WO2018079519A1 - 変倍光学系、光学機器、撮像機器、変倍光学系の製造方法 - Google Patents

変倍光学系、光学機器、撮像機器、変倍光学系の製造方法 Download PDF

Info

Publication number
WO2018079519A1
WO2018079519A1 PCT/JP2017/038279 JP2017038279W WO2018079519A1 WO 2018079519 A1 WO2018079519 A1 WO 2018079519A1 JP 2017038279 W JP2017038279 W JP 2017038279W WO 2018079519 A1 WO2018079519 A1 WO 2018079519A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
optical system
variable magnification
magnification optical
Prior art date
Application number
PCT/JP2017/038279
Other languages
English (en)
French (fr)
Inventor
幸介 町田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US16/338,716 priority Critical patent/US11194139B2/en
Priority to JP2018547672A priority patent/JP6813029B2/ja
Priority to CN201780065786.7A priority patent/CN109863439B/zh
Publication of WO2018079519A1 publication Critical patent/WO2018079519A1/ja
Priority to US17/471,606 priority patent/US11933950B2/en
Priority to US18/437,465 priority patent/US20240184087A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Definitions

  • the present invention relates to a variable magnification optical system, an optical device, an imaging device, and a method for manufacturing the variable magnification optical system.
  • variable magnification optical systems suitable for photographic cameras, electronic still cameras, video cameras, etc.
  • the conventional variable power optical system has not sufficiently reduced the weight of the focusing lens group.
  • the first aspect of the present invention is: In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power A group, At the time of zooming, the distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, and the third lens group and the fourth lens The distance between the group changes, During focusing, the fourth lens group moves, A variable magnification optical system that satisfies the following conditional expression is provided.
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • f4 Focal length of the fourth lens group
  • fw Focal length of the variable magnification optical system in the wide-angle end state
  • the second aspect of the present invention is: In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power
  • zooming the distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, and the third lens group Including disposing an interval between the fourth lens group and the fourth lens group, During focusing, the fourth lens group moves, A variable magnification optical system manufacturing method that satisfies the following conditional expression is provided.
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • f4 Focal length of the fourth lens group
  • fw Focal length of the variable magnification optical system in the wide-angle end state
  • FIG. 5 is a diagram illustrating various aberrations of the variable magnification optical system according to the first example. It is a meridional lateral aberration diagram of the variable magnification optical system according to the first example.
  • FIG. 5 is a diagram illustrating various aberrations of the variable magnification optical system according to the first example. It is sectional drawing of the variable magnification optical system which concerns on 2nd Example.
  • FIG. 12 is a diagram illustrating all aberrations of the variable magnification optical system according to the second example. It is a meridional lateral aberration diagram of the variable magnification optical system according to the second example.
  • FIG. 12 is a diagram illustrating all aberrations of the variable magnification optical system according to the second example. It is a meridional lateral aberration diagram of the variable magnification optical system according to the second example.
  • FIG. 12 is a diagram illustrating all aberrations of the variable magnification optical system according to the second example. It is sectional drawing of the variable magnification optical system which concerns on 3rd Example.
  • FIG. 12 is a diagram illustrating all aberrations of the variable magnification optical system according to the third example. It is a meridional lateral aberration diagram of the variable magnification optical system according to the third example.
  • FIG. 12 is a diagram illustrating all aberrations of the variable magnification optical system according to the third example. It is sectional drawing of the variable magnification optical system which concerns on 4th Example.
  • FIG. 10 is a diagram illustrating all aberrations of the variable magnification optical system according to the fourth example.
  • FIG. 10 is a diagram illustrating all aberrations of the variable magnification optical system according to the fourth example. It is a figure which shows the structure of the camera provided with the variable magnification optical system. It is a figure which shows the outline of the manufacturing method of a variable magnification optical system.
  • variable magnification optical system of this embodiment includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power.
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • f4 Focal length of the fourth lens group
  • fw Focal length of the variable magnification optical system in the wide-angle end state
  • variable magnification optical system has at least four lens groups, and the distance between the lens groups changes at the time of zooming. it can.
  • variable power optical system of the present embodiment can reduce the size and weight of the focusing lens group by using the fourth lens group as the focusing lens group.
  • Conditional expression (1) defines the ratio between the focal length of the second lens group and the focal length of the fourth lens group.
  • the refractive power of the fourth lens unit increases, and spherical aberration at the time of focusing from an object at infinity to a short distance object It is difficult to suppress fluctuations in various aberrations including the above.
  • the corresponding value of the conditional expression (1) of the zoom optical system of the present embodiment is below the lower limit value, the refractive power of the second lens group becomes large, and the spherical surface is zoomed from the wide-angle end state to the telephoto end state. It becomes difficult to suppress fluctuations of various aberrations including aberrations.
  • Conditional expression (2) defines the ratio between the focal length of the first lens unit and the focal length of the variable magnification optical system in the wide-angle end state.
  • the zoom optical system of the present embodiment satisfies the conditional expression (2), thereby preventing an increase in the size of the lens barrel and various spherical aberrations and the like during zooming from the wide-angle end state to the telephoto end state. Variations in aberrations can be suppressed.
  • conditional expression (2) of the variable magnification optical system of the present embodiment exceeds the upper limit value, the refractive power of the first lens group becomes small, and the lens barrel becomes large.
  • conditional expression (2) of the zoom optical system of the present embodiment when the corresponding value of conditional expression (2) of the zoom optical system of the present embodiment is less than the lower limit value, the refractive power of the first lens unit increases, and the spherical surface is changed during zooming from the wide-angle end state to the telephoto end state. It becomes difficult to correct various aberrations including aberrations.
  • the focusing lens group is reduced in size and weight, achieves high-speed focusing and quietness without focusing, and further shifts from the wide-angle end state to the telephoto end state. It is possible to realize a variable magnification optical system that satisfactorily suppresses aberration variation during zooming and aberration variation during focusing from an object at infinity to a short distance object.
  • variable magnification optical system of the present embodiment satisfies the following conditional expression (3).
  • f3 focal length of the third lens group
  • Conditional expression (3) defines the ratio of the focal length of the second lens group and the focal length of the third lens group.
  • the refractive power of the third lens group becomes large, and spherical aberration is caused at the time of zooming from the wide-angle end state to the telephoto end state. It becomes difficult to suppress fluctuations of various aberrations including the first.
  • conditional expression (3) of the variable magnification optical system of the present embodiment when the corresponding value of conditional expression (3) of the variable magnification optical system of the present embodiment is below the lower limit value, the refractive power of the second lens group becomes large, and the spherical surface is at the time of variable magnification from the wide-angle end state to the telephoto end state. It becomes difficult to suppress fluctuations of various aberrations including aberrations.
  • variable magnification optical system of the present embodiment satisfies the following conditional expression (4). (4) 2.00 ⁇ f1 / ( ⁇ f2) ⁇ 4.00
  • Conditional expression (4) defines the ratio between the focal length of the first lens group and the focal length of the second lens group.
  • the variable magnification optical system of the present embodiment can suppress fluctuations in various aberrations including spherical aberration when zooming from the wide-angle end state to the telephoto end state by satisfying conditional expression (4).
  • conditional expression (4) of the variable magnification optical system of the present embodiment exceeds the upper limit value, the refractive power of the second lens group increases, and spherical aberration is caused at the time of zooming from the wide-angle end state to the telephoto end state. It becomes difficult to suppress fluctuations of various aberrations including the first.
  • conditional expression (4) of the variable magnification optical system of the present embodiment when the corresponding value of conditional expression (4) of the variable magnification optical system of the present embodiment is below the lower limit value, the refractive power of the first lens group becomes large, and the spherical surface is at the time of variable magnification from the wide-angle end state to the telephoto end state. It becomes difficult to suppress fluctuations of various aberrations including aberrations.
  • the fourth lens group includes a positive lens and a negative lens in order from the object side.
  • variable magnification optical system of the present embodiment satisfies the following conditional expression (5).
  • (5) 2.20 ⁇ fP / ( ⁇ fN) ⁇ 3.70
  • fP focal length of the positive lens in the fourth lens group
  • fN focal length of the negative lens in the fourth lens group
  • Conditional expression (5) defines the ratio between the focal length of the positive lens in the fourth lens group and the focal length of the negative lens in the fourth lens group.
  • the corresponding value of the conditional expression (5) of the variable magnification optical system of the present embodiment exceeds the upper limit value, the refractive power of the negative lens in the fourth lens group increases, and the generation of coma aberration becomes excessive. For this reason, it becomes difficult to suppress fluctuations of various aberrations such as coma when focusing from an object at infinity to an object at a short distance.
  • conditional expression (5) of the variable magnification optical system of the present embodiment when the corresponding value of conditional expression (5) of the variable magnification optical system of the present embodiment is below the lower limit value, the refractive power of the positive lens in the fourth lens group becomes large, and the correction of coma aberration becomes excessive. For this reason, it becomes difficult to suppress fluctuations of various aberrations such as coma when focusing from an object at infinity to an object at a short distance.
  • the zoom optical system of the present embodiment it is desirable that the position of the first lens group is fixed with respect to the image plane during zooming. With this configuration, the zoom optical system of the present embodiment can perform zooming from the wide-angle end state to the telephoto end state without changing the overall length.
  • the position of the third lens group is fixed with respect to the image plane during zooming. With this configuration, it is possible to suppress performance deterioration due to a manufacturing error of the variable magnification optical system of the present embodiment and to ensure mass productivity.
  • the first lens group includes a positive lens, a negative lens, and a positive lens in order from the object side.
  • the zoom optical system of the present embodiment has a vibration-proof lens group that can move so as to include a displacement component in a direction orthogonal to the optical axis.
  • variable magnification optical system of the present embodiment satisfies the following conditional expression (6).
  • (6) 0.70 ⁇
  • fvr focal length of the anti-vibration lens group
  • f3 focal length of the third lens group
  • Conditional expression (6) defines the ratio of the focal length of the anti-vibration lens group and the focal length of the third lens group.
  • the variable magnification optical system of the present embodiment effectively satisfies the conditional expression (6), thereby effectively suppressing the deterioration of performance during vibration isolation, and including spherical aberration when zooming from the wide-angle end state to the telephoto end state. It is possible to suppress fluctuations in various aberrations.
  • the refractive power of the third lens group increases, and spherical aberration is caused during zooming from the wide angle end state to the telephoto end state. It becomes difficult to suppress fluctuations of various aberrations including the first.
  • conditional expression (6) of the variable magnification optical system of the present embodiment when the corresponding value of conditional expression (6) of the variable magnification optical system of the present embodiment is below the lower limit value, the refractive power of the anti-vibration lens group becomes large, and decentration coma aberration generated at the time of image stabilization is corrected. Becomes difficult.
  • An optical apparatus includes the variable magnification optical system having the above-described configuration.
  • An imaging apparatus includes a variable magnification optical system having the above-described configuration and an imaging unit that captures an image formed by the variable magnification optical system. This reduces the size and weight of the focusing lens group, achieves high-speed focusing and quietness during focusing without increasing the size of the lens barrel, and further zooms from the wide-angle end state to the telephoto end state. Accordingly, it is possible to realize an optical apparatus and an imaging apparatus that can satisfactorily suppress aberration fluctuation at the time and aberration fluctuation at the time of focusing from an object at infinity to a short distance object.
  • the variable magnification optical system manufacturing method has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • f4 Focal length of the fourth lens group
  • fw Focal length of the variable magnification optical system in the wide-angle end state
  • FIG. 1 is a sectional view of a variable magnification optical system according to the first example. Note that arrows in FIG. 1 and FIGS. 5, 9 and 13, which will be described later, indicate the movement trajectory of each lens group during zooming from the wide-angle end state (W) to the telephoto end state (T).
  • the variable magnification optical system includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a positive refractive power.
  • the third lens group G3 includes a fourth lens group G4 having a negative refractive power and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 includes, in order from the object side, a positive meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a positive meniscus lens L13 having a convex surface facing the object side. It consists of a cemented positive lens.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a positive meniscus lens L22 having a convex surface facing the object side, and a negative meniscus lens L23 having a convex surface facing the object side. It consists of a cemented positive lens and a biconcave negative lens L24.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a cemented negative lens of a biconvex positive lens L32 and a biconcave negative lens L33, an aperture stop S, and an object side.
  • a cemented negative lens composed of a positive meniscus lens L34 having a concave surface facing the lens and a biconcave negative lens L35, a cemented positive lens composed of a biconcave negative lens L36 and a biconvex positive lens L37, and a biconvex lens.
  • a positive lens L38 a positive lens L38.
  • the fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, and a biconcave negative lens L42.
  • the fifth lens group G5 includes a positive meniscus lens L51 having a convex surface directed toward the object side.
  • variable power optical system the distance between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group at the time of zooming from the wide-angle end state to the telephoto end state.
  • the second and fourth lens groups G2, G4 are changed so that the distance from G3, the distance from the third lens group G3 to the fourth lens group G4, and the distance from the fourth lens group G4 to the fifth lens group G5 are changed.
  • the positions of the first, third, and fifth lens groups G1, G3, and G5 are fixed with respect to the image plane I.
  • focusing is performed from an object at infinity to a near object by moving the fourth lens group G4 as the focusing lens group to the image side along the optical axis.
  • the image stabilization lens group is moved by moving a cemented negative lens of the positive meniscus lens L34 and the negative lens L35 so as to include a displacement component in a direction orthogonal to the optical axis.
  • the focal length of the entire lens system is f and the image stabilization coefficient (ratio of the image movement amount on the image plane I to the movement amount of the image stabilization lens group during image stabilization) is K
  • the angle ⁇ In order to correct this rotational blur, the anti-vibration lens group may be moved in a direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • variable magnification optical system has an anti-vibration coefficient of 1.63 and a focal length of 72.10 (mm) in the wide-angle end state, and thus corrects rotational blur of 0.30 °.
  • the moving amount of the anti-vibration lens group is 0.23 (mm).
  • the image stabilization coefficient is 1.70 and the focal length is 194.00 (mm)
  • the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.20 ° is 0. 40 (mm).
  • Table 1 below lists values of specifications of the variable magnification optical system according to the first example.
  • f indicates the focal length
  • BF indicates the back focus (the distance on the optical axis between the lens surface closest to the image side and the image plane I).
  • the surface number is the order of the optical surfaces counted from the object side
  • r is the radius of curvature
  • d is the surface interval (the interval between the nth surface (n is an integer) and the n + 1th surface)
  • nd is The refractive index for d-line (wavelength 587.6 nm) and ⁇ d indicate the Abbe number for d-line (wavelength 587.6 nm), respectively.
  • the object plane indicates the object plane
  • the variable indicates the variable plane spacing
  • the stop S indicates the aperture stop S
  • the image plane indicates the image plane I.
  • the radius of curvature r ⁇ indicates a plane.
  • the description of the refractive index of air nd 1.0000 is omitted.
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is “°”)
  • Ymax is the maximum image height
  • TL is the total length of the variable magnification optical system according to the first example (from the first surface to the image surface) (Distance on the optical axis to I)
  • dn indicates a variable distance between the nth surface and the (n + 1) th surface.
  • W is the wide-angle end state
  • M is the intermediate focal length state
  • T is the telephoto end state
  • infinity is when focusing on an object at infinity
  • short distance indicates when focusing on a near object.
  • [Lens Group Data] indicates the start surface and focal length of each lens group.
  • [Conditional Expression Corresponding Value] the corresponding value of each conditional expression of the variable magnification optical system according to the first example is shown.
  • the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”.
  • the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
  • symbol of Table 1 described above shall be similarly used also in the table
  • FIGS. 2A, 2B, and 2C are graphs showing various aberrations when the object at infinity is in focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example.
  • 3A and 3B respectively show meridional lateral aberrations when vibration is prevented against 0.30 ° rotation blur at the time of focusing on an object at infinity in the wide-angle end state of the variable magnification optical system according to the first example.
  • FIG. 6 is a meridional lateral aberration diagram when a vibration is prevented against 0.20 ° rotation blur at the time of focusing on an object at infinity in the telephoto end state.
  • 4A, 4B, and 4C are graphs showing various aberrations when focusing on a short-distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example.
  • FNO represents the F number
  • Y represents the image height
  • NA represents the numerical aperture
  • the spherical aberration diagram shows the F number FNO or numerical aperture NA corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum value of the image height Y
  • the coma aberration diagram shows each image height. Indicates the value of.
  • d indicates the aberration at the d-line (wavelength 587.6 nm)
  • g indicates the aberration at the g-line (wavelength 435.8 nm).
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • the coma aberration diagram shows coma aberration at each image height Y. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
  • variable magnification optical system has excellent imaging performance by properly correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that the imaging performance is excellent even during focusing.
  • FIG. 5 is a sectional view of a variable magnification optical system according to the second example.
  • the variable magnification optical system according to the second example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a positive refractive power.
  • the third lens group G3 includes a fourth lens group G4 having a negative refractive power and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 includes, in order from the object side, a positive meniscus lens L11 having a convex surface directed toward the object side, a cemented positive lens composed of a negative meniscus lens L12 having a convex surface directed toward the object side, and a biconvex positive lens L13. Consists of.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a positive meniscus lens L22 having a convex surface facing the object side, and a negative meniscus lens L23 having a convex surface facing the object side. It consists of a cemented positive lens and a biconcave negative lens L24.
  • the third lens group G3 includes, in order from the object, a biconvex positive lens L31, a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave negative lens L34.
  • An aperture stop S a cemented negative lens of a positive meniscus lens L35 having a concave surface facing the object side, and a biconcave negative lens L36, and a biconcave negative lens L37 and a biconvex positive lens L38. It consists of a cemented negative lens and a biconvex positive lens L39.
  • the fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, and a biconcave negative lens L42.
  • the fifth lens group G5 includes a positive meniscus lens L51 having a convex surface directed toward the object side.
  • variable magnification optical system the distance between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group at the time of zooming from the wide-angle end state to the telephoto end state.
  • the second and fourth lens groups G2, G4 are changed so that the distance from G3, the distance from the third lens group G3 to the fourth lens group G4, and the distance from the fourth lens group G4 to the fifth lens group G5 are changed.
  • the positions of the first, third, and fifth lens groups G1, G3, and G5 are fixed with respect to the image plane I.
  • focusing is performed from an object at infinity to a near object by moving the fourth lens group G4 as the focusing lens group toward the image side along the optical axis.
  • the anti-vibration lens group is moved by moving the cemented negative lens of the positive meniscus lens L35 and the negative lens L36 so as to include a displacement component in the direction orthogonal to the optical axis. I do.
  • the variable magnification optical system according to the second example since the variable magnification optical system according to the second example has an anti-vibration coefficient of 1.62 and a focal length of 72.10 (mm) in the wide-angle end state, it corrects rotational blur of 0.30 °. Therefore, the amount of movement of the anti-vibration lens group is 0.23 (mm).
  • FIGS. 6A, 6B, and 6C are graphs showing various aberrations when the object at infinity is in focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example.
  • 7A and 7B respectively show meridional lateral aberrations when vibration is prevented against 0.30 ° rotation blur at the time of focusing on an object at infinity in the wide-angle end state of the variable magnification optical system according to the second example.
  • FIG. 6 is a meridional lateral aberration diagram when a vibration is prevented against 0.20 ° rotation blur at the time of focusing on an object at infinity in the telephoto end state.
  • FIGS. 8A, 8B, and 8C are graphs showing various aberrations when focusing on a short-distance object in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the second example.
  • variable magnification optical system has excellent imaging performance by properly correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that the imaging performance is excellent even during focusing.
  • FIG. 9 is a sectional view of a variable magnification optical system according to the third example.
  • the variable magnification optical system according to the third example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a positive refractive power.
  • the third lens group G3 includes a fourth lens group G4 having a negative refractive power and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 includes, in order from the object side, a positive meniscus lens L11 having a convex surface directed toward the object side, a cemented positive lens composed of a negative meniscus lens L12 having a convex surface directed toward the object side, and a biconvex positive lens L13. Consists of.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a cemented negative lens composed of a biconcave negative lens L22 and a positive meniscus lens L23 having a convex surface facing the object side. And a negative meniscus lens L24 having a concave surface directed toward the object side.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a cemented negative lens of a biconvex positive lens L32 and a biconcave negative lens L33, an aperture stop S, and an object side.
  • the fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, and a biconcave negative lens L42.
  • the fifth lens group G5 includes a positive meniscus lens L51 having a convex surface directed toward the object side.
  • variable magnification optical system the distance between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group at the time of zooming from the wide-angle end state to the telephoto end state.
  • the second and fourth lens groups G2, G4 are changed so that the distance from G3, the distance from the third lens group G3 to the fourth lens group G4, and the distance from the fourth lens group G4 to the fifth lens group G5 are changed.
  • the positions of the first, third, and fifth lens groups G1, G3, and G5 are fixed with respect to the image plane I.
  • focusing is performed from an object at infinity to a near object by moving the fourth lens group G4 as the focusing lens group to the image side along the optical axis.
  • the image stabilization lens group is moved by moving the cemented negative lens of the positive meniscus lens L34 and the negative lens L35 so as to include a displacement component in a direction orthogonal to the optical axis. I do.
  • the variable magnification optical system according to the third example has an anti-vibration coefficient of 1.63 and a focal length of 72.10 (mm) in the wide-angle end state, it corrects rotational blur of 0.30 °. Therefore, the amount of movement of the anti-vibration lens group is 0.23 (mm).
  • FIGS. 10A, 10B, and 10C are graphs showing various aberrations during focusing of an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • 11A and 11B respectively show meridional lateral aberrations when a vibration is prevented against 0.30 ° rotation blur at the time of focusing on an object at infinity in the wide-angle end state of the variable magnification optical system according to the third example.
  • FIG. 6 is a meridional lateral aberration diagram when a vibration is prevented against 0.20 ° rotation blur at the time of focusing on an object at infinity in the telephoto end state.
  • 12A, 12B, and 12C are graphs showing various aberrations when focusing on a short-distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • variable magnification optical system has excellent imaging performance by properly correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that the imaging performance is excellent even during focusing.
  • FIG. 13 is a sectional view of a variable magnification optical system according to the fourth example.
  • the variable magnification optical system according to the fourth example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a positive refractive power.
  • the third lens group G3 includes a third lens group G3 and a fourth lens group G4 having negative refractive power.
  • the first lens group G1 includes, in order from the object side, a positive meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a positive meniscus lens L13 having a convex surface facing the object side. It consists of a cemented positive lens.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a positive meniscus lens L22 having a convex surface facing the object side, and a negative meniscus lens L23 having a convex surface facing the object side. It consists of a cemented positive lens and a biconcave negative lens L24.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a cemented negative lens of a biconvex positive lens L32 and a biconcave negative lens L33, an aperture stop S, and an object side.
  • a positive lens L38 includes, in order from the object side, a biconvex positive lens L41 and a biconcave negative lens L42.
  • variable magnification optical system the distance between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group at the time of zooming from the wide-angle end state to the telephoto end state.
  • the second and fourth lens groups G2 and G4 move along the optical axis so that the distance between the third lens group G3 and the fourth lens group G4 changes.
  • the positions of the first and third lens groups G1 and G3 are fixed with respect to the image plane I.
  • focusing is performed from an object at infinity to a near object by moving the fourth lens group G4 as the focusing lens group toward the image side along the optical axis.
  • the image stabilization lens group is moved by moving a cemented negative lens of the positive meniscus lens L34 and the negative lens L35 so as to include a displacement component in a direction perpendicular to the optical axis. I do.
  • the variable magnification optical system according to the fourth example has an anti-vibration coefficient of 1.68 and a focal length of 72.10 (mm) in the wide-angle end state, it corrects rotational blur of 0.30 °. Therefore, the movement amount of the anti-vibration lens group is 0.22 (mm).
  • FIGS. 14A, 14B, and 14C are graphs showing various aberrations when the object at infinity is focused in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom optical system according to the fourth example.
  • 15A and 15B respectively show meridional transverse aberrations when vibration is prevented against 0.30 ° rotation blur when an infinite object is focused in the wide-angle end state of the variable magnification optical system according to the fourth example.
  • FIG. 6 is a meridional lateral aberration diagram when a vibration is prevented against 0.20 ° rotation blur at the time of focusing on an object at infinity in the telephoto end state.
  • 16A, 16B, and 16C are graphs showing various aberrations when focusing on a short-distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively, of the zoom optical system according to the fourth example.
  • variable magnification optical system has excellent imaging performance by properly correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that the imaging performance is excellent even during focusing.
  • the focusing lens group is reduced in size and weight, achieves high-speed focusing and quietness at the time of focusing without increasing the size of the lens barrel, and further, from the wide-angle end state to the telephoto end. It is possible to realize a variable power optical system that can satisfactorily suppress aberration fluctuations during zooming to a state and aberration fluctuations during focusing from an object at infinity to a short distance object.
  • each said Example has shown one specific example of this invention, and this invention is not limited to these.
  • the following contents can be adopted as appropriate as long as the optical performance of the variable magnification optical system of the present embodiment is not impaired.
  • variable magnification optical system of the present embodiment a four-group or five-group configuration is shown, but the present application is not limited to this, and a variable-magnification optical system having other group configurations (for example, six groups) is configured. You can also Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of each of the above embodiments may be used.
  • the entire fourth lens group is used as the focusing lens group, but a part of any lens group or a plurality of lens groups may be used as the focusing lens group.
  • the focusing lens group preferably has a positive refractive power. More preferably, the focusing lens group includes two lenses. Such a focusing lens group can be applied to autofocus, and is also suitable for driving by an autofocus motor such as an ultrasonic motor, a stepping motor, a VCM motor, etc. Silence at the time of focusing can be achieved satisfactorily.
  • variable magnification optical system of each of the above embodiments a part of the third lens group is an anti-vibration lens group, but either the entire lens group or a part thereof is an anti-vibration lens group with respect to the optical axis. Further, it is possible to adopt a configuration in which vibration is prevented by moving so as to include a component in a vertical direction or rotating (swing) in an in-plane direction including the optical axis. Further, the variable magnification optical system of each of the above embodiments does not necessarily require a structure for performing vibration isolation.
  • the aperture stop is preferably disposed in the third lens group, and the role may be substituted by a lens frame without providing a member as the aperture stop.
  • the lens surface of the lens constituting the variable magnification optical system of each of the above embodiments may be a spherical surface, a flat surface, or an aspherical surface.
  • Each lens may be formed of a glass material, a resin material, or a composite of a glass material and a resin material.
  • the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • an antireflection film may be provided on the lens surface of the lens constituting the variable magnification optical system of each of the above embodiments.
  • flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
  • FIG. 17 is a diagram showing a configuration of a camera provided with the variable magnification optical system of the present embodiment.
  • the camera 1 is a so-called mirrorless camera of an interchangeable lens type that includes the variable magnification optical system according to the first example as the photographing lens 2.
  • the camera 1 In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown). A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4. When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • OLPF Optical low pass filter
  • the present camera 1 is equipped with the variable magnification optical system according to the first embodiment as the photographing lens 2, so that the focusing lens group can be reduced in size and weight, and high-speed focusing can be achieved without increasing the size of the lens barrel.
  • the focusing lens group can be reduced in size and weight, and high-speed focusing can be achieved without increasing the size of the lens barrel.
  • variable magnification optical system according to the second to fourth embodiments mounted as the photographing lens 2 is configured.
  • variable magnification optical system according to each of the above embodiments is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject with a finder optical system, the same effect as the camera 1 can be obtained. it can.
  • FIG. 18 is a diagram showing an outline of a manufacturing method of the variable magnification optical system of the present embodiment.
  • the zoom optical system manufacturing method of the present embodiment shown in FIG. 18 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • the fourth lens group is moved at the time of focusing from an object at infinity to an object at a short distance so that the zoom optical system satisfies the following conditional expressions (1) and (2).
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • f4 Focal length of the fourth lens group
  • fw Focal length of the variable magnification optical system in the wide-angle end state
  • variable magnification optical system manufacturing method of the present embodiment the focusing lens group can be reduced in size and weight, and high-speed focusing and quietness during focusing can be achieved without increasing the size of the lens barrel.
  • G1 first lens group
  • G2 second lens group
  • G3 third lens group
  • G4 fourth lens group
  • G5 fifth lens group
  • S aperture stop
  • I image plane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4とを有し、変倍時に、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、合焦時に、第4レンズ群G4が移動し、所定の条件式を満足する。これにより、合焦レンズ群の小型軽量化を図り、レンズ鏡筒が大型化することなく高速な合焦と合焦時の静粛性を達成し、さらに広角端状態から望遠端状態への変倍時の収差変動、及び無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた変倍光学系等を提供する。

Description

変倍光学系、光学機器、撮像機器、変倍光学系の製造方法
 本発明は、変倍光学系、光学機器、撮像機器、変倍光学系の製造方法に関する。
 従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている。例えば、特開平4-293007号公報を参照。しかしながら、従来の変倍光学系は合焦レンズ群の軽量化が十分に図られていなかった。
特開平4-293007号公報
 本発明の第1の態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群とを有し、
 変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、
 合焦時に、前記第4レンズ群が移動し、
 以下の条件式を満足する変倍光学系を提供する。
0.55<f2/f4<1.40
1.40<f1/fw<2.80
 ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
 本発明の第2の態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群とを、変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化するように配置することを含み、
 合焦時に、前記第4レンズ群が移動し、
 以下の条件式を満足する変倍光学系の製造方法を提供する。
0.55<f2/f4<1.40
1.40<f1/fw<2.80
 ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
第1実施例に係る変倍光学系の断面図である。 第1実施例に係る変倍光学系の諸収差図である。 第1実施例に係る変倍光学系のメリディオナル横収差図である。 第1実施例に係る変倍光学系の諸収差図である。 第2実施例に係る変倍光学系の断面図である。 第2実施例に係る変倍光学系の諸収差図である。 第2実施例に係る変倍光学系のメリディオナル横収差図である。 第2実施例に係る変倍光学系の諸収差図である。 第3実施例に係る変倍光学系の断面図である。 第3実施例に係る変倍光学系の諸収差図である。 第3実施例に係る変倍光学系のメリディオナル横収差図である。 第3実施例に係る変倍光学系の諸収差図である。 第4実施例に係る変倍光学系の断面図である。 第4実施例に係る変倍光学系の諸収差図である。 第4実施例に係る変倍光学系のメリディオナル横収差図である。 第4実施例に係る変倍光学系の諸収差図である。 変倍光学系を備えたカメラの構成を示す図である。 変倍光学系の製造方法の概略を示す図である。
 以下、本発明の実施形態の変倍光学系、光学機器、撮像機器及び変倍光学系の製造方法について説明する。
 本実施形態の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群とを有し、変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、無限遠物体から近距離物体への合焦時に、前記第4レンズ群が移動し、以下の条件式(1)、(2)を満足する。
(1) 0.55<f2/f4<1.40
(2) 1.40<f1/fw<2.80
 ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
 上記のように本実施形態の変倍光学系は、少なくとも4つのレンズ群を有し、変倍時にレンズ群同士の間隔がそれぞれ変化することによって、変倍時の収差を良好に補正することができる。
 また、上記のように本実施形態の変倍光学系は、第4レンズ群を合焦レンズ群とすることにより、合焦レンズ群の小型軽量化を図ることができる。
 上記条件式(1)は、第2レンズ群の焦点距離と第4レンズ群の焦点距離の比を規定するものである。本実施形態の変倍光学系は、条件式(1)を満足することにより、広角端状態から望遠端状態への変倍時に球面収差をはじめとする諸収差の変動を抑えることができる。また、無限遠物体から近距離物体への合焦時に球面収差をはじめとする諸収差の変動を抑えることもできる。
 本実施形態の変倍光学系の条件式(1)の対応値が上限値を上回ると、第4レンズ群の屈折力が大きくなり、無限遠物体から近距離物体への合焦時の球面収差をはじめとする諸収差の変動を抑えることが困難になる。なお、本実施形態の効果を確実にするために、条件式(1)の上限値を1.35にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(1)の上限値を1.30にすることが好ましい。
 一方、本実施形態の変倍光学系の条件式(1)の対応値が下限値を下回ると、第2レンズ群の屈折力が大きくなり、広角端状態から望遠端状態への変倍時に球面収差をはじめとする諸収差の変動を抑えることが困難になる。なお、本実施形態の効果を確実にするために、条件式(1)の下限値を0.58にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(1)の下限値を0.60にすることが好ましい。
 上記条件式(2)は、第1レンズ群の焦点距離と広角端状態における前記変倍光学系の焦点距離の比を規定するものである。本実施形態の変倍光学系は、条件式(2)を満足することにより、レンズ鏡筒の大型化を防ぎつつ、広角端状態から望遠端状態への変倍時に球面収差をはじめとする諸収差の変動を抑えることができる。
 本実施形態の変倍光学系の条件式(2)の対応値が上限値を上回ると、第1レンズ群の屈折力が小さくなり、レンズ鏡筒が大型化してしまう。なお、本実施形態の効果を確実にするために、条件式(2)の上限値を2.70にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(2)の上限値を2.60にすることが好ましい。
 一方、本実施形態の変倍光学系の条件式(2)の対応値が下限値を下回ると、第1レンズ群の屈折力が大きくなり、広角端状態から望遠端状態への変倍時に球面収差をはじめとする諸収差を補正することが困難になる。なお、本実施形態の効果を確実にするために、条件式(2)の下限値を1.50にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(2)の下限値を1.60にすることが好ましい。
 以上の構成により、合焦レンズ群の小型軽量化を図り、レンズ鏡筒が大型化することなく高速な合焦と合焦時の静粛性を達成し、さらに広角端状態から望遠端状態への変倍時の収差変動、及び無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた変倍光学系を実現することができる。
 また本実施形態の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 0.82<(-f2)/f3<1.30
 ただし、
f3:前記第3レンズ群の焦点距離
 条件式(3)は、第2レンズ群の焦点距離と第3レンズ群の焦点距離の比を規定するものである。本実施形態の変倍光学系は、条件式(3)を満足することにより、広角端状態から望遠端状態への変倍時に球面収差をはじめとする諸収差の変動を抑えることができる。
 本実施形態の変倍光学系の条件式(3)の対応値が上限値を上回ると、第3レンズ群の屈折力が大きくなり、広角端状態から望遠端状態への変倍時に球面収差をはじめとする諸収差の変動を抑えることが困難になる。なお、本実施形態の効果を確実にするために、条件式(3)の上限値を1.25にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(3)の上限値を1.20にすることが好ましい。
 一方、本実施形態の変倍光学系の条件式(3)の対応値が下限値を下回ると、第2レンズ群の屈折力が大きくなり、広角端状態から望遠端状態への変倍時に球面収差をはじめとする諸収差の変動を抑えることが困難になる。なお、本実施形態の効果を確実にするために、条件式(3)の下限値を0.85にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(3)の下限値を0.90にすることが好ましい。
 また本実施形態の変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 2.00<f1/(-f2)<4.00
 条件式(4)は、第1レンズ群の焦点距離と第2レンズ群の焦点距離の比を規定するものである。本実施形態の変倍光学系は、条件式(4)を満足することにより、広角端状態から望遠端状態への変倍時に球面収差をはじめとする諸収差の変動を抑えることができる。
 本実施形態の変倍光学系の条件式(4)の対応値が上限値を上回ると、第2レンズ群の屈折力が大きくなり、広角端状態から望遠端状態への変倍時に球面収差をはじめとする諸収差の変動を抑えることが困難になる。なお、本実施形態の効果を確実にするために、条件式(4)の上限値を3.80にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(4)の上限値を3.50にすることが好ましい。
 一方、本実施形態の変倍光学系の条件式(4)の対応値が下限値を下回ると、第1レンズ群の屈折力が大きくなり、広角端状態から望遠端状態への変倍時に球面収差をはじめとする諸収差の変動を抑えることが困難になる。なお、本実施形態の効果を確実にするために、条件式(4)の下限値を2.30にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(4)の下限値を2.60にすることが好ましい。
 また本実施形態の変倍光学系は、前記第4レンズ群は、物体側から順に、正レンズと、負レンズとからなることが望ましい。この構成により、第4レンズ群即ち合焦レンズ群を軽量化しつつ、無限遠物体から近距離物体への合焦時に球面収差をはじめとする諸収差の変動を抑えることができる。
 また本実施形態の変倍光学系は、以下の条件式(5)を満足することが望ましい。
(5) 2.20<fP/(-fN)<3.70
 ただし、
fP:前記第4レンズ群内の前記正レンズの焦点距離
fN:前記第4レンズ群内の前記負レンズの焦点距離
 条件式(5)は、第4レンズ群内の正レンズの焦点距離と第4レンズ群内の負レンズの焦点距離の比を規定するものである。本実施形態の変倍光学系は、条件式(5)を満足することにより、無限遠物体から近距離物体への合焦時にコマ収差をはじめとする諸収差の変動を抑えることができる。
 本実施形態の変倍光学系の条件式(5)の対応値が上限値を上回ると、第4レンズ群内の負レンズの屈折力が大きくなり、コマ収差の発生が過大になる。このため、無限遠物体から近距離物体への合焦時にコマ収差をはじめとする諸収差の変動を抑えることが困難になる。なお、本実施形態の効果を確実にするために、条件式(5)の上限値を3.60にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(5)の上限値を3.50にすることが好ましい。
 一方、本実施形態の変倍光学系の条件式(5)の対応値が下限値を下回ると、第4レンズ群内の正レンズの屈折力が大きくなり、コマ収差の補正が過大になる。このため、無限遠物体から近距離物体への合焦時にコマ収差をはじめとする諸収差の変動を抑えることが困難になる。なお、本実施形態の効果を確実にするために、条件式(5)の下限値を2.30にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(5)の下限値を2.40にすることが好ましい。
 また本実施形態の変倍光学系は、変倍時に、前記第1レンズ群が像面に対して位置が固定であることが望ましい。この構成により、本実施形態の変倍光学系は全長が変化することなく広角端状態から望遠端状態への変倍を行うことができる。
 また本実施形態の変倍光学系は、変倍時に、前記第3レンズ群が像面に対して位置が固定であることが望ましい。この構成により、本実施形態の変倍光学系の製造誤差による性能劣化を抑え、量産性を確保することができる。
 また本実施形態の変倍光学系は、前記第1レンズ群が、物体側から順に、正レンズと、負レンズと、正レンズとを有することが望ましい。この構成により、望遠端状態において球面収差とコマ収差を効果的に補正することができる。
 また本実施形態の変倍光学系は、光軸と直交する方向の変位成分を含むように移動可能な防振レンズ群を有することが望ましい。この構成により、手ブレ等による結像位置の変位を補正する、即ち防振を行うことができる。
 また本実施形態の変倍光学系は、以下の条件式(6)を満足することが望ましい。
(6) 0.70<|fvr|/f3<1.60
 ただし、
fvr:前記防振レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
 条件式(6)は、防振レンズ群の焦点距離と第3レンズ群の焦点距離の比を規定するものである。本実施形態の変倍光学系は、条件式(6)を満足することにより、防振時の性能劣化を効果的に抑え、広角端状態から望遠端状態への変倍時に球面収差をはじめとする諸収差の変動を抑えることができる。
 本実施形態の変倍光学系の条件式(6)の対応値が上限値を上回ると、第3レンズ群の屈折力が大きくなり、広角端状態から望遠端状態への変倍時に球面収差をはじめとする諸収差の変動を抑えることが困難になる。なお、本実施形態の効果を確実にするために、条件式(6)の上限値を1.50にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(6)の上限値を1.40にすることが好ましい。
 一方、本実施形態の変倍光学系の条件式(6)の対応値が下限値を下回ると、防振レンズ群の屈折力が大きくなり、防振時に発生する偏芯コマ収差を補正することが困難になる。なお、本実施形態の効果を確実にするために、条件式(6)の下限値を0.80にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(6)の下限値を0.90にすることが好ましい。
 本発明の実施形態の光学機器は、上述した構成の変倍光学系を有する。
 本発明の実施形態の撮像機器は、上述した構成の変倍光学系と、前記変倍光学系によって形成される像を撮像する撮像部とを備えている。
 これにより、合焦レンズ群の小型軽量化を図り、レンズ鏡筒が大型化することなく高速な合焦と合焦時の静粛性を達成し、さらに広角端状態から望遠端状態への変倍時の収差変動、及び無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた光学機器、撮像機器を実現することができる。
 本発明の実施形態の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群とを、変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化するように配置することを含み、無限遠物体から近距離物体への合焦時に、前記第4レンズ群が移動し、以下の条件式(1)、(2)を満足する。これにより、合焦レンズ群の小型軽量化を図り、レンズ鏡筒が大型化することなく高速な合焦と合焦時の静粛性を達成し、さらに広角端状態から望遠端状態への変倍時の収差変動、及び無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた変倍光学系を製造することができる。
(1) 0.55<f2/f4<1.40
(2) 1.40<f1/fw<2.80
 ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
 以下、本発明の実施形態の変倍光学系に係る実施例を添付図面に基づいて説明する。
(第1実施例)
 図1は第1実施例に係る変倍光学系の断面図である。なお、図1及び後述する図5、図9及び図13中の矢印は、広角端状態(W)から望遠端状態(T)への変倍時の各レンズ群の移動軌跡を示している。
 第1実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22と物体側に凸面を向けた負メニスカスレンズL23との接合正レンズと、両凹形状の負レンズL24とからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合負レンズと、開口絞りSと、物体側に凹面を向けた正メニスカスレンズL34と両凹形状の負レンズL35との接合負レンズと、両凹形状の負レンズL36と両凸形状の正レンズL37との接合正レンズと、両凸形状の正レンズL38とからなる。
 第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42とからなる。
 第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL51からなる。
 第1実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔及び第4レンズ群G4と第5レンズ群G5との間隔が変化するように、第2、第4レンズ群G2、G4が光軸に沿って移動する。なおこの時、第1、第3、第5レンズ群G1、G3、G5は像面Iに対して位置が固定である。
 第1実施例に係る変倍光学系では、合焦レンズ群として第4レンズ群G4を光軸に沿って像側へ移動させることにより無限遠物体から近距離物体への合焦を行う。
 第1実施例に係る変倍光学系では、防振レンズ群として正メニスカスレンズL34と負レンズL35との接合負レンズを光軸と直交する方向の変位成分を含むように移動させることにより防振を行う。
 ここで、レンズ全系の焦点距離がf、防振係数(防振時の防振レンズ群の移動量に対する像面I上での像の移動量の比)がKであるレンズにおいて、角度θの回転ブレを補正するためには、防振レンズ群を(f・tanθ)/Kだけ光軸と直交する方向へ移動させればよい。したがって、第1実施例に係る変倍光学系は、広角端状態において防振係数が1.63、焦点距離が72.10(mm)であるため、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.23(mm)となる。また、望遠端状態においては防振係数が1.70、焦点距離が194.00(mm)であるため、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.40(mm)となる。
 以下の表1に、第1実施例に係る変倍光学系の諸元の値を掲げる。
 表1において、fは焦点距離、BFはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
 [面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。空気の屈折率nd=1.00000の記載は省略している。
 [各種データ]において、FNOはFナンバー、2ωは画角(単位は「°」)、Ymaxは最大像高、TLは第1実施例に係る変倍光学系の全長(第1面から像面Iまでの光軸上の距離)、dnは第n面と第n+1面との可変の間隔をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態、無限遠は無限遠物体への合焦時、近距離は近距離物体への合焦時をそれぞれ示す。
 [レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
 [条件式対応値]には、第1実施例に係る変倍光学系の各条件式の対応値を示す。
 ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
 なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
(表1)第1実施例
[面データ]
面番号         r       d      nd     νd
 物面          ∞
  1         127.6244   5.534   1.48749   70.31
  2        1322.7608   0.200
  3          99.4549   1.700   1.80610   33.34
  4          62.2096  10.428   1.49700   81.73
  5        3849.3448   可変
  6         312.0349   1.000   1.77250   49.62
  7          39.3277   8.235
  8          38.7701   3.919   1.84666   23.80
  9         103.1681   1.000   1.80400   46.60
 10          48.5499   4.120
 11         -74.2974   1.000   1.60311   60.69
 12         649.2745   可変
 13          44.7829   5.265   1.72342   38.03
 14         -98.4496   1.019
 15          50.5480   5.402   1.49700   81.73
 16         -45.6249   1.000   1.90200   25.26
 17         295.6528   2.002
 18(絞りS)    ∞      8.326
 19         -54.0959   3.659   1.80518   25.45
 20         -21.1959   1.000   1.66755   41.87
 21          58.7139   4.250
 22        -156.1142   1.000   1.90366   31.27
 23          28.3088   5.794   1.61800   63.34
 24         -40.0487   0.200
 25          36.9605   4.316   1.79952   42.09
 26        -382.7973   可変
 27        -306.2135   2.700   1.71736   29.57
 28         -50.1498   0.809
 29         -55.5576   1.000   1.69680   55.52
 30          30.3235   可変
 31          50.3470   3.397   1.60300   65.44
 32         133.9533   BF
 像面          ∞
[各種データ]
変倍比      2.69
             W       M       T
f         72.1     99.9    194.0 
FNO      4.05     4.11     4.15
2ω       33.86    24.12    12.32
Ymax      21.60    21.60    21.60 
TL      218.32   218.32   218.32 
BF       53.32    53.32    53.32 
             W       M       T          W       M       T
           無限遠   無限遠   無限遠      近距離   近距離   近距離
d5         2.000   19.906   51.627       2.000   19.906   51.627
d12       51.627   33.721    2.000      51.627   33.721    2.000
d26        3.000    5.594    7.658       3.569    6.412    9.301
d30       20.101   17.507   15.442      19.532   16.689   13.800
[レンズ群データ]
群    始面       f
1       1      154.325 
2       6      -45.859 
3      13       45.676 
4      27      -42.922
5      31      131.760
[条件式対応値]
(1) f2/f4 = 1.068
(2) f1/fw = 2.140
(3) (-f2)/f3 = 1.004
(4) f1/(-f2) = 3.365
(5) fP/(-fN) = 2.971
(6) |fvr|/f3 = 1.097
 図2A、図2B及び図2Cはそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図3A、及び図3Bはそれぞれ、第1実施例に係る変倍光学系の広角端状態における無限遠物体合焦時に0.30°の回転ブレに対して防振を行った際のメリディオナル横収差図、及び望遠端状態における無限遠物体合焦時に0.20°の回転ブレに対して防振を行った際のメリディオナル横収差図である。
 図4A、図4B及び図4Cはそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における近距離物体合焦時の諸収差図である。
 各収差図において、FNOはFナンバー、Yは像高、NAは開口数をそれぞれ示す。詳しくは、球面収差図では最大口径に対応するFナンバーFNO又は開口数NAの値を示し、非点収差図及び歪曲収差図では像高Yの最大値をそれぞれ示し、コマ収差図では各像高の値を示す。また、各収差図において、dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。コマ収差図は、各像高Yにおけるコマ収差を示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
 各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時や近距離物体合焦時にも優れた結像性能を有していることがわかる。
(第2実施例)
 図5は第2実施例に係る変倍光学系の断面図である。
 第2実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と両凸形状の正レンズL13との接合正レンズとからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22と物体側に凸面を向けた負メニスカスレンズL23との接合正レンズと、両凹形状の負レンズL24とからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と、両凸形状の正レンズL33と両凹形状の負レンズL34との接合負レンズと、開口絞りSと、物体側に凹面を向けた正メニスカスレンズL35と両凹形状の負レンズL36との接合負レンズと、両凹形状の負レンズL37と両凸形状の正レンズL38との接合負レンズと、両凸形状の正レンズL39とからなる。
 第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42とからなる。
 第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL51からなる。
 第2実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔及び第4レンズ群G4と第5レンズ群G5との間隔が変化するように、第2、第4レンズ群G2、G4が光軸に沿って移動する。なおこの時、第1、第3、第5レンズ群G1、G3、G5は像面Iに対して位置が固定である。
 第2実施例に係る変倍光学系では、合焦レンズ群として第4レンズ群G4を光軸に沿って像側へ移動させることにより無限遠物体から近距離物体への合焦を行う。
 第2実施例に係る変倍光学系では、防振レンズ群として正メニスカスレンズL35と負レンズL36との接合負レンズを光軸と直交する方向の変位成分を含むように移動させることにより防振を行う。
 ここで、第2実施例に係る変倍光学系は、広角端状態において防振係数が1.62、焦点距離が72.10(mm)であるため、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.23(mm)となる。また、望遠端状態においては防振係数が1.70、焦点距離が194.00(mm)であるため、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.40(mm)となる。
 以下の表2に、第2実施例に係る変倍光学系の諸元の値を掲げる。
(表2)第2実施例
[面データ]
面番号         r       d      nd     νd
 物面          ∞
  1         131.1214   5.449   1.48749   70.31
  2        1109.4966   0.200
  3          98.0798   1.700   1.80610   33.34
  4          61.5920  10.521   1.49700   81.73
  5       -7105.2636   可変
  6         380.8979   1.000   1.77250   49.62
  7          38.2124   6.936
  8          38.1827   4.034   1.84666   23.80
  9         101.8431   1.000   1.80400   46.60
 10          49.6281   4.170
 11         -75.5321   1.000   1.60311   60.69
 12         631.4782   可変
 13          43.3989   5.088   1.60300   65.44
 14        -128.0434   0.200
 15          71.7117   2.953   1.84666   23.80
 16        1360.1055   1.671
 17          59.5261   4.661   1.49700   81.73
 18         -46.7718   1.000   1.90200   25.26
 19          84.5350   1.820
 20(絞りS)    ∞      6.448
 21         -52.0090   3.604   1.80518   25.45
 22         -20.4107   1.000   1.66755   41.87
 23          58.3221   4.156
 24        -188.8475   1.000   1.90366   31.27
 25          27.1167   5.505   1.61800   63.34
 26         -46.5152   0.200
 27          39.9140   4.500   1.79952   42.09
 28        -111.0815   可変
 29        -249.2850   2.700   1.71736   29.57
 30         -47.0764   0.828
 31         -51.1491   1.000   1.69680   55.52
 32          31.0004   可変
 33          55.1958   3.487   1.60300   65.44
 34         197.9712   BF
 像面          ∞
[各種データ]
変倍比      2.69
             W       M       T
f         72.1     99.9    194.0 
FNO      4.05     4.12     4.17
2ω       33.82    24.08    12.30
Ymax      21.60    21.60    21.60 
TL      218.32   218.32   218.32 
BF       53.32    53.32    53.32 
             W       M       T          W       M       T
           無限遠   無限遠   無限遠      近距離   近距離   近距離
d5         2.000   19.764   51.257       2.000   19.764   51.257
d12       51.257   33.494    2.000      51.257   33.494    2.000
d28        3.000    5.617    7.657       3.569    6.435    9.297
d32       20.913   18.296   16.256      20.344   17.479   14.616
[レンズ群データ]
群    始面       f
1       1      152.488
2       6      -45.554
3      13       45.955
4      29      -42.595
5      33      125.767
[条件式対応値]
(1) f2/f4 = 1.069
(2) f1/fw = 2.115
(3) (-f2)/f3 = 0.991
(4) f1/(-f2) = 3.347
(5) fP/(-fN) = 2.919
(6) |fvr|/f3 = 1.067
 図6A、図6B及び図6Cはそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図7A、及び図7Bはそれぞれ、第2実施例に係る変倍光学系の広角端状態における無限遠物体合焦時に0.30°の回転ブレに対して防振を行った際のメリディオナル横収差図、及び望遠端状態における無限遠物体合焦時に0.20°の回転ブレに対して防振を行った際のメリディオナル横収差図である。
 図8A、図8B及び図8Cはそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における近距離物体合焦時の諸収差図である。
 各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時や近距離物体合焦時にも優れた結像性能を有していることがわかる。
(第3実施例)
 図9は第3実施例に係る変倍光学系の断面図である。
 第3実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と両凸形状の正レンズL13との接合正レンズとからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合負レンズと、物体側に凹面を向けた負メニスカスレンズL24とからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合負レンズと、開口絞りSと、物体側に凹面を向けた正メニスカスレンズL34と両凹形状の負レンズL35との接合負レンズと、物体側に凹面を向けた負メニスカスレンズL36と両凸形状の正レンズL37との接合正レンズと、両凸形状の正レンズL38とからなる。
 第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42とからなる。
 第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL51からなる。
 第3実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔及び第4レンズ群G4と第5レンズ群G5との間隔が変化するように、第2、第4レンズ群G2、G4が光軸に沿って移動する。なおこの時、第1、第3、第5レンズ群G1、G3、G5は像面Iに対して位置が固定である。
 第3実施例に係る変倍光学系では、合焦レンズ群として第4レンズ群G4を光軸に沿って像側へ移動させることにより無限遠物体から近距離物体への合焦を行う。
 第3実施例に係る変倍光学系では、防振レンズ群として正メニスカスレンズL34と負レンズL35との接合負レンズを光軸と直交する方向の変位成分を含むように移動させることにより防振を行う。
 ここで、第3実施例に係る変倍光学系は、広角端状態において防振係数が1.63、焦点距離が72.10(mm)であるため、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.23(mm)となる。また、望遠端状態においては防振係数が1.70、焦点距離が194.00(mm)であるため、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.40(mm)となる。
 以下の表3に、第3実施例に係る変倍光学系の諸元の値を掲げる。
(表3)第3実施例
[面データ]
面番号         r       d      nd     νd
 物面          ∞
  1         141.1591   4.500   1.48749   70.31
  2         543.1898   0.200
  3          85.6758   2.000   1.80610   33.34
  4          57.2066  11.246   1.49700   81.73
  5       -1626.1596   可変
  6          93.2280   2.000   1.83400   37.18
  7          41.8983   8.938
  8        -115.2692   2.000   1.69680   55.52
  9          44.2262   4.356   1.84666   23.80
 10       27715.4320   2.322
 11         -55.6670   1.500   1.80400   46.60
 12        -129.1012   可変
 13          49.0208   4.818   1.80100   34.92
 14        -105.6641   0.200
 15          48.2516   5.297   1.49700   81.73
 16         -49.0156   1.300   1.90200   25.26
 17         127.8612   2.373
 18(絞りS)    ∞      9.279
 19         -58.0260   3.765   1.80518   25.45
 20         -21.3498   1.200   1.66755   41.87
 21          55.2645   3.937
 22         953.3728   1.200   1.90366   31.27
 23          28.8503   5.672   1.60300   65.44
 24         -48.6329   0.200
 25          36.9235   4.531   1.77250   49.62
 26        -308.8274   可変
 27        -687.7351   2.700   1.71736   29.57
 28         -56.8272   0.787
 29         -65.5667   1.000   1.69680   55.52
 30          28.2486   可変
 31          41.4926   3.492   1.60300   65.44
 32          88.2133   BF
 像面          ∞
[各種データ]
変倍比      2.69
             W       M       T
f         72.1     99.9    194.0 
FNO      4.09     4.13     4.16
2ω       34.18    24.28    12.40
Ymax      21.60    21.60    21.60
TL      218.32   218.32   218.32
BF       55.22    55.22    55.22
             W       M       T          W       M       T
           無限遠   無限遠   無限遠      近距離   近距離   近距離
d5         2.000   18.794   48.567       2.000   18.794   48.567
d12       48.567   31.773    2.000      48.567   31.773    2.000
d26        3.920    6.471    7.964       4.497    7.299    9.612 
d30       17.798   15.247   13.754      17.221   14.419   12.106 
[レンズ群データ]
群    始面       f
1       1      145.325 
2       6      -43.336 
3      13       45.621 
4      27      -42.711
5      31      126.368
[条件式対応値]
(1) f2/f4 = 1.015
(2) f1/fw = 2.016
(3) (-f2)/f3 = 0.950
(4) f1/(-f2) = 3.353
(5) fP/(-fN) = 3.056
(6) |fvr|/f3 = 1.111
 図10A、図10B及び図10Cはそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図11A、及び図11Bはそれぞれ、第3実施例に係る変倍光学系の広角端状態における無限遠物体合焦時に0.30°の回転ブレに対して防振を行った際のメリディオナル横収差図、及び望遠端状態における無限遠物体合焦時に0.20°の回転ブレに対して防振を行った際のメリディオナル横収差図である。
 図12A、図12B及び図12Cはそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における近距離物体合焦時の諸収差図である。
 各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時や近距離物体合焦時にも優れた結像性能を有していることがわかる。
(第4実施例)
 図13は第4実施例に係る変倍光学系の断面図である。
 第4実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4とから構成されている。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22と物体側に凸面を向けた負メニスカスレンズL23との接合正レンズと、両凹形状の負レンズL24とからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合負レンズと、開口絞りSと、物体側に凹面を向けた正メニスカスレンズL34と両凹形状の負レンズL35との接合負レンズと、両凹形状の負レンズL36と両凸形状の正レンズL37との接合正レンズと、両凸形状の正レンズL38とからなる。
 第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、両凹形状の負レンズL42とからなる。
 第4実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔及び第3レンズ群G3と第4レンズ群G4との間隔が変化するように、第2、第4レンズ群G2、G4が光軸に沿って移動する。なおこの時、第1、第3レンズ群G1、G3は像面Iに対して位置が固定である。
 第4実施例に係る変倍光学系では、合焦レンズ群として第4レンズ群G4を光軸に沿って像側へ移動させることにより無限遠物体から近距離物体への合焦を行う。
 第4実施例に係る変倍光学系では、防振レンズ群として正メニスカスレンズL34と負レンズL35との接合負レンズを光軸と直交する方向の変位成分を含むように移動させることにより防振を行う。
 ここで、第4実施例に係る変倍光学系は、広角端状態において防振係数が1.68、焦点距離が72.10(mm)であるため、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.22(mm)となる。また、望遠端状態においては防振係数が1.70、焦点距離が194.00(mm)であるため、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.40(mm)となる。
 以下の表4に、第4実施例に係る変倍光学系の諸元の値を掲げる。
(表4)第4実施例
[面データ]
面番号         r       d      nd     νd
 物面          ∞
  1         122.9116   5.364   1.48749   70.31
  2         642.7135   0.200
  3          93.7360   1.700   1.80610   33.34
  4          60.6328  10.593   1.49700   81.73
  5        4543.6426   可変
  6         289.4140   1.000   1.77250   49.62
  7          37.2424   9.821
  8          38.9626   3.720   1.84666   23.80
  9          91.2165   1.000   1.80400   46.60
 10          52.4749   3.560
 11        -100.3987   1.000   1.60311   60.69
 12         253.6299   可変
 13          44.5612   5.223   1.66446   35.87
 14         -90.1338   0.200
 15          59.0915   5.257   1.49700   81.73
 16         -42.3802   1.000   1.90200   25.26
 17         593.6378   1.136
 18(絞りS)    ∞      6.982
 19         -54.8344   3.877   1.80518   25.45
 20         -21.3112   1.420   1.66755   41.87
 21          63.0651   4.382
 22        -154.1165   1.000   1.90366   31.27
 23          34.7644   5.687   1.60300   65.44
 24         -40.7282   0.200
 25          46.6093   4.036   1.80400   46.60
 26        -182.7333   可変
 27         191.1371   2.700   1.84666   23.80
 28        -192.1184   1.091
 29        -151.1748   1.000   1.61772   49.81
 30          34.1179   BF
 像面          ∞
[各種データ]
変倍比      2.69
             W       M       T
f         72.1     99.7    194.0
FNO      4.14     4.17     4.17
2ω       33.30    23.84    12.20
Ymax      21.60    21.60    21.60
TL      218.32   218.32   218.32
BF       77.52    74.71    75.11
             W       M       T          W       M       T
           無限遠   無限遠   無限遠      近距離   近距離   近距離
d5         2.000   20.205   52.654       2.000   20.205   52.654 
d12       52.654   34.449    2.000      52.654   34.449    2.000
d26        3.000    5.810    5.410       3.821    7.008    7.750 
[レンズ群データ]
群    始面       f
1       1      150.995
2       6      -48.062
3      13       47.483
4      27      -77.084
[条件式対応値]
(1) f2/f4 = 0.624
(2) f1/fw = 2.094
(3) (-f2)/f3 = 1.012
(4) f1/(-f2) = 3.142
(5) fP/(-fN) = 2.525
(6) |fvr|/f3 = 1.108
 図14A、図14B及び図14Cはそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。
 図15A、及び図15Bはそれぞれ、第4実施例に係る変倍光学系の広角端状態における無限遠物体合焦時に0.30°の回転ブレに対して防振を行った際のメリディオナル横収差図、及び望遠端状態における無限遠物体合焦時に0.20°の回転ブレに対して防振を行った際のメリディオナル横収差図である。
 図16A、図16B及び図16Cはそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における近距離物体合焦時の諸収差図である。
 各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時や近距離物体合焦時にも優れた結像性能を有していることがわかる。
 上記各実施例によれば、合焦レンズ群の小型軽量化を図り、レンズ鏡筒が大型化することなく高速な合焦と合焦時の静粛性を達成し、さらに広角端状態から望遠端状態への変倍時の収差変動、及び無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた変倍光学系を実現することができる。
 なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本実施形態の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 本実施形態の変倍光学系の実施例として4群又は5群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、6群等)の変倍光学系を構成することもできる。具体的には、上記各実施例の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。
 また、上記各実施例の変倍光学系は、第4レンズ群全体を合焦レンズ群としているが、いずれかのレンズ群の一部或いは複数のレンズ群を合焦レンズ群としてもよい。合焦レンズ群は正の屈折力を有することが好ましい。また、合焦レンズ群は2つのレンズからなることがより好ましい。斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ、ステッピングモータ、VCMモータ等による駆動にも適しており、高速なオートフォーカスとオートフォーカス時の静粛性を良好に達成することができる。
 また、上記各実施例の変倍光学系は、第3レンズ群の一部を防振レンズ群としているが、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、防振を行う構成とすることもできる。また、上記各実施例の変倍光学系において、必ずしも防振を行う構成が必要でなくてもよい。
 また、上記各実施例の変倍光学系において開口絞りは第3レンズ群中に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
 また、上記各実施例の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。また、各レンズは、ガラス素材で形成されていても、樹脂素材で形成されていても、又はガラス素材と樹脂素材との複合でもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。
 また、上記各実施例の変倍光学系を構成するレンズのレンズ面に、反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。特に、上記各実施例の変倍光学系は最も物体側から数えて2番目のレンズの物体側のレンズ面に反射防止膜を施すことが好ましい。
 次に、本実施形態の変倍光学系を備えたカメラを図17に基づいて説明する。
 図17は本実施形態の変倍光学系を備えたカメラの構成を示す図である。
 図17に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式の所謂ミラーレスカメラである。
 本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
 また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
 本カメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を搭載したことにより、合焦レンズ群の小型軽量化を図り、レンズ鏡筒が大型化することなく高速な合焦と合焦時の静粛性を達成し、さらに広角端状態から望遠端状態への変倍時の収差変動、及び無限遠物体から近距離物体への合焦時の収差変動を良好に抑えることができる。
 なお、上記第2~第4実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
 最後に、本実施形態の変倍光学系の製造方法の概略を図18に基づいて説明する。
 図18は本実施形態の変倍光学系の製造方法の概略を示す図である。
 図18に示す本実施形態の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群とを準備するステップS1と、前記第1~第4レンズ群を変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化するように配置するステップS2を含み、無限遠物体から近距離物体への合焦時に前記第4レンズ群が移動するようにし、前記変倍光学系が以下の条件式(1)、(2)を満足するようにする。
(1) 0.55<f2/f4<1.40
(2) 1.40<f1/fw<2.80
 ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
 斯かる本実施形態の変倍光学系の製造方法によれば、合焦レンズ群の小型軽量化を図り、レンズ鏡筒が大型化することなく高速な合焦と合焦時の静粛性を達成し、さらに広角端状態から望遠端状態への変倍時の収差変動、及び無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた変倍光学系を製造することができる。
G1:第1レンズ群、G2:第2レンズ群、G3:第3レンズ群、G4:第4レンズ群、G5:第5レンズ群、S:開口絞り、I:像面

Claims (13)

  1.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群とを有し、
     変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、
     合焦時に、前記第4レンズ群が移動し、
     以下の条件式を満足する変倍光学系。
    0.55<f2/f4<1.40
    1.40<f1/fw<2.80
     ただし、
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
    f4:前記第4レンズ群の焦点距離
    fw:広角端状態における前記変倍光学系の焦点距離
  2.  以下の条件式を満足する請求項1に記載の変倍光学系。
    0.82<(-f2)/f3<1.30
     ただし、
    f3:前記第3レンズ群の焦点距離
  3.  以下の条件式を満足する請求項1又は請求項2に記載の変倍光学系。
    2.00<f1/(-f2)<4.00
  4.  前記第4レンズ群は、物体側から順に、正レンズと、負レンズとからなる請求項1から請求項3のいずれか一項に記載の変倍光学系。
  5.  以下の条件式を満足する請求項4に記載の変倍光学系。
    2.20<fP/(-fN)<3.70
     ただし、
    fP:前記第4レンズ群内の前記正レンズの焦点距離
    fN:前記第4レンズ群内の前記負レンズの焦点距離
  6.  変倍時に、前記第1レンズ群は像面に対して位置が固定である請求項1から請求項5のいずれか一項に記載の変倍光学系。
  7.  変倍時に、前記第3レンズ群は像面に対して位置が固定である請求項1から請求項6のいずれか一項に記載の変倍光学系。
  8.  前記第1レンズ群は、物体側から順に、正レンズと、負レンズと、正レンズとを有する請求項1から請求項7のいずれか一項に記載の変倍光学系。
  9.  光軸と直交する方向の変位成分を含むように移動可能な防振レンズ群を有する請求項1から請求項8のいずれか一項に記載の変倍光学系。
  10.  以下の条件式を満足する請求項9に記載の変倍光学系。
    0.70<|fvr|/f3<1.60
     ただし、
    fvr:前記防振レンズ群の焦点距離
    f3:前記第3レンズ群の焦点距離
  11.  請求項1から請求項10のいずれか一項に記載の変倍光学系を有する光学機器。
  12.  請求項1から請求項10のいずれか一項に記載の変倍光学系と、前記変倍光学系によって形成される像を撮像する撮像部とを備える撮像機器。
  13.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群とを、変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化するように配置することを含み、
     合焦時に、前記第4レンズ群が移動し、
     以下の条件式を満足する変倍光学系の製造方法。
    0.55<f2/f4<1.40
    1.40<f1/fw<2.80
     ただし、
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
    f4:前記第4レンズ群の焦点距離
    fw:広角端状態における前記変倍光学系の焦点距離
PCT/JP2017/038279 2016-10-26 2017-10-24 変倍光学系、光学機器、撮像機器、変倍光学系の製造方法 WO2018079519A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/338,716 US11194139B2 (en) 2016-10-26 2017-10-24 Variable magnification optical system, optical equipment, imaging equipment and method for manufacturing variable magnification optical system
JP2018547672A JP6813029B2 (ja) 2016-10-26 2017-10-24 変倍光学系、光学機器、撮像機器
CN201780065786.7A CN109863439B (zh) 2016-10-26 2017-10-24 变倍光学系统、光学设备以及拍摄设备
US17/471,606 US11933950B2 (en) 2016-10-26 2021-09-10 Variable magnification optical system, optical equipment, imaging equipment and method for manufacturing variable magnification optical system
US18/437,465 US20240184087A1 (en) 2016-10-26 2024-02-09 Variable magnification optical system, optical equipment, imaging equipment and method for manufacturing variable magnification optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-209624 2016-10-26
JP2016209624 2016-10-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/338,716 A-371-Of-International US11194139B2 (en) 2016-10-26 2017-10-24 Variable magnification optical system, optical equipment, imaging equipment and method for manufacturing variable magnification optical system
US17/471,606 Continuation US11933950B2 (en) 2016-10-26 2021-09-10 Variable magnification optical system, optical equipment, imaging equipment and method for manufacturing variable magnification optical system

Publications (1)

Publication Number Publication Date
WO2018079519A1 true WO2018079519A1 (ja) 2018-05-03

Family

ID=62023460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038279 WO2018079519A1 (ja) 2016-10-26 2017-10-24 変倍光学系、光学機器、撮像機器、変倍光学系の製造方法

Country Status (4)

Country Link
US (3) US11194139B2 (ja)
JP (3) JP6813029B2 (ja)
CN (1) CN109863439B (ja)
WO (1) WO2018079519A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114830007B (zh) * 2020-01-08 2023-10-20 株式会社尼康 变倍光学系统以及光学设备
CN111650733B (zh) * 2020-08-10 2020-12-01 嘉兴中润光学科技有限公司 一种小体积大变倍比摄像装置和变焦镜头
CN116149034B (zh) * 2022-12-31 2024-05-03 福建福光股份有限公司 一种连续变焦摄像镜头

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197860A (ja) * 2009-02-26 2010-09-09 Tamron Co Ltd ズームレンズ
JP2011197470A (ja) * 2010-03-19 2011-10-06 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム
JP2011209347A (ja) * 2010-03-29 2011-10-20 Sony Corp ズームレンズ及び撮像装置
JP2011232624A (ja) * 2010-04-28 2011-11-17 Olympus Imaging Corp 撮像装置
JP2012027261A (ja) * 2010-07-23 2012-02-09 Olympus Imaging Corp ズームレンズ及びそれを備えた撮像装置
JP2012047814A (ja) * 2010-08-24 2012-03-08 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム
JP2012083602A (ja) * 2010-10-13 2012-04-26 Olympus Imaging Corp ズームレンズまたはそれを備えた撮像装置
WO2013027364A1 (ja) * 2011-08-25 2013-02-28 パナソニック株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
JP2013117667A (ja) * 2011-12-05 2013-06-13 Olympus Imaging Corp ズームレンズ及びそれを備えた撮像装置
JP2013182259A (ja) * 2012-03-05 2013-09-12 Sony Corp ズームレンズ及び撮像装置
JP2013218291A (ja) * 2012-03-14 2013-10-24 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム
JP2014228810A (ja) * 2013-05-24 2014-12-08 株式会社タムロン ズームレンズ及び撮像装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314219A (ja) * 1988-06-14 1989-12-19 Minolta Camera Co Ltd コンパクトな高変倍率ズームレンズ系
JP2808915B2 (ja) 1991-03-20 1998-10-08 キヤノン株式会社 ズームレンズ
JP3066108B2 (ja) 1991-06-10 2000-07-17 株式会社リコー コンパクトなズームレンズおよびコンバータレンズ
JPH08122640A (ja) * 1994-10-26 1996-05-17 Nikon Corp ズームレンズ
JPH09325274A (ja) 1996-06-03 1997-12-16 Nikon Corp ズ−ムレンズ
JP2003241092A (ja) * 2002-02-15 2003-08-27 Nikon Corp ズームレンズ
JP4466028B2 (ja) * 2003-09-30 2010-05-26 株式会社ニコン 可変焦点距離レンズ
JP4642386B2 (ja) 2004-06-09 2011-03-02 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5101878B2 (ja) * 2006-12-28 2012-12-19 富士フイルム株式会社 望遠レンズ
JP4880498B2 (ja) * 2007-03-01 2012-02-22 株式会社タムロン 望遠ズームレンズ
JP5245320B2 (ja) 2007-08-13 2013-07-24 株式会社ニコン ズームレンズ、これを用いた光学機器及び結像方法
JP5115848B2 (ja) * 2008-01-30 2013-01-09 株式会社ニコン 変倍光学系及びこの変倍光学系を備えた光学機器
US8068281B2 (en) * 2008-04-02 2011-11-29 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
JP5123783B2 (ja) * 2008-08-08 2013-01-23 ペンタックスリコーイメージング株式会社 高変倍ズームレンズ系
JP5287326B2 (ja) * 2009-02-16 2013-09-11 セイコーエプソン株式会社 投射用ズームレンズ及び投射型画像表示装置
JP5517547B2 (ja) * 2009-10-05 2014-06-11 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
EP2360504B1 (en) * 2010-02-24 2016-04-06 Nikon Corporation Zoom lens system, optical apparatus and method for manufacturing zoom lens system
US8339714B2 (en) 2010-10-13 2012-12-25 Olympus Imaging Corp. Zoom lens and imaging apparatus incorporating the same
JP2013007898A (ja) * 2011-06-24 2013-01-10 Olympus Imaging Corp 光路反射型ズームレンズ及びそれを備えた撮像装置
US8526116B2 (en) 2011-05-19 2013-09-03 Olympus Imaging Corp. Zoom lens with bent optical path and image pickup apparatus using the same
JP5690211B2 (ja) * 2011-05-19 2015-03-25 オリンパスイメージング株式会社 光路反射型ズームレンズ及びそれを備える撮像装置
JP5846792B2 (ja) * 2011-07-22 2016-01-20 オリンパス株式会社 ズームレンズ及びそれを用いた撮像装置
CN104797969B (zh) * 2012-10-23 2017-08-08 株式会社尼康 变倍光学系统、光学装置和制造变倍光学系统的方法
US9313384B2 (en) * 2012-12-07 2016-04-12 Samsung Electronics Co., Ltd. Zoom lens having vibration prevention function
TWI476442B (zh) * 2013-02-26 2015-03-11 Sintai Optical Shenzhen Co Ltd 變焦鏡頭
JP6230267B2 (ja) 2013-05-23 2017-11-15 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6377320B2 (ja) * 2013-05-24 2018-08-22 株式会社タムロン ズームレンズ及び撮像装置
CN105393156B (zh) * 2013-05-31 2018-07-31 株式会社尼康 变倍光学系统、成像装置和变倍光学系统的制造方法
JP6221451B2 (ja) * 2013-07-19 2017-11-01 株式会社ニコン ズームレンズ、光学機器及びズームレンズの製造方法
WO2015016112A1 (ja) * 2013-07-29 2015-02-05 株式会社ニコン 変倍光学系、光学装置及び変倍光学系の製造方法
JP6300507B2 (ja) 2013-12-16 2018-03-28 オリンパス株式会社 ズームレンズ及びそれを有するズームレンズ装置
JP6340923B2 (ja) 2014-06-02 2018-06-13 コニカミノルタ株式会社 ズームレンズ,撮像光学装置及びデジタル機器
EP3026481A1 (en) * 2014-11-28 2016-06-01 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2016126282A (ja) * 2015-01-08 2016-07-11 株式会社タムロン 広角ズームレンズ及び撮像装置
JP6646259B2 (ja) 2016-03-07 2020-02-14 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197860A (ja) * 2009-02-26 2010-09-09 Tamron Co Ltd ズームレンズ
JP2011197470A (ja) * 2010-03-19 2011-10-06 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム
JP2011209347A (ja) * 2010-03-29 2011-10-20 Sony Corp ズームレンズ及び撮像装置
JP2011232624A (ja) * 2010-04-28 2011-11-17 Olympus Imaging Corp 撮像装置
JP2012027261A (ja) * 2010-07-23 2012-02-09 Olympus Imaging Corp ズームレンズ及びそれを備えた撮像装置
JP2012047814A (ja) * 2010-08-24 2012-03-08 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム
JP2012083602A (ja) * 2010-10-13 2012-04-26 Olympus Imaging Corp ズームレンズまたはそれを備えた撮像装置
WO2013027364A1 (ja) * 2011-08-25 2013-02-28 パナソニック株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
JP2013117667A (ja) * 2011-12-05 2013-06-13 Olympus Imaging Corp ズームレンズ及びそれを備えた撮像装置
JP2013182259A (ja) * 2012-03-05 2013-09-12 Sony Corp ズームレンズ及び撮像装置
JP2013218291A (ja) * 2012-03-14 2013-10-24 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム
JP2014228810A (ja) * 2013-05-24 2014-12-08 株式会社タムロン ズームレンズ及び撮像装置

Also Published As

Publication number Publication date
CN109863439A (zh) 2019-06-07
JP7202547B2 (ja) 2023-01-12
JP6813029B2 (ja) 2021-01-13
CN109863439B (zh) 2022-03-01
US20200116984A1 (en) 2020-04-16
JP2021047456A (ja) 2021-03-25
JPWO2018079519A1 (ja) 2019-09-19
JP2022037186A (ja) 2022-03-08
US20240184087A1 (en) 2024-06-06
US20220050278A1 (en) 2022-02-17
JP7006763B2 (ja) 2022-01-24
US11933950B2 (en) 2024-03-19
US11194139B2 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
JP6844734B2 (ja) 変倍光学系、光学機器、撮像機器、変倍光学系の製造方法
WO2013146758A1 (ja) 変倍光学系、光学装置、および変倍光学系の製造方法
JP7202547B2 (ja) 変倍光学系、光学機器
JP6531766B2 (ja) 変倍光学系、及び、光学装置
CN108474928B (zh) 变倍光学系统、光学装置、摄像装置
JP6725000B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2014112176A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6182868B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6512227B2 (ja) 変倍光学系、及び光学装置
WO2016104742A1 (ja) 変倍光学系、光学装置、及び、変倍光学系の製造方法
CN108139574B (zh) 变倍光学系统、光学装置以及摄像装置
CN108139573B (zh) 变倍光学系统、光学装置以及摄像装置
JP6753406B2 (ja) 変倍光学系、光学装置、撮像装置
JP6551420B2 (ja) 変倍光学系、光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863463

Country of ref document: EP

Kind code of ref document: A1