WO2015016019A1 - X線発生用ターゲット及びx線発生装置 - Google Patents
X線発生用ターゲット及びx線発生装置 Download PDFInfo
- Publication number
- WO2015016019A1 WO2015016019A1 PCT/JP2014/068204 JP2014068204W WO2015016019A1 WO 2015016019 A1 WO2015016019 A1 WO 2015016019A1 JP 2014068204 W JP2014068204 W JP 2014068204W WO 2015016019 A1 WO2015016019 A1 WO 2015016019A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ray
- target
- unit
- substrate
- ray target
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/112—Non-rotating anodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/14—Arrangements for concentrating, focusing, or directing the cathode ray
- H01J35/147—Spot size control
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/08—Targets (anodes) and X-ray converters
- H01J2235/086—Target geometry
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/112—Non-rotating anodes
- H01J35/116—Transmissive anodes
Definitions
- Various aspects and embodiments of the present invention relate to an X-ray generation target and an X-ray generation apparatus.
- the X-ray generators are used in various fields such as X-ray non-destructive inspection.
- the X-ray generator includes an electron beam irradiation unit that irradiates an electron beam, and an X-ray generation target that is irradiated with the electron beam emitted from the electron beam irradiation unit.
- the X-ray generator irradiates X-rays by causing the electron beam irradiated from the electron beam irradiation unit to collide with an X-ray generation target.
- the target for X-ray generation includes a substrate and a target portion embedded in the substrate.
- FIB ion beam
- a bottomed hole is formed in the substrate by irradiating the substrate with an ion beam and performing sputtering. Then, by irradiating the hole of the substrate with an ion beam while flowing the material gas of the target for X-ray generation near the hole of the substrate, metal is deposited in the hole to form the target portion.
- the X-ray resolution is uniquely determined by the size of the target portion, and as a result, X-rays with different resolutions cannot be used.
- a method of increasing or decreasing the diameter of the electron beam applied to the target portion after providing a large target portion on the substrate of the X-ray generation target is conceivable. Difficult.
- the disclosed X-ray generation target is, in one example of the embodiment, a substrate, a first X-ray target portion provided on the upper surface of the substrate, and the first X-ray target portion among the upper surfaces of the substrate. And a second X-ray target portion provided at an interval from the outer edge of the first X-ray target portion.
- FIG. 1 is a diagram for explaining a cross-sectional configuration of an X-ray generation target according to the first embodiment.
- FIG. 2 is an exploded perspective view of the target for X-ray generation according to the first embodiment.
- FIG. 3 is a diagram for explaining a cross-sectional configuration of the X-ray generation target according to the first embodiment.
- FIG. 4 is a diagram illustrating an example of a schematic configuration of the FIB apparatus according to the first embodiment.
- FIG. 5 is a flowchart for explaining an example of the method for manufacturing the target for X-ray generation according to the first embodiment.
- FIG. 6A is a diagram for explaining an example of the method for manufacturing the target for X-ray generation according to the first embodiment.
- FIG. 1 is a diagram for explaining a cross-sectional configuration of an X-ray generation target according to the first embodiment.
- FIG. 2 is an exploded perspective view of the target for X-ray generation according to the first embodiment.
- FIG. 3 is a diagram for explaining
- FIG. 6B is a diagram for explaining an example of the method for manufacturing the target for X-ray generation according to the first embodiment.
- FIG. 6C is a diagram for explaining an example of the method for manufacturing the target for X-ray generation according to the first embodiment.
- FIG. 7 is a diagram showing a cross-sectional configuration of the X-ray generator in the first embodiment.
- FIG. 8 is a diagram illustrating a configuration of a mold power supply unit according to the first embodiment.
- FIG. 9 is a diagram showing the relationship between the beam diameter of the electron beam irradiated to the X-ray generation target and the first X-ray target portion and the second X-ray target portion.
- FIG. 10 is a diagram illustrating the relationship between the beam diameter of the electron beam irradiated to the X-ray generation target and the first X-ray target unit and the second X-ray target unit.
- FIG. 11 is a diagram illustrating an example of an X-ray generation target in the embodiment in which the second X-ray target unit is provided.
- FIG. 12 is a diagram for illustrating an example of the second X-ray target unit.
- FIG. 13 is a diagram for illustrating an example of the second X-ray target unit.
- FIG. 14 is a diagram for illustrating an example of the second X-ray target unit.
- FIG. 15 is a diagram for explaining an example of a cross-sectional configuration of an X-ray generation target.
- the X-ray generator according to the first embodiment includes a substrate, an electron beam irradiation unit, and a beam diameter control unit.
- the electron beam irradiation unit is spaced from the outer edge of the first X-ray target unit at a position surrounding the first X-ray target unit on the upper surface of the substrate and the first X-ray target unit provided on the upper surface of the substrate.
- An X-ray generation target having a second X-ray target unit provided is irradiated with an electron beam.
- the beam diameter control unit controls the beam diameter of the electron beam irradiated to the X-ray generation target.
- the beam diameter control unit changes the size of the first X-ray target unit by changing the range including the first X-ray target unit and not including the second X-ray target unit to a beam diameter that is an irradiation range.
- First X-rays having a resolution corresponding to the above are irradiated from an X-ray generation target, and a range including the first X-ray target portion and the second X-ray target portion is set to a beam diameter that is an irradiation range.
- the second X-ray having a lower resolution than the first X-ray is irradiated from the X-ray generation target.
- the target for X-ray generation according to the first embodiment is the first X-ray of the substrate, the first X-ray target portion provided on the upper surface of the substrate, and the upper surface of the substrate. And a second X-ray target portion provided at a distance from the outer edge of the first X-ray target portion at a position surrounding the line target portion.
- the second X-ray target portion is formed in a ring shape centering on the position where the first X-ray target portion is provided. Provided.
- the first X-ray target portion and the second X-ray target portion are bottomed holes provided in the substrate. Embedded in the part.
- FIG. 1 is a diagram for explaining a cross-sectional configuration of an X-ray generation target according to the first embodiment.
- FIG. 2 is an exploded perspective view of the target for X-ray generation according to the first embodiment.
- the X-ray generation target T1 includes a substrate 1, a first X-ray target unit 10-1, and a second X-ray target unit 10-2.
- the substrate 1 is made of diamond and is formed into a disk shape.
- substrate 1 has the one surface 1a of a plate surface, and the back surface 1b on the opposite side of a plate surface.
- substrate 1 is not restricted to a disk shape, You may form in other shapes, for example, a square plate shape.
- the thickness of the substrate 1 is set to about 100 ⁇ m, for example.
- the outer diameter of the substrate 1 is set to about 3 mm, for example.
- a bottomed hole 3-1 and a hole 3-2 are formed in the substrate 1 from the surface 1a side.
- the hole 3-1 has an inner space formed by the bottom surface 3-1a and the side wall surface 3-1b.
- the hole 3-2 has an inner space formed by the bottom surface 3-2a and the side wall surface 3-2b.
- the hole 3-2 is provided outside the hole 3-1 on the surface 1a of the substrate 1.
- the inner space of the hole 3-1 is formed in, for example, a cylindrical shape. However, the inner space of the hole 3-1 is not limited to a cylindrical shape, and may be an arbitrary shape such as a prismatic shape.
- the inner space of the hole 3-2 is provided at a position surrounding the hole 3-1 on the upper surface of the substrate 1 and spaced from the outer edge of the hole 3-1. For example, the inner space of the hole 3-2 is formed in a ring shape centered on the hole 3-1.
- the X-ray generator irradiates the beam generation target T1 with electron beams having at least two types of beam diameters.
- the beam diameter of an electron beam having a smaller beam diameter than other electron beams is larger than the diameter of the hole 3-1, and smaller than the inner diameter of the hole 3-2. .
- the beam diameter of an electron beam having a larger beam diameter than other electron beams is larger than the inner diameter of the hole 3-2.
- the X-ray generator irradiates the X-ray generation target T1 with an electron beam having a beam diameter larger than the diameter of the hole 3-1 and smaller than the inner diameter of the hole 3-2, or the inner diameter of the hole 3-2.
- An X-ray generation target T1 is irradiated with an electron beam having a larger beam diameter.
- the diameter of the hole 3-1 is set to about 100 nm, for example.
- the depth of the hole 3-1 is set to about 1 ⁇ m, for example.
- the hole 3-1 is formed with a small diameter and a large aspect ratio of the hole.
- the inner diameter of the hole 3-2 is set to about 300 nm, for example, and the outer shape of the hole 3-2 is set to an arbitrary value.
- the first X-ray target unit 10-1 is provided on the upper surface of the substrate 1. For example, it is embedded in a bottomed hole 3-1 provided in the substrate 1. In the example shown in FIGS. 1 and 2, the first X-ray target unit 10-1 is disposed in the hole 3-1 formed in the substrate 1.
- the first X-ray target portion 10-1 is made of metal and has a cylindrical shape corresponding to the inner space of the hole 3-1.
- the first X-ray target unit 10-1 has a first end surface 10-1a, a second end surface 10-1b, and an outer surface 10-1c. Examples of the metal constituting the first X-ray target unit 10-1 include copper, molybdenum, tungsten, gold, and platinum.
- the first X-ray target portion 10-1 is formed by depositing metal from the bottom surface 3-1a of the hole 3-1 toward the surface 1a side. As a result, the first end face 10-1a of the first X-ray target portion 10-1 is in close contact with the bottom face 3-1a of the hole 3-1. The entire outer surface 10-1c of the first X-ray target portion 10-1 is in close contact with the side wall surface 3-1b of the hole 3-1.
- the first X-ray target portion 10-1 is formed corresponding to the shape of the inner space of the hole 3-1.
- the axial length of the columnar shape is, for example, about 1 ⁇ m.
- the length of the cylindrical shape in the radial direction is, for example, about 100 nm.
- the second X-ray target unit 10-2 is spaced from the outer edge of the first X-ray target unit 10-1 at a position surrounding the first X-ray target unit 10-1 on the upper surface of the substrate 1.
- the second X-ray target unit 10-2 is embedded in a bottomed hole 3-2 provided in the substrate 1.
- the second X-ray target unit 10-2 is disposed in the hole 3-2 formed in the substrate 1.
- the second X-ray target portion 10-2 is made of metal and has a cylindrical shape corresponding to the inner space of the hole 3-2.
- the second X-ray target unit 10-2 has a second end surface 10-2a, a second end surface 10-2b, and an outer surface 10-2c.
- Examples of the metal constituting the second X-ray target unit 10-2 include tungsten, gold, and platinum.
- the second X-ray target portion 10-2 is formed by depositing metal from the bottom surface 3-2a of the hole 3-2 toward the surface 1a side. As a result, the second end face 10-2a of the second X-ray target portion 10-2 is in close contact with the bottom face 3-2a of the hole 3-2. The entire outer surface 10-2c of the second X-ray target unit 10-2 is in close contact with the side wall surface 3-2b of the hole 3-2.
- the second X-ray target portion 10-2 is formed corresponding to the shape of the inner space of the hole 3-2.
- the axial length of the columnar shape is, for example, about 1 ⁇ m.
- the radial length of the cylindrical inner diameter of the second X-ray target unit 10-2 is, for example, about 300 nm.
- first X-ray target unit 10-1 and the second X-ray target unit 10-2 may be formed of the same metal or different metals. Further, the first X-ray target unit 10-1 and the second X-ray target unit 10-2 may be formed by the same method or may be formed by different methods.
- FIG. 3 is a diagram for explaining a cross-sectional configuration of the X-ray generation target according to the first embodiment.
- the X-ray generation target T ⁇ b> 1 may include a conductive layer 12.
- the conductive layer 12 is formed in a film shape on the surface 1 a side of the substrate 1.
- the conductive layer 12 is formed of, for example, diamond doped with impurities (for example, boron or the like).
- the thickness of the conductive layer 12 is, for example, about 50 nm.
- the conductive layer 12 shown in FIG. 3 includes the surface 1a of the substrate 1, the second end face 10-1b of the first X-ray target unit 10-1, and the second X-ray target unit 10-2. 2 is formed on the surface 1a so as to cover the end face 10-2b.
- FIG. 4 is a diagram illustrating an example of a schematic configuration of the FIB apparatus.
- the FIB apparatus shown in FIG. 4 is an example, and the FIB apparatus used in manufacturing the X-ray generation target according to the embodiment is not limited to the FIB apparatus shown in FIG. An apparatus may be used.
- the apparatus for manufacturing the target T1 for X-ray generation is not limited to the FIB apparatus, and any apparatus may be used.
- the FIB apparatus 100 includes a liquid metal ion source storage unit 112, a blanker 114, an aperture 116, a scanning electrode 118, and an objective lens 120 in a first housing 110.
- the FIB apparatus 100 also includes a mounting table 132 and a gas gun 134 in a second casing 130 connected to the first casing 110.
- the FIB apparatus 100 includes a pump 136 connected to the second housing 130.
- the liquid metal ion source storage unit 112 stores, for example, a Ga liquid metal ion source.
- the blanker 114 is a deflector that deflects the ion beam irradiated from the liquid metal ion source storage unit 112. For example, when the ion beam is irradiated, the blanker 114 deflects the ion beam from the state in which the ion beam is applied to the hole 3-1 or the hole 3-2 (ON state), thereby irradiating the ion beam to the hole 3- Switch to a state (OFF state) where 1 or hole 3-2 is not irradiated.
- the aperture 116 selectively restricts the current of the ion beam irradiated from the liquid metal ion source storage unit 112 by the aperture hole.
- the scanning electrode 118 scans (scans) the ion beam irradiated from the liquid metal ion source storage unit 112 according to the diameter of the hole 3-1 of the substrate 1, for example.
- the objective lens 120 focuses the ion beam irradiated from the liquid metal ion source storage unit 112.
- the mounting table 132 mounts an X-ray generation target T1.
- the gas gun 134 is made of a material in the space inside the second housing 130 when forming the first X-ray target unit 10-1 and the second X-ray target unit 10-2 of the X-ray generation target T1. Spray the gas.
- the material gas is, for example, tungsten hexacarbonyl (Tungsten Hexacarbonyl: W (CO) 6).
- the pump 136 keeps the inside of the first housing 110 and the second housing 130 in a predetermined vacuum state by performing vacuum exhaust.
- FIB apparatus 100 irradiates ion beam 122 from liquid metal ion source storage unit 112 to target T1 for X-ray generation via blanker 114, aperture 116, scanning electrode 118, and objective lens 120.
- the FIB apparatus 100 forms the hole 3-1 and the hole 3-2 by irradiating the substrate 1 with the ion beam 122 and performing sputtering while scanning.
- FIG. 5 is a flowchart for explaining an example of the method for manufacturing the target for X-ray generation according to the first embodiment.
- 6A to 6C are diagrams for explaining an example of a method for manufacturing an X-ray generation target according to the first embodiment.
- FIB focused ion beam
- the substrate 1 is placed on the mounting table 132 of the FIB apparatus 100 (step S101). Then, the FIB apparatus 100 forms the hole 3-1 and the hole 3-2 in the substrate 1 (step S102). Specifically, the FIB apparatus 100 forms a bottomed hole 3-1 and a hole 3-2 in the substrate 1. For example, the FIB apparatus 100 irradiates the substrate 1 with an ion beam 122 such as Ga + to sputter from the surface 1a side, thereby forming a hole 3-1 and a hole 3-2 as shown in FIG. 6A.
- an ion beam 122 such as Ga + to sputter from the surface 1a side
- a hole 3-1 having a diameter of 100 nm and a depth of 600 nm is formed in the substrate 1, and an inner diameter is 300 nm, an outer shape is 600 nm, and a depth is 600 nm.
- Hole 3-2 is formed.
- the present invention is not limited to this, and the diameter of the hole 3-1 may be smaller than 100 nm, and the depth of the hole 3-1 and the hole 3-2 may be deeper than 600 nm.
- the hole 3-1 and the hole 3-2 formed by sputtering the substrate 1 with the ion beam 122 become smaller in diameter toward the bottom surface 3-1a and the bottom surface 3-2a, respectively.
- the 1b and the side surface 3-2b may be formed in a tapered shape.
- the side wall surface 3-1b is formed perpendicularly from the bottom surface 3-1a
- the side wall surface 3-2b is formed perpendicularly from the bottom surface 3-2a. It was.
- a target part is formed (S103). That is, as shown in FIG. 6B, the first X-ray target portion 10-1 is formed in the hole 3-1, and the second X-ray target portion 10-2 is formed in the hole 3-2.
- the first X-ray target portion 10-1 is formed by depositing the above-described metal from the bottom surface 3-1a of the hole 3-1 toward the first main surface 1a side.
- the second X-ray target portion 10-2 is formed by depositing the above-described metal from the bottom surface 3-2a of the hole 3-2 toward the first main surface 1a side.
- metal is directly deposited in the holes 3-1 and 3-2.
- the first end surface 10-1a is in close contact with the bottom surface 3-1a of the hole 3-1, and the outer surface 10-1c is the side wall surface 3- of the hole 3-1. Close contact with 1b.
- the first end surface 10-2a is in close contact with the bottom surface 3-2a of the hole 3-2, and the outer surface 10-2c is the side wall surface of the hole 3-2. Close contact with 3-2b.
- the metal is deposited by irradiating the hole 3-1 and the hole 3-2 with a focused ion beam in a metal vapor atmosphere using an FIB processing apparatus.
- the material is deposited by FIB-excited chemical vapor deposition by spraying a material gas onto the irradiated portion of the focused ion beam.
- tungsten can be deposited by using tungsten hexacarbonyl (W (CO) 6) as a material gas.
- W (CO) 6 tungsten hexacarbonyl
- platinum can be deposited by using trimethyl (methylcyclopentadienyl) platinum as a material gas.
- gold can be deposited by using dimethyl gold hexafluoroacetylacetonate (C7H7F6O2Au) as a material gas.
- the conductive layer 12 is formed (step S104).
- the conductive layer 12 is formed so as to cover the upper surface of the metal deposited on the surface 1a of the substrate 1, the hole 3-1, and the hole 3-2.
- the conductive layer 12 is formed using, for example, a known microwave plasma CVD apparatus.
- the conductive layer 12 uses a microwave plasma CVD apparatus to generate and grow diamond particles on the surface 1a and the metal by microwave plasma CVD while doping boron. Is formed.
- the conductive layer 12 is formed using, for example, a known PVD (Physical Vapor Deposition).
- the conductive layer 12 is formed by using a PVD apparatus and depositing a conductive metal film on the surface 1a and the upper part of the metal.
- the conductive metal film is made of, for example, a metal such as titanium or chromium and has a thickness of 50 nm.
- the material for forming the conductive metal film is not limited to this, and a material other than titanium or chromium may be used.
- the film pressure may be less than 50 nm, and the film pressure may be greater than 50 nm. May be. As a result, a conductive layer 12 is formed on the surface 1a of the substrate 1 as shown in FIG. 6C.
- step S104 described above may be omitted, and step S104 may be performed before step S102.
- FIG. 7 is a diagram illustrating an example of a cross-sectional configuration of an X-ray generation apparatus using the X-ray generation target T1 according to the first embodiment.
- FIG. 8 is a diagram illustrating an example of a mold power supply unit of the X-ray generation apparatus using the X-ray generation target T1 according to the first embodiment.
- the X-ray generator described with reference to FIGS. 7 and 8 is an example, and the present invention is not limited to this.
- the X-ray generator 21 has an electron beam irradiation unit and a beam diameter control unit.
- the electron beam irradiation unit is spaced from the outer edge of the first X-ray target unit at a position surrounding the first X-ray target unit on the upper surface of the substrate and the first X-ray target unit provided on the upper surface of the substrate.
- An X-ray generation target having a second X-ray target unit provided is irradiated with an electron beam.
- the beam diameter control unit controls the beam diameter of the electron beam irradiated to the X-ray generation target.
- the beam diameter control unit changes the size of the first X-ray target unit by changing the range including the first X-ray target unit and not including the second X-ray target unit to a beam diameter that is an irradiation range.
- First X-rays having a resolution corresponding to the above are irradiated from an X-ray generation target, and a range including the first X-ray target portion and the second X-ray target portion is set to a beam diameter that is an irradiation range.
- X-rays having a resolution lower than that of the first X-rays are irradiated from the X-ray generation target.
- the electron beam irradiated by the X-ray generator 21 has the same center position although the beam diameter changes.
- the X-ray generation device 21 is an open type, and unlike a closed type for disposable use, a vacuum state can be arbitrarily created, and a filament part F or X-ray generation that is a consumable item is generated.
- the target T1 can be replaced.
- the X-ray generator 21 has a cylindrical stainless steel cylindrical portion 22 that is in a vacuum state during operation.
- the cylindrical part 22 is divided into two parts by a fixing part 23 located on the lower side and an attaching / detaching part 24 located on the upper side, and the attaching / detaching part 24 is attached to the fixing part 23 via a hinge part 25. Therefore, the upper part of the fixing part 23 can be opened by rotating the detachable part 24 so as to lie down via the hinge part 25, and the filament part (cathode) accommodated in the fixing part 23. Enable access to F.
- a pair of upper and lower cylindrical coil portions 26, 27 that function as an electromagnetic deflection lens are provided in the detachable portion 24, and an electron path is provided in the longitudinal direction of the cylindrical portion 22 so as to pass through the centers of the coil portions 26, 27. 28 extends, and the electron passage 28 is surrounded by the coil portions 26 and 27.
- a disk plate 29 is fixed to the lower end of the detachable portion 24 so as to cover it, and an electron introduction hole 29 a is formed in the center of the disk plate 29 so as to coincide with the lower end side of the electron passage 28.
- the upper end of the attaching / detaching part 24 is formed in a truncated cone, and an X-ray generation target T1 that forms an electron transmission X-ray irradiation window located on the upper end side of the electron passage 28 is attached to the top part.
- the X-ray generation target T1 is accommodated in a detachable rotary cap 31 in a grounded state. Therefore, the removal of the rotary cap portion 31 enables the replacement of the X-ray generation target T1 which is a consumable item.
- the filament part F is accommodated in the cap part 30 which can be attached or detached, and replacement
- the vacuum pump 32 is fixed to the fixing part 23.
- the vacuum pump 32 is for making the inside of the cylindrical part 22 into a high vacuum state. That is, when the X-ray generator 21 is equipped with the vacuum pump 32, the filament part F and the X-ray generation target T1 which are consumables can be replaced.
- a mold power supply unit 34 that is integrated with the electron gun 36 is fixed to the proximal end side of the cylindrical portion 22.
- the mold power supply 34 is molded with an electrically insulating resin (for example, epoxy resin) and is housed in a metal case 40. And the lower end (base end) of the fixing
- a high voltage generator having a transformer that generates a high voltage is formed in the mold power source 34. 35 is enclosed.
- the mold power supply unit 34 includes a block-shaped power supply main body 34a that is positioned on the lower side and forms a rectangular parallelepiped shape, and a columnar neck portion that protrudes upward from the power supply main body 34a into the fixing unit 23. 34b. Since the high voltage generator 35 is a heavy component, it is preferably enclosed in the power supply main body 34a and arranged as low as possible from the weight balance of the entire X-ray generator 21.
- an electron gun 36 is mounted so as to face the X-ray generation target T1 so as to sandwich the electron passage 28.
- an electron emission control unit 51 electrically connected to the high voltage generation unit 35 is enclosed in the power supply main body 34 a of the mold power supply unit 34. Controls the timing of discharge and tube current.
- the electron emission control unit 51 is connected to the grid terminal 38 and the filament terminal 50 via the grid connection wiring 52 and the filament connection wiring 53, respectively, and each connection wiring 52, 53 is applied to a high voltage. Therefore, it is enclosed in the neck portion 34b.
- the power supply main body 34 a is accommodated in a metal case 40.
- a high voltage control unit 41 is disposed between the power supply main body 34 a and the case 40.
- a power supply terminal 43 for connection to an external power supply is fixed to the case 40, and the high voltage control unit 41 is connected to the power supply terminal 43, and the high voltage generation unit 35 and the electron emission control in the mold power supply unit 34. It is connected to the part 51 via wirings 44 and 45, respectively.
- the high voltage control unit 41 controls the voltage that can be generated by the high voltage generation unit 35 constituting the transformer from a high voltage (for example, 160 kV) to a low voltage (0 V).
- the electron emission control unit 51 controls electron emission timing, tube current, and the like.
- power and control signals are respectively transmitted from the high voltage control unit 41 in the case 40 to the high voltage generation unit 35 and the electron emission control unit 51 of the mold power supply unit 34 based on the control of a controller (not shown). Supplied.
- power is supplied to the coil portions 26 and 27.
- electrons are irradiated from the filament portion F with an appropriate acceleration, the electrons are appropriately converged by the controlled coil portions 26 and 27, and the electrons are irradiated to the X-ray generation target T1.
- the irradiated electrons collide with the X-ray generation target T1, so that X-rays are irradiated to the outside.
- the filament part F irradiates the electron beam target T1 with the electron beam.
- the beam diameter irradiated from the filament portion F is controlled by a controller (not shown), the high voltage control unit 41, and the electron emission control unit 51, and the coil portions 26 and 27 control the beam diameter from the filament portion F.
- the irradiated beam diameter is controlled.
- the beam diameter is controlled by a controller (not shown), the high voltage control unit 41, the electron emission control unit 51, and the coil units 26 and 27.
- FIGS. 9 and 10 are diagrams showing the relationship between the beam diameter of the electron beam irradiated to the X-ray generation target T1 and the first X-ray target unit 10-1 and the second X-ray target unit 10-2. It is. 9 and 10, the irradiation direction of the electron beam irradiated from the filament portion F is indicated by an arrow. In FIGS. 9 and 10, the resolution of the X-rays 7 irradiated from the X-ray generation target T1 is the width of the X-rays.
- the X-ray generation device 21 has an electron beam diameter that includes a first X-ray target unit 10-1 and does not include a second X-ray target unit 10-2.
- the first X-ray 7-1 having a resolution corresponding to the size of the first X-ray target unit 10-1 is irradiated from the X-ray generation target T1. That is, the X-ray generation device 21 generates an electron beam 7-1 having a beam diameter that is an irradiation range in a range including the first X-ray target unit 10-1 and not including the second X-ray target unit 10-2.
- the first X-ray 8-1 indicating the resolution corresponding to the size of the first X-ray target unit 10-1 is irradiated.
- the resolution of the first X-ray 8-1 is a width 8-1.
- the X-ray generator 21 has an electron beam having a beam diameter in which a range including the first X-ray target unit 10-1 and the second X-ray target unit 10-2 is an irradiation range.
- the second X-ray 7-2 having a resolution lower than that of the first X-ray 7-1 is irradiated from the X-ray generation target T1.
- an electron beam having a beam diameter larger than the outer diameter of the second target 10-2 is shown.
- the X-ray generation device 21 generates an electron beam 7-2 having a beam diameter that is an irradiation range in a range including the first X-ray target unit 10-1 and not including the second X-ray target unit 10-2. Even if the irradiation is performed, the first X-ray generation target T1 that can irradiate the first X-ray 7-1 having the resolution corresponding to the size of the first X-ray target unit 10-1 is used to generate the first X-ray target T1.
- the second X-ray 7-2 having a resolution lower than that of the X-ray 7-1 can be irradiated.
- the resolution of the second X-ray 7-2 is a width 8-2 lower than the width 8-1 of the first X-ray 8-1. Note that the resolution of X-rays increases as the width of the X-rays decreases.
- high resolution can be obtained by accelerating electrons with a high voltage (for example, about 50 to 150 keV) and focusing on a minute focus on the target.
- X-rays so-called bremsstrahlung X-rays, are generated when electrons lose energy in the target.
- the focal spot size is almost determined by the beam diameter of the irradiated electron beam.
- the X-ray generation target T1 is the first X-ray target portion in close contact with the substrate 1 made of diamond, the bottom surface 3-1a of the hole 3-1, and the side wall surface 3-1b. 10-1 and the second X-ray target portion 10-2 in close contact with the bottom surface 3-2a and the side wall surface 3-2b of the hole 3-2, so that the heat dissipation is extremely excellent. Even under the above-described circumstances, it is possible to prevent the X-ray generation target T1 from being consumed.
- the first X-ray target unit 10-1 is nano-sized, the first X-ray target unit 10-1 is irradiated with electrons at the high acceleration voltage (for example, about 50 to 150 keV) described above. Even when electrons spread near ⁇ 1, the X-ray focal spot diameter does not spread, and degradation of resolution is suppressed. In other words, even when the beam diameter is larger than the diameter of the first X-ray target unit 10-1, X-rays corresponding to the diameter of the first X-ray target unit 10-1 can be irradiated. . Further, the X-ray dose can be increased by increasing the depth of the first X-ray target unit 10-1.
- the high acceleration voltage for example, about 50 to 150 keV
- the X-ray generation apparatus 21 using the X-ray generation target T1 can obtain nano-order (several tens to several hundreds of nanometers) resolution while increasing the X-ray dose.
- the X-ray generator includes a substrate, an electron beam irradiation unit, and a beam diameter control unit in one embodiment.
- the electron beam irradiation unit is spaced from the outer edge of the first X-ray target unit at a position surrounding the first X-ray target unit on the upper surface of the substrate and the first X-ray target unit provided on the upper surface of the substrate.
- An X-ray generation target having a second X-ray target unit provided is irradiated with an electron beam.
- the beam diameter control unit controls the beam diameter of the electron beam irradiated to the X-ray generation target.
- the beam diameter control unit changes the size of the first X-ray target unit by changing the range including the first X-ray target unit and not including the second X-ray target unit to a beam diameter that is an irradiation range.
- First X-rays having a resolution corresponding to the above are irradiated from an X-ray generation target, and a range including the first X-ray target portion and the second X-ray target portion is set to a beam diameter that is an irradiation range.
- the second X-ray having a lower resolution than the first X-ray is irradiated from the X-ray generation target. As a result, X-rays with different resolutions can be used.
- the first X-ray target unit 10-1 and the second X-ray target unit 10-2 having different diameters are formed on the substrate 1, and the focus of the electron beam irradiated to the X-ray generation target T1 is focused.
- the irradiation range in which the electron beam is irradiated on the target T1 for generating X-rays by changing the diameter of the beam coming out of the office from the filament part F, it is possible to easily switch X-rays with different resolutions. Is possible.
- FIG. 11 is a diagram illustrating an example of an X-ray generation target T1 in the embodiment in which the second X-ray target unit is provided.
- the case where the second X-ray target unit 10-2a and the second X-ray target unit 10-2b are provided is shown.
- the present invention is not limited to this, and the number of second X-ray target units 10-2 may be arbitrary.
- the top view of the target T1 for X-ray generation was shown for convenience of explanation.
- an electron beam having a beam diameter larger than the outer diameter of the second X-ray target unit 10-2a and smaller than the inner diameter of the second X-ray target unit 10-2b is irradiated.
- X-rays corresponding to the outer diameter of the second X-ray target unit 10-2a can be irradiated, and an electron beam having a beam diameter larger than the outer diameter of the second X-ray target unit 10-2b is irradiated.
- the X-ray corresponding to the outer diameter of the second X-ray target unit 10-2b can be irradiated.
- the X-ray corresponding to the outer diameter of the second X-ray target unit 10-2 and the outside of the second X-ray target unit 10-2b are low-resolution X-rays compared to the first X-ray.
- the X-ray corresponding to the diameter can be easily switched.
- the second X-ray is obtained by using the range including the first X-ray target unit 10-1 and the second X-ray target unit 10-2 as an electron beam having a beam diameter as an irradiation range.
- an electron beam having a beam diameter including the entire range of the target unit 10-2 is used as an example, but the present invention is not limited to this.
- an electron beam having a beam diameter that does not include the entire range of the second X-ray target unit 10-2 but includes only a part thereof may be used.
- the resolution of the X-rays irradiated from the X-ray generation target T1 is not the outer diameter of the second X-ray target unit 10-2, but the beam diameter of the electron beam irradiated to the X-ray generation target T1. It is equivalent to.
- the outer periphery of the first X-ray target unit 10-1 is a position surrounding the first X-ray target unit 10-1 on the upper surface of the X-ray generation target T1.
- the second X-ray target unit 10-2 may be provided in all the regions after the position spaced from.
- FIG. 12 is a diagram for illustrating an example of the second X-ray target unit.
- first X-ray target unit 10-1 and the second X-ray target unit 10-2 are embedded in the substrate 1
- the present invention is not limited to this. is not.
- the first X-ray target unit 10-1 is embedded in a bottomed hole 3-1 provided in the substrate 1, and the second X-ray target unit 10-2 is provided on the surface of the substrate 1. It may be provided above.
- the second X-ray target unit 10-2 is provided on the upper surface of the substrate 1 in a wider range than the first X-ray target unit 10-1, the second X-ray target unit 10-2 is provided. -2 can be easily formed.
- the arrangement on the surface 1a where the hole 3-2 is provided is a ring shape.
- the present invention is not limited to this.
- it may be arranged in an elliptical shape, as shown in FIG. 14, may be arranged in a shape having one or a plurality of corners, or may be arranged in an arbitrary shape.
- 13 and 14 are diagrams for illustrating an example of the second X-ray target unit.
- the outer shape of the second X-ray target unit 10-2 is an ellipse and the inner shape is a circle.
- the present invention is not limited to this. Absent.
- any one or both of the outer shape and the inner shape of the second X-ray target unit 10-2 may be an ellipse.
- the case where the outer shape of the second X-ray target unit 10-2 is a square is shown as an example, but the present invention is not limited to this, and the second X-ray target is not limited to this.
- the shape on the outside of the portion 10-2 may be a shape having 1 to 3 corners, or a shape having 5 or more corners.
- the second X-ray target unit 10-2 has a square shape on the outer side and a circular shape on the inner side.
- the present invention is not limited to this. Absent.
- any one or both of the outer shape and the inner shape of the second X-ray target unit 10-2 may have a shape having one or more corners.
- the conductive layer 12 includes the surface 1a of the substrate 1, the second end face 10-1b of the first X-ray target unit 10-1, and
- the case where the second X-ray target unit 10-2 is formed so as to cover the second end face 10-2b has been described as an example, but the present invention is not limited to this.
- the conductive layer 12 includes a second end face 10-1b of the first X-ray target portion 10-1 and a second end face of the second X-ray target portion 10-2. It may be formed on the surface 1a so that 10-2b is exposed.
- FIG. 15 is a diagram for explaining an example of a cross-sectional configuration of an X-ray generation target. In this case, when manufacturing the target for X-ray generation, when the substrate is arranged, the conductive layer 12 is formed before the hole is formed, and then the hole is formed to form the target. Manufacture the target.
Landscapes
- X-Ray Techniques (AREA)
Abstract
異なる解像度を示すX線を発生させるX線発生用ターゲットを提供することを目的とする。基板(1)と、前記基板(1)の上面に設けられる第1のX線ターゲット部(10-1)と、前記基板(1)の上面のうち、前記第1のX線ターゲット部(10-1)を囲む位置に、前記第1のX線ターゲット部(10-1)の外縁から間隔をおいて設けられる第2のX線ターゲット部(10-2)とを備えたことを特徴とするX線発生用ターゲット。
Description
本発明の種々の側面及び実施形態は、X線発生用ターゲット及びX線発生装置に関するものである。
X線発生装置は、X線非破壊検査など様々な分野で用いられている。X線発生装置は、電子ビームを照射する電子ビーム照射部と、電子ビーム照射部から照射された電子ビームが照射されるX線発生用ターゲットとを備える。X線発生装置は、電子ビーム照射部から照射された電子ビームをX線発生用ターゲットに衝突させることで、X線を照射する。
ここで、X線発生用ターゲットは、基板と、基板に埋設されたターゲット部とを備える。例えば、イオンビーム(Focused Ion Beam:FIB)加工装置を用いてX線発生用ターゲットを製造する手法がある。
イオンビーム加工装置を用いる場合、イオンビームを基板に照射してスパッタすることで、基板に有底状の穴を形成する。そして、基板の穴付近にX線発生用ターゲットの材料ガスを流しながら基板の穴にイオンビームを照射することで、穴に金属を堆積させてターゲット部を形成する。
しかしながら、上述の従来技術では、ターゲット部の大きさによりX線の解像度が一意に決まる結果、異なる解像度のX線を使えない。また、X線発生用ターゲットの基板に大きなターゲット部を設けた上で、ターゲット部に照射する電子ビームの径を大きくしたり小さくしたりする手法が考えられるが、電子ビームを細くするのは技術的に難しい。
開示するX線発生用ターゲットは、実施形態の一例において、基板と、前記基板の上面に設けられる第1のX線ターゲット部と、前記基板の上面のうち、前記第1のX線ターゲット部を囲む位置に、前記第1のX線ターゲット部の外縁から間隔をおいて設けられる第2のX線ターゲット部とを備える。
開示する1つの実施態様によれば、異なる解像度のX線が使用可能となるという効果を奏する。
(第1の実施形態)
第1の実施形態に係るX線発生装置は、1つの実施形態において、基板と、電子ビーム照射部と、ビーム径制御部とを有する。電子ビーム照射部は、基板の上面に設けられる第1のX線ターゲット部と、基板の上面のうち第1のX線ターゲット部を囲む位置に第1のX線ターゲット部の外縁から間隔をおいて設けられる第2のX線ターゲット部とを有するX線発生用ターゲットに対して、電子ビームを照射する。ビーム径制御部は、X線発生用ターゲットに照射される電子ビームのビーム径を制御する。また、ビーム径制御部は、第1のX線ターゲット部を含み第2のX線ターゲット部を含まない範囲を照射範囲となるビーム径にすることで、第1のX線ターゲット部の大きさに相当する解像度を示す第1のX線をX線発生用ターゲットから照射させ、第1のX線ターゲット部と第2のX線ターゲット部とを含む範囲を照射範囲となるビーム径にすることで、第1のX線よりも解像度の低い第2のX線をX線発生用ターゲットから照射させる。
第1の実施形態に係るX線発生装置は、1つの実施形態において、基板と、電子ビーム照射部と、ビーム径制御部とを有する。電子ビーム照射部は、基板の上面に設けられる第1のX線ターゲット部と、基板の上面のうち第1のX線ターゲット部を囲む位置に第1のX線ターゲット部の外縁から間隔をおいて設けられる第2のX線ターゲット部とを有するX線発生用ターゲットに対して、電子ビームを照射する。ビーム径制御部は、X線発生用ターゲットに照射される電子ビームのビーム径を制御する。また、ビーム径制御部は、第1のX線ターゲット部を含み第2のX線ターゲット部を含まない範囲を照射範囲となるビーム径にすることで、第1のX線ターゲット部の大きさに相当する解像度を示す第1のX線をX線発生用ターゲットから照射させ、第1のX線ターゲット部と第2のX線ターゲット部とを含む範囲を照射範囲となるビーム径にすることで、第1のX線よりも解像度の低い第2のX線をX線発生用ターゲットから照射させる。
また、第1の実施形態に係るX線発生用ターゲットは、1つの実施形態において、基板と、基板の上面に設けられる第1のX線ターゲット部と、基板の上面のうち、第1のX線ターゲット部を囲む位置に、第1のX線ターゲット部の外縁から間隔をおいて設けられる第2のX線ターゲット部とを有する。
また、第1の実施形態に係るX線発生用ターゲットは、1つの実施形態において、第2のX線ターゲット部が、第1のX線ターゲット部が設けられた位置を中心とするリング状に設けられる。
また、第1の実施形態に係るX線発生用ターゲットは、1つの実施形態において、第1のX線ターゲット部と第2のX線ターゲット部とは、基板に設けられた有底状の穴部に埋め込まれる。
以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付す。
図1及び図2を参照して、第1の実施形態に係るX線発生用ターゲットT1について説明する。図1は、第1の実施形態に係るX線発生用ターゲットの断面構成を説明するための図である。図2は、第1の実施形態に係るX線発生用ターゲットの分解斜視図である。
X線発生用ターゲットT1は、図1及び図2に示されるように、基板1と、第1のX線ターゲット部10-1及び第2のX線ターゲット部10-2とを有する。
基板1は、ダイヤモンドで形成され、円板形状に形成される。基板1は、板面の一方の表面1aと、板面の反対側の裏面1bを有する。基板1は、円板形状に限られず、他の形状、例えば角板形状に形成されていても良い。基板1の厚みは、例えば、100μm程度に設定される。基板1の外径は、例えば、3mm程度に設定される。
このように、穴3-1や穴3-2がダイヤモンドに形成されることで、X線発生時にでる熱を効率良く拡散することが可能となり、大きな電流をかけることが可能となる。
基板1には、表面1a側から有底状の穴3-1や穴3-2が形成される。穴3-1は、底面3-1aと側壁面3-1bとで形成される内側空間を有する。また、穴3-2は、底面3-2aと側壁面3-2bとで形成される内側空間を有する。穴3-2は、基板1の表面1aにおいて、穴3-1の外側に設けられる。穴3-1の内側空間は、例えば、円柱体形状に形成される。ただし、穴3-1の内側空間は円柱体形状に限定されるものではなく、角柱体形状など任意の形状であっても良い。穴3-2の内側空間は、基板1の上面のうち、穴3-1を囲む位置に、穴3-1の外縁から間隔をおいて設けられる。例えば、穴3-2の内側空間は、穴3-1を中心とするリング状に形成される。
ここで、穴3-1の径と、穴3-2の内径と、X線発生装置によりX線発生用ターゲットT1に照射される電子ビームのビーム径あとの関係について説明する。X線発生装置は、少なくとも2種類のビーム径の電子ビームを線発生用ターゲットT1に照射する。X線発生装置により照射される電子ビームのうち、他の電子ビームと比較してビーム径が小さい電子ビームのビーム径は、穴3-1の径より大きく、穴3-2の内径より小さくなる。また、X線発生装置により照射される電子ビームのうち、他の電子ビームと比較してビーム径が大きい電子ビームのビーム径は、穴3-2の内径よりも大きくなる。言い換えると、X線発生装置は、穴3-1の径よりも大きく穴3-2の内径よりも小さいビーム径の電子ビームをX線発生用ターゲットT1に照射したり、穴3-2の内径よりも大きいビーム径の電子ビームをX線発生用ターゲットT1に照射したりする。
穴3-1の径は、例えば、100nm程度に設定される。穴3-1の深さは、例えば、1μm程度に設定される。このように、穴3-1は、径が小さく形成されるとともに、穴のアスペクト比が大きく形成される。また、穴3-2の内径は、例えば、300nm程度に設定され、穴3-2の外形は任意の値に設定される。
第1のX線ターゲット部10-1は、基板1の上面に設けられる。例えば、基板1に設けられた有底状の穴3-1に埋め込まれる。図1及び図2に示す例では、第1のX線ターゲット部10-1は、基板1に形成されている穴3-1内に配置される。第1のX線ターゲット部10-1は、金属で形成され、穴3-1の内側空間に対応した円柱体形状に形成される。第1のX線ターゲット部10-1は、第1の端面10-1a、第2の端面10-1b、及び外側面10-1cを有する。第1のX線ターゲット部10-1を構成する金属としては、例えば、銅、モリブデン、タングステン、金、白金等である。
第1のX線ターゲット部10-1は、穴3-1の底面3-1aから表面1a側に向かって金属が堆積されることで形成される。この結果、第1のX線ターゲット部10-1の第1の端面10-1aは、全体が穴3-1の底面3-1aと密着している。第1のX線ターゲット部10-1の外側面10-1cは、全体が穴3-1の側壁面3-1bと密着している。
第1のX線ターゲット部10-1は、穴3-1の内側空間の形状に対応して形成される。円柱形状の軸方向の長さは、例えば、1μm程度となる。円柱形状の径方向の長さは、例えば、100nm程度となる。
第2のX線ターゲット部10-2は、基板1の上面のうち、第1のX線ターゲット部10-1を囲む位置に、第1のX線ターゲット部10-1の外縁から間隔をおいて設けられる。例えば、第2のX線ターゲット部10-2は、基板1に設けられた有底状の穴3-2に埋め込まれる。
図1及び図2に示す例では、第2のX線ターゲット部10-2は、基板1に形成されている穴3-2内に配置される。第2のX線ターゲット部10-2は、金属で形成され、穴3-2の内側空間に対応した円柱体形状に形成される。第2のX線ターゲット部10-2は、第2の端面10-2a、第2の端面10-2b、及び外側面10-2cを有する。第2のX線ターゲット部10-2を構成する金属としては、例えば、タングステン、金、白金等である。
第2のX線ターゲット部10-2は、穴3-2の底面3-2aから表面1a側に向かって金属が堆積されることで形成される。この結果、第2のX線ターゲット部10-2の第2の端面10-2aは、全体が穴3-2の底面3-2aと密着している。第2のX線ターゲット部10-2の外側面10-2cは、全体が穴3-2の側壁面3-2bと密着している。
第2のX線ターゲット部10-2は、穴3-2の内側空間の形状に対応して形成される。円柱形状の軸方向の長さは、例えば、1μm程度となる。第2のX線ターゲット部10-2の円柱形状の内径の径方向の長さは、例えば、300nm程度となる。
ここで、第1のX線ターゲット部10-1と第2のX線ターゲット部10-2とは、同一の金属で形成されても良く、異なる金属で形成されても良い。また、第1のX線ターゲット部10-1と第2のX線ターゲット部10-2とは、同一の手法により形成されても良く、異なる手法により形成されても良い。
図3は、第1の実施形態に係るX線発生用ターゲットの断面構成を説明するための図である。図3に示されるように、X線発生用ターゲットT1は、導電層12を備えていても良い。導電層12は、基板1の表面1a側に膜状に形成される。導電層12は、例えば、不純物(例えば、ボロン等)をドープしたダイヤモンドで形成される。導電層12の厚みは、例えば50nm程度である。
図3に示された導電層12は、基板1の表面1a、第1のX線ターゲット部10-1の第2の端面10-1b、及び、第2のX線ターゲット部10-2の第2の端面10-2bを覆うように、表面1a上に形成される。
続いて、X線発生用ターゲットT1を製造するためのFIB装置の一例について説明する。図4は、FIB装置の構成の概略の一例を示す図である。なお、図4に示すFIB装置は、一例であり、実施形態に係るX線発生用ターゲットを製造する上で用いるFIB装置は、図4に示すFIB装置に限定されるものではなく、任意のFIB装置を用いて良い。また、X線発生用ターゲットT1を製造するための装置は、FIB装置に限定されるものではなく、任意の装置を用いて良い。
図4に示すように、FIB装置100は、第1の筐体110内に、液体金属イオン源貯蔵部112、ブランカ114、アパーチャ116、走査電極118、及び対物レンズ120を備える。また、FIB装置100は、第1の筐体110に接続された第2の筐体130内に、載置台132、及びガス銃134を備える。また、FIB装置100は、第2の筐体130に接続されたポンプ136を備える。
液体金属イオン源貯蔵部112は、例えば、Ga液体金属イオン源を貯蔵する。ブランカ114は、液体金属イオン源貯蔵部112から照射されるイオンビームを偏向させる偏向器である。ブランカ114は、例えば、イオンビームを照射する場合に、イオンビームを穴3-1や穴3-2に照射している状態(ON状態)からイオンビームを偏向させることでイオンビームを穴3-1や穴3-2に照射していない状態(OFF状態)に切り替える。
アパーチャ116は、液体金属イオン源貯蔵部112から照射されたイオンビームの電流を絞り穴によって選択的に制限する。走査電極118は、液体金属イオン源貯蔵部112から照射されたイオンビームを、例えば基板1の穴3-1の径に応じてスキャン(走査)する。対物レンズ120は、液体金属イオン源貯蔵部112から照射されたイオンビームを集束する。
載置台132は、X線発生用ターゲットT1を載置する。ガス銃134は、X線発生用ターゲットT1の第1のX線ターゲット部10-1や第2のX線ターゲット部10-2を形成する際に、第2の筐体130内の空間に材料ガスを吹き付ける。材料ガスは、例えば、タングステンヘキサカルボニル(Tungsten Hexacarbonyl:W(CO)6)である。ポンプ136は、真空排気を行うことで、第1の筐体110及び第2の筐体130内を所定の真空状態に保つ。
FIB装置100は、液体金属イオン源貯蔵部112から、ブランカ114、アパーチャ116、走査電極118、対物レンズ120を介してX線発生用ターゲットT1へイオンビーム122を照射する。
ここで、FIB装置100は、スキャンしながら基板1にイオンビーム122を照射してスパッタすることで、穴3-1や穴3-2を形成する。
(製造方法の流れの一例)
図5は、第1の実施形態に係るX線発生用ターゲットの製造方法の一例を説明するためのフローチャートである。図6A乃至図6Cは、第1の実施形態に係るX線発生用ターゲットの製造方法の一例を説明するための図である。以下では、集束イオンビーム(Focused Ion Beam:FIB)加工装置を用いることでX線発生用ターゲットを製造する場合を例に説明するが、これに限定されるものではない。
図5は、第1の実施形態に係るX線発生用ターゲットの製造方法の一例を説明するためのフローチャートである。図6A乃至図6Cは、第1の実施形態に係るX線発生用ターゲットの製造方法の一例を説明するための図である。以下では、集束イオンビーム(Focused Ion Beam:FIB)加工装置を用いることでX線発生用ターゲットを製造する場合を例に説明するが、これに限定されるものではない。
図5に示すように、FIB装置100の載置台132の上に基板1を配置する(ステップS101)。そして、FIB装置100は、基板1に穴3-1及び穴3-2を形成する(ステップS102)。具体的には、FIB装置100は、基板1に有底状の穴3-1と穴3-2とを形成する。例えば、FIB装置100は、Ga+のようなイオンビーム122を基板1に照射することで表面1a側からスパッタし、図6Aのように穴3-1及び穴3-2を形成する。例えば、FIB装置100は、基板1に、径が100nmであって深さが600nmとなる穴3-1を形成し、内径が300nmであって外形が600nmとなり深さが600nmとなるリング状の穴3-2を形成する。ただし、これに限定されるものではなく、穴3-1の径を100nmより小さくしても良く、穴3-1及び穴3-2の深さを600nmより深くしても良い。
ここで、イオンビーム122によって基板1をスパッタして形成された穴3-1及び穴3-2は、それぞれ、底面3-1a及び底面3-2aに向かうにつれて径が小さくなり、側壁面3-1b及び側面3-2bがテーパー状に形成されることがある。なお、図6Aに示す例では、記載の便宜上、側壁面3-1bが底面3-1aから垂直に形成され、側壁面3-2bが底面3-2aから垂直に形成される場合を例に示した。
そして、ターゲット部を形成する(S103)。つまり、図6Bに示すように、穴3-1に第1のX線ターゲット部10-1を形成し、穴3-2に第2のX線ターゲット部10-2を形成する。例えば、穴3-1の底面3-1aから第1主面1a側に向かって上述した金属を堆積させることにより、第1のX線ターゲット部10-1を形成する。また、穴3-2の底面3-2aから第1主面1a側に向かって上述した金属を堆積させることにより、第2のX線ターゲット部10-2を形成する。ここで、穴3-1及び穴3-2に直接金属を堆積させる。この結果、第1のX線ターゲット部10-1では、第1端面10-1aが穴3-1の底面3-1aと密着し、外側面10-1cが穴3-1の側壁面3-1bと密着する。また、同様に、第2のX線ターゲット部10-2では、第1端面10-2aが穴3-2の底面3-2aと密着し、外側面10-2cが穴3-2の側壁面3-2bと密着する。
例えば、FIB加工装置を用いて、金属蒸気雰囲気中で収束イオンビームを穴3-1や穴3-2に照射することで金属を堆積させる。FIB加工装置では、収束イオンビームの照射箇所に材料ガスを吹き付けることで、FIB励起化学気相析出により材料を堆積させる。例えば、材料ガスとして、タングステンヘキサカルボニル(Tungsten Hexacarbonyl:W(CO)6)を用いることで、タングステンを堆積させることができる。また、例えば、材料ガスとして、トリメチル(メチルシクロペンタジエニル)白金(Trimethyl(Methylcyclopentadienyl)Platinum)を用いることで、白金を堆積させることができる。また、例えば、材料ガスとして、ジメチルゴールドヘキサフルオロアセチルアセトネート(DimethylGold Hexafluoroacetylacetonate:C7H7F6O2Au)を用いることで、金を堆積させることができる。
そして、導電層12を形成する(ステップS104)。導電層12は、基板1の表面1a、穴3-1及び穴3-2に堆積された金属の上部を覆うように形成される。導電層12は、例えば、既知のマイクロ波プラズマCVD装置を用いて形成される。より詳細な一例をあげて説明すると、導電層12は、マイクロ波プラズマCVD装置を用い、表面1a及び金属の上部に、マイクロ波プラズマCVD法により、ボロンをドーピングしながらダイヤモンド粒子を生成及び成長させることで形成される。また、導電層12は、例えば、既知のPVD(Physical VaporDeposition)用いて形成される。より詳細な一例をあげて説明すると、導電層12は、PVD装置を用い、表面1a及び金属の上部に、導電性の金属膜を蒸着させることで、形成される。導電性の金属膜は、例えば、チタンやクロムなどの金属で形成され、厚みは、50nmである。ただし、これに限定される者ではなく、導電性の金属膜を形成する材料は、チタンやクロム以外の材料であっても良く、膜圧が50nmより薄くても良く、膜圧が50nmより厚くても良い。この結果、図6Cに示すように、基板1の表面1aに導電層12が形成される。
なお、図5及び図6を用いて説明した製造方法の処理手順は、上記の順番に限定されるものではなく、処理内容を矛盾させない範囲で適宜変更しても良い。例えば、上記のステップS104を省略しても良く、ステップS104をステップS102の前に行っても良い。
(X線発生装置の一例)
X線発生用ターゲットT1を用いたX線発生装置について説明する。図7は、第1の実施形態に係るX線発生用ターゲットT1を用いたX線発生装置の断面構成の一例を示す図である。図8は、第1の実施形態に係るX線発生用ターゲットT1を用いたX線発生装置のモールド電源部の一例を示す図である。なお、図7及び図8を用いて説明するX線発生装置は、一例であり、これに限定されるものではない。
X線発生用ターゲットT1を用いたX線発生装置について説明する。図7は、第1の実施形態に係るX線発生用ターゲットT1を用いたX線発生装置の断面構成の一例を示す図である。図8は、第1の実施形態に係るX線発生用ターゲットT1を用いたX線発生装置のモールド電源部の一例を示す図である。なお、図7及び図8を用いて説明するX線発生装置は、一例であり、これに限定されるものではない。
以下に説明するように、X線発生装置21は、電子ビーム照射部と、ビーム径制御部とを有する。電子ビーム照射部は、基板の上面に設けられる第1のX線ターゲット部と、基板の上面のうち第1のX線ターゲット部を囲む位置に第1のX線ターゲット部の外縁から間隔をおいて設けられる第2のX線ターゲット部とを有するX線発生用ターゲットに対して、電子ビームを照射する。ビーム径制御部は、X線発生用ターゲットに照射される電子ビームのビーム径を制御する。また、ビーム径制御部は、第1のX線ターゲット部を含み第2のX線ターゲット部を含まない範囲を照射範囲となるビーム径にすることで、第1のX線ターゲット部の大きさに相当する解像度を示す第1のX線をX線発生用ターゲットから照射させ、第1のX線ターゲット部と第2のX線ターゲット部とを含む範囲を照射範囲となるビーム径にすることで、第1のX線よりも解像度の低いX線をX線発生用ターゲットから照射させる。なお、X線発生装置21により照射される電子ビームは、ビーム径は変化するものの、中心位置は同一となる。
図7の説明に戻る。図7に示す例では、X線発生装置21は、開放型であり、使い捨てに供される閉鎖型と異なり、真空状態を任意に作り出すことができ、消耗品であるフィラメント部FやX線発生用ターゲットT1の交換を可能にしている。X線発生装置21は、動作時に真空状態になる円筒形状のステンレス製の筒状部22を有する。筒状部22は、下側に位置する固定部23と上側に位置する着脱部24とで2分割され、着脱部24はヒンジ部25を介して固定部23に取り付けられている。したがって、着脱部24が、ヒンジ部25を介して横倒しになるように回動することで、固定部23の上部を開放させることができ、固定部23内に収容されているフィラメント部(カソード)Fへのアクセスを可能にする。
着脱部24内には、電磁偏向レンズとして機能する上下一対の筒状のコイル部26,27が設けられると共に、コイル部26,27の中心を通るよう、筒状部22の長手方向に電子通路28が延在し、電子通路28はコイル部26,27で包囲される。着脱部24の下端にはディスク板29が蓋をするように固定され、ディスク板29の中心には、電子通路28の下端側に一致させる電子導入孔29aが形成される。
着脱部24の上端は円錐台に形成され、頂部には、電子通路28の上端側に位置して電子透過型のX線照射窓を形成するX線発生用ターゲットT1が装着される。X線発生用ターゲットT1は、着脱自在な回転式キャップ部31内にアースさせた状態で収容される。したがって、回転式キャップ部31の取り外しによって、消耗品であるX線発生用ターゲットT1の交換も可能になる。また、フィラメント部Fは、着脱自在なキャップ部30内に収容され、キャップ部30の取り外しによって、フィラメント部Fの交換も可能になる。
固定部23には真空ポンプ32が固定される。真空ポンプ32は筒状部22内全体を高真空状態にするためのものである。すなわち、X線発生装置21が真空ポンプ32を装備することによって、消耗品であるフィラメント部FやX線発生用ターゲットT1の交換が可能になっている。
筒状部22の基端側には、電子銃36との一体化が図られたモールド電源部34が固定される。モールド電源部34は、電気絶縁性の樹脂(例えば、エポキシ樹脂)でモールド成形させたものであると共に、金属製のケース40内に収容される。そして、筒状部22の固定部23の下端(基端)は、ケース40の上板40bに対し、シールさせた状態でネジ止め等によりしっかりと固定される。
モールド電源部34内には、図8に示されるように、高電圧(例えば、X線発生用ターゲットT1をアースさせる場合には最大-160kV)を発生させるようなトランスを構成させた高圧発生部35が封入される。具体的に、モールド電源部34は、下側に位置して直方体形状をなすブロック状の電源本体部34aと、電源本体部34aから上方に向けて固定部23内に突出する円柱状のネック部34bとからなる。高圧発生部35は、重い部品であるから電源本体部34a内に封入され、X線発生装置21全体の重量バランスから、できるだけ下側に配置させることが好ましい。
ネック部34bの先端部には、電子通路28を挟むように、X線発生用ターゲットT1に対峙させるよう配置させた電子銃36が装着される。
図8に示されるように、モールド電源部34の電源本体部34a内には、高圧発生部35に電気的に接続させた電子放出制御部51が封入され、電子放出制御部51によって、電子の放出のタイミングや管電流などを制御している。電子放出制御部51が、グリッド用端子38及びフィラメント用端子50に対し、グリッド接続配線52及びフィラメント接続配線53を介してそれぞれ接続され、各接続配線52,53は、供に高電圧に印加されるゆえにネック部34b内に封入される。
電源本体部34aは、金属製のケース40内に収容される。電源本体部34aとケース40との間に、高電圧制御部41が配置される。ケース40には、外部電源に接続させるための電源用端子43が固定され、高電圧制御部41は電源用端子43に接続されると共に、モールド電源部34内の高圧発生部35及び電子放出制御部51に対してそれぞれ配線44,45を介して接続される。外部からの制御信号に基づき、高電圧制御部41によって、トランスを構成する高圧発生部35で発生させ得る電圧を、高電圧(例えば160kV)から低電圧(0V)までコントロールしている。電子放出制御部51により、電子の放出のタイミングや管電流などをコントロールする。
X線発生装置21では、コントローラ(不図示)の制御に基づき、ケース40内の高電圧制御部41から、モールド電源部34の高圧発生部35及び電子放出制御部51に電力及び制御信号がそれぞれ供給される。それと同時に、コイル部26,27にも給電される。この結果、フィラメント部Fから適切な加速度をもって電子が照射され、制御させたコイル部26,27で電子を適切に収束させ、X線発生用ターゲットT1に電子が照射される。照射された電子がX線発生用ターゲットT1に衝突することで、X線が外部に照射される。
このように、X線発生装置21では、フィラメント部Fは、電子ビームをX線発生用ターゲットT1に照射する。また、X線発生装置21では、コントローラ(不図示)や高電圧制御部41、電子放出制御部51によってフィラメント部Fから照射されるビーム径が制御され、コイル部26及び27によってフィラメント部Fから照射されたビーム径が制御される。言い換えると、コントローラ(不図示)や高電圧制御部41、電子放出制御部51、コイル部26及び27によってビーム径が制御される。
図9及び図10は、X線発生用ターゲットT1に照射される電子ビームのビーム径と第1のX線ターゲット部10-1と第2のX線ターゲット部10-2との関係について示す図である。図9及び図10では、フィラメント部Fから照射された電子ビームの照射方向を矢印で示す。また、図9及び図10では、X線発生用ターゲットT1から照射されたX線7の解像度は、X線の幅となる。
図9に示すように、X線発生装置21は、第1のX線ターゲット部10-1を含んで第2のX線ターゲット部10-2を含まない範囲を照射範囲となるビーム径の電子ビーム6-1を照射することで、第1のX線ターゲット部10-1の大きさに相当する解像度を示す第1のX線7-1をX線発生用ターゲットT1から照射する。つまり、X線発生装置21は、第1のX線ターゲット部10-1を含んで第2のX線ターゲット部10-2を含まない範囲を照射範囲となるビーム径の電子ビーム7-1を照射したとしても、第1のX線ターゲット部10-1の大きさに相当する解像度を示す第1のX線8-1を照射することになる。ここで、第1のX線8-1の解像度は幅8-1となる。
また、図10に示すように、X線発生装置21は、第1のX線ターゲット部10-1と第2のX線ターゲット部10-2とを含む範囲を照射範囲となるビーム径の電子ビーム6-2を照射することで、第1のX線7-1よりも解像度の低い第2のX線7-2をX線発生用ターゲットT1から照射する。図10に示す例では、第2のターゲット10-2の外径よりも大きいビーム径の電子ビームを照射する場合を示した。つまり、X線発生装置21は、第1のX線ターゲット部10-1を含んで第2のX線ターゲット部10-2を含まない範囲を照射範囲となるビーム径の電子ビーム7-2を照射したとしても、第1のX線ターゲット部10-1の大きさに相当する解像度を示す第1のX線7-1を照射可能となるX線発生用ターゲットT1を用いて、第1のX線7-1よりも解像度の低い第2のX線7-2を照射可能となる。第2のX線7-2の解像度は、第1のX線8-1の解像度は幅8-1よりも低い幅8-2となる。なお、X線の解像度は、X線の幅が狭ければ狭いほど高くなる。
ところで、X線発生装置において、高い分解能は、電子を高い電圧(例えば、50~150keV程度)で加速し、ターゲット上で微小な焦点へフォーカスすることで、得ることができる。電子がターゲット中でエネルギーを失う際に、X線、いわゆる制動放射X線が発生する。この際、焦点サイズは、照射される電子ビームのビーム径の大きさでほぼ決まることとなる。
X線の微細な焦点サイズを得るためには、電子を小さなスポットに収束させれば良い。発生するX線の量を増やすためには、電子の量を増やせば良い。しかしながら、空間電荷効果により、電子のスポットサイズと電流量は相反する関係にあり、小さなスポットに大きな電流を流すことはできない。そして、小さなスポットに大きな電流を流すと発熱によりターゲットが消耗しやすくなるおそれが生じてしまう。
本実施形態では、上述したように、X線発生用ターゲットT1は、ダイヤモンドからなる基板1、穴3-1の底面3-1aと側壁面3-1bとに密着した第1のX線ターゲット部10-1、及び、穴3-2の底面3-2aと側壁面3-2bとに密着した第2のX線ターゲット部10-2とを備えていることから、放熱性に極めて優れており、上述した状況下においても、X線発生用ターゲットT1の消耗を防ぐことができる。
また、第1のX線ターゲット部10-1がナノサイズとされていることから、上述した高い加速電圧(例えば、50~150keV程度)で電子を照射して、第1のX線ターゲット部10-1付近で電子が拡がってしまった場合でも、X線焦点径が拡がるようなことはなく、分解能の劣化が抑制される。言い換えると、ビーム径が第1のX線ターゲット部10-1の径よりも大きくなってしまったとしても、第1のX線ターゲット部10-1の径に相当するX線を照射可能となる。また、第1のX線ターゲット部10-1の深さを深くすることで、X線量を増やすことが可能となる。すなわち、第1のX線ターゲット部10-1のサイズで決まる分解能が得られることとなる。したがって、X線発生用ターゲットT1を用いたX線発生装置21では、X線量を増やしつつ、ナノオーダー(数十~数百nm)での分解能を得ることができる。
また、上述したように、第1の実施形態に係るX線発生装置は、1つの実施形態において、基板と、電子ビーム照射部と、ビーム径制御部とを有する。電子ビーム照射部は、基板の上面に設けられる第1のX線ターゲット部と、基板の上面のうち第1のX線ターゲット部を囲む位置に第1のX線ターゲット部の外縁から間隔をおいて設けられる第2のX線ターゲット部とを有するX線発生用ターゲットに対して、電子ビームを照射する。ビーム径制御部は、X線発生用ターゲットに照射される電子ビームのビーム径を制御する。また、ビーム径制御部は、第1のX線ターゲット部を含み第2のX線ターゲット部を含まない範囲を照射範囲となるビーム径にすることで、第1のX線ターゲット部の大きさに相当する解像度を示す第1のX線をX線発生用ターゲットから照射させ、第1のX線ターゲット部と第2のX線ターゲット部とを含む範囲を照射範囲となるビーム径にすることで、第1のX線よりも解像度の低い第2のX線をX線発生用ターゲットから照射させる。この結果、異なる解像度のX線が使用可能となる。
すなわち、第1のX線ターゲット部10-1と、異なる径を有する第2のX線ターゲット部10-2とを基板1に形成し、X線発生用ターゲットT1に照射する電子ビームの焦点をぼやかしたりフィラメント部Fから出社されるビーム径を変更したりすることで、X線発生用ターゲットT1において電子ビームが照射される照射範囲を変更することで、異なる解像度のX線を簡単に切り替えることが可能となる。
(その他の実施形態)
さて、これまで、第1の実施形態について説明したが、上述した実施形態以外にも、その他の実施形態にて実施されても良い。そこで、以下では、その他の実施形態について説明する。
さて、これまで、第1の実施形態について説明したが、上述した実施形態以外にも、その他の実施形態にて実施されても良い。そこで、以下では、その他の実施形態について説明する。
(製造方法)
例えば、上述した実施形態では、FIBを用いて第1のX線ターゲット部10-1と第2のX線ターゲット部10-2とを作成する場合を例に示したが、これに限定されるものではなく、任意の手法を用いて良い。
例えば、上述した実施形態では、FIBを用いて第1のX線ターゲット部10-1と第2のX線ターゲット部10-2とを作成する場合を例に示したが、これに限定されるものではなく、任意の手法を用いて良い。
(第2のX線ターゲット部)
また、上述した実施形態では、X線発生用ターゲットT1に1つの第2のX線ターゲット部10-2が設けられる場合を例に示したが、これに限定されるものではなく、第2のX線ターゲット部10-2が複数設けられても良い。言い換えると、第1のX線ターゲット部10-1とは別に、異なる径を有する複数の第2のX線ターゲット部10-2を設けても良い。
また、上述した実施形態では、X線発生用ターゲットT1に1つの第2のX線ターゲット部10-2が設けられる場合を例に示したが、これに限定されるものではなく、第2のX線ターゲット部10-2が複数設けられても良い。言い換えると、第1のX線ターゲット部10-1とは別に、異なる径を有する複数の第2のX線ターゲット部10-2を設けても良い。
図11は、第2のX線ターゲット部が設けられる実施形態におけるX線発生用ターゲットT1の一例を示す図である。図11に示す例では、第2のX線ターゲット部10-2aと第2のX線ターゲット部10-2bとが設けられる場合を示した。ただし、これに限定されるものではなく、第2のX線ターゲット部10-2の数は任意であって良い。なお、図11では、説明の便宜上、X線発生用ターゲットT1の上面図を示した。
このように、第2のX線ターゲット部10-2が複数設けられることで、第1のX線と比較して解像度の低いX線を段階的に複数簡単に切り替えて用いることが可能となる。例えば、図11に示す例では、第2のX線ターゲット部10-2aの外径よりも大きく第2のX線ターゲット部10-2bの内径よりも小さいビーム径の電子ビームを照射することで、第2のX線ターゲット部10-2aの外径に相当するX線を照射可能となり、第2のX線ターゲット部10-2bの外径よりも大きいビーム径の電子ビームを照射することで、第2のX線ターゲット部10-2bの外径に相当するX線を照射可能となる。言い換えると、第1のX線と比較して低解像度のX線として、第2のX線ターゲット部10-2の外径に相当するX線と第2のX線ターゲット部10-2bの外径に相当するX線とを簡単に切り替え可能となる。
(電子ビームのビーム径)
また、上述した実施形態では、第1のX線ターゲット部10-1と第2のX線ターゲット部10-2とを含む範囲を照射範囲となるビーム径の電子ビームとして、第2のX線ターゲット部10-2の全範囲が含まれるビーム径の電子ビームを用いる場合を例に示したが、これに限定されるものではない。例えば、第2のX線ターゲット部10-2の全範囲が含まれるのではなく、一部のみが含まれるビーム径の電子ビームを用いても良い。この場合、X線発生用ターゲットT1から照射されるX線の解像度は、第2のX線ターゲット部10-2の外径ではなく、X線発生用ターゲットT1に照射された電子ビームのビーム径に相当することになる。
また、上述した実施形態では、第1のX線ターゲット部10-1と第2のX線ターゲット部10-2とを含む範囲を照射範囲となるビーム径の電子ビームとして、第2のX線ターゲット部10-2の全範囲が含まれるビーム径の電子ビームを用いる場合を例に示したが、これに限定されるものではない。例えば、第2のX線ターゲット部10-2の全範囲が含まれるのではなく、一部のみが含まれるビーム径の電子ビームを用いても良い。この場合、X線発生用ターゲットT1から照射されるX線の解像度は、第2のX線ターゲット部10-2の外径ではなく、X線発生用ターゲットT1に照射された電子ビームのビーム径に相当することになる。
(第2のX線ターゲット部)
また、例えば、図12に示すように、X線発生用ターゲットT1の上面のうち、第1のX線ターゲット部10-1を囲む位置であって第1のX線ターゲット部10-1の外縁から間隔をおいた位置以降のすべての領域に第2のX線ターゲット部10-2が設けられても良い。図12は、第2のX線ターゲット部の一例について示すための図である。
また、例えば、図12に示すように、X線発生用ターゲットT1の上面のうち、第1のX線ターゲット部10-1を囲む位置であって第1のX線ターゲット部10-1の外縁から間隔をおいた位置以降のすべての領域に第2のX線ターゲット部10-2が設けられても良い。図12は、第2のX線ターゲット部の一例について示すための図である。
(第1のX線ターゲット部と第2のX線ターゲット部)
また、上述した実施形態では、第1のX線ターゲット部10-1と第2のX線ターゲット部10-2とが基板1に埋め込まれる場合を例に示したが、これに限定されるものではない。例えば、第1のX線ターゲット部10-1は、基板1に設けられた有底状の穴3-1に埋め込まれてり、第2のX線ターゲット部10-2は、基板1の表面上に設けられても良い。この場合、例えば、第1のX線ターゲット部10-1と比較して第2のX線ターゲット部10-2が基板1の上面に広範囲に設けられる場合に、第2のX線ターゲット部10-2を簡単に形成可能となる。
また、上述した実施形態では、第1のX線ターゲット部10-1と第2のX線ターゲット部10-2とが基板1に埋め込まれる場合を例に示したが、これに限定されるものではない。例えば、第1のX線ターゲット部10-1は、基板1に設けられた有底状の穴3-1に埋め込まれてり、第2のX線ターゲット部10-2は、基板1の表面上に設けられても良い。この場合、例えば、第1のX線ターゲット部10-1と比較して第2のX線ターゲット部10-2が基板1の上面に広範囲に設けられる場合に、第2のX線ターゲット部10-2を簡単に形成可能となる。
(第2のX線ターゲット部)
例えば、上述した実施形態では、図2に示されるように、穴3-2が設けられる表面1a上の配置が、リング状となる場合を例に示したが、これに限定されるものではない。例えば、図13に示すように、楕円状に配置しても良く、図14に示すように、1つ又は複数の角を有する形状に配置しても良く、任意の形状に配置して良い。図13及び図14は、第2のX線ターゲット部の一例について示すための図である。
例えば、上述した実施形態では、図2に示されるように、穴3-2が設けられる表面1a上の配置が、リング状となる場合を例に示したが、これに限定されるものではない。例えば、図13に示すように、楕円状に配置しても良く、図14に示すように、1つ又は複数の角を有する形状に配置しても良く、任意の形状に配置して良い。図13及び図14は、第2のX線ターゲット部の一例について示すための図である。
なお、図13に示す例では、第2のX線ターゲット部10-2の外側の形状が楕円であり、内側の形状が円である場合を例に示したが、これに限定されるものではない。例えば、第2のX線ターゲット部10-2の外側の形状と内側の形状とのうち、任意の一方又は両方が楕円であっても良い。
また、図14に示す例では、第2のX線ターゲット部10-2の外側の形状が四角である場合を例に示したが、これに限定されるものではなく、第2のX線ターゲット部10-2外側の形状が、1~3つの角を有する形状であっても良く、5つ以上の角を有する形状であっても良い。また、図14に示す例では、第2のX線ターゲット部10-2の外側の形状が四角であり、内側の形状が円である場合を例に示したが、これに限定されるものではない。例えば、第2のX線ターゲット部10-2の外側の形状と内側の形状とのうち、任意の一方又は両方が1つ以上の角を有する形状であっても良い。
(イオンドープ)
また、第1の実施形態では、基板1にライナー層4を形成する場合を例に説明したが、これに限定されるものではなく、ライナー層4を形成しなくても良く、ライナー層4の代わりにイオンドープを行っても良い。
また、第1の実施形態では、基板1にライナー層4を形成する場合を例に説明したが、これに限定されるものではなく、ライナー層4を形成しなくても良く、ライナー層4の代わりにイオンドープを行っても良い。
(導電層)
また、例えば、上述した実施形態では、図3に示されるように、導電層12が、基板1の表面1a、第1のX線ターゲット部10-1の第2の端面10-1b、及び、第2のX線ターゲット部10-2の第2の端面10-2bを覆うように形成される場合を例に示したが、これに限定されるものではない。
また、例えば、上述した実施形態では、図3に示されるように、導電層12が、基板1の表面1a、第1のX線ターゲット部10-1の第2の端面10-1b、及び、第2のX線ターゲット部10-2の第2の端面10-2bを覆うように形成される場合を例に示したが、これに限定されるものではない。
例えば、図15に示すように、導電層12が、第1のX線ターゲット部10-1の第2の端面10-1b、及び、第2のX線ターゲット部10-2の第2の端面10-2bが露出するように、表面1a上に形成されても良い。図15は、X線発生用ターゲットの断面構成の一例を説明するための図である。この場合、X線発生用ターゲットを製造する際には、基板を配置すると、穴を空ける前に導電層12を形成し、その後、穴を形成してターゲットを形成することで、X線発生用ターゲットを製造する。
1 基板
1a 表面
1b 裏面
10-1 第1のX線ターゲット部
10-2 第2のX線ターゲット部
12 導電層
T1 X線発生用ターゲット
1a 表面
1b 裏面
10-1 第1のX線ターゲット部
10-2 第2のX線ターゲット部
12 導電層
T1 X線発生用ターゲット
Claims (7)
- 基板と、
前記基板の上面に設けられる第1のX線ターゲット部と、
前記基板の上面のうち、前記第1のX線ターゲット部を囲む位置に、前記第1のX線ターゲット部の外縁から間隔をおいて設けられる第2のX線ターゲット部と
を備えたことを特徴とするX線発生用ターゲット。 - 前記第2のX線ターゲット部は、前記第1のX線ターゲット部が設けられた位置を中心とするリング状に設けられることを特徴とする請求項1に記載のX線発生用ターゲット。
- 前記第2のX線ターゲット部が複数設けられることを特徴とする請求項1又は2に記載のX線発生用ターゲット。
- 前記第1のX線ターゲット部と前記第2のX線ターゲット部とは、前記基板に設けられた有底状の穴部に埋め込まれることを特徴とする請求項1~3のいずれか1項に記載のX線発生用ターゲット。
- 前記第1のX線ターゲット部は、前記基板に設けられた有底状の穴部に埋め込まれており、
前記第2のX線ターゲット部は、前記基板の表面上に設けられることを特徴とする請求項1~4のいずれか1項に記載のX線発生用ターゲット。 - 前記基板の上面に導電層を有することを特徴とする請求項1~5のいずれか1項に記載のX線発生用ターゲット。
- 基板と、前記基板の上面に設けられる第1のX線ターゲット部と、前記基板の上面のうち前記第1のX線ターゲット部を囲む位置に前記第1のX線ターゲット部の外縁から間隔をおいて設けられる第2のX線ターゲット部とを有するX線発生用ターゲットに対して、電子ビームを照射する電子ビーム照射部と、
前記X線発生用ターゲットに照射される電子ビームのビーム径を制御するビーム径制御部とを有し、
前記ビーム径制御部は、前記第1のX線ターゲット部を含み前記第2のX線ターゲット部を含まない範囲を照射範囲となるビーム径にすることで、前記第1のX線ターゲット部の大きさに相当する解像度を示す第1のX線を前記X線発生用ターゲットから照射させ、前記第1のX線ターゲット部と前記第2のX線ターゲット部とを含む範囲を照射範囲となるビーム径にすることで、前記第1のX線よりも解像度の低い第2のX線を前記X線発生用ターゲットから照射させることを特徴とするX線発生装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14832145.8A EP3029708A1 (en) | 2013-07-30 | 2014-07-08 | Target for x-ray generation and x-ray generation device |
US14/908,426 US20160189909A1 (en) | 2013-07-30 | 2014-07-08 | Target for x-ray generation and x-ray generation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013158130A JP2015028879A (ja) | 2013-07-30 | 2013-07-30 | X線発生用ターゲット及びx線発生装置 |
JP2013-158130 | 2013-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015016019A1 true WO2015016019A1 (ja) | 2015-02-05 |
Family
ID=52431559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/068204 WO2015016019A1 (ja) | 2013-07-30 | 2014-07-08 | X線発生用ターゲット及びx線発生装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160189909A1 (ja) |
EP (1) | EP3029708A1 (ja) |
JP (1) | JP2015028879A (ja) |
TW (1) | TW201515045A (ja) |
WO (1) | WO2015016019A1 (ja) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150092924A1 (en) * | 2013-09-04 | 2015-04-02 | Wenbing Yun | Structured targets for x-ray generation |
US10247683B2 (en) | 2016-12-03 | 2019-04-02 | Sigray, Inc. | Material measurement techniques using multiple X-ray micro-beams |
US10269528B2 (en) | 2013-09-19 | 2019-04-23 | Sigray, Inc. | Diverging X-ray sources using linear accumulation |
US10295485B2 (en) | 2013-12-05 | 2019-05-21 | Sigray, Inc. | X-ray transmission spectrometer system |
US10295486B2 (en) | 2015-08-18 | 2019-05-21 | Sigray, Inc. | Detector for X-rays with high spatial and high spectral resolution |
US10297359B2 (en) | 2013-09-19 | 2019-05-21 | Sigray, Inc. | X-ray illumination system with multiple target microstructures |
US10304580B2 (en) | 2013-10-31 | 2019-05-28 | Sigray, Inc. | Talbot X-ray microscope |
US10349908B2 (en) | 2013-10-31 | 2019-07-16 | Sigray, Inc. | X-ray interferometric imaging system |
US10352880B2 (en) | 2015-04-29 | 2019-07-16 | Sigray, Inc. | Method and apparatus for x-ray microscopy |
US10401309B2 (en) | 2014-05-15 | 2019-09-03 | Sigray, Inc. | X-ray techniques using structured illumination |
US10416099B2 (en) | 2013-09-19 | 2019-09-17 | Sigray, Inc. | Method of performing X-ray spectroscopy and X-ray absorption spectrometer system |
US10578566B2 (en) | 2018-04-03 | 2020-03-03 | Sigray, Inc. | X-ray emission spectrometer system |
US10656105B2 (en) | 2018-08-06 | 2020-05-19 | Sigray, Inc. | Talbot-lau x-ray source and interferometric system |
US10658145B2 (en) | 2018-07-26 | 2020-05-19 | Sigray, Inc. | High brightness x-ray reflection source |
US10845491B2 (en) | 2018-06-04 | 2020-11-24 | Sigray, Inc. | Energy-resolving x-ray detection system |
US10962491B2 (en) | 2018-09-04 | 2021-03-30 | Sigray, Inc. | System and method for x-ray fluorescence with filtering |
USRE48612E1 (en) | 2013-10-31 | 2021-06-29 | Sigray, Inc. | X-ray interferometric imaging system |
US11056308B2 (en) | 2018-09-07 | 2021-07-06 | Sigray, Inc. | System and method for depth-selectable x-ray analysis |
US11152183B2 (en) | 2019-07-15 | 2021-10-19 | Sigray, Inc. | X-ray source with rotating anode at atmospheric pressure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2570646A (en) * | 2018-01-24 | 2019-08-07 | Smiths Heimann Sas | Radiation Source |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06188092A (ja) * | 1992-12-17 | 1994-07-08 | Hitachi Ltd | X線発生用タ−ゲットとx線源とx線撮像装置 |
JP2002195961A (ja) * | 2000-12-25 | 2002-07-10 | Shimadzu Corp | X線撮像装置 |
JP2011077027A (ja) | 2009-09-04 | 2011-04-14 | Tokyo Electron Ltd | X線発生用ターゲット、x線発生装置、及びx線発生用ターゲットの製造方法 |
JP2014067513A (ja) * | 2012-09-25 | 2014-04-17 | Canon Inc | 放射線発生ターゲット、放射線発生ユニット及び放射線撮影システム |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005276760A (ja) * | 2004-03-26 | 2005-10-06 | Shimadzu Corp | X線発生装置 |
JP5812700B2 (ja) * | 2011-06-07 | 2015-11-17 | キヤノン株式会社 | X線放出ターゲット、x線発生管およびx線発生装置 |
JP2012256559A (ja) * | 2011-06-10 | 2012-12-27 | Canon Inc | 放射線透過型ターゲット |
JP2013020792A (ja) * | 2011-07-11 | 2013-01-31 | Canon Inc | 放射線発生装置及びそれを用いた放射線撮影装置 |
JP5791401B2 (ja) * | 2011-07-11 | 2015-10-07 | キヤノン株式会社 | 放射線発生装置及びそれを用いた放射線撮影装置 |
JP5875297B2 (ja) * | 2011-08-31 | 2016-03-02 | キヤノン株式会社 | 放射線発生管及びそれを用いた放射線発生装置、放射線撮影システム |
JP5871528B2 (ja) * | 2011-08-31 | 2016-03-01 | キヤノン株式会社 | 透過型x線発生装置及びそれを用いたx線撮影装置 |
JP5901180B2 (ja) * | 2011-08-31 | 2016-04-06 | キヤノン株式会社 | 透過型x線発生装置及びそれを用いたx線撮影装置 |
JP5871529B2 (ja) * | 2011-08-31 | 2016-03-01 | キヤノン株式会社 | 透過型x線発生装置及びそれを用いたx線撮影装置 |
JP5896649B2 (ja) * | 2011-08-31 | 2016-03-30 | キヤノン株式会社 | ターゲット構造体及びx線発生装置 |
JP6140983B2 (ja) * | 2012-11-15 | 2017-06-07 | キヤノン株式会社 | 透過型ターゲット、x線発生ターゲット、x線発生管、x線x線発生装置、並びに、x線x線撮影装置 |
JP6253233B2 (ja) * | 2013-01-18 | 2017-12-27 | キヤノン株式会社 | 透過型x線ターゲットおよび、該透過型x線ターゲットを備えた放射線発生管、並びに、該放射線発生管を備えた放射線発生装置、並びに、該放射線発生装置を備えた放射線撮影装置 |
JP6061692B2 (ja) * | 2013-01-18 | 2017-01-18 | キヤノン株式会社 | 放射線発生管及び放射線発生装置及びそれらを用いた放射線撮影装置 |
JP6207246B2 (ja) * | 2013-06-14 | 2017-10-04 | キヤノン株式会社 | 透過型ターゲットおよび該透過型ターゲットを備える放射線発生管、放射線発生装置、及び、放射線撮影装置 |
JP6272043B2 (ja) * | 2014-01-16 | 2018-01-31 | キヤノン株式会社 | X線発生管及びこれを用いたx線発生装置、x線撮影システム |
JP6381269B2 (ja) * | 2014-04-21 | 2018-08-29 | キヤノン株式会社 | ターゲットおよび前記ターゲットを備えるx線発生管、x線発生装置、x線撮影システム |
-
2013
- 2013-07-30 JP JP2013158130A patent/JP2015028879A/ja active Pending
-
2014
- 2014-07-08 WO PCT/JP2014/068204 patent/WO2015016019A1/ja active Application Filing
- 2014-07-08 US US14/908,426 patent/US20160189909A1/en not_active Abandoned
- 2014-07-08 EP EP14832145.8A patent/EP3029708A1/en not_active Withdrawn
- 2014-07-25 TW TW103125581A patent/TW201515045A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06188092A (ja) * | 1992-12-17 | 1994-07-08 | Hitachi Ltd | X線発生用タ−ゲットとx線源とx線撮像装置 |
JP2002195961A (ja) * | 2000-12-25 | 2002-07-10 | Shimadzu Corp | X線撮像装置 |
JP2011077027A (ja) | 2009-09-04 | 2011-04-14 | Tokyo Electron Ltd | X線発生用ターゲット、x線発生装置、及びx線発生用ターゲットの製造方法 |
JP2014067513A (ja) * | 2012-09-25 | 2014-04-17 | Canon Inc | 放射線発生ターゲット、放射線発生ユニット及び放射線撮影システム |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150092924A1 (en) * | 2013-09-04 | 2015-04-02 | Wenbing Yun | Structured targets for x-ray generation |
US10297359B2 (en) | 2013-09-19 | 2019-05-21 | Sigray, Inc. | X-ray illumination system with multiple target microstructures |
US10976273B2 (en) | 2013-09-19 | 2021-04-13 | Sigray, Inc. | X-ray spectrometer system |
US10269528B2 (en) | 2013-09-19 | 2019-04-23 | Sigray, Inc. | Diverging X-ray sources using linear accumulation |
US10416099B2 (en) | 2013-09-19 | 2019-09-17 | Sigray, Inc. | Method of performing X-ray spectroscopy and X-ray absorption spectrometer system |
US10304580B2 (en) | 2013-10-31 | 2019-05-28 | Sigray, Inc. | Talbot X-ray microscope |
US10653376B2 (en) | 2013-10-31 | 2020-05-19 | Sigray, Inc. | X-ray imaging system |
US10349908B2 (en) | 2013-10-31 | 2019-07-16 | Sigray, Inc. | X-ray interferometric imaging system |
USRE48612E1 (en) | 2013-10-31 | 2021-06-29 | Sigray, Inc. | X-ray interferometric imaging system |
US10295485B2 (en) | 2013-12-05 | 2019-05-21 | Sigray, Inc. | X-ray transmission spectrometer system |
US10401309B2 (en) | 2014-05-15 | 2019-09-03 | Sigray, Inc. | X-ray techniques using structured illumination |
US10352880B2 (en) | 2015-04-29 | 2019-07-16 | Sigray, Inc. | Method and apparatus for x-ray microscopy |
US10295486B2 (en) | 2015-08-18 | 2019-05-21 | Sigray, Inc. | Detector for X-rays with high spatial and high spectral resolution |
US10247683B2 (en) | 2016-12-03 | 2019-04-02 | Sigray, Inc. | Material measurement techniques using multiple X-ray micro-beams |
US10466185B2 (en) | 2016-12-03 | 2019-11-05 | Sigray, Inc. | X-ray interrogation system using multiple x-ray beams |
US10578566B2 (en) | 2018-04-03 | 2020-03-03 | Sigray, Inc. | X-ray emission spectrometer system |
US10845491B2 (en) | 2018-06-04 | 2020-11-24 | Sigray, Inc. | Energy-resolving x-ray detection system |
US10989822B2 (en) | 2018-06-04 | 2021-04-27 | Sigray, Inc. | Wavelength dispersive x-ray spectrometer |
US10658145B2 (en) | 2018-07-26 | 2020-05-19 | Sigray, Inc. | High brightness x-ray reflection source |
US10991538B2 (en) | 2018-07-26 | 2021-04-27 | Sigray, Inc. | High brightness x-ray reflection source |
US10656105B2 (en) | 2018-08-06 | 2020-05-19 | Sigray, Inc. | Talbot-lau x-ray source and interferometric system |
US10962491B2 (en) | 2018-09-04 | 2021-03-30 | Sigray, Inc. | System and method for x-ray fluorescence with filtering |
US11056308B2 (en) | 2018-09-07 | 2021-07-06 | Sigray, Inc. | System and method for depth-selectable x-ray analysis |
US11152183B2 (en) | 2019-07-15 | 2021-10-19 | Sigray, Inc. | X-ray source with rotating anode at atmospheric pressure |
Also Published As
Publication number | Publication date |
---|---|
US20160189909A1 (en) | 2016-06-30 |
EP3029708A1 (en) | 2016-06-08 |
TW201515045A (zh) | 2015-04-16 |
JP2015028879A (ja) | 2015-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015016019A1 (ja) | X線発生用ターゲット及びx線発生装置 | |
JP5670111B2 (ja) | X線発生用ターゲット、x線発生装置、及びx線発生用ターゲットの製造方法 | |
JP6224580B2 (ja) | X線発生装置及びx線発生方法 | |
JP6462805B2 (ja) | 陰極構成体、電子銃、及びこのような電子銃を有するリソグラフィシステム | |
WO2014054497A1 (ja) | X線発生用ターゲットの製造方法及びx線発生用ターゲット | |
CN102762762B (zh) | 真空处理装置 | |
KR20140049471A (ko) | X선 발생 장치 | |
US20080179186A1 (en) | Thin film forming apparatus | |
JP2016225139A (ja) | プラズマ生成装置および熱電子放出部 | |
JP6100611B2 (ja) | X線発生装置 | |
JP4417945B2 (ja) | イオン発生装置 | |
JP2008128977A (ja) | 電子線照射装置 | |
JP2016149324A (ja) | プラズマイオン源および荷電粒子ビーム装置 | |
WO2014027624A1 (ja) | X線発生用ターゲットの製造方法、及びx線発生用ターゲット | |
JP2011216303A (ja) | X線源及びx線源の製造方法 | |
KR101089231B1 (ko) | X선관 | |
JP2001143894A (ja) | プラズマ発生装置及び薄膜形成装置 | |
JP2014225401A (ja) | X線発生用ターゲット及びx線発生装置 | |
JP2005187864A (ja) | 成膜装置および成膜方法 | |
JP2022122125A (ja) | 電子源およびイオン源 | |
JP2013213270A (ja) | 真空成膜装置 | |
JP2005036252A (ja) | イオンプレーティング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14832145 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014832145 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014832145 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14908426 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |