正メニスカスレンズL44との接合負レンズとからなる。第4レンズ群G4の負レンズL43は、物体側レンズ面が非球面形状である。
 第5レンズ群G5は、光軸に沿って物体側から順に、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合正レンズとからなる。
 本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2の空気間隔が増大し、第2レンズ群G2と第3レンズ群G3の空気間隔が減少し、第3レンズ群G3と第4レンズ群G4の空気間隔が増大し、第4レンズ群G4と第5レンズ群G5の空気間隔が減少するように、第1レンズ群G1から第5レンズ群G5の各レンズ群が物体側へ移動する。なお、このとき、開口絞りSは第4レンズ群G4とともに移動する。
 本実施例に係る変倍光学系では、第3レンズ群G3を像面側へ移動させることにより、無限遠物点から近距離物点への合焦が行われる。
 本実施例に係る変倍光学系では、第4レンズ群G4中の負レンズL43と正メニスカスレンズL44との接合負レンズを光軸と直交する方向成分を含む方向へ移動させることによって、手ブレ等による結像位置変位を補正する。
 以下の表9に、本実施例に係る変倍光学系の諸元の値を掲げる。 
 [面データ]において、「m」は光軸に沿って物体側から数えたレンズ面の順番を、「r」は曲率半径を、「d」は間隔、即ち、nを整数としたときに第n面と第n+1面との間隔を、「nd」はd線(波長λ=587.6nm)に対する屈折率を、「νd」はd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、「OP」は物体面を、「可変」は可変の面間隔、「絞り」は開口絞りSを、「BF」はバックフォーカスを、「I」は像面をそれぞれ示している。なお、曲率半径「r」において「∞」は平面を示し、空気の屈折率nd=1.00000の記載は省略している。 また、非球面には面番号に「*」を付して曲率半径rの欄には近軸曲率半径を示している。
 [非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
 x=(h/r)/[1+{1-κ(h/r)1/2] 
   +A4h+A6h+A8h+A10h10
 ここで、「x」は光軸から垂直方向の高さhにおける各非球面の頂点の接平面から光軸方向に沿った距離、即ち、サグ量、「κ」は円錐定数、「A4」,「A6」,「A8」,「A10」は非球面係数、「r」は基準球面の曲率半径、即ち、近軸曲率半径とする。また、nを整数として、「E-n」は「×10-n」を示し、例えば「1.234E-05」は「1.234×10-5」を示す。 
 [各種データ]において、「f」は焦点距離を、「FNO」はFナンバーを、「2ω」は単位を「°」とする画角を、「Ymax」は最大像高を、「TL」は光学系全長、即ち、レンズ面の第1面から像面Iまでの光軸上の距離を、「BF」はバックフォーカスを、それぞれ示している。
 [可変間隔データ]において、「dn」は第n面と第n+1面の可変の面間隔を示している。
 なお、[各種データ]及び[可変間隔データ]において、「W」は広角端状態、「M」は中間焦点距離状態、「T」は望遠端状態、「無限遠」は無限遠物点への合焦時、「近距離」は近距離物点への合焦時をそれぞれ示す。 
 [レンズ群データ]には、各レンズ群の始面STと焦点距離fを示している。
 [条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示している。
 ここで、表9に掲載されている焦点距離f、曲率半径r、面間隔、その他長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。 
 なお、以上に述べた表9の符号は、後述する第4、第5実施例の表においても同様に用いるものとする。
[表9]
 [面データ] 
  m          r       d       nd     νd 
OP         ∞ 
 1      168.3247   2.000    1.84666    23.78
 2       63.5937   8.546    1.59319    67.90
 3     -343.9262   0.100
 4       61.2261   5.226    1.81600    46.62
 5      223.1789    d5
 
  6*     222.2854   0.150    1.55389    38.23 
 7      153.3735   1.200    1.77250    49.61
 8       12.7983   5.804
 9      -34.0102   1.000    1.81600    46.62
 10      60.7684   0.500
 11      30.1743   5.169    1.84666    23.78
 12     -28.1317   0.447
 13     -23.6928   1.000    1.88300    40.76
 14   -1288.8278    d14
 
  15(絞り)   ∞      d15
 
  16*     25.5131   5.026    1.52144    67.00 
 17     -31.6553   1.000    1.85026    32.35
 18     -55.3019    d18
 
 19      40.3899   1.000    2.00069    25.45
 20      25.8165   5.400    1.49782    82.51
 21     -29.3499   2.500
  22*    -73.6144   1.400    1.77250    49.61 
 23      19.1936   2.600    1.84666    23.78
 24      33.2373    d24
 
 25     178.7403   3.089    1.65311    47.08
 26     -69.5056   0.100
 27      48.3544   7.163    1.48749    70.40
 28     -18.2461   1.300    1.90265    35.70
 29     -44.2532   BF
  I         ∞ 
 
[非球面データ]
第6面 
κ   =  11.2598
A4  =   1.24040E-05
A6  =  -3.23075E-08
A8  =   7.25627E-11
A10 =  -1.73701E-13
第16面
κ   =  -0.2264
A4  =  -1.61628E-05
A6  =  -4.70348E-09
A8  =  -4.64530E-11
A10 =   0.00000E+00
第22面
κ   =   0.6725
A4  =   5.63011E-06
A6  =   2.27657E-08
A8  =  -2.38116E-11
A10 =   0.00000E+00
 
[各種データ] 
変倍比      7.46
             W       M       T 
f         18.5     69.9    138.0 
FNO      3.43     5.19     5.89
2ω       77.98    22.24    11.42
Ymax   14.25    14.25    14.25 
TL      143.38   186.38   204.92 
BF       38.08    73.94    83.31 
 
[可変間隔データ]
                無限遠合焦状態        近距離合焦状態
             W       M       T           W       M       T 
d5          1.500   28.127   41.786        1.500   28.127   41.786 
d14        21.548    6.770    3.000       21.548    6.770    3.000
d15         7.138    3.763    2.000        7.619    4.135    2.572 
d18         2.962    6.338    8.101        2.481    5.966    7.529
d24        10.431    5.722    5.000       10.431    5.722    5.000 
 
[レンズ群データ] 
        ST         f 
G1       1        80.001 
G2       6       -12.957 
G3      16        40.001 
G4      19      -152.169
G5      25        47.918
 
[条件式対応値] 
(4)  f3/ft = 0.290
(5) (-f3)/f2= 3.087
(6) nN-nP = 0.329
(7) νP-νN = 34.65
(8) f1/fw = 4.319
(9)(-f4)/f5 = 3.176
(10)(D45w-D45t)/fw = 0.293
 
 図8A、図8B、及び図8Cはそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 
 図9A、図9B、及び図9Cはそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。  
 図8A、8B、8C、図9A、9B、9Cの各収差図において、「FNO」はFナンバー、「NA」は開口数、「Y」は像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用いる。 
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第4実施例)
 図10は、本願の第4実施例に係る変倍光学系のレンズ構成を示す断面図である。
 本第4実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
 第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。 
 第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。
 第3レンズ群G3は、両凸形状の正レンズL31と物体側に凹面を向けた負メニスカスレンズL32との接合正レンズからなる。第3レンズ群G3の正レンズL31は、物体側レンズ面が非球面形状である。
 第4レンズ群G4は、光軸に沿って物体側から順に、両凸形状の正レンズL41と、両凹形状の負レンズL42と物体側に凸面を向けた正メニスカスレンズL43との接合負レンズとからなる。第4レンズ群G4の負レンズL42は、物体側レンズ面が非球面形状である。
 本第4実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2の空気間隔が増大し、第2レンズ群G2と第3レンズ群G3の空気間隔が減少し、第3レンズ群G3と第4レンズ群G4の空気間隔が増大し、第4レンズ群G4と第5レンズ群G5の空気間隔が減少するように、第1レンズ群G1から第5レンズ群G5の各レンズ群が物体側へ移動する。なお、このとき、開口絞りSは第4レンズ群G4とともに移動する。
 また本実施例に係る変倍光学系では、第3レンズ群G3を像面側へ移動させることにより、無限遠物点から近距離物点への合焦が行われる。
 また本実施例に係る変倍光学系では、第4レンズ群G4中の負レンズL42と正メニスカスレンズL43の接合負レンズを光軸と直交する方向成分を含む方向へ移動させることによって、手ブレ等による結像位置変位を補正する。
 以下の表10に、本第4実施例にかかる変倍光学系の諸元の値を掲げる。
[表10]
[面データ]
  m         r       d       nd     νd 
OP         ∞ 
  1      162.9959   2.000    1.84666    23.78
  2       64.5555   8.419    1.59319    67.90
  3     -306.7473   0.100
  4       62.8075   5.118    1.81600    46.62
  5      218.0207    d5
 
  6*     189.4081   0.150    1.55389    38.23
  7      165.1712   1.200    1.81600    46.59
  8       13.5444   5.538
  9      -34.1114   1.000    1.81600    46.62
 10       58.5413   0.562
 11       31.5714   5.179    1.84666    23.78
 12      -27.5725   0.342
 13      -24.7465   1.000    1.88300    40.76
 14    -1085.5444    d14
 
 15(絞り)    ∞      d15
 
 16*      27.7563   5.587    1.56973    66.58 
 17      -20.8159   1.000    1.85026    32.35
 18      -46.2372    d18
 
 19       91.8595   4.279    1.49782    82.51
 20      -30.3088   2.646
 21*     -84.0769   1.400    1.82199    43.16
 22       22.4074   2.600    1.84666    23.78
 23       36.4556    d23
 
 24      211.1920   3.515    1.57737    66.30
 25      -45.7168   0.100
 26       49.0134   7.154    1.54032    53.56
 27      -18.5326   1.300    1.90265    35.70
 28      -67.8485   BF
 I          ∞ 
 
[非球面データ]
第6面 
κ   =  11.2598
A4  =   8.34883E-06
A6  =  -3.33818E-08
A8  =   1.28598E-10
A10 =  -3.80577E-13
第16面
κ   =   0.0714
A4  =  -1.41128E-05
A6  =  -1.42043E-08
A8  =   4.71168E-13
A10 =   0.00000E+00
第21面
κ   =   0.6725
A4  =   6.04257E-06
A6  =   1.76635E-08
A8  =  -3.55283E-11
A10 =   0.00000E+00
 
[各種データ] 
変倍比      7.41
             W       M       T 
f         18.5     69.6    137.1 
FNO      3.44     5.33     5.88
2ω       78.12    22.34    11.44
Ymax   14.25    14.25    14.25 
TL      143.30   184.42   200.72 
BF       38.00    74.24    80.27 
 
[可変間隔データ]
        無限遠合焦状態        近距離合焦状態
             W       M       T           W       M       T 
d5          1.500   26.954   41.730        1.500   26.954   41.730
d14        22.266    6.835    3.000       22.266    6.835    3.000
d15         7.448    3.683    2.000        7.992    4.061    2.628
d18         3.085    6.849    8.533        2.541    6.471    7.905
d23        10.812    5.669    5.000       10.812    5.669    5.000
 
[レンズ群データ] 
         ST        f 
G1       1        79.999 
G2       6       -13.407 
G3      16        40.000
G4      19      -136.276
G5      24        48.301
 
[条件式対応値]
(4) f3/ft = 0.292
(5)(-f3)/f2= 2.984
(6) nN-nP = 0.281
(7) νP-νN = 34.23
(8) f1/fw = 4.328
(9)(-f4)/f5 = 2.821
(10)(D45w-D45t)/fw = 0.314
 
 図11A、図11B、及び図11Cはそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。
 図12A、図12B、及び図12Cはそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第5実施例) 
 図13は、本願の第5実施例に係る変倍光学系のレンズ構成を示す図である。
 本第5実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
 第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
 第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とからなる。第2レンズ群G2の負メニスカスレンズL21は、物体側レンズ面に非球面形状の薄いプラスチック樹脂層を備えている。
 第3レンズ群G3は、両凸形状の正レンズL31と物体側に凹面を向けた負メニスカスレンズL32との接合正レンズからなる。第3レンズ群G3の正レンズL31は、物体側レンズ面が非球面形状である。
 第4レンズ群G4は、光軸に沿って物体側から順に、両凸形状の正レンズL41と、両凹形状の負レンズL42と物体側に凸面を向けた正メニスカスレンズL43との接合負レンズとからなる。第4レンズ群G4の負レンズL42は、物体側レンズ面が非球面形状である。
 第5レンズ群G5は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL51と両凸形状の正レンズL52との接合正レンズと、両凸形状の正レンズL53と物体側に凹面を向けた負メニスカスレンズL54との接合正レンズとからなる。 
 本第5実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2の空気間隔が増大し、第2レンズ群G2と第3レンズ群G3の空気間隔が減少し、第3レンズ群G3と第4レンズ群G4の空気間隔が増大し、第4レンズ群G4と第5レンズ群G5の空気間隔が減少するように、第1レンズ群G1から第5レンズ群G5の各レンズ群が物体側へ移動する。なお、このとき、開口絞りSは第4レンズ群G4とともに移動する。
 また本実施例に係る変倍光学系では、第3レンズ群G3を像面側へ移動させることにより、無限遠物点から近距離物点への合焦が行われる。
 また本実施例に係る変倍光学系では、第4レンズ群G4中の負レンズL42と正メニスカスレンズL43の接合負レンズを光軸と直交する方向成分を含む方向へ移動させることによって、手ブレ等による結像位置変位を補正する。
 以下の表11に、本第5実施例に係る変倍光学系の諸元の値を掲げる。
[表11]
[面データ] 
  m         r       d       nd     νd 
OP         ∞ 
 1      182.4197   2.000    1.84666    23.80
 2       65.9296   8.477    1.59319    67.90
 3     -251.6345   0.100
 4       62.6306   5.205    1.81600    46.62
 5      216.8104   d5
 
  6*     500.0000   0.150    1.55389    38.23
 7      317.0099   1.200    1.81600    46.59
 8       14.2613   4.974
 9      -58.5533   1.000    1.81600    46.62
 10      42.1167   0.500
 11      25.4178   5.399    1.84666    23.78
 12     -29.8839   0.371
 13     -25.9080   1.000    1.88300    40.76
 14     102.0955   d14
 
  15(絞り)   ∞     d15
 
  16*     25.9625   5.241    1.60300    65.44
 17     -25.0195   1.000    1.85026    32.35
 18     -71.4459   d18
 
 19     131.4303   4.270    1.49782    82.51
 20     -26.9040   2.500
  21*    -76.8762   1.400    1.82124    43.55
 22      22.2058   2.400    1.84666    23.78
 23      36.3161   d23
 
 24     187.1289   1.300    1.82674    25.92
 25      98.6389   3.596    1.69966    53.90
 26     -58.9299   0.100
 27      40.1643   7.682    1.54032    53.56
 28     -18.8168   1.300    1.90265    35.70
 29     -70.7430   BF
  I         ∞ 
 
[非球面データ]
第6面 
κ   =  11.2598
A4  =   7.62346E-06
A6  =  -1.78269E-08
A8  =   8.46129E-11
A10 =  -2.47130E-13
第16面
κ   =  -0.0666
A4  =  -1.51323E-05
A6  =  -3.60576E-08
A8  =   3.25380E-11
A10 =   0.00000E+00
第21面
κ   =   0.6725
A4  =   6.45447E-06
A6  =   2.78317E-08
A8  =  -3.21125E-11
A10 =   0.00000E+00
 
[各種データ] 
変倍比      7.56
             W       M       T 
f         18.5     70.2    139.8 
FNO      3.47     5.29     5.88
2ω       78.06    22.16    11.24
Ymax   14.25    14.25    14.25 
TL      143.30   185.46   201.71 
BF       38.00    73.20    79.61 
 
[可変間隔データ]
               無限遠合焦状態         近距離合焦状態
             W       M       T           W       M       T 
d5          1.500   27.734   42.208        1.500   27.734   42.208
d14        21.546    6.826    3.000       21.546    6.826    3.000
d15         7.716    3.829    2.000        8.222    4.219    2.648
d18         3.009    6.895    8.724        2.502    6.506    8.076
d23        10.365    5.813    5.000       10.365    5.813    5.000
 
[レンズ群データ] 
     ST        f 
G1       1        80.001
G2       6       -13.280 
G3      16        40.000
G4      19      -125.226
G5      24        44.290
 
[条件式対応値] 
(4) f3/ft = 0.286
(5)(-f3)/f2= 3.012
(6) nN-nP = 0.247
(7) νP-νN = 33.09
(8) f1/fw = 4.325
(9)(-f4)/f5 = 2.827
(10)(D45w-D45t)/fw = 0.290
 
 図14A、図14B、及び図14Cはそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 
 図15A、図15B、及び図15Cはそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。  
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
 上記各実施例によれば、合焦用レンズ群を小型軽量化することで、鏡筒を大型化することなく高速で静粛性の高いオートフォーカスを実現し、さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物点から近距離物点への合焦時の収差変動を良好に抑えた変倍光学系を実現することができる。

Claims (33)

  1.  物体側から順に、
     正の屈折力を有する第1レンズ群と、
     負の屈折力を有する第2レンズ群と、
     正の屈折力を有する第3レンズ群と、
     第4レンズ群と、
     少なくとも1つのレンズ群を含む後続レンズ群と、を有し、
     広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記後続レンズ群との間隔が変化し、前記後続レンズ群が複数のレンズ群から構成されるときは、前記複数のレンズ群の各々の間隔が変化し、
     無限遠から近距離物体への合焦に際し、前記第3レンズ群が光軸に沿って移動し、
     次式の条件を満足することを特徴とする変倍光学系。
      0.60 < f3/f4 < 1.30
     但し、
    f3:前記第3レンズ群の焦点距離
    f4:前記第4レンズ群の焦点距離
  2.  前記第4レンズ群は正の屈折力を有することを特徴とする請求項1に記載の変倍光学系。
  3.  広角端状態から望遠端状態への変倍に際し、前記第1レンズ群が物体側へ移動することを特徴とする請求項1に記載の変倍光学系。
  4.  広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が増大し、前記第2レンズ群と前記第3レンズ群との間隔が減少し、前記第3レンズ群と前記第4レンズ群との間隔が増大し、前記第4レンズ群と前記後続レンズ群との間隔が増大することを特徴とする請求項1に記載の変倍光学系。
  5.  前記第3レンズ群は、1つの正レンズ、もしくは、1つの正の屈折力を有する接合レンズのみで構成されていることを特徴とする請求項1に記載の変倍光学系。
  6.  前記第3レンズ群の最も物体側の面が非球面であることを特徴とする請求項1に記載の変倍光学系。
  7.  前記非球面は、光軸から離れるに従い正の屈折力が弱くなる形状であることを特徴とする請求項6に記載の変倍光学系。
  8.  次式の条件を満足することを特徴とする請求項1に記載の変倍光学系。
      0.11 < (-f2)/f1 < 0.19
     但し、
    f2:前記第2レンズ群の焦点距離
    f1:前記第1レンズ群の焦点距離
  9.  次式の条件を満足することを特徴とする請求項1に記載の変倍光学系。
      3.00 < f1/fw < 6.00
     但し、
    f1:前記第1レンズ群の焦点距離
    fw:広角端状態における全系の焦点距離
  10.  前記後続レンズ群の少なくとも一部を光軸と直交する方向の成分を持つように移動させることを特徴とする請求項1に記載の変倍光学系。
  11.  前記後続レンズ群は、負の屈折力を有する第5レンズ群と、正の屈折力を有する第6レンズ群とからなることを特徴とする請求項1に記載の変倍光学系。
  12.  請求項1に記載の変倍光学系を備えたことを特徴とする光学装置。
  13.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有し、
     広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群の間隔が変化し、前記第2レンズ群と前記第3レンズ群の間隔が変化し、前記第3レンズ群と前記第4レンズ群の間隔が変化し、前記第4レンズ群と前記第5レンズ群の間隔が変化し、前記第1レンズ群が物体側へ移動し、
     無限遠物点から近距離物点への合焦時に、前記第3レンズ群が移動し、
     以下の条件式を満足することを特徴とする変倍光学系。
      0.23<f3/ft<0.35
      2.60<(-f3)/f2<3.60
     但し、
    f2:前記第2レンズ群の焦点距離
    f3:前記第3レンズ群の焦点距離
    ft:望遠端状態における全系の焦点距離
  14.  広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増大し、前記第2レンズ群と前記第3レンズ群との間隔が減少することを特徴とする請求項13に記載の変倍光学系。
  15.  広角端状態から望遠端状態への変倍時に、前記第4レンズ群と前記第5レンズ群とが物体側へ移動することを特徴とする請求項13に記載の変倍光学系。
  16.  広角端状態から望遠端状態への変倍時に、前記第3レンズ群と前記第4レンズ群の間隔が増大し、前記第4レンズ群と前記第5レンズ群の間隔が減少することを特徴とする請求項13に記載の変倍光学系。
  17.  前記第3レンズ群が、光軸に沿って物体側から順に、両凸形状の正レンズと、物体側に凹面を向けた負メニスカスレンズとの接合レンズから構成されることを特徴とする請求項13に記載の変倍光学系。
  18.  以下の条件式を満足することを特徴とする請求項17に記載の変倍光学系。
      0.15<nN-nP<0.45
     但し、
    nN:前記負メニスカスレンズの屈折率
    nP:前記両凸形状の正レンズの屈折率
  19.  以下の条件式を満足することを特徴とする請求項17に記載の変倍光学系。
      25.00<νP-νN<45.00
     但し、
    νP:前記両凸形状の正レンズのアッベ数
    νN:前記負メニスカスレンズのアッベ数
  20.  以下の条件式を満足することを特徴とする請求項13に記載の変倍光学系。
      3.50<f1/fw<5.30
     但し、
    f1:前記第1レンズ群の焦点距離
    fw:広角端状態における全系の焦点距離
  21.  以下の条件式を満足することを特徴とする請求項13に記載の変倍光学系。
      2.00<(-f4)/f5<4.00
     但し、
    f4:前記第4レンズ群の焦点距離
    f5:前記第5レンズ群の焦点距離
  22.  以下の条件式を満足することを特徴とする請求項13に記載の変倍光学系。
      0.15<(D45w-D45t)/fw<0.40
     但し、
    D45w:広角端状態での前記第4レンズ群と前記第5レンズ群の間隔
    D45t:望遠端状態での前記第4レンズ群と前記第5レンズ群の間隔
    fw  :広角端状態における全系の焦点距離
  23.  前記第3レンズ群の最も物体側の面が非球面であることを特徴とする請求項13に記載の変倍光学系。
  24.  前記第4レンズ群の少なくとも一部が光軸と直交する方向成分を含む方向へ移動することによって像ブレを補正することを特徴とする請求項13に記載の変倍光学系。
  25.  請求項13に記載の変倍光学系を備えたことを特徴とする光学装置。
  26.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、第4レンズ群と、少なくとも1つのレンズ群を含む後続レンズ群と、を有する変倍光学系の製造方法であって、
     広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記後続レンズ群との間隔が変化し、前記後続レンズ群が複数のレンズ群から構成されるときは、前記複数のレンズ群の各々の間隔が変化するように配置し、
     無限遠から近距離物体への合焦に際し、前記第3レンズ群が光軸に沿って移動するように配置し、
     次式の条件を満足するように配置することを特徴とする変倍光学系の製造方法。
      0.60 < f3/f4 < 1.30
     但し、
    f3:前記第3レンズ群の焦点距離
    f4:前記第4レンズ群の焦点距離
  27.  広角端状態から望遠端状態への変倍に際し、前記第1レンズ群が物体側へ移動するように配置することを特徴とする請求項26に記載の変倍光学系の製造方法。
  28.  次式の条件を満足するようにすることを特徴とする請求項26に記載の変倍光学系。
      0.11 < (-f2)/f1 < 0.19
     但し、
    f2:前記第2レンズ群の焦点距離
    f1:前記第1レンズ群の焦点距離
  29.  次式の条件を満足するようにすることを特徴とする請求項26に記載の変倍光学系。
      3.00 < f1/fw < 6.00
     但し、
    f1:前記第1レンズ群の焦点距離
    fw:広角端状態における全系の焦点距離
  30.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有する変倍光学系の製造方法であって、
     広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群の間隔が変化し、前記第2レンズ群と前記第3レンズ群の間隔が変化し、前記第3レンズ群と前記第4レンズ群の間隔が変化し、前記第4レンズ群と前記第5レンズ群の間隔が変化し、前記第1レンズ群が物体側へ移動するようにし、
     無限遠物点から近距離物点への合焦時に、前記第3レンズ群が移動するようにし、
     以下の条件式を満足するようにすることを特徴とする変倍光学系の製造方法。
      0.23<f3/ft<0.35
      2.60<(-f3)/f2<3.60
     但し、
    f2:前記第2レンズ群の焦点距離
    f3:前記第3レンズ群の焦点距離
    ft:望遠端状態における全系の焦点距離
  31.  以下の条件式を満足するようにすることを特徴とする請求項30に記載の変倍光学系。
      3.50<f1/fw<5.30
     但し、
    f1:前記第1レンズ群の焦点距離
    fw:広角端状態における全系の焦点距離
  32.  以下の条件式を満足するようにすることを特徴とする請求項30に記載の変倍光学系。
      2.00<(-f4)/f5<4.00
     但し、
    f4:前記第4レンズ群の焦点距離
    f5:前記第5レンズ群の焦点距離
  33.  以下の条件式を満足するようにすることを特徴とする請求項30に記載の変倍光学系。
      0.15<(D45w-D45t)/fw<0.40
     但し、
    D45w:広角端状態での前記第4レンズ群と前記第5レンズ群の間隔
    D45t:望遠端状態での前記第4レンズ群と前記第5レンズ群の間隔
    fw  :広角端状態における全系の焦点距離
PCT/JP2014/069448 2013-07-29 2014-07-23 変倍光学系、光学装置及び変倍光学系の製造方法 WO2015016112A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480042932.0A CN105452929B (zh) 2013-07-29 2014-07-23 变倍光学系统、光学装置和用于制造变倍光学系统的方法
US15/004,879 US10670848B2 (en) 2013-07-29 2016-01-22 Variable power optical system, optical device and method for manufacturing variable power optical system
US16/878,599 US20200278521A1 (en) 2013-07-29 2020-05-19 Variable power optical system, optical device and method for manufacturing variable power optical system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013157111A JP6281200B2 (ja) 2013-07-29 2013-07-29 変倍光学系及び光学装置
JP2013-157111 2013-07-29
JP2014-027494 2014-02-17
JP2014027494A JP6264924B2 (ja) 2014-02-17 2014-02-17 変倍光学系、及び光学装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/004,879 Continuation US10670848B2 (en) 2013-07-29 2016-01-22 Variable power optical system, optical device and method for manufacturing variable power optical system

Publications (1)

Publication Number Publication Date
WO2015016112A1 true WO2015016112A1 (ja) 2015-02-05

Family

ID=52431648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069448 WO2015016112A1 (ja) 2013-07-29 2014-07-23 変倍光学系、光学装置及び変倍光学系の製造方法

Country Status (3)

Country Link
US (2) US10670848B2 (ja)
CN (1) CN105452929B (ja)
WO (1) WO2015016112A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195857A1 (ja) * 2016-05-13 2017-11-16 パナソニックIpマネジメント株式会社 結像光学系及び画像投写装置
JP6604918B2 (ja) * 2016-08-04 2019-11-13 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
WO2018079519A1 (ja) * 2016-10-26 2018-05-03 株式会社ニコン 変倍光学系、光学機器、撮像機器、変倍光学系の製造方法
US11347035B2 (en) * 2017-04-05 2022-05-31 Nikon Corporation Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system
JP6847067B2 (ja) * 2018-02-28 2021-03-24 富士フイルム株式会社 撮像レンズおよび撮像装置
JP6847068B2 (ja) * 2018-02-28 2021-03-24 富士フイルム株式会社 撮像レンズおよび撮像装置
JP7188276B2 (ja) * 2019-05-23 2022-12-13 コニカミノルタ株式会社 ズームレンズ、撮像光学装置およびデジタル機器
CN114236791B (zh) * 2021-11-17 2023-09-19 中国航空工业集团公司洛阳电光设备研究所 一种具有扫描成像功能的多模连续变焦光学系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048525A (ja) * 1996-08-01 1998-02-20 Nikon Corp 変倍光学系
JPH10268194A (ja) * 1997-03-26 1998-10-09 Tochigi Nikon:Kk ズームレンズ
JPH1172705A (ja) * 1997-08-29 1999-03-16 Tochigi Nikon:Kk 2つ以上の合焦レンズ群を備えたズームレンズ
JP2006301474A (ja) * 2005-04-25 2006-11-02 Sony Corp ズームレンズ及び撮像装置
JP2012212088A (ja) * 2011-03-31 2012-11-01 Nikon Corp ズームレンズ、光学装置、ズームレンズの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880892A (en) 1996-08-01 1999-03-09 Nikon Corporation Variable focal length lens system
JP4051731B2 (ja) * 1996-09-04 2008-02-27 株式会社ニコン 高倍率ズームレンズ
JP2004233750A (ja) 2003-01-31 2004-08-19 Nikon Corp ズームレンズ
JP4876509B2 (ja) 2005-09-28 2012-02-15 株式会社ニコン ズームレンズ
JP4878199B2 (ja) 2006-04-11 2012-02-15 オリンパスイメージング株式会社 ズームレンズ及びそれを用いた撮像装置
JP5344589B2 (ja) 2009-03-31 2013-11-20 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5448574B2 (ja) 2009-05-26 2014-03-19 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5648900B2 (ja) 2010-08-16 2015-01-07 株式会社ニコン 変倍光学系、及び、この変倍光学系を有する光学機器
JP5901357B2 (ja) 2012-03-05 2016-04-06 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6264924B2 (ja) 2014-02-17 2018-01-24 株式会社ニコン 変倍光学系、及び光学装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048525A (ja) * 1996-08-01 1998-02-20 Nikon Corp 変倍光学系
JPH10268194A (ja) * 1997-03-26 1998-10-09 Tochigi Nikon:Kk ズームレンズ
JPH1172705A (ja) * 1997-08-29 1999-03-16 Tochigi Nikon:Kk 2つ以上の合焦レンズ群を備えたズームレンズ
JP2006301474A (ja) * 2005-04-25 2006-11-02 Sony Corp ズームレンズ及び撮像装置
JP2012212088A (ja) * 2011-03-31 2012-11-01 Nikon Corp ズームレンズ、光学装置、ズームレンズの製造方法

Also Published As

Publication number Publication date
CN105452929B (zh) 2018-11-09
US20160231545A1 (en) 2016-08-11
US10670848B2 (en) 2020-06-02
CN105452929A (zh) 2016-03-30
US20200278521A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
JP5742100B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2015016112A1 (ja) 変倍光学系、光学装置及び変倍光学系の製造方法
WO2014208091A1 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
WO2018012624A1 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
WO2015015792A1 (ja) 変倍光学系、光学装置及び変倍光学系の製造方法
JP5344291B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6237147B2 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
JP6237146B2 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
JP6264924B2 (ja) 変倍光学系、及び光学装置
JP6281200B2 (ja) 変倍光学系及び光学装置
JP6620998B2 (ja) 変倍光学系及び光学装置
JP2017156426A (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
WO2014034728A1 (ja) 変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法
JP5540513B2 (ja) 変倍光学系、及び、この変倍光学系を有する光学機器
JP2018045261A (ja) 変倍光学系、及び光学装置
JP6232805B2 (ja) 変倍光学系、光学装置及び変倍光学系の製造方法
JP6232806B2 (ja) 変倍光学系、光学装置及び変倍光学系の製造方法
JP6281199B2 (ja) 変倍光学系、光学装置及び変倍光学系の製造方法
JP7243884B2 (ja) 変倍光学系、これを用いた光学機器および撮像機器
WO2023181903A1 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
JP5338865B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6601471B2 (ja) 変倍光学系及び光学装置
JP6497597B2 (ja) 変倍光学系及び光学機器
JPWO2016194811A1 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
WO2020136748A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042932.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831648

Country of ref document: EP

Kind code of ref document: A1