WO2015016086A1 - 電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置 - Google Patents

電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置 Download PDF

Info

Publication number
WO2015016086A1
WO2015016086A1 PCT/JP2014/069184 JP2014069184W WO2015016086A1 WO 2015016086 A1 WO2015016086 A1 WO 2015016086A1 JP 2014069184 W JP2014069184 W JP 2014069184W WO 2015016086 A1 WO2015016086 A1 WO 2015016086A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
electric furnace
zno
steelmaking dust
furnace steelmaking
Prior art date
Application number
PCT/JP2014/069184
Other languages
English (en)
French (fr)
Inventor
徹也 長坂
一代 松八重
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to US14/909,392 priority Critical patent/US20160177416A1/en
Priority to KR1020167002624A priority patent/KR20160034927A/ko
Priority to EP14831593.0A priority patent/EP3029166A4/en
Priority to JP2015529518A priority patent/JP6406675B2/ja
Publication of WO2015016086A1 publication Critical patent/WO2015016086A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/02Preliminary treatment of ores; Preliminary refining of zinc oxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/32Refining zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/16Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering zinc from electric furnace steelmaking dust and a device for recovering zinc from electric furnace steelmaking dust.
  • Dust mainly consists of oxides of iron and zinc, such as ZnFe 2 O 4 , ZnO, etc., and how efficiently it separates ZnO and Fe 2 O 3 into zinc and iron which are depleting rare resources. Whether it can be recovered is important.
  • the mainstream method adopted as an electric furnace dust treatment both at home and abroad is the Waelz method (see, for example, Patent Document 1).
  • a rotary kiln is used, carbonaceous material is added to electric furnace dust, heated to about 1300 ° C. with a heavy oil burner to reduce zinc oxide, and once volatilized as zinc vapor.
  • the generated zinc vapor is reoxidized by CO 2 in the atmosphere, zinc is finally recovered in the form of crude zinc oxide and supplied to a zinc smelting manufacturer.
  • the residue after the zinc content is extracted is discharged outside the furnace, and some of it is recycled as raw materials for electric furnaces as clinker, but most of the others are processed as roadbed materials, cement raw materials, or landfill materials. . Recently, there are many cases where they are stored in electric furnace steel manufacturers and Waelz kiln operators.
  • the Waelz method uses a large amount of energy to reduce zinc in the oxide form from its original form to a metal state, but finally returns to the oxide form.
  • the zinc oxide in the dust is simply separated and concentrated, which is extremely inefficient in terms of effective use of energy.
  • the iron component recovered by the Waelz method is also low-purity iron oxide, and the recycle rate of iron is extremely low. Highly effective use based on a new idea that does not depend on this method has been desired.
  • the present inventors added calcium oxide more than twice the number of moles of iron in the dust to the dust, and in the air at 900 ° C. or more and 1000 ° C. or less for 60 hours.
  • the zinc ferrite ZnFe 2 O 4 which is the main component of zinc in dust is changed into zinc oxide ZnO and dicalcium ferrite 2CaO ⁇ Fe 2 O 3 as shown in the formula (1).
  • a method of magnetically separating the generated ZnO and 2CaO ⁇ Fe 2 O 3 by using a magnetic field gradient by utilizing the difference in magnetic properties between the two has been proposed (for example, see Patent Document 2). .
  • the present invention has been made paying attention to such problems, and can recover high-purity metallic zinc in a relatively short time, from a method for recovering zinc from electric furnace steelmaking dust and from electric furnace steelmaking dust.
  • An object is to provide a zinc recovery device.
  • the inventors of the present invention conducted an experiment in which lime was added to steelmaking dust in an electric furnace and heat-treated in a non-reducing atmosphere. Regardless of whether CaO was added or not, the volatilization amount of iron and zinc was small, but chlorine, Most heavy metals with high vapor pressure, such as fluorine halogens, lead, and cadmium, are volatilized and removed. The concentration of halogen, lead, and cadmium after heat treatment at 1100 ° C is below the analytical limit. As a result, the present invention has been achieved.
  • the method for recovering zinc from electric furnace steelmaking dust comprises mixing electric furnace steelmaking dust and a calcium compound containing Ca in a molar number equal to or greater than the number of moles of Fe in the electric furnace steelmaking dust.
  • a Ca mixed heating step [see formula (2)] to obtain ZnO and 2CaO ⁇ Fe 2 O 3 by heat treatment at 960 ° C. or higher and 1100 ° C. or lower for 1 to 3 hours in a non-reducing atmosphere;
  • the iron powder mixing step in which the ZnO and 2CaO ⁇ Fe 2 O 3 obtained in the heating step are mixed with iron powder having a molar number equal to or greater than the number of moles of the ZnO and pressed, and the iron powder mixing step.
  • a green compact is placed inside a vacuum container, and the inside of the vacuum container is decompressed and heated to generate zinc vapor [see formula (3)], and the zinc vapor is cooled and solidified to form a solid zinc piece.
  • Reduction volatilization step to be obtained and the reduction volatilization A zinc obtaining step of dissolving the zinc pieces obtained in the step in a NaCl-KCl-based multi-component chloride-based flux having a melting point lower than that of zinc and then cooling to obtain massive zinc. It is characterized by that.
  • the apparatus for recovering zinc from electric furnace steelmaking dust comprises mixing an electric furnace steelmaking dust and a calcium compound containing Ca having a molar number of Fe equal to or greater than the number of moles of Fe in the electric furnace steelmaking dust.
  • a Ca mixed heating means [see formula (2)] provided so that ZnO and 2CaO.Fe 2 O 3 can be obtained by heat treatment at 960 ° C. or higher and 1100 ° C. or lower for 1 to 3 hours in a reducing atmosphere;
  • Iron powder mixing means provided to mix and compact the iron powder of the number of moles of ZnO and the number of moles equal to or greater than the number of moles of ZnO to ZnO and 2CaO.Fe 2 O 3 obtained by the Ca mixing and heating means.
  • a method for recovering zinc from electric furnace steelmaking dust and an apparatus for recovering zinc from electric furnace steelmaking dust according to the present invention include an electric furnace steelmaking dust, and a number of moles of Ca equal to or greater than the number of moles of Fe in the electric furnace steelmaking dust.
  • Chlorine contained in electric furnace steelmaking dust with almost no volatilization of iron and zinc by mixing it with a calcium compound containing iron and heat-treating at 960 ° C. or higher and 1100 ° C. or lower for 1 to 3 hours in a non-reducing atmosphere
  • halogens such as fluorine, heavy metals with high vapor pressure such as lead and cadmium can be almost volatilized and removed.
  • zinc vapor is obtained according to the formula (3), and the zinc vapor is cooled and solidified to obtain a zinc piece of metal. Can be recovered. Since the heat treatment is performed by adding a calcium compound before the reduction, a zinc piece free from heavy metals such as halogens and lead can be obtained.
  • iron powder to mix for example, electrolytic iron powder or Dalai powder (a kind of iron scrap, cutting scrap of carbon steel) can be used.
  • steam should just be more than the boiling point of zinc in the pressure when pressure-reducing.
  • the collected metal zinc pieces are dissolved in NaCl-KCl-based multi-component chloride flux and the flux treatment is performed to remove the oxide layer on the surface of the zinc pieces.
  • Zinc can be recovered. Further, the residual 2CaO ⁇ Fe 2 O 3 after zinc reduction can be recovered as it is and used as a dephosphorizing agent in the steel making process or an iron source in the blast furnace method.
  • the zinc recovery method from the electric furnace steelmaking dust and the zinc recovery device from the electric furnace steelmaking dust according to the present invention efficiently separate zinc oxide in the electric furnace steelmaking dust as an oxide without reducing it.
  • metallic zinc can be recovered.
  • iron oxide in the electric furnace steelmaking dust can be recovered as a dephosphorizing agent in the steelmaking process or as 2CaO ⁇ Fe 2 O 3 which is the iron source in the blast furnace method, and the electric furnace steelmaking dust is almost completely recycled. Can do.
  • the processing cost and input energy of electric furnace steelmaking dust can be significantly reduced.
  • the method for recovering zinc from electric furnace steelmaking dust comprises mixing electric furnace steelmaking dust and a calcium compound containing Ca in a molar number equal to or greater than the number of moles of Fe in the electric furnace steelmaking dust.
  • 2CaO.Fe 2 O 3 are immersed in an alkaline or neutral aqueous solution to selectively leach ZnO into the aqueous solution, and the aqueous solution from which ZnO has been leached in the leaching step is electrolyzed. And an electrowinning step of depositing zinc on the cathode.
  • the apparatus for recovering zinc from electric furnace steelmaking dust comprises mixing an electric furnace steelmaking dust and a calcium compound containing Ca having a molar number of Fe equal to or greater than the number of moles of Fe in the electric furnace steelmaking dust. Obtained by a Ca mixed heating means provided so that ZnO and 2CaO.Fe 2 O 3 can be obtained by heat treatment in a reducing atmosphere at 960 ° C. or higher and 1100 ° C. or lower for 1 to 3 hours. ZnO and 2CaO.Fe 2 O 3 obtained are immersed in an alkaline or neutral aqueous solution, and leaching means is provided so that ZnO is selectively leached into the aqueous solution, and ZnO is formed by the leaching means. Electrolytic extraction means provided so that zinc can be deposited on the cathode by electrolyzing the leached aqueous solution may be included.
  • 2CaO ⁇ Fe 2 O 3 is almost dissolved in the aqueous solution by immersing ZnO and 2CaO ⁇ Fe 2 O 3 obtained by the heat treatment with the addition of the calcium compound in an alkaline or neutral aqueous solution. And ZnO can be selectively leached into the aqueous solution. For this reason, 2CaO ⁇ Fe 2 O 3 can be recovered as a residue, and can be used as a dephosphorizing agent in a steelmaking process or an iron source in a blast furnace method. Moreover, by electrolyzing the aqueous solution in which ZnO is leached, zinc can be deposited on the cathode, and high-purity metallic zinc can be recovered.
  • the leaching step ZnO obtained in the Ca mixing heating step and 2CaO ⁇ Fe 2 O 3 are converted into the aqueous solution at 70 ° C. or more and 100 ° C. or less. It is preferable to immerse.
  • the aqueous solution in the leaching step is preferably an aqueous NaOH solution or an aqueous NH 4 Cl solution.
  • the leaching means comprises ZnO and 2CaO.Fe 2 O 3 obtained by the Ca mixing and heating means in the aqueous solution at 70 ° C. or higher and 100 ° C. or lower.
  • the aqueous solution of the leaching means is preferably an aqueous NaOH solution or an aqueous NH 4 Cl solution. In these cases, all zinc can be efficiently leached into the aqueous solution.
  • FIG. 1 It is a block block diagram which shows the zinc collection
  • the amount of zinc, calcium, and iron dissolved when the one heated by adding CaO to electric furnace steelmaking dust is immersed in an aqueous NaOH solution. It is a graph which shows a time-dependent change.
  • the apparatus for recovering zinc from electric furnace steelmaking dust according to the embodiment of the present invention includes a Ca mixing heating unit 11, an iron powder mixing unit 12, a reduction volatilization unit 13, and a zinc acquisition unit 14. ing.
  • the Ca mixing and heating means 11 includes a mixing container and a heating device.
  • the Ca mixing heating means 11 is a mixture of an electric furnace steelmaking dust and a calcium compound containing Ca having a molar number of Fe equal to or greater than the number of moles of Fe in the electric furnace steelmaking dust.
  • the heat treatment is performed at 960 ° C. or higher and 1100 ° C. or lower for 1 to 3 hours in a non-reducing atmosphere.
  • the Ca mixing heating means 11 can acquire ZnO and 2CaO.Fe 2 O 3 by the reaction of the formula (2).
  • the calcium compound to be mixed for example, quick lime (CaO), limestone (CaCO 3), which is slaked lime (Ca (OH) 2).
  • the iron powder mixing means 12 has a compacting device.
  • the iron powder mixing means 12 is a mixture of ZnO and 2CaO.Fe 2 O 3 obtained by the Ca mixing and heating means 11 with an iron powder having a mole number equal to or greater than the number of moles of ZnO. It is configured to compact the mixture.
  • the iron powder to be mixed is, for example, electrolytic iron powder or dairy powder.
  • the reduction and volatilization means 13 includes a heat-resistant decompression container 21, a sample holding container 22 provided at one end of the decompression container 21, and a heat insulating tube 23 provided at an intermediate portion of the decompression container 21.
  • the low-temperature condensing pipe 24 is provided so as to extend from the other end of the decompression container 21 to the vicinity of the heat insulation pipe 23, and the exhaust pipe 25 is provided at the other end of the decompression container 21.
  • the reduction volatilization means 13 is divided into a heating zone (Heating Zone) on one end side from the heat insulation pipe 23 and a cooling zone (Cooling Zone) on the other end side from the heat insulation pipe 23.
  • the reduction volatilization means 13 arranges the green compact 1 produced by the iron powder mixing means 12 inside the sample holding container 22 in the heating zone, draws air out of the exhaust pipe 25 and depressurizes the inside of the decompression container 21, By heating the inside of the holding container 22 to 1000 ° C. or more, zinc vapor 2 is generated according to the equation (3), and the zinc vapor 2 is introduced into the cooling zone through the inside of the heat insulation pipe 23, and the surface of the low-temperature condensation pipe 24
  • the solid metal zinc pieces 3 can be obtained by cooling and solidifying.
  • the zinc acquisition means 14 has a dissolution container.
  • the zinc obtaining means 14 puts a NaCl-KCl based multi-component chloride flux having a melting point lower than that of zinc into the dissolution vessel, and the zinc piece obtained by the reduction volatilization means 13 is converted into the multi-component chloride in the dissolution vessel. After being dissolved in the physical flux, it is cooled so that massive zinc can be obtained.
  • the method for recovering zinc from the electric furnace steelmaking dust according to the embodiment of the present invention is preferably implemented by the apparatus for recovering zinc from the electric furnace steelmaking dust according to the embodiment of the present invention.
  • the method for recovering zinc from electric furnace steelmaking dust according to the embodiment of the present invention first, by Ca mixing heating means 11, the electric furnace steelmaking dust and the number of moles equal to or more than the number of moles of Fe in the electric furnace steelmaking dust. After mixing with the calcium compound containing Ca, heat treatment is performed at 960 ° C. to 1100 ° C. for 1 to 3 hours in a non-reducing atmosphere.
  • the volatilization amount of iron and zinc is small, but most of heavy metals with high vapor pressure such as chlorine, halogens of fluorine, lead and cadmium are mostly It was confirmed that it was volatilized and removed.
  • the heating temperature was 960 ° C. or higher, the volatilization removal rate was large, and at 1100 ° C., it was confirmed that the halogen, lead, and cadmium concentrations after heat treatment were below the analysis limit.
  • these removal rates were 80% or more.
  • the heating temperature is higher than 1100 ° C.
  • the effect is not different from that at 1100 ° C., and therefore the heating temperature of 1100 ° C. is sufficient at the maximum.
  • the heating time is longer than 3 hours, the effect is not changed from the case of 3 hours, so that the heating time is 3 hours at the longest.
  • the X-ray diffraction pattern of the dust after the heat treatment was examined, and the result is shown in FIG.
  • FIG. 4B it is confirmed that by adding CaO to the dust, the diffraction intensity of ZnFe 2 O 4 in the dust decreases and the diffraction intensity of ZnO increases as the processing temperature increases. It was done.
  • FIG. 4 (a) in the case of CaO-free dust, the diffraction intensity of ZnFe 2 O 4 increases as the processing temperature increases. At 960 ° C., the presence ratio of ZnO is remarkably high. It was confirmed that it was getting smaller.
  • the iron powder mixing means 12 mixes ZnO obtained by the Ca mixing heating means 11 and 2CaO ⁇ Fe 2 O 3 with iron powder having a mole number equal to or greater than the number of moles of ZnO and compacted. .
  • the green compact 1 is placed inside the decompression vessel 21, and the inside of the decompression vessel 21 is decompressed by the reduction volatilization means 13 and heated to 1000 ° C. or more to generate zinc vapor 2, and the zinc vapor 2 is cooled. It solidifies to obtain a solid metal zinc piece 3.
  • the metal zinc piece 3 is flaky or granular.
  • FIG. 5 shows an X-ray diffraction pattern of zinc pieces collected from the surface of the low-temperature condenser tube 24.
  • the dust is directly iron reduced and volatilized without lime treatment, halogen and other volatiles in the dust are evaporated together with zinc and deposited together with zinc. Many peaks of the product and complex acid chloride were observed. The precipitate contained several percent of heavy metals such as lead, cadmium and manganese, and the purity of zinc was 71%.
  • the precipitate recovered from the lime-treated dust no compound peak other than metallic zinc was observed, and no mixing of other metals was observed.
  • the quality of zinc remained at about 95%, but no mixing of lead or other heavy metals was observed.
  • this iron reduction volatilization method can recover metallic zinc in which heavy metals such as halogens and lead are not mixed by combining with the lime treatment method.
  • the residual 2CaO ⁇ Fe 2 O 3 after zinc reduction can be recovered as it is and used as a dephosphorizing agent in the steel making process or an iron source in the blast furnace method.
  • the cause of the deterioration of the quality of the metal zinc pieces recovered by the reduction volatilization means 13 is an oxide layer on the surface of the precipitate, and the oxide (zinc oxide) is the only and the largest impurity. Therefore, in order to remove the oxide layer on the surface of the zinc piece, the zinc piece obtained by the reduction and volatilization means 13 is converted into a NaCl-KCl-based multiple element having a melting point lower than that of zinc by the zinc obtaining means 14. Dissolve in a chloride flux. Thereafter, by cooling the flux, massive zinc can be obtained.
  • the collected metal zinc pieces are dissolved in NaCl-KCl based multi-component chloride flux and the flux treatment is carried out, so that the oxide layer on the surface of the zinc pieces can be removed. High purity zinc metal can be recovered.
  • the zinc recovery method from the electric furnace steelmaking dust and the zinc recovery device from the electric furnace steelmaking dust according to the embodiment of the present invention are efficient as oxides without reducing zinc oxide in the electric furnace steelmaking dust.
  • the metal zinc can be recovered.
  • iron oxide in the electric furnace steelmaking dust can be recovered as a dephosphorizing agent in the steelmaking process or as 2CaO ⁇ Fe 2 O 3 which is an iron source in the blast furnace method, and the electric furnace steelmaking dust is almost completely recycled. be able to.
  • the processing cost and input energy of electric furnace steelmaking dust can be significantly reduced.
  • recovery apparatus from the electric furnace steelmaking dust of embodiment of this invention is replaced with the leaching means 31 instead of the iron powder mixing means 12, the reduction volatilization means 13, and the zinc acquisition means 14.
  • Electrolytic collection means 32 may be included.
  • the brewing means 31 has a brewing container.
  • the leaching means 31 put NaOH aqueous solution or NH 4 Cl aqueous solution in the leaching vessel and keeps it at 70 ° C. or more and 100 ° C. or less, and in this aqueous solution, ZnO obtained by the Ca mixing heating means 11 and 2CaO ⁇ Fe 2 O 3 And soaked. Thereby, the leaching means 31 selectively leaches ZnO into the aqueous solution.
  • the electrowinning means 32 has a lead alloy anode, an aluminum cathode, and a power source for applying a DC voltage between the anode and the cathode.
  • the electrowinning means 32 arranges an anode and a cathode in the aqueous solution in which ZnO has been leached by the leaching means 31 and applies a DC voltage between the anode and the cathode by a power source to electrolyze the aqueous solution, Zinc can be deposited.
  • the zinc ferrite in the electric furnace steelmaking dust is converted into zinc oxide that can be easily dissolved in both acid and alkali by the Ca mixing heating means 11. Because it is converted, it is possible to leach all the zinc in the dust into the solution.
  • 2CaO ⁇ Fe 2 O 3 which is a residue after zinc recovery, as an iron-making raw material or a dephosphorization flux, it is not preferable to dissolve 2CaO ⁇ Fe 2 O 3 together with zinc in the solution.
  • [ZnO leaching test] 1 g of electric furnace steelmaking dust treated with lime by Ca mixed heating means 11 was put into 300 ml of alkaline 2M-NaOH solution, and a test was conducted to examine the effect of solution concentration and temperature on zinc leaching rate. .
  • the temperature of the aqueous solution was 25 ° C, 40 ° C, 50 ° C, and 70 ° C.
  • the result of the leaching test is shown in FIG. As shown in FIG. 6, it was confirmed that all zinc can be leached into the solution from the lime-treated dust within a few hours by keeping the 2M-NaOH aqueous solution at 70 ° C. It was also confirmed that 2CaO ⁇ Fe 2 O 3 can be recovered as a residue with almost no dissolution in the solution. In addition, it is not preferable in terms of input energy to heat the NaOH aqueous solution over 100 ° C.
  • the aqueous solution in which ZnO has been leached by the leaching means 31 is electrolyzed by the electrolytic collection means 32. Thereby, zinc can be deposited on the cathode and high-purity metallic zinc can be recovered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

【課題】比較的短時間で高純度の金属亜鉛を回収することができる、電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置を提供する。 【解決手段】Ca混合加熱手段11で、電気炉製鋼ダストとカルシウム化合物とを混合後、非還元性雰囲気中で960℃以上、1100℃以下で1~3時間熱処理して、ZnOと2CaO・Feとを取得する。鉄粉混合手段12で、そのZnOと2CaO・Feとに、鉄粉末を混合し、圧粉する。還元揮発手段13で、その圧粉体1を減圧容器21の内部に配置し、減圧容器21の内部を減圧するとともに加熱して亜鉛蒸気2を発生させ、亜鉛蒸気2を冷却凝固して固体の金属亜鉛片3を取得する。亜鉛取得手段14で、その金属亜鉛片3を、NaCl-KClベースの多元系塩化物系フラックスに溶解させた後、冷却して、塊状の亜鉛を取得する。

Description

電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置
 本発明は、電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置に関する。
 従来、日本における粗鋼生産量の約3割は、電気炉を用いた鉄スクラップの再溶製・製錬によるものであり、亜鉛メッキ鋼板表面の亜鉛は、スクラップ溶解中に揮発、再酸化され、集塵ダストとして回収されている。日本全体のダスト発生量は、15kg/ton steel、すなわち年間約50~60万tonにも達しており、自動車用メッキ鋼板スクラップの増加により今後とも増加の傾向にある。ダストは、主に鉄と亜鉛の酸化物の、ZnFe、ZnOなどから成り、いかに効率よくZnOとFeとを分離して、枯渇性希少資源である亜鉛分と鉄分とを回収できるかが重要である。
 現在、電気炉ダスト処理として国内外ともに採用されている主流の方法は、Waelz法である(例えば、特許文献1参照)。Waelz法は、ロータリーキルンを用い、電気炉ダストに炭材を加え、重油バーナーで1300℃程度まで加熱して酸化亜鉛を還元し、一旦亜鉛蒸気として揮発させるものである。しかしながら、生成された亜鉛蒸気は、雰囲気中のCOによって再酸化されるため、亜鉛は最終的には粗酸化亜鉛の形で回収され、亜鉛製錬メーカーに供給されている。一方、亜鉛分が抽出された後の残渣は炉外に排出され、一部はクリンカーとして電気炉原料としてリサイクルされるものの、他の大半は路盤材やセメント原料、あるいは埋立材として処理されている。最近では、電気炉鉄鋼メーカーやWaelzキルン事業者内に保管されるケースも多い。
 このように、Waelz法は、大量のエネルギーを使用して元々酸化物形態の亜鉛を還元して一旦金属態にするにもかかわらず、最終的に酸化物形態に戻しており、結果的に、ダスト中の酸化亜鉛を単純に分離濃縮しているだけであり、エネルギーの有効利用という観点では極めて効率が悪いという問題があった。また、Waelz法で回収される鉄成分も純度の低い酸化鉄であり、鉄の再利用率も極めて低いことから、エネルギーの投入を少なくして付加価値のある鉄酸化物に変える等、これまでの方法によらない新しい発想による高度な有効利用が望まれていた。
 このような問題点を解決するため、本発明者らは、ダスト中の鉄のモル数の2倍以上の酸化カルシウムをダストに添加し、空気中で900℃以上、1000℃以下で、60時間以上、120時間以下保持することにより、(1)式に示すように、ダスト中の亜鉛主成分であるジンクフェライトZnFeを、酸化亜鉛ZnOとダイカルシウムフェライト2CaO・Feとに変化させ、生成されたZnOと2CaO・Feとを、両者の磁気的性質の違いを利用して、高磁場勾配によって磁気分離する方法を提案している(例えば、特許文献2参照)。
Figure JPOXMLDOC01-appb-C000001
特開平9-268332号公報 特開2009-30121号公報
 特許文献2に記載の方法によれば、Waelz法よりも効率的に酸化亜鉛を分離することができ、酸化鉄に付加価値を付けることができる。しかし、亜鉛は酸化亜鉛として回収されており、電気炉製鋼ダストから金属亜鉛を回収する方法の開発が望まれている。また、特許文献2に記載の方法では、電気炉製鋼ダストに酸化カルシウムを添加して加熱するときの加熱時間が60時間以上であり、長すぎるという課題があった。
 本発明は、このような課題に着目してなされたもので、比較的短時間で高純度の金属亜鉛を回収することができる、電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置を提供することを目的とする。
 本発明者等は、電気炉製鋼ダストに石灰を加え、非還元性雰囲気中で加熱処理する実験を行ったところ、CaO添加の有無に関わらず、鉄、亜鉛の揮発量は小さいが、塩素、フッ素のハロゲン類、鉛、カドミウムのような蒸気圧が高い重金属はいずれも大部分が揮発除去されており、特に1100℃で加熱処理後のハロゲン、鉛、カドミウム濃度は分析限界以下であることを見出して、本発明に至った。
 すなわち、本発明に係る電気炉製鋼ダストからの亜鉛回収方法は、電気炉製鋼ダストと、その電気炉製鋼ダスト中のFeのモル数と当量以上のモル数のCaを含むカルシウム化合物とを混合後、非還元性雰囲気中で960℃以上、1100℃以下で1~3時間熱処理して、ZnOと2CaO・Feとを得るCa混合加熱工程[(2)式参照]と、前記Ca混合加熱工程で得られたZnOと2CaO・Feとに、前記ZnOのモル数と当量以上のモル数の鉄粉末を混合し、圧粉する鉄粉混合工程と、前記鉄粉混合工程による圧粉体を減圧容器の内部に配置し、前記減圧容器の内部を減圧するとともに加熱して亜鉛蒸気を発生させ[(3)式参照]、前記亜鉛蒸気を冷却凝固して固体の亜鉛片を得る還元揮発工程と、前記還元揮発工程で得られた亜鉛片を、亜鉛の融点より低い融点を有するNaCl-KClベースの多元系塩化物系フラックスに溶解させた後、冷却して、塊状の亜鉛を得る亜鉛取得工程とを、有することを特徴とする。
Figure JPOXMLDOC01-appb-C000002
 本発明に係る電気炉製鋼ダストからの亜鉛回収装置は、電気炉製鋼ダストと、その電気炉製鋼ダスト中のFeのモル数と当量以上のモル数のCaを含むカルシウム化合物とを混合後、非還元性雰囲気中で960℃以上、1100℃以下で1~3時間熱処理して、ZnOと2CaO・Feとを取得可能に設けられたCa混合加熱手段[(2)式参照]と、前記Ca混合加熱手段で得られたZnOと2CaO・Feとに、前記ZnOのモル数と当量以上のモル数の鉄粉末を混合し、圧粉するよう設けられた鉄粉混合手段と、減圧容器を有し、前記鉄粉混合手段による圧粉体を前記減圧容器の内部に配置し、前記減圧容器の内部を減圧するとともに加熱して亜鉛蒸気を発生させ[(3)式参照]、前記亜鉛蒸気を冷却凝固して固体の亜鉛片を取得可能に設けられた還元揮発手段と、前記還元揮発手段で得られた亜鉛片を、亜鉛の融点より低い融点を有するNaCl-KClベースの多元系塩化物系フラックスに溶解させた後、冷却して、塊状の亜鉛を取得可能に設けられた亜鉛取得手段とを、有することを特徴とする。
 本発明に係る電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置は、電気炉製鋼ダストと、その電気炉製鋼ダスト中のFeのモル数と当量以上のモル数のCaを含むカルシウム化合物とを混合後、非還元性雰囲気中で960℃以上、1100℃以下で1~3時間熱処理することにより、鉄や亜鉛をほとんど揮発させることなく、電気炉製鋼ダストに含まれる塩素やフッ素などのハロゲン類、鉛、カドミウムのような蒸気圧が高い重金属をほぼ揮発除去することができる。また、カルシウム化合物を添加することにより、難還元性、難溶性のZnFeの生成を防ぎつつ、(2)式の反応により、ZnOと2CaO・Feとを得ることができる。熱処理時間が3時間以内と比較的短く、亜鉛回収の全行程を短時間で行うことができる。なお、このCa混合加熱工程として、特許文献2に記載の方法を用いることもできるが、熱処理時間が60時間以上と長くなってしまう。混合するカルシウム化合物は、例えば、生石灰(CaO)、石灰石(CaCO)、消石灰(Ca(OH))である。また、カルシウムフェライト(2CaO・Fe)が溶融すると予測できない現象が発生してしまうため、カルシウムフェライトが溶融しないよう、たとえ1100℃より高くなることがあったとしても、加熱温度をカルシウムフェライトの融点(約1230℃)以下に保持することが好ましい。
 得られたZnOと2CaO・Feとに鉄粉末を混合して還元することにより、(3)式に従って、亜鉛蒸気が得られ、その亜鉛蒸気を冷却凝固させることにより、金属の亜鉛片を回収することができる。還元前にカルシウム化合物添加による熱処理を行っているため、ハロゲン類や鉛等の重金属類が混入していない亜鉛片を得ることができる。なお、混合する鉄粉末としては、例えば、電解鉄粉やダライ粉(鉄スクラップの一種で、炭素鋼の切削屑)を使用することができる。また、亜鉛蒸気を発生させるための加熱温度は、減圧したときの圧力での、亜鉛の沸点以上であればよい。
 回収された金属の亜鉛片を、NaCl-KClベースの多元系塩化物系フラックスに溶解させてフラックス処理を行うことにより、亜鉛片表面の酸化層を除去することができ、塊状で高純度の金属亜鉛を回収することができる。また、亜鉛還元後の残渣の2CaO・Feは、そのまま回収して、製鋼プロセスにおける脱リン剤、あるいは高炉法における鉄源として使用することができる。
 このように、本発明に係る電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置は、電気炉製鋼ダスト中の酸化亜鉛を還元することなく酸化物として効率的に分離して、金属亜鉛を回収することができる。さらに、電気炉製鋼ダスト中の酸化鉄を製鋼プロセスにおける脱リン剤、あるいは高炉法における鉄源となる2CaO・Feとして回収することができ、電気炉製鋼ダストをほぼ完全にリサイクルすることができる。また、電気炉製鋼ダストの処理費用および投入エネルギーを大幅に削減することもできる。
 また、本発明に係る電気炉製鋼ダストからの亜鉛回収方法は、電気炉製鋼ダストと、その電気炉製鋼ダスト中のFeのモル数と当量以上のモル数のCaを含むカルシウム化合物とを混合後、非還元性雰囲気中で960℃以上、1100℃以下で1~3時間熱処理して、ZnOと2CaO・Feとを得るCa混合加熱工程と、前記Ca混合加熱工程で得られたZnOと2CaO・Feとを、アルカリ性または中性の水溶液中に浸漬して、ZnOを選択的に前記水溶液中に浸出させる浸出工程と、前記浸出工程でZnOが浸出した前記水溶液を電解して、陰極に亜鉛を析出させる電解採取工程とを、有していてもよい。
 本発明に係る電気炉製鋼ダストからの亜鉛回収装置は、電気炉製鋼ダストと、その電気炉製鋼ダスト中のFeのモル数と当量以上のモル数のCaを含むカルシウム化合物とを混合後、非還元性雰囲気中で960℃以上、1100℃以下で1~3時間熱処理して、ZnOと2CaO・Feとを取得可能に設けられたCa混合加熱手段と、前記Ca混合加熱手段で得られたZnOと2CaO・Feとを、アルカリ性または中性の水溶液中に浸漬して、ZnOを選択的に前記水溶液中に浸出させるよう設けられた浸出手段と、前記浸出手段でZnOが浸出した前記水溶液を電解して、陰極に亜鉛を析出可能に設けられた電解採取手段とを、有していてもよい。
 これらの場合、カルシウム化合物添加による熱処理で得られたZnOと2CaO・Feとを、アルカリ性または中性の水溶液中に浸漬することにより、2CaO・Feをほとんど水溶液中に溶解させることなく、ZnOを選択的に水溶液中に浸出させることができる。このため、2CaO・Feを残渣として回収することができ、製鋼プロセスにおける脱リン剤、あるいは高炉法における鉄源として使用することができる。また、ZnOが浸出した水溶液を電解することにより、陰極に亜鉛を析出させて、高純度の金属亜鉛を回収することができる。
 本発明に係る電気炉製鋼ダストからの亜鉛回収方法で、前記浸出工程は、前記Ca混合加熱工程で得られたZnOと2CaO・Feとを、70℃以上100℃以下の前記水溶液に浸漬させることが好ましい。また、前記浸出工程の前記水溶液はNaOH水溶液またはNHCl水溶液であることが好ましい。本発明に係る電気炉製鋼ダストからの亜鉛回収装置で、前記浸出手段は、前記Ca混合加熱手段で得られたZnOと2CaO・Feとを、70℃以上100℃以下の前記水溶液に浸漬させるよう構成されていることが好ましい。また、前記浸出手段の前記水溶液はNaOH水溶液またはNHCl水溶液であることが好ましい。これらの場合、効率的に全ての亜鉛を水溶液中に浸出させることができる。
 本発明によれば、比較的短時間で高純度の金属亜鉛を回収することができる、電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置を提供することができる。
本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収装置を示すブロック構成図である。 図1に示す電気炉製鋼ダストからの亜鉛回収装置の還元揮発手段を示す側面図である。 本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収方法について、(a)電気炉製鋼ダストのみを加熱したときの、亜鉛、鉄の揮発率、(b)塩素、フッ素、鉛、カドミウムの揮発率、(c)電気炉製鋼ダストにCaOを添加して加熱したときの、亜鉛、鉄の揮発率、(d)塩素、フッ素、鉛、カドミウムの揮発率を示すグラフである。 本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収方法について、(a)電気炉製鋼ダストのみを加熱したとき、(b)電気炉製鋼ダストにCaOを添加して加熱したときの、熱処理後のダストのX線回折パターンである。 本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収方法について、電気炉製鋼ダストにCaOを添加して加熱したものに鉄粉を添加し、還元揮発させたもの(石灰処理ダスト)、電気炉製鋼ダストのみを加熱したものに鉄粉を添加し、還元揮発させたもの(石灰処理なし)のX線回折パターンである。 本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収方法について、電気炉製鋼ダストにCaOを添加して加熱したものを、NaOH水溶液に浸漬したときの、亜鉛、カルシウム、鉄の溶解量の経時変化を示すグラフである。
 以下、図面に基づき、本発明の実施の形態について説明する。
 図1乃至図6は、本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置を示している。
 図1に示すように、本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収装置は、Ca混合加熱手段11と鉄粉混合手段12と還元揮発手段13と亜鉛取得手段14とを有している。
 図1に示すように、Ca混合加熱手段11は、混合容器と加熱装置とを有している。Ca混合加熱手段11は、電気炉製鋼ダストと、その電気炉製鋼ダスト中のFeのモル数と当量以上のモル数のCaを含むカルシウム化合物とを混合容器に入れて混合後、加熱装置により、非還元性雰囲気中で960℃以上、1100℃以下で1~3時間熱処理するよう構成されている。これにより、Ca混合加熱手段11は、(2)式の反応により、ZnOと2CaO・Feとを取得可能になっている。なお、混合するカルシウム化合物は、例えば、生石灰(CaO)、石灰石(CaCO)、消石灰(Ca(OH))である。
 鉄粉混合手段12は、圧粉装置を有している。鉄粉混合手段12は、Ca混合加熱手段11で得られたZnOと2CaO・Feとに、ZnOのモル数と当量以上のモル数の鉄粉末を混合し、圧紛装置により、その混合物を圧粉するよう構成されている。なお、混合する鉄粉末は、例えば、電解鉄粉やダライ粉である。
 図2に示すように、還元揮発手段13は、耐熱性の減圧容器21と、減圧容器21の一端に設けられた試料保持容器22と、減圧容器21の中間部に設けられた断熱管23と、減圧容器21の他端から断熱管23の近傍まで伸びるよう設けられた低温凝縮管24と、減圧容器21の他端に設けられた排気管25とを有している。還元揮発手段13は、断熱管23より一端側の加熱ゾーン(Heating Zone)と、断熱管23より他端側の冷却ゾーン(Cooling Zone)に分かれている。還元揮発手段13は、鉄粉混合手段12による圧粉体1を、加熱ゾーンの試料保持容器22の内部に配置し、排気管25から空気を抜いて減圧容器21の内部を減圧するとともに、試料保持容器22の内部を1000℃以上に加熱することにより、(3)式に従って亜鉛蒸気2を発生させ、その亜鉛蒸気2を断熱管23の内部を通して冷却ゾーンに導入し、低温凝縮管24の表面に冷却凝固させて、固体の金属亜鉛片3を取得可能になっている。
 図1に示すように、亜鉛取得手段14は、溶解容器を有している。亜鉛取得手段14は、亜鉛の融点より低い融点を有するNaCl-KClベースの多元系塩化物系フラックスを溶解容器に入れ、還元揮発手段13で得られた亜鉛片を、溶解容器中の多元系塩化物系フラックスに溶解させた後、冷却して、塊状の亜鉛を取得可能に構成されている。
 以下、本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収方法について、実験結果等を参照しながら説明する。本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収方法は、本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収装置により好適に実施される。本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収方法は、まず、Ca混合加熱手段11により、電気炉製鋼ダストと、その電気炉製鋼ダスト中のFeのモル数と当量以上のモル数のCaを含むカルシウム化合物とを混合後、非還元性雰囲気中で960℃以上、1100℃以下で1~3時間熱処理を行う。
[電気炉製鋼ダストにカルシウム化合物を添加したときの加熱試験]
 表1に示す電気炉製鋼ダストに、生石灰(CaO)を当量添加して混合し、3時間加熱した場合について、亜鉛(Zn)、鉄(Fe)、塩素(Cl)、フッ素(F)、鉛(Pb)、カドミウム(Cd)の揮発量と保持温度との関係を調べた。その結果を、図3(c)および(d)に示す。また、比較のため、生石灰(CaO)を添加しない場合についても同様の試験を行い、その結果を図3(a)および(b)に示す。
Figure JPOXMLDOC01-appb-T000003
 図3に示すように、CaO添加の有無に関わらず、鉄、亜鉛の揮発量は小さいが、塩素、フッ素のハロゲン類、鉛、カドミウムのような蒸気圧が高い重金属はいずれも、大部分が揮発除去されていることが確認された。特に、加熱温度が960℃以上で、それらの揮発除去率が大きく、1100℃では熱処理後のハロゲン、鉛、カドミウム濃度は分析限界以下であることが確認された。また、加熱時間1時間でもこれらの除去率は80%以上であった。なお、加熱温度を1100℃より高くしても、1100℃のときと効果が変わらないため、加熱温度は最高でも1100℃で十分である。また、加熱時間を3時間より長くしても、3時間のときと効果が変わらないため、加熱時間は最長でも3時間で十分である。
 また、CaOを添加した場合には、CaO無添加の場合に比べて、より高温でなければ、ハロゲン、鉛、カドミウムの揮発除去が進まないことが確認された。しかしながら、CaO無添加のままダストを加熱すると、ダスト中の亜鉛の30~40%を占めるZnOがダスト中のFeと反応し、(4)式によって、難還元性、難溶性のZnFeに転化されてしまうため、ZnFeの生成を防止するためには、CaO添加が必要である。
Figure JPOXMLDOC01-appb-C000004
 このことを確認するために、熱処理後のダストのX線回折パターンを調べ、その結果を図4に示す。図4(b)に示すように、ダストにCaOを加えることにより、処理温度の上昇と共に、ダスト中のZnFeの回折強度は小さくなり、ZnOの回折強度は大きくなっていることが確認された。これに対し、図4(a)に示すように、CaO無添加ダストの場合は逆に、処理温度の上昇と共に、ZnFeの回折強度は大きくなり、960℃ではZnOの存在割合は著しく小さくなっていることが確認された。
 さらに、CaO無添加のままダストを加熱すると、ダストに含まれる亜鉛の内、一般的に約10%を占めるZnClが大部分揮発してしまい、亜鉛のロスが避けられない。これに対し、CaOを添加することにより、亜鉛の揮発ロスはほとんど起こらないことが実験的に明らかにされており、亜鉛の歩留りの観点からも、CaO添加は有利である。
 なお、本試験では、カルシウム化合物としてCaOを用いたが、石灰石(CaCO)や消石灰(Ca(OH))を用いた場合についても同様の効果が得られることは、熱力学の解離温度や解離水蒸気圧に基づいた(5)式および(6)式から容易に推測でき、実験的にも確認されている。
Figure JPOXMLDOC01-appb-C000005
 以上の試験結果から、電気炉製鋼ダストと、その電気炉製鋼ダスト中のFeのモル数と当量以上のモル数のCaを含むカルシウム化合物とを混合後、非還元性雰囲気中で960℃以上、1100℃以下で1~3時間熱処理することにより、鉄や亜鉛をほとんど揮発させることなく、電気炉製鋼ダストに含まれる塩素やフッ素などのハロゲン類、鉛、カドミウムのような蒸気圧が高い重金属をほぼ揮発除去することができる。また、カルシウム化合物を添加することにより、難還元性、難溶性のZnFeの生成を防ぎつつ、ZnOと2CaO・Feとを得ることができる。熱処理時間が3時間以内と比較的短く、亜鉛回収の全行程を短時間で行うことができる。
 次に、鉄粉混合手段12により、Ca混合加熱手段11で得られたZnOと2CaO・Feとに、ZnOのモル数と当量以上のモル数の鉄粉末を混合し、圧粉する。その圧粉体1を、減圧容器21の内部に配置し、還元揮発手段13により、減圧容器21の内部を減圧するとともに1000℃以上に加熱して亜鉛蒸気2を発生させ、亜鉛蒸気2を冷却凝固して固体の金属亜鉛片3を得る。金属亜鉛片3は、フレーク状や粒状である。
[鉄粉添加後の亜鉛還元試験]
 電気炉製鋼ダスト中の鉄濃度以上のCaOを添加し、空気中で、1100℃で3時間加熱したダスト試料を用意し、これにZnO/Feのモル比が1になるように電解鉄粉を加えて混合・圧粉し、図2の還元揮発手段13の試料保持容器22の内部にセットした。その後、減圧容器21の内部を真空ポンプで減圧しながら試料保持容器22を1000℃で約1時間保持し、(3)式に従って発生した亜鉛蒸気を、冷却ゾーンに設置した低温凝縮管24の表面に凝縮させた。ダスト中の亜鉛は、1時間以内に全て還元されて揮発し、試験後の残渣は、2CaO・Feのみであった。なお、比較のため、石灰処理をしない熱処理済みのダストについても同様の金属鉄粉を加えた試験を実施した。
 低温凝縮管24の表面から回収した亜鉛片のX線回折パターンを、図5に示す。図5の下のグラフに示すように、石灰処理を施さず、ダストを直接鉄還元揮発させると、亜鉛と共にダスト中のハロゲン等揮発物が蒸発し、亜鉛と共に析出するため、金属亜鉛以外に塩化物や複合酸塩化物のピークが多数観測された。また、析出物は鉛やカドミウム、マンガン等の重金属類を数%含有しており、亜鉛の純度は71%であった。これに対し、図5の上のグラフに示すように、石灰処理ダストから回収した析出物は、金属亜鉛以外の化合物ピークは認められず、他金属の混入は認められなかった。析出した亜鉛片を化学分析した結果、亜鉛の品位は95%程度に留まっていたが、鉛他の重金属類の混入は認められなかった。
 なお、還元材として電解鉄粉の代わりにダライ粉を用いて同様の実験を行った。この場合にも、(3)式に従って亜鉛蒸気を発生させることができるが、鉄とZnOとの接触面積を確保するために、ダライ粉を電解鉄粉の2倍当量添加することにより、電解鉄粉とほぼ同じ結果が得られることが確認された。ただし、ダライ粉の粒度が十分細かければ、過剰添加量は少なくて済むことは明らかである。
 以上の試験結果から、酸化亜鉛を金属鉄で還元揮発させ、金属亜鉛を回収する方法は、ハロゲンや鉛等の事前除去を行わなければ、高純度の亜鉛を得ることはできない。すなわち、この鉄還元揮発法は、石灰処理法と組み合わせることにより、ハロゲン類や鉛等の重金属類が混入していない金属亜鉛を回収することができる。なお、亜鉛還元後の残渣の2CaO・Feは、そのまま回収して、製鋼プロセスにおける脱リン剤、あるいは高炉法における鉄源として使用することができる。
 還元揮発手段13により回収された金属亜鉛片の品位を低下させている原因は、析出物表面の酸化層であり、酸化物(酸化亜鉛)が唯一かつ最大の不純物である。そこで、次に、その亜鉛片表面の酸化層を除去するために、亜鉛取得手段14により、還元揮発手段13で得られた亜鉛片を、亜鉛の融点より低い融点を有するNaCl-KClベースの多元系塩化物系フラックスに溶解させる。その後、そのフラックスを冷却することにより、塊状の亜鉛を得ることができる。
[フラックスへの亜鉛片の溶解試験]
 Znの融点より低い融点であるNaCl-KClベースの多元系塩化物フラックスを用いて、亜鉛の溶解試験を行った。亜鉛片とフラックスとを共にアルミナるつぼに入れ、450℃で再溶解させた。溶解前はフレーク状、粒状で表面が酸化された状態であった亜鉛片が、フラックス溶解後はほぼ健全なインゴットとなった。化学分析の結果、亜鉛の純度は99%以上であった。
 この試験結果から、回収された金属の亜鉛片を、NaCl-KClベースの多元系塩化物系フラックスに溶解させてフラックス処理を行うことにより、亜鉛片表面の酸化層を除去することができ、塊状で高純度の金属亜鉛を回収することができる。
 このように、本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置は、電気炉製鋼ダスト中の酸化亜鉛を還元することなく酸化物として効率的に分離して、金属亜鉛を回収することができる。さらに、電気炉製鋼ダスト中の酸化鉄を、製鋼プロセスにおける脱リン剤、あるいは高炉法における鉄源となる2CaO・Feとして回収することができ、電気炉製鋼ダストをほぼ完全にリサイクルすることができる。また、電気炉製鋼ダストの処理費用および投入エネルギーを大幅に削減することもできる。
 なお、図1に示すように、本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収装置は、鉄粉混合手段12、還元揮発手段13および亜鉛取得手段14の代わりに、浸出手段31と電解採取手段32とを有していてもよい。浸出手段31は、浸出容器を有している。浸出手段31は、NaOH水溶液またはNHCl水溶液を浸出容器に入れて70℃以上100℃以下に保ち、この水溶液の中に、Ca混合加熱手段11で得られたZnOと2CaO・Feとを浸漬するよう構成されている。これにより、浸出手段31は、ZnOを選択的に水溶液中に浸出させるようになっている。電解採取手段32は、鉛合金製の陽極と、アルミニウム製の陰極と、陽極と陰極との間に直流電圧を印加する電源とを有している。電解採取手段32は、浸出手段31でZnOが浸出した水溶液中に陽極と陰極とを配置し、電源により陽極と陰極との間に直流電圧を印加することにより、水溶液を電解して、陰極に亜鉛を析出可能に構成されている。
 この場合、本発明の実施の形態の電気炉製鋼ダストからの亜鉛回収方法では、Ca混合加熱手段11により、電気炉製鋼ダスト中のジンクフェライトは酸にもアルカリにも容易に溶解できる酸化亜鉛に転化されるため、溶液中にダスト中の亜鉛を全て浸出させることが可能である。このとき、亜鉛回収後の残渣である2CaO・Feを製鉄原料や脱リンフラックスとして利用するためには、亜鉛と共に2CaO・Feも溶液中に溶解させることは好ましくない。そのため、浸出溶液として、酸ではなく、基本的に2CaO・Feが不溶であるアルカリ性のNaOH溶液か、中性のNHCl水溶液にダストを投入する。すなわち、Ca混合加熱手段11で得られたZnOと2CaO・Feとを、70℃以上100℃以下のNaOH水溶液またはNHCl水溶液に浸漬して、ZnOを選択的に水溶液中に浸出させる。
[ZnO浸出試験]
 Ca混合加熱手段11により石灰処理を行った電気炉製鋼ダスト 1gを、アルカリ性の2M-NaOH溶液 300ミリリットルに投入し、亜鉛の浸出率に及ぼす溶液濃度の影響および温度の影響を調べる試験を行った。水溶液の温度は、25℃、40℃、50℃、70℃とした。その浸出試験の結果を、図6に示す。図6に示すように、2M-NaOH水溶液を70℃に保持すれば、数時間で石灰処理ダストから全ての亜鉛を溶液中に浸出できることが確認された。また、2CaO・Feは、ほとんど溶液中に溶解することなく、残渣として回収可能であることも確認された。なお、100℃を越えてNaOH水溶液を加熱するのは、投入エネルギー的に好ましくない。
 NaOH水溶液の代わりにNHCl水溶液を用いても同様に、石灰処理ダスト中の全ての亜鉛を浸出できることが実験的に確認された。NHCl水溶液を用いた場合は、NaOH水溶液の場合よりも亜鉛浸出は迅速に起こるが、溶液のpHが中性付近であるため、10%程度の2CaO・Feが溶液中に溶解してしまう。このため、2CaO・Feの歩留りの観点では、NHCl水溶液はNaOH水溶液よりも若干劣っている。
 以上の試験結果から、カルシウム化合物添加による熱処理で得られたZnOと2CaO・Feとを、アルカリ性または中性の水溶液中に浸漬することにより、2CaO・Feをほとんど水溶液中に溶解させることなく、ZnOを選択的に水溶液中に浸出させることができる。このため、2CaO・Feを残渣として回収することができ、製鋼プロセスにおける脱リン剤、あるいは高炉法における鉄源として使用することができる。
 次に、浸出手段31でZnOが浸出した水溶液を、電解採取手段32により電解する。これにより、陰極に亜鉛を析出させることができ、高純度の金属亜鉛を回収することができる。
 11 Ca混合加熱手段
 12 鉄粉混合手段
 13 還元揮発手段
  21 減圧容器
  22 試料保持容器
  23 断熱管
  24 低温凝縮管
  25 排気管
 14 亜鉛取得手段
 
  1 圧粉体
  2 亜鉛蒸気
  3 金属亜鉛片
 
 31 浸出手段
 32 電解採取手段
 

Claims (10)

  1.  電気炉製鋼ダストと、その電気炉製鋼ダスト中のFeのモル数と当量以上のモル数のCaを含むカルシウム化合物とを混合後、非還元性雰囲気中で960℃以上、1100℃以下で1~3時間熱処理して、ZnOと2CaO・Feとを得るCa混合加熱工程と、
     前記Ca混合加熱工程で得られたZnOと2CaO・Feとに、前記ZnOのモル数と当量以上のモル数の鉄粉末を混合し、圧粉する鉄粉混合工程と、
     前記鉄粉混合工程による圧粉体を減圧容器の内部に配置し、前記減圧容器の内部を減圧するとともに加熱して亜鉛蒸気を発生させ、前記亜鉛蒸気を冷却凝固して固体の亜鉛片を得る還元揮発工程と、
     前記還元揮発工程で得られた亜鉛片を、亜鉛の融点より低い融点を有するNaCl-KClベースの多元系塩化物系フラックスに溶解させた後、冷却して、塊状の亜鉛を得る亜鉛取得工程とを、
     有することを特徴とする電気炉製鋼ダストからの亜鉛回収方法。
  2.  電気炉製鋼ダストと、その電気炉製鋼ダスト中のFeのモル数と当量以上のモル数のCaを含むカルシウム化合物とを混合後、非還元性雰囲気中で960℃以上、1100℃以下で1~3時間熱処理して、ZnOと2CaO・Feとを得るCa混合加熱工程と、
     前記Ca混合加熱工程で得られたZnOと2CaO・Feとを、アルカリ性または中性の水溶液中に浸漬して、ZnOを選択的に前記水溶液中に浸出させる浸出工程と、
     前記浸出工程でZnOが浸出した前記水溶液を電解して、陰極に亜鉛を析出させる電解採取工程とを、
     有することを特徴とする電気炉製鋼ダストからの亜鉛回収方法。
  3.  前記浸出工程は、前記Ca混合加熱工程で得られたZnOと2CaO・Feとを、70℃以上100℃以下の前記水溶液に浸漬させることを特徴とする請求項2記載の電気炉製鋼ダストからの亜鉛回収方法。
  4.  前記浸出工程の前記水溶液はNaOH水溶液またはNHCl水溶液であることを特徴とする請求項2または3記載の電気炉製鋼ダストからの亜鉛回収方法。
  5.  前記カルシウム化合物は、生石灰、石灰石および消石灰のうちの少なくとも1つから成ることを特徴とする請求項1乃至4のいずれか1項に記載の電気炉製鋼ダストからの亜鉛回収方法。
  6.  電気炉製鋼ダストと、その電気炉製鋼ダスト中のFeのモル数と当量以上のモル数のCaを含むカルシウム化合物とを混合後、非還元性雰囲気中で960℃以上、1100℃以下で1~3時間熱処理して、ZnOと2CaO・Feとを取得可能に設けられたCa混合加熱手段と、
     前記Ca混合加熱手段で得られたZnOと2CaO・Feとに、前記ZnOのモル数と当量以上のモル数の鉄粉末を混合し、圧粉するよう設けられた鉄粉混合手段と、
     減圧容器を有し、前記鉄粉混合手段による圧粉体を前記減圧容器の内部に配置し、前記減圧容器の内部を減圧するとともに加熱して亜鉛蒸気を発生させ、前記亜鉛蒸気を冷却凝固して固体の亜鉛片を取得可能に設けられた還元揮発手段と、
     前記還元揮発手段で得られた亜鉛片を、亜鉛の融点より低い融点を有するNaCl-KClベースの多元系塩化物系フラックスに溶解させた後、冷却して、塊状の亜鉛を取得可能に設けられた亜鉛取得手段とを、
     有することを特徴とする電気炉製鋼ダストからの亜鉛回収装置。
  7.  電気炉製鋼ダストと、その電気炉製鋼ダスト中のFeのモル数と当量以上のモル数のCaを含むカルシウム化合物とを混合後、非還元性雰囲気中で960℃以上、1100℃以下で1~3時間熱処理して、ZnOと2CaO・Feとを取得可能に設けられたCa混合加熱手段と、
     前記Ca混合加熱手段で得られたZnOと2CaO・Feとを、アルカリ性または中性の水溶液中に浸漬して、ZnOを選択的に前記水溶液中に浸出させるよう設けられた浸出手段と、
     前記浸出手段でZnOが浸出した前記水溶液を電解して、陰極に亜鉛を析出可能に設けられた電解採取手段とを、
     有することを特徴とする電気炉製鋼ダストからの亜鉛回収装置。
  8.  前記浸出手段は、前記Ca混合加熱手段で得られたZnOと2CaO・Feとを、70℃以上100℃以下の前記水溶液に浸漬させるよう構成されていることを特徴とする請求項7記載の電気炉製鋼ダストからの亜鉛回収装置。
  9.  前記浸出手段の前記水溶液はNaOH水溶液またはNHCl水溶液であることを特徴とする請求項7または8記載の電気炉製鋼ダストからの亜鉛回収装置。
  10.  前記カルシウム化合物は、生石灰、石灰石および消石灰のうちの少なくとも1つから成ることを特徴とする請求項6乃至9のいずれか1項に記載の電気炉製鋼ダストからの亜鉛回収装置。
     
PCT/JP2014/069184 2013-07-30 2014-07-18 電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置 WO2015016086A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/909,392 US20160177416A1 (en) 2013-07-30 2014-07-18 Method for recovering zinc from electric furnace steelmaking dust and device for recovering zinc from electric furnace steelmaking dust
KR1020167002624A KR20160034927A (ko) 2013-07-30 2014-07-18 전기로 제강 더스트로부터의 아연 회수 방법 및 전기로 제강 더스트로부터의 아연 회수 장치
EP14831593.0A EP3029166A4 (en) 2013-07-30 2014-07-18 METHOD FOR RECOVERING ZINC FROM ELECTRIC OVEN STEEL DUST PRODUCTION AND ZINC RECOVERING DEVICE FROM ELECTRIC FURNACE DIE PRODUCTION DUST
JP2015529518A JP6406675B2 (ja) 2013-07-30 2014-07-18 電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-157305 2013-07-30
JP2013157305 2013-07-30

Publications (1)

Publication Number Publication Date
WO2015016086A1 true WO2015016086A1 (ja) 2015-02-05

Family

ID=52431624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069184 WO2015016086A1 (ja) 2013-07-30 2014-07-18 電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置

Country Status (5)

Country Link
US (1) US20160177416A1 (ja)
EP (1) EP3029166A4 (ja)
JP (1) JP6406675B2 (ja)
KR (1) KR20160034927A (ja)
WO (1) WO2015016086A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6113344B1 (ja) * 2016-04-28 2017-04-12 国立大学法人東北大学 鉄鋼ダストの処理方法、亜鉛の生産方法及び還元鉄の生産方法
CN106978535A (zh) * 2017-03-20 2017-07-25 云南驰宏锌锗股份有限公司 一种带余热锅炉烟化炉的开炉方法
CN107022680A (zh) * 2017-03-20 2017-08-08 云南驰宏锌锗股份有限公司 一种带余热锅炉烟化炉的全冷料开炉方法
CN109987865A (zh) * 2019-04-22 2019-07-09 莒县中联水泥有限公司 高硅石灰石在水泥熟料生产中的应用
WO2022118927A1 (ja) * 2020-12-04 2022-06-09 株式会社キノテック 亜鉛の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102370860B1 (ko) * 2014-03-25 2022-03-07 후루카와 덴키 고교 가부시키가이샤 구리합금 판재, 커넥터, 및 구리합금 판재의 제조방법
CN106756095A (zh) * 2016-11-24 2017-05-31 云南昆欧科技有限责任公司 一种钢铁企业转底炉收尘灰的利用方法
CN107385230A (zh) * 2017-07-31 2017-11-24 重庆科技学院 一种炼钢粉尘回收利用方法及其使用的真空还原电炉设备
CN110387476B (zh) * 2019-08-20 2021-04-02 昆明理工大学 一种电磁强化黄磷电除尘灰浸出回收高纯钾的方法
CN111302386A (zh) * 2020-02-14 2020-06-19 北京科技大学 一种富锌冶金尘泥和半干法脱硫灰协同资源化方法
CN113061746A (zh) * 2021-03-24 2021-07-02 常州市左贤机械制造有限公司 一种锌液流量控制装置
CN114769269A (zh) * 2022-04-27 2022-07-22 宁波江丰电子材料股份有限公司 一种超高纯铜系残靶的循环再利用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512959A (en) * 1967-09-27 1970-05-19 Rossborough Supply Co Method of preparing melts of zinc base alloys and improved flux therefor
JPS56102530A (en) * 1980-01-16 1981-08-17 Sosuke Uchida Recovering method for zinc from zinc dross by liquation
JPH09268332A (ja) 1996-04-01 1997-10-14 Nkk Corp 製鉄ダストからの酸化亜鉛の回収装置
JP2003027155A (ja) * 2001-07-09 2003-01-29 Topy Ind Ltd 亜鉛濃縮用成形体及び該成形体を使用する製鋼ダスト中の亜鉛の濃縮方法
JP2008291292A (ja) * 2007-05-23 2008-12-04 Takeshi Azagami 溶融亜鉛の製造方法
JP2009030121A (ja) 2007-07-27 2009-02-12 Tohoku Univ 電気炉ダストからの酸化亜鉛の回収方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258055A (en) * 1992-08-31 1993-11-02 International Mill Service, Inc. Process and system for recovering zinc and other metal vapors from a gaseous stream
WO2009129823A1 (de) * 2008-04-23 2009-10-29 Arcelormittal Bremen Gmbh Herstellung von calciumferrit-sintern aus zink- /bleihaltigen eisenreststoffen zur verwertung derselben

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512959A (en) * 1967-09-27 1970-05-19 Rossborough Supply Co Method of preparing melts of zinc base alloys and improved flux therefor
JPS56102530A (en) * 1980-01-16 1981-08-17 Sosuke Uchida Recovering method for zinc from zinc dross by liquation
JPH09268332A (ja) 1996-04-01 1997-10-14 Nkk Corp 製鉄ダストからの酸化亜鉛の回収装置
JP2003027155A (ja) * 2001-07-09 2003-01-29 Topy Ind Ltd 亜鉛濃縮用成形体及び該成形体を使用する製鋼ダスト中の亜鉛の濃縮方法
JP2008291292A (ja) * 2007-05-23 2008-12-04 Takeshi Azagami 溶融亜鉛の製造方法
JP2009030121A (ja) 2007-07-27 2009-02-12 Tohoku Univ 電気炉ダストからの酸化亜鉛の回収方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHAIRAKSA R. ET AL.: "Alkaline Leaching of Zinc from CaO Treated EAF Dust, Current advances in materials and processes", REPORT OF THE ISIJ MEETING (CAMP-ISIJ, vol. 23, no. 2, 1 September 2010 (2010-09-01), pages 1038, XP008179511 *
CHAIRAKSA R. ET AL.: "Reduction of ZnO in Lime Treated EAF dust with Solid Iron Powder, Current advances in materials and processes", REPORT OF THE ISIJ MEETING (CAMP-ISIJ, vol. 24, no. 2, 1 September 2011 (2011-09-01), pages 761, XP008179507 *
CHAIRAKSA ROMCHAT ET AL.: "New Zinc Recovery Process from EAF Dust by Lime Addition", IRON & STEEL TECHNOLOGY CONFERENCE PROCEEDINGS, vol. 1, 3 May 2010 (2010-05-03), pages 271 - 281, XP008179514 *
ITOH SATOSHI ET AL.: "New EAF Dust Treatment Process with the Aid of Strong Magnetic Field", ISIJ INTERNATIONAL, vol. 48, no. 10, 15 October 2008 (2008-10-15), pages 1339 - 1344, XP055259065 *
See also references of EP3029166A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6113344B1 (ja) * 2016-04-28 2017-04-12 国立大学法人東北大学 鉄鋼ダストの処理方法、亜鉛の生産方法及び還元鉄の生産方法
WO2017187973A1 (ja) * 2016-04-28 2017-11-02 国立大学法人東北大学 鉄鋼ダストの処理方法、亜鉛の生産方法、鉄鋼原料の生産方法、及び鉄鋼原料
KR20190003577A (ko) 2016-04-28 2019-01-09 고쿠리츠다이가쿠호진 도호쿠다이가쿠 철강 더스트의 처리 방법, 아연의 생산 방법, 철강 원료의 생산 방법, 및 철강 원료
TWI647315B (zh) * 2016-04-28 2019-01-11 國立大學法人東北大學 鋼鐵粉塵的處理方法、鋅的生產方法以及鋼鐵原料的生產方法
EP3450580A4 (en) * 2016-04-28 2019-10-30 Tohoku University METHOD FOR PROCESSING IRON AND STEEL DUST, ZINC MANUFACTURING METHOD, METHOD FOR PRODUCING AN INITIAL MATERIAL FOR IRON AND STEEL, AND EXTRACT MATERIAL FOR IRON AND STEEL
CN106978535A (zh) * 2017-03-20 2017-07-25 云南驰宏锌锗股份有限公司 一种带余热锅炉烟化炉的开炉方法
CN107022680A (zh) * 2017-03-20 2017-08-08 云南驰宏锌锗股份有限公司 一种带余热锅炉烟化炉的全冷料开炉方法
CN106978535B (zh) * 2017-03-20 2018-05-18 云南驰宏锌锗股份有限公司 一种带余热锅炉烟化炉的开炉方法
CN109987865A (zh) * 2019-04-22 2019-07-09 莒县中联水泥有限公司 高硅石灰石在水泥熟料生产中的应用
WO2022118927A1 (ja) * 2020-12-04 2022-06-09 株式会社キノテック 亜鉛の製造方法

Also Published As

Publication number Publication date
EP3029166A4 (en) 2016-12-07
US20160177416A1 (en) 2016-06-23
JPWO2015016086A1 (ja) 2017-03-02
KR20160034927A (ko) 2016-03-30
JP6406675B2 (ja) 2018-10-17
EP3029166A1 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP6406675B2 (ja) 電気炉製鋼ダストからの亜鉛回収方法および電気炉製鋼ダストからの亜鉛回収装置
Chairaksa-Fujimoto et al. The selective alkaline leaching of zinc oxide from Electric Arc Furnace dust pre-treated with calcium oxide
Bian et al. Recovery of rare earth elements from permanent magnet scraps by pyrometallurgical process
EP3404121B1 (en) Method for separating rare-earth elements from iron, and rare-earth element-containing slag
JP2014051718A (ja) 希土類分離方法及び希土類分離装置
WO2014181833A1 (ja) 亜鉛製造方法
Zhang et al. Recovery of zinc from electric arc furnace dust by alkaline pressure leaching using iron as a reductant
JP5137110B2 (ja) 電気炉ダストからの酸化亜鉛の回収方法
TWI647315B (zh) 鋼鐵粉塵的處理方法、鋅的生產方法以及鋼鐵原料的生產方法
AU2021301442B2 (en) Recovery of rare earth metals from ferromagnetic alloys
Vafeias et al. Alkaline alumina recovery from bauxite residue slags
WO2017034009A1 (ja) 軽希土類元素と重希土類元素を分離するために有用な方法
WO2022003694A1 (en) Recovery of rare earth metals from ferromagnetic alloys
JP2019026871A (ja) 希土類フッ化物の製造方法
JP5678470B2 (ja) 脱銅スラグの処理方法
WO2023157826A1 (ja) 亜鉛回収方法
WO2024053596A1 (ja) スカンジウムの回収方法
JP2022110887A (ja) 希土類元素の回収方法
JP2008291292A (ja) 溶融亜鉛の製造方法
EA046348B1 (ru) Извлечение редкоземельных металлов из ферромагнитных сплавов
JP5857751B2 (ja) 硫化物系の脱銅スラグの処理方法
JP2016186121A (ja) 希土類元素含有物からの希土類元素回収方法
JP2018053351A (ja) 亜鉛の分離方法、亜鉛材料の製造方法および鉄材料の製造方法
KR20120131698A (ko) 전기로 제강분진의 금속염화물로부터 납 추출방법
JP2016186122A (ja) 希土類元素含有物からの希土類元素回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529518

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20167002624

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14909392

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014831593

Country of ref document: EP