WO2015015902A1 - 真空ポンプ - Google Patents

真空ポンプ Download PDF

Info

Publication number
WO2015015902A1
WO2015015902A1 PCT/JP2014/065154 JP2014065154W WO2015015902A1 WO 2015015902 A1 WO2015015902 A1 WO 2015015902A1 JP 2014065154 W JP2014065154 W JP 2014065154W WO 2015015902 A1 WO2015015902 A1 WO 2015015902A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
pump
rotor
flow path
fixed
Prior art date
Application number
PCT/JP2014/065154
Other languages
English (en)
French (fr)
Inventor
坂口 祐幸
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Priority to EP14832961.8A priority Critical patent/EP3029328B1/en
Priority to KR1020157032437A priority patent/KR102167208B1/ko
Priority to CN201480040478.5A priority patent/CN105358835A/zh
Priority to US14/905,110 priority patent/US10954962B2/en
Publication of WO2015015902A1 publication Critical patent/WO2015015902A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5853Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps heat insulation or conduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/644Mounting; Assembling; Disassembling of axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Definitions

  • the present invention relates to a vacuum pump including a rotor rotatably disposed on a pump base and a gas flow path for exhausting gas sucked by the rotation of the rotor.
  • Patent Document 1 a complex molecular pump described in Patent Document 1 is known.
  • the complex molecular pump disclosed in Patent Document 1 is configured so that gas is sucked from an intake port (1a) by rotation of a rotor (6, 3a), and the sucked gas is discharged from an exhaust port (1b) (the same document). 1 (see paragraph 0024). *
  • the upstream gas channel is a plurality of the gas channels for exhausting the sucked gas as described above.
  • the rotary blade (2a) and the fixed blade (2b) are formed, and the downstream gas flow path is formed as a thread groove-shaped flow path by the rotor (3a) and the stator (7a).
  • the stator (7a) is used as a means for preventing product accumulation in the downstream gas flow path formed with the stator (7a) as a fixed part as described above.
  • the stator (7a) is heated with heat insulation (supports 9a, 9b, 9c) and heat generated by the radiation from the rotor (3a) and heat generated by friction of the gas flowing in the downstream gas flow path. (See the description of paragraphs 0025 and 0026 of the document 1). *
  • the heating of the stator (7a) by the above-described method uses heat generated by the radiation from the rotor (3a) and heat generated by friction of the gas flowing in the downstream gas flow path. It is inevitable that the amount of heating varies depending on the flow rate of the gas and the temperature of the stator (7a) fluctuates. In particular, when the flow rate of the gas is small, the temperature of the stator (7a) cannot be raised to a predetermined temperature, and product deposition in the downstream gas flow path cannot be effectively suppressed. There is a problem.
  • the present invention has been made to solve the above-described problems, and its object is not to be affected by the flow rate of the exhaust gas, and the exhaust-side gas flow that requires a high temperature from the viewpoint of preventing product accumulation. It is possible to heat only the fixed parts of the passage intensively and stably, to prevent the accumulation of products in the exhaust side gas flow path, and to improve the pump exhaust performance. It is to provide a vacuum pump.
  • the present invention provides a pump base, a rotor disposed on the pump base, a support and driving means for rotatably supporting and rotating the rotor around its axis,
  • a vacuum pump having a gas flow path that guides gas sucked by rotation of the rotor to a discharge port, heat insulation that insulates fixed parts constituting the exhaust side gas flow path from other parts of the entire gas flow path And heating means for heating the fixed part insulated by the heat insulation means.
  • the exhaust gas passage is a thread groove-shaped passage formed by an outer peripheral surface of the rotor and a thread groove pump stator facing the rotor, and the fixing component is the screw It may be a groove pump stator.
  • the exhaust-side gas flow path includes a rotor blade disposed on the outer peripheral surface of the rotor, and gas molecules imparted with momentum toward the downstream side of the gas flow path by the rotor blade.
  • the heating means may have a structure in which the fixing part is provided with an attachment portion, and the heater is embedded in the attachment portion so that the heater heats the fixation component.
  • the attachment portion of the fixed component may be arranged on the atmosphere side by providing a sealing means.
  • the heat insulating means may have a structure that insulates the fixed component by a heat insulating space and a heat insulating spacer.
  • the pump base is divided into at least an upper base portion and a lower base portion, and the upper base portion and the lower base portion are joined together by fastening means.
  • the base portion may have a heat conductive structure.
  • the heat insulating space may be a gap between the pump base and the fixed component.
  • the heat insulating spacer is interposed between the fixed component and the pump base located below the fixed component, and supports the fixed component by fastening the fixed component and the pump base. It may be characterized by. *
  • cooling means may be provided on both or either of the upper base portion and the lower base portion.
  • the heat insulating means for insulating the fixed parts constituting the exhaust side gas flow path from the other parts of the entire gas flow path, And heating means for directly heating the fixed component thermally insulated by heat conduction, the following effects (1) and (2) are achieved.
  • the heating means heats the fixed part, such heating is not affected by the flow rate of the exhausted gas.
  • the fixed parts to be heated by the heating means are insulated by the heat insulating means, only the fixed parts of the exhaust side gas flow path that require high temperature from the viewpoint of preventing product accumulation are intensively and efficiently stabilized. It is possible to prevent the product from accumulating in the exhaust gas passage by heating and heating.
  • FIG. Explanatory drawing of the temperature control example in the vacuum pump P1 of FIG.
  • FIG. Explanatory drawing of the temperature control example in the vacuum pump P1 of FIG.
  • FIG. 1 is a sectional view of a pump showing a part of a vacuum pump according to a first embodiment of the present invention.
  • This vacuum pump P1 is, for example, a semiconductor manufacturing apparatus or a flat panel. Used as a gas exhaust means for a process chamber or other sealed chamber in a display manufacturing apparatus or a solar panel manufacturing apparatus. *
  • the outer case 1 has a cylindrical shape with a bottom by integrally connecting a cylindrical pump case C and a pump base B with fastening means D1 in the cylinder axis direction. . *
  • the upper end side of the pump case C (upper side in the drawing in FIG. 1) is opened as a gas intake port (not shown), and the gas exhaust port 2 is provided in the pump base B.
  • the gas inlet port is connected to a sealed chamber (not shown), which is a high vacuum, such as a process chamber of a semiconductor manufacturing apparatus, and the gas exhaust port 2 is connected to an auxiliary pump (not shown).
  • a cylindrical stator column 3 is provided at the center of the pump case C.
  • the stator column 3 is erected on the pump base B.
  • a rotor 4 is provided outside the stator column 3, and a magnetic bearing as a means for supporting the rotor 4 is provided inside the stator column 3,
  • Various electric components such as a drive motor as means for rotating the rotor 4 are incorporated. Since magnetic bearings and drive motors are publicly known, detailed description thereof is omitted. *
  • a fixed blade positioning portion 5 is provided at an upper end portion of the pump base B (specifically, an upper end portion of an upper base B1 to be described later). By mounting the fixed blade 7A, the fixed blade 7A has a function of positioning in the pump axial direction. *
  • the rotor 4 is rotatably disposed on the pump base B, and is included in the pump base B and the pump case C.
  • the rotor 4 has a cylindrical shape surrounding the outer periphery of the stator column 3, and has two cylindrical bodies (first cylindrical body 4B and second cylindrical body 4C) having different diameters at the connecting portion 4A of the annular plate body. Are connected in the cylinder axis direction, and the upper end surface side (above the paper surface in FIG. 1) of the first cylinder 4B is closed with an end member (not shown). *
  • a rotation shaft (not shown) is attached to the inside of the rotor 4, and the rotation shaft is supported by a magnetic bearing built in the stator column 3, and the rotation shaft is built in the stator column 3.
  • the rotor 4 By being driven to rotate by a motor, the rotor 4 is supported so as to be rotatable around its axis (the rotation axis) and is driven to rotate around the axis.
  • the rotating shaft, the magnetic bearing and the drive motor built in the stator column 3 function as a support and drive means for the rotor 4.
  • the rotor 4 may be supported so as to be rotatable about its axis and driven to rotate by another configuration. *
  • a gas flow path R is provided on the outer peripheral surface side of the rotor 4, and the gas flow path R guides the gas sucked by the rotation of the rotor 4 to the discharge port 2. The gas is sucked from the gas inlet (not shown). *
  • the first-side intake-side gas flow path R1 (upstream from the connecting portion 4A of the rotor 4) of the entire gas flow path R is a rotor. 4, a stationary blade 7 that guides gas molecules, which are given momentum toward the downstream side of the gas flow path R by the rotary blade 6, to the downstream side of the gas flow path R;
  • the latter exhaust-side gas flow path R2 (on the downstream side of the connecting portion 4A of the rotor 4) has a thread groove shape formed by the outer peripheral surface of the rotor 4 and the thread groove pump stator 8 facing the outer peripheral surface. It is formed as a gas flow path.
  • the rotor blade 6 constituting the intake side gas flow path R1 is centered on a pump axis such as the rotation center of the rotor 4 or the like. A plurality are arranged side by side in a radial pattern.
  • the fixed vanes 7 constituting the intake side gas flow path R1 are arranged and fixed on the inner peripheral side of the pump case C in a form that is positioned in the pump radial direction and the pump axial direction via the fixed vane positioning spacers 9. A plurality of them are arranged in a radial pattern around the pump shaft center. *
  • the rotary blades 6 and the fixed blades 7 that are radially arranged as described above are alternately arranged in multiple stages along the pump axis, whereby the intake-side gas flow path R1.
  • the structure in which is formed is adopted.
  • the rotor 4 and the plurality of rotor blades 6 integrally rotate at a high speed when the drive motor is started, so that the rotor blades 6 are directed downward to the gas molecules incident from the gas intake port.
  • Giving momentum of The gas molecules having the downward momentum are sent to the next rotor blade side by the fixed blade 7.
  • the gas molecules on the gas intake side pass through the intake side gas flow path R1 in the direction of the exhaust side gas flow path R2. It exhausts so that it may shift sequentially.
  • the thread groove pump stator 8 constituting the exhaust side gas flow path R2 is the downstream outer peripheral surface of the rotor 4.
  • the outer peripheral surface of the second cylindrical body 4C is spaced from the downstream outer peripheral surface of the rotor 4 with a predetermined gap therebetween. It arrange
  • a thread groove 8A is formed in the inner peripheral portion of the thread groove pump stator 8, and the thread groove 8A changes into a tapered cone shape whose diameter is reduced downward, and the thread groove pump stator. 8 is engraved spirally from the upper end to the lower end.
  • the exhaust-side gas flow path R2 is formed as a screw groove-shaped gas flow path because the downstream outer peripheral surface of the rotor 4 and the screw groove pump stator provided with the screw groove 8A face each other.
  • the structure to be formed is adopted.
  • the exhaust side gas flow path R2 as described above is formed. It is also possible to adopt.
  • the heating means 11 is provided with a mounting portion 12 on the outer peripheral surface of the thread groove pump stator 8.
  • the heater 13 directly heats the thread groove pump stator 8 by heat conduction, and the heat insulating means 10 is arranged around the mounting portion 12 with the pump base B and the thread groove pump stator 8.
  • a heat insulating space 14 including a gap between the (fixed parts) is set, and the entire thread groove pump stator 8 including the mounting portion 12 is supported by a heat insulating spacer 15.
  • a temperature sensor S1 for heater control is also embedded in the mounting portion 12, and the temperature control of the heater 13 is performed based on a detection signal from the temperature sensor S1.
  • the pump base B is divided into at least an upper base portion B1 and a lower base portion B2, and the upper base portion B1 and the lower base portion B2 are joined by the fastening means D2,
  • the lower base portion B2 has a heat conductive structure.
  • ⁇ Configuration 2 Due to the joining of ⁇ Configuration 1>, a recess 16 facing the downstream outer peripheral surface of the rotor 4 is formed on the inner surface of the pump base B, and the thread groove pump stator 8 is inserted into the recess 16 via a predetermined gap.
  • the mounting portion 12 is assembled, and the predetermined gap is used as the heat insulating space 14.
  • the pump base B and the thread groove pump stator 8 are brought into contact with each other at the edge of the concave portion 16. In this case, there is almost no heat conduction through the contact portion.
  • ⁇ Configuration 3 The heat insulating spacer 15 is interposed between the thread groove pump stator 8 and the pump base B (specifically, the lower base B2) positioned below the thread groove pump stator 8, and the thread groove pump stator 8 and the pump.
  • ⁇ Configuration 4 The electric wire of the heater 13 is pulled out from the mounting portion 12 of the thread groove pump stator 8, and is insulated from the heater 13 and the electric wire by exposing the mounting portion 12 to high vacuum. There is a risk of destruction. Therefore, in the vacuum pump P1 of FIG. 1, the mounting portion 12 is disposed on the atmosphere side by providing sealing means 17 such as an O-ring on the outer peripheral surface of the mounting portion 12. *
  • FIG. 2 is an explanatory diagram relating to how heat generated in the vacuum pump according to the first embodiment of the present invention is transmitted and where the cooling pipe is installed. *
  • Q1 is heat transmitted from the fixed blade 7 to the upper base portion B1 by heat conduction
  • Q2 is heat by the radiation from the rotor 4 to the thread groove pump stator 8, and how it is transmitted
  • Q3 is from the stator column 3
  • a cooling pipe 18 can be provided as a cooling means in both the upper base part B1 and the lower base part B2, and either one of the cooling pipes 18 can be provided. Only may be adopted.
  • the cooling pipe 18 of the upper base portion B1 like the heat of Q2 and Q4, heat transmitted from the thread groove pump stator 8 to the upper base portion B1 and the lower base portion B2 via the heat insulating spacer 15 or the sealing means 17, and , And functions as a means for mainly cooling the heat transmitted from the fixed blade 7 to the upper base portion B1 by heat conduction like the heat of Q1.
  • the cooling pipe 18 of the lower base portion B2 mainly functions as a means for cooling the heat Q3 transmitted from the stator column 3 to the lower base portion B2 by heat conduction.
  • each cooling pipe 18 is provided with an operation valve. By adjusting each operation valve, the cooling medium flowing in each cooling pipe 18 is adjusted. The flow rate can be adjusted individually.
  • a temperature sensor used for controlling an operation valve (not shown) of the cooling pipe 18 (hereinafter referred to as “temperature sensor S2 for water cooling pipe valve control”) is provided in the vicinity of the cooling pipe 18 installed in the upper base portion B1, or A configuration provided in the vicinity of the cooling pipe 18 installed in the lower base portion B2 or a configuration provided in the vicinity of both the cooling pipes 18 can be employed.
  • the screw groove pump stator 8 as a fixed part constituting the exhaust side gas flow path R2 in the entire gas flow path R is insulated from the other parts by the heat insulating means 10.
  • the screw groove pump stator 8 thus insulated is employed, so that the following ⁇ 1-1 effect> and ⁇ 2-1 effect >> is obtained.
  • the heating means 11 directly heats the thread groove pump stator 8 by heat conduction, so that the heating affects the flow rate of the exhausted gas. I will not receive it. Further, since the thread groove pump stator 8 to be heated is thermally insulated by the heat insulating means 10, only the thread groove pump stator 8 that requires high temperature from the viewpoint of preventing product accumulation is intensively and efficiently heated. Further, it is possible to prevent the product from being deposited in the exhaust side gas flow path R2 by the heating. *
  • the thread groove pump stator 8 heated by the heating means 11 is thermally insulated by the heat insulation means 10 as described above. Parts other than the stator 8 are not heated by the heating means 11. Therefore, it is possible to effectively prevent the temperature of a component to be prevented from being increased in temperature by heating in the heating means 11 and the strength decrease due to the heating, for example, a component such as the rotor blade 6 or the fixed blade 7 and the strength decrease in the component. Therefore, it is possible to improve the pump exhaust performance.
  • FIGS. 3 to 5 are explanatory diagrams of temperature control examples in the vacuum pump P1 of FIG. *
  • the temperature control of the heater 13 and the temperature control of the water cooling pipe 18 are independent controls, and the temperature control of the heater 13 is the temperature for heater control installed in the thread groove pump stator 8.
  • the temperature of the heater 13 is controlled based on the detection signal from the sensor S1, and the temperature control of the water cooling pipe 18 is performed by operating the operation valve of the water cooling pipe 18 based on the detection signal from the temperature sensor S2 for controlling the water cooling pipe valve. It was supposed to be controlled. In this respect, all temperature control examples are common. *
  • FIG. 5 is different from the temperature control example of FIG. 3 in the location where the water cooling pipe 18 is installed.
  • the water cooling pipe 18 is installed in both the upper base portion 1A and the lower base portion 1B.
  • the water cooling pipe 18 is installed only in the upper base part B1
  • the water cooling pipe 18 is installed only in the lower base part B2.
  • FIG. 6 is an explanatory diagram of the experimental results according to the temperature control example of FIG. 3
  • FIG. 7 is an explanatory diagram of the experimental results of the temperature control example of FIG. 4, and FIG. It is. *
  • the “heater control temperature” is the temperature of the heater 13 controlled based on the detection signal from the heater control temperature sensor S1
  • the “water cooling pipe control temperature” is the water cooling pipe valve. It is the temperature of the water cooling pipe 18 controlled based on the detection signal from the temperature sensor S2 for control. These temperatures are set so that the difference is 30 ° C. to 40 ° C. *
  • the heater control temperature is 30% higher than the water cooling pipe control temperature as shown in the experimental results of FIG. It could be stably maintained at a high temperature of 40 ° C to 40 ° C.
  • the temperatures of the lower base portion B1, the gas exhaust port 2, and the stator column 3 were stably maintained at a low temperature of 10 ° C. or less from the water cooling pipe control temperature.
  • the stable maintenance described above is that the thread groove pump stator 8 in which the heater 13 is installed is thermally insulated by the heat insulating means 10 including the heat insulating space 14 and the heat insulating spacer 15, and the water-cooled pipe installed in the upper base portion B1.
  • the temperature increase due to the heat of Q1, Q2 and Q4 shown in FIG. 2 is mainly suppressed by the cooling action of 18, and at the same time, the cooling action of the water cooling pipe 18 installed in the lower base portion B2 is shown in FIG. It is thought that this is mainly because the temperature rise due to the heat of Q3 is suppressed.
  • the flow rate of the gas flowing through the gas flow path R (pump load) is as shown in the experimental result of FIG.
  • the heater control temperature could be stably maintained with a temperature difference of 30 ° C. to 40 ° C. from the water cooling tube valve control temperature.
  • a phenomenon has occurred in which the temperatures of the stator column 3, the gas exhaust port 2, and the upper base portion B1 all exceed the water-cooled tube control temperature. This is because, as shown in FIG. 5, it is difficult to suppress the temperature rise due to the heat of Q1, Q2 and Q4 shown in FIG. 2 only with the water cooling pipe 18 installed in the lower base portion B2. Conceivable.
  • FIG. 9 is pump sectional drawing which showed a part of vacuum pump which is the 2nd Embodiment of this invention.
  • the vacuum pump P2 in FIG. 9 differs from the vacuum pump P1 in FIG. 1 in the specific configuration of the gas flow path R, and the other configurations are the same as the vacuum pump P1 in FIG. Are denoted by the same reference numerals, and detailed description thereof is omitted. *
  • the exhaust side gas flow path R2 in the vacuum pump P2 of FIG. 9 is provided with the rotor blade 6 integrally provided on the outer peripheral surface of the rotor 4 and the momentum toward the downstream side of the gas flow path R by the rotor blade 6.
  • This is a flow path formed by the fixed blade 7 that guides gas molecules to the downstream side of the gas flow path R.
  • the vacuum pump P2 in FIG. 9 includes a plurality of fixed blades 7 as fixed parts constituting the exhaust-side gas flow channel R2 of the entire gas flow channel R.
  • the lowermost fixed wing 7A is insulated from the other parts by the heat insulating means 10, and the insulated lowermost fixed wing 7A is directly heated by the heating means 11 by heat conduction.
  • the heating means 11 in the vacuum pump P2 of FIG. 9 has a specific configuration in which a mounting portion 12 is integrally formed on the base (outer peripheral portion) side of the lowermost fixed blade 7A, and a heater is formed on the mounting portion 12.
  • a structure is adopted in which the heater 12 directly heats the lowermost fixed blade 7 ⁇ / b> A by heat conduction.
  • the heat insulating means 10 in the vacuum pump P2 in FIG. 9 has a specific configuration in which a heat insulating space 14 is set around the mounting portion 12 of the fixed wing 7A and the lowermost stage including the mounting portion 12 is provided.
  • a configuration in which the entire fixed blade 7A is supported by the heat insulating spacer 15 and a structure in which the lowermost fixed blade 7A and the mounting portion 12 are positioned in the pump axial direction by the heat insulating spacer 15 are employed.
  • the pump base B is divided into an upper base portion B1 and a lower base portion B2, and a recess 16 facing the downstream outer peripheral surface of the rotor 4 is formed on the inner surface of the pump base B.
  • a part that is assembled to such a recess 16 via a predetermined gap is the mounting portion 12 of the lowermost fixed wing 7A, and this predetermined gap is used as the heat insulating space 14 described above.
  • the lowermost fixed blade 7A as a fixed part constituting the exhaust side gas flow path R2 of the entire gas flow path R is insulated from the other parts. 10 and the structure in which the lowermost fixed blade 7A thus insulated is directly heated by heat conduction by the heating means 11 is employed, so that the following ⁇ 1-2 effects> and ⁇ 2- The second effect is obtained.
  • the lowermost fixed blade 7A which is a fixed component, is thermally insulated by the heat insulating means 10, and the lowermost fixed blade 7A is directly heated by the heat conducting means 11 by heat conduction.
  • the fixed blades higher than the lowermost fixed blade 7A are also insulated by the heat insulating means 10 including the heat insulating space 14 and the heat insulating spacer 15, and a plurality of such heat insulated It is also possible to employ a configuration in which the fixed blade is directly heated by heat conduction by the heating means 11 comprising the heater 13. *
  • FIG. 10 is sectional drawing which showed a part of vacuum pump which is the 3rd Embodiment of this invention, for example, the fundamental structure of the vacuum pump of the figure, for example, a gas flow path Since the specific configuration and the like of R are the same as those of the vacuum pump of FIG. 9, the same reference numerals are given to the same members, and detailed descriptions thereof are omitted. *
  • ⁇ Configuration A The fixed blade positioning portion 5 at the upper end of the pump base B is extended from the lowermost rotary blade 7A to the lower portion of the third fixed blade 7C, and the three-stage on the fixed blade positioning portion 5 A configuration in which the fixed blade 7C of the eye is placed and a heat insulating spacer 15 is interposed between the fixed blade positioning portion 5 and the second fixed blade 7B counted from the lowermost rotary blade 7A.
  • ⁇ Configuration B The mounting part 12 is fastened from the lower side to the upper base part B1 on the upper side by the fastening means D4, and is thereby stacked between the mounting part 12 and the fixed blade positioning part 5 at the upper end of the pump base B. All the parts intervening, that is, the lowermost fixed wing 7A mounted on the attachment portion 12, the second fixed wing 7B counted from the lowermost fixed wing 7A, and these fixed wings 7A and 7B.
  • the fixed blade positioning spacer 9 and the heat insulating spacer 15 interposed therebetween are integrated, and the second stage counted from the lowermost fixed blade 7A, the fixed blade positioning spacer 9 and the lowermost fixed blade 7A.
  • a configuration in which the fixed wing 7B is thermally connected by heat conduction. *
  • a plurality of fixed blades 7A and 7B as fixed parts constituting the exhaust side gas flow path R2 in the entire gas flow path R are insulated from the other parts by the heat insulating means 10.
  • the same function and effect as the vacuum pump P2 of FIG. ⁇ Refer to "1-2 Operation and Effect" and ⁇ 2-2 Operation and Effect >>.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

【課題】排気するガス流量の影響を受けることなく、生成物堆積防止の観点から高温化が必要な排気側ガス流路の固定部品だけを集中的に効率よく加熱すること、その加熱による排気側ガス流路での生成物の堆積を防止すること、及び、ポンプ排気性能の向上を図ることを可能とした真空ポンプを提供することである。【解決手段】真空ポンプは、ポンプベース上に回転可能に配置されたロータと、ロータの回転により吸気したガスを排気口に導くガス流路と、を有し、更に、ガス流路全体のうち排気側ガス流路を構成する固定部品をそれ以外の部品から断熱する断熱手段と、そのように断熱された固定部品を加熱する加熱手段と、を備えている。

Description

真空ポンプ
本発明は、ポンプベース上に回転可能に配置されたロータと、このロータの回転により吸気したガスを排気するガス流路と、を具備した真空ポンプに関する。
従来、この種の真空ポンプとしては、例えば、特許文献1に記載の複合分子ポンプが知られている。同文献1の複合分子ポンプは、ロータ(6、3a)の回転により吸気口(1a)からガスを吸気し、吸気したガスを排気口(1b)から排気するように構成されている(同文献1の段落0024の記載を参照)。 
また、同文献1の図1と図2を参照すると、同文献1に記載の複合分子ポンプでは、前記のように吸気したガスを排気するガス流路のうち、上流側ガス流路は複数の回転翼(2a)と固定翼(2b)とにより形成され、下流側ガス流路はロータ(3a)とステータ(7a)とによりネジ溝形状の流路として形成されている。 
ところで、同文献1に記載の複合分子ポンプでは、前記のようにステータ(7a)を固定部品として形成される下流側ガス流路での生成物の堆積を防止する手段として、ステータ(7a)を断熱材(支持体9a、9b、9c)で断熱し、かつ、ロータ(3a)からの放射による熱と、下流側ガス流路を流れるガスの摩擦による熱で、ステータ(7a)を加熱している(同文献1の段落0025及び0026の記載を参照)。 
しかしながら、前記方式によるステータ(7a)の加熱では、ロータ(3a)からの放射による熱と、下流側ガス流路を流れるガスの摩擦による熱を利用しているため、下流側ガス流路を通じて排気するガスの流量によって、加熱量が変化し、ステータ(7a)の温度が変動することは避けられない。特に、そのガスの流量が小さいときは、ステータ(7a)の温度を所定の温度まで昇温することができず、下流側ガス流路での生成物の堆積を効果的に抑制することができないという問題点がある。
特許第3098140号公報
本発明は、前記問題点を解決するためになされたものであり、その目的は、排気するガスの流量の影響を受けることなく、生成物堆積防止の観点から高温化が必要な排気側ガス流路の固定部品だけを集中的に効率よく安定に加熱すること、その加熱により排気側ガス流路での生成物の堆積を防止すること、及び、ポンプ排気性能の向上を図ることを可能とした真空ポンプを提供することである。
前記目的を達成するために、本発明は、ポンプベースと、前記ポンプベース上に配置されたロータと、前記ロータをその軸心周りに回転可能に支持し回転駆動する支持及び駆動手段と、前記ロータの回転により吸気したガスを排出口に導くガス流路と、を具備した真空ポンプにおいて、前記ガス流路全体のうち排気側ガス流路を構成する固定部品をそれ以外の部品から断熱する断熱手段と、前記断熱手段により断熱された前記固定部品を加熱する加熱手段と、を備えたことを特徴とする。 
前記本発明において、前記排気側ガス流路は、前記ロータの外周面と、これに対向するネジ溝ポンプステータと、により形成されるネジ溝状の流路であり、前記固定部品は、前記ネジ溝ポンプステータであることを特徴としてもよい。 
前記本発明において、前記排気側ガス流路は、前記ロータの外周面に配設された回転翼と、該回転翼によって前記ガス流路の下流側へ向かう運動量が付与されたガス分子を前記ガス流路の下流側へ導く固定翼と、により形成される流路であり、前記固定部品は、前記固定翼であることを特徴としてもよい。 
前記本発明において、前記加熱手段は、前記固定部品に取付け部を設け、該取付け部にヒータを埋設することにより、該ヒータが前記固定部品を加熱する構造になっていることを特徴としてもよい。 
前記本発明において、前記固定部品の前記取付け部は、シール手段が設けられることにより、大気側に配設されていることを特徴としてもよい。 
前記本発明において、前記断熱手段は、断熱空間と断熱スペーサによって、前記固定部品を断熱する構造であることを特徴としてもよい。 
前記本発明において、前記ポンプベースは、少なくとも上ベース部と下ベース部に分割され、分割された該上ベース部と該下ベース部を締結手段で接合することにより、前記上ベース部と前記下ベース部とが熱伝導のある構造となっていることを特徴としてもよい。 
前記本発明において、前記断熱空間は、前記ポンプベースと前記固定部品の間の隙間であることを特徴としてもよい。 
前記本発明において、前記断熱スペーサは、前記固定部品とその下部に位置する前記ポンプベースとの間に介在され、かつ、前記固定部品と前記ポンプベースとを締結することにより、前記固定部品を支持することを特徴としてもよい。 
前記本発明において、前記上ベース部と下ベース部の双方、又は、いずれか一方に、冷却手段が設けられていることを特徴としてもよい。
本発明にあっては、前記の通り、真空ポンプの具体的な構成として、前記ガス流路全体のうち排気側ガス流路を構成する固定部品をそれ以外の部品から断熱する断熱手段と、前記断熱手段により断熱された前記固定部品を熱伝導で直接加熱する加熱手段と、を具備したため、以下の作用効果(1)(2)を奏する。 
作用効果(1) 本発明によると、加熱手段は固定部品を加熱するから、そのような加熱が排気するガスの流量の影響を受けることはない。また、加熱手段での加熱対象となる固定部品は断熱手段によって断熱されるから、生成物堆積防止の観点から高温化が必要な排気側ガス流路の固定部品だけを集中的に効率よく安定に加熱すること、及び、その加熱により排気側ガス流路での生成物の堆積を防止することが可能である。 
作用効果(2) 本発明にあっては、前記の通り、加熱手段で加熱される固定部品は断熱手段で断熱されるから、その固定部品以外の部品が当該加熱手段で加熱されることはない。従って、加熱手段での加熱による高温化やそれによる強度低下を防止したい部品、例えば、ガス流路全体のうち吸気側ガス流路が回転翼と固定翼でガスを排気する流路として構成される場合には、その回転翼や固定翼などの部品の高温化と、それによる当該部品の強度低下を効果的に防止することができ、ポンプ排気性能の向上を図ることが可能である。
本発明の第1の実施形態である真空ポンプの一部を示したポンプ断面図。 本発明の第1の実施形態である真空ポンプで発生した熱の伝わり方と冷却管の設置場所等に関する説明図。 図2の真空ポンプP1における温度制御例の説明図。 図2の真空ポンプP1における温度制御例の説明図。 図2の真空ポンプP1における温度制御例の説明図。 図3の温度制御例による実験結果の説明図。 図4の温度制御例による実験結果の説明図。 図5の温度制御例による実験結果の説明図。 本発明の第2の実施形態である真空ポンプの一部を示したポンプ断面図。 本発明の第3の実施形態である真空ポンプの一部を示したポンプ断面図。
以下、本発明を実施するための最良の形態について、添付した図面を参照しながら詳細に説明する。 
《第1の実施形態》 図1は、本発明の第1の実施形態である真空ポンプの一部を示したポンプ断面図であり、この真空ポンプP1は、例えば、半導体製造装置、フラット・パネル・ディスプレイ製造装置、ソーラー・パネル製造装置におけるプロセスチャンバやその他の密閉チャンバのガス排気手段等として利用される。 
図1の真空ポンプP1において、外装ケース1は、筒状のポンプケースCとポンプベースBとをその筒軸方向に締結手段D1で一体に連結することで、有底の円筒形状になっている。 
ポンプケースCの上端部側(図1において紙面上方)はガス吸気口(図示省略)として開口しており、また、ポンプベースBにはガス排気口2を設けてある。ガス吸気口は例えば半導体製造装置のプロセスチャンバ等、高真空となる図示しない密閉チャンバに接続され、ガス排気口2は図示しない補助ポンプに連通接続される。 
ポンプケースC内の中央部には円筒状のステータコラム3が設けられている。このステータコラム3はポンプベースB上に立設されており、ステータコラム3の外側にはロータ4が設けられ、ステータコラム3の内側には、ロータ4を支持する手段としての磁気軸受や、該ロータ4を回転駆動する手段としての駆動モータなど、図示しない各種電装部品が内蔵されている。磁気軸受や駆動モータは公知であるため、その具体的な詳細説明は省略する。 
ポンプベースBの上端部(具体的には、後述する上ベースB1の上端部)には固定翼位置決め部5が設けられており、この固定翼位置決め部5は、その上に後述する最下段の固定翼7Aを載置することで、該固定翼7Aをポンプ軸心方向に位置決めする機能を有している。 
ロータ4は、ポンプベースB上に回転可能に配置され、ポンプベースBとポンプケースCとに内包されている。また、このロータ4は、ステータコラム3の外周を囲む円筒形状であって、環状板体の連結部4Aで直径の異なる2つの筒体(第1の筒体4Bと第2の筒体4C)をその筒軸方向に連結し、かつ、その第1の筒体4Bの上端面側(図1において紙面上方)を図示しない端部材で塞いだ構造になっている。 
ロータ4の内側には回転軸(図示省略)が取り付けられており、かかる回転軸を前記ステータコラム3に内蔵の磁気軸受で支持すること、及び、かかる回転軸を前記ステータコラム3に内蔵の駆動モータで回転駆動することにより、ロータ4は、その軸心(前記回転軸)回りに回転可能に支持されるとともに、その軸心周りに回転駆動される構成になっている。この構成の場合、前記回転軸、ステータコラム3に内蔵の前記磁気軸受及び駆動モータがロータ4の支持及び駆動手段として機能する。これとは別の構成によりロータ4をその軸心周りに回転可能に支持し回転駆動してもよい。 
ロータ4の外周面側にはガス流路Rが設けられており、このガス流路Rはロータ4の回転により吸気したガスを排出口2に導く。なお、かかるガスの吸気は前記ガス吸気口(図示省略)から行われる。 
図1の真空ポンプP1では、前記ガス流路Rの一実施形態として、そのガス流路R全体のうち、前半の吸気側ガス流路R1(ロータ4の連結部4Aより上流側)は、ロータ4の外周面に配設された回転翼6と、該回転翼6によってガス流路Rの下流側へ向かう運動量が付与されたガス分子をガス流路Rの下流側へ導く固定翼7と、によって形成してあり、後半の排気側ガス流路R2(ロータ4の連結部4Aより下流側)は、ロータ4の外周面とこれに対向するネジ溝ポンプステータ8とにより形成されるネジ溝状のガス流路として形成してある。 
前記吸気側ガス流路R1の構成を更に詳細に説明すると、図1の真空ポンプP1において、吸気側ガス流路R1を構成する回転翼6は、ロータ4回転中心等のポンプ軸心を中心として放射状に並んで複数配置されている。一方、吸気側ガス流路R1を構成する固定翼7は、固定翼位置決めスペーサ9を介してポンプ径方向及びポンプ軸方向に位置決めされる形式でポンプケースCの内周側に配置固定されるとともに、ポンプ軸心を中心として放射状に並んで複数配置されている。 
そして、図1の真空ポンプP1では、前記のように放射状に配置された回転翼6と固定翼7とがポンプ軸心に沿って交互に多段に配置されることにより、吸気側ガス流路R1が形成される構成を採用している。 

上の構成からなる吸気側ガス流路R1では、駆動モータの起動によりロータ4および複数の回転翼6が一体に高速回転することにより、回転翼6がガス吸気口から入射したガス分子に下向き方向の運動量を付与する。この下向き方向の運動量を有するガス分子が固定翼7によって次段の回転翼側へ送り込まれる。以上のようなガス分子への運動量の付与と送り込み動作とが繰り返し多段に行われることで、ガス吸気口側のガス分子は、吸気側ガス流路R1を通じて、排気側ガス流路R2の方向に順次移行するように排気される。 
次に、前記排気側ガス流路R2の構成を更に詳細に説明すると、図1の真空ポンプP1において、排気側ガス流路R2を構成するネジ溝ポンプステータ8は、ロータ4の下流側外周面(具体的には第2の筒体4Cの外周面。以下も同様)を囲む円筒形状の固定部品であって、かつ、その内周面側が所定隙間を隔ててロータ4の下流側外周面と対向するように配置してある。 
また、このネジ溝ポンプステータ8の内周部にはネジ溝8Aを形成してあり、かかるネジ溝8Aは、その深さが下方に向けて小径化したテーパコーン形状に変化し、ネジ溝ポンプステータ8の上端から下端にかけて螺旋状に刻設してある。 
図1の真空ポンプP1では、ロータ4の下流側外周面と前記ネジ溝8Aを備えたネジ溝ポンプステータとが対向することで、前記排気側ガス流路R2がネジ溝状のガス流路として形成される構成を採用している。これとは別の実施形態として、図示は省略するが、例えば、かかるネジ溝8Aをロータ4の下流側外周面に設けることにより、前記のような排気側ガス流路R2が形成される構成を採用することも可能である。 
以上の構成からなる排気側ガス流路R2では、駆動モータの起動によりロータ4が回転すると、吸気側ガス流路R1からガスが流入し、ネジ溝8Aとロータ4の下流側外周面でのドラッグ効果により、その流入したガスを遷移流から粘性流に圧縮しながら移送する形式で排気する。 
《断熱手段と加熱手段の説明》 図1の真空ポンプP1において、排気側ガス流路R2を構成する固定部品、すなわちネジ溝ポンプステータ8は、それ以外の部品から断熱手段10により断熱されており、そのように断熱されたネジ溝ポンプステータ8は、加熱手段11により、熱伝導で直接加熱されるように構成してある。 
前記断熱手段10と前記加熱手段11の具体的な構成例として、図1の真空ポンプP1では、加熱手段11は、ネジ溝ポンプステータ8の外周面に取付け部12を設け、この取付け部12内にヒータ13を埋設することで、当該ヒータ13がネジ溝ポンプステータ8を熱伝導で直接加熱する構造とし、断熱手段10は、前記取付け部12の周囲に、ポンプベースBとネジ溝ポンプステータ8(固定部品)の間の隙間からなる断熱空間14を設定し、かつ、取付け部12を含むネジ溝ポンプステータ8全体を断熱スペーサ15で支持する構造としている。 
また、前記取付け部12にはヒータ制御用の温度センサS1も埋設されており、この温度センサS1からの検出信号に基づいてヒータ13の温度制御が行われる。 
また、図1の真空ポンプP1では、前記断熱空間14、断熱スペーサ15を採用する上で、下記《構成1》から《構成4》を採用している。 
《構成1》 ポンプベースBは少なくとも上ベース部B1と下ベース部B2に分割され、分割された上ベース部B1と下ベース部B2が締結手段D2で接合されることにより、上ベース部B1と下ベース部B2とが熱伝導のある構造となっている。 
《構成2》 前記《構成1》の接合により、ロータ4の下流側外周面と対向する凹部16がポンプベースBの内面に形成され、該凹部16に所定の隙間を介してネジ溝ポンプステータ8の取付け部12が組み付けられるとともに、その所定の隙間を前記断熱空間14として利用する構成。 この構成では、ネジ溝ポンプステータ8をポンプ径方向に位置決めするために、前記凹部16の縁部でポンプベースBとネジ溝ポンプステータ8を接触させているが、この接触部には外力(例えば、締結ボルトによる締結力など)が何も作用していないため、そのような接触部を介する熱伝導は殆ど生じない。 
《構成3》 前記断熱スペーサ15は、ネジ溝ポンプステータ8とその下部に位置するポンプベースB(具体的には、下ベースB2)との間に介在され、かつ、ネジ溝ポンプステータ8とポンプベースBとを締結する(具体的には、ネジ溝ポンプステータ8の取付け部12と下ベースB2とを締結手段D3で締結する)ことにより、ネジ溝ポンプステータ8を支持する構成。 
《構成4》 前記ヒータ13の電線は、ネジ溝ポンプステータ8の取付け部12から外部に引き出されるが、このような取付け部12が高真空に曝されることにより、ヒータ13やその電線に絶縁破壊が生じるおそれがある。そこで、図1の真空ポンプP1では、取付け部12の外周面にOリングなどのシール手段17を設けることで、取付け部12を大気側に配設している。 
《冷却手段としての冷却管の説明》 図2は、本発明の第1の実施形態である真空ポンプで発生した熱の伝わり方と冷却管の設置場所等に関する説明図である。 
図2において、Q1は、固定翼7から熱伝導で上ベース部B1に伝わる熱、Q2は、ロータ4からネジ溝ポンプステータ8への放射による熱とその伝わり方、Q3は、ステータコラム3から熱伝導で下ベース部B2に伝わる熱、Q4は、ヒータ13での加熱による熱とその伝わり方をそれぞれ示している。 
図1の真空ポンプP1においては、図2に示したように、上ベース部B1と下ベース部B2の双方に、冷却手段として冷却管18を設けることができるし、いずれか一方の冷却管18のみを採用してもよい。 
上ベース部B1の冷却管18は、前記Q2やQ4の熱のように、ネジ溝ポンプステータ8から断熱スペーサ15又はシール手段17を介して上ベース部B1や下ベース部B2に伝わる熱、及び、前記Q1の熱のように固定翼7から熱伝導で上ベース部B1に伝わる熱を主に冷却する手段として機能する。 
この一方、下ベース部B2の冷却管18は、主にステータコラム3から熱伝導で下ベース部B2に伝わる熱Q3を冷却する手段として機能する。 
図示は省略するが、図1の真空ポンプP1では、それぞれの冷却管18に操作バルブが設けられており、それぞれの操作バルブを調整することで、それぞれの冷却管18の中を流れる冷却媒体の流量を個別に調整できるように構成してある。 
冷却管18の図示しない操作バルブの制御に用いられる温度センサ(以下「水冷管バルブ制御用の温度センサS2」という)は、上ベース部B1に設置した冷却管18の近傍に設ける構成、又は、下ベース部B2に設置した冷却管18の近傍に設ける構成、若しくは双方の冷却管18の近傍に設ける構成を採用することができる。 
以上説明した図1の真空ポンプP1にあっては、ガス流路全体Rのうち排気側ガス流路R2を構成する固定部品としてのネジ溝ポンプステータ8をそれ以外の部品から断熱手段10で断熱し、かつ、そのように断熱されたネジ溝ポンプステータ8を加熱手段11により熱伝導で直接加熱する構成を採用したため、下記《第1-1の作用効果》及び《第2-1の作用効果》が得られる。 
《第1-1の作用効果》 図1の真空ポンプP1では、前記の通り、加熱手段11は熱伝導によりネジ溝ポンプステータ8を直接加熱するから、かかる加熱が排気するガスの流量の影響を受けることはない。また、その加熱対象となるネジ溝ポンプステータ8は断熱手段10によって断熱されるから、生成物堆積防止の観点から高温化が必要なネジ溝ポンプステータ8だけを集中的に効率よく加熱すること、及び、その加熱により排気側ガス流路R2での生成物の堆積を防止することが可能である。 
《第2-1の作用効果》 さらに、この図1の真空ポンプP1によると、前記の通り、加熱手段11で加熱されるネジ溝ポンプステータ8は断熱手段10で断熱されるから、ネジ溝ポンプステータ8以外の部品が当該加熱手段11で加熱されることはない。従って、加熱手段11での加熱による高温化やそれによる強度低下を防止したい部品、例えば回転翼6や固定翼7などの部品の高温化と、それによる当該部品の強度低下を効果的に防止することができ、ポンプ排気性能の向上を図ることが可能である。 
《加熱手段(ヒータ)と冷却手段(冷却管)を用いた真空ポンプの温度制御》 図3から図5は、図2の真空ポンプP1における温度制御例の説明図である。 
図3から図5の温度制御例では、ヒータ13の温度制御と水冷管18の温度制御とを独立の制御とし、ヒータ13の温度制御は、ネジ溝ポンプステータ8に設置したヒータ制御用の温度センサS1からの検出信号に基づいてヒータ13の温度を制御するものとし、水冷管18の温度制御は、水冷管バルブ制御用の温度センサS2からの検出信号に基づいて水冷管18の操作バルブを制御するものとした。この点ではいずれの温度制御例も共通する。 
図3から図5の温度制御例が異なる点は水冷管18の設置箇所であり、図3の温度制御例では上ベース部1Aと下ベース部1Bの双方に水冷管18を設置しており、図4の温度制御例では上ベース部B1のみに水冷管18を設置し、図5の温度制御例では下ベース部B2のみに水冷管18を設置している。 
図6は、図3の温度制御例による実験結果の説明図、図7は、図4の温度制御例による実験結果の説明図、図8は、図5の温度制御例による実験結果の説明図である。 
図6から図8において「ヒータ制御温度」とは、ヒータ制御用の温度センサS1からの検出信号に基づいて制御されたヒータ13の温度であり、「水冷管制御温度」とは、水冷管バルブ制御用の温度センサS2からの検出信号に基づいて制御された水冷管18の温度である。これらの温度はその差が30℃から40℃となるように設定してある。 
図3のように上ベース部B1と下ベース部B2の双方に水冷管18を設置した温度制御例では、図6の実験結果に示したように、ヒータ制御温度は、水冷管制御温度より30℃から40℃高い高温状態で安定に維持することができた。 
また、これと同時に、下ベース部B1、ガス排気口2、ステータコラム3の温度は、水冷管制御温度より10℃以下の低温状態で安定に維持することができた。 
以上の安定な維持は、ヒータ13を設置しているネジ溝ポンプステータ8が断熱空間14や断熱スペーサ15からなる断熱手段10で断熱されていること、及び、上ベース部B1に設置した水冷管18の冷却作用によって、図2に示した主にQ1、Q2、Q4の熱による温度上昇が抑制され、これと同時に、下ベース部B2に設置した水冷管18の冷却作用によって、図2に示した主にQ3の熱による温度上昇が抑制されことが要因であると考えられる。 
この一方、図4のように上ベース部B1のみに水冷管を設置した温度制御例では、図7の実験結果に示したように、ガス流路Rを流れるガスの流量(ポンプの負荷)が変動しても、ヒータ制御温度は、水冷管バルブ制御温度より30℃から40℃の温度差をもって安定に維持することができた。しかし、ステータコラム3の温度はヒータ制御温度より高くなってしまう現象、および、ガス排気口2と下ベース部B2の温度が水冷管制御温度を超えてしまう現象が生じた。これは、図4のように上ベース部B1に設置した水冷管18だけでは図2に示した主にQ3の熱の影響による温度上昇の抑制が困難であったことが要因と考えられる。 
また、図5のように下ベース部B2のみに水冷管18を設置した温度制御例では、図8の実験結果に示したように、ガス流路Rを流れるガスの流量(ポンプの負荷)が変動しても、ヒータ制御温度は、水冷管バルブ制御温度より30℃から40℃の温
度差をもって安定に維持することができた。しかし、ステータコラム3、ガス排気口2、上ベース部B1の温度がいずれも水冷管制御温度を超えてしまう現象が生じた。これは、図5のように下ベース部B2に設置した水冷管18だけでは図2に示した主にQ1、Q2、Q4の熱の影響による温度上昇の抑制が困難であったことが要因と考えられる。 
《第2の実施形態》 次に、図9は、本発明の第2の実施形態である真空ポンプの一部を示したポンプ断面図である。この図9の真空ポンプP2が図1の真空ポンプP1と異なる点はガス流路Rの具体的な構成であり、それ以外の構成は図1の真空ポンプP1と同様であるため、同一部材には同一符号を付し、その詳細説明は省略する。 
図9の真空ポンプP2では、ガス流路Rの具体的な構成として、排気側ガス流路R2についても先に説明した図1の真空ポンプP1における吸気側ガス流路R1と同様の構成を採用している。 
すなわち、図9の真空ポンプP2における排気側ガス流路R2は、ロータ4の外周面に一体に設けた回転翼6と、該回転翼6によってガス流路R下流側へ向かう運動量が付与されたガス分子をガス流路R下流側へ導く固定翼7と、により形成される流路である。 
そして、この図9の真空ポンプP2においては、ガス流路R全体のうち排気側ガス流路R2を構成する固定部品として、複数の固定翼7を備えており、これら複数の固定翼7のうち、特に最下段の固定翼7Aをそれ以外の部品から断熱手段10で断熱し、かつ、断熱された最下段の固定翼7Aを加熱手段11により熱伝導で直接加熱するように構成してある。 
ところで、この図9の真空ポンプP2における加熱手段11は、その具体的な構成として、最下段の固定翼7Aの基部(外周部)側に取付け部12を一体形成し、この取付け部12にヒータ13を埋設することにより、当該ヒータ12が最下段の固定翼7Aを熱伝導で直接加熱する構造を採用している。 
また、図9の真空ポンプP2における断熱手段10は、その具体的な構成として、固定翼7Aの前記取付け部12の周囲に断熱空間14を設定し、かつ、その取付け部12を含む最下段の固定翼7A全体を断熱スペーサ15で支持する構成、及び、かかる断熱スペーサ15によって最下段の固定翼7Aと取付け部12をポンプ軸心方向に位置決めする構造を採用している。 
さらに、この図9の真空ポンプP2でも、ポンプベースBは上ベース部B1と下ベース部B2に分割されていて、ロータ4の下流側外周面と対向する凹部16がポンプベースBの内面に形成されるが、そのような凹部16に所定の隙間を介して組み付けられる部品は最下段の固定翼7Aの取付け部12であり、かかる所定の隙間が前述の断熱空間14として利用されている。 
なお、この図9の真空ポンプP2では、最下段の固定翼7Aとその取付け部12をポンプ径方向に位置決めするために、前記凹部16の縁部でポンプベースBと最下段の固定翼7Aとを接触させているが、この接触部には外力(例えば、締結ボルトによる締結力)が何も作用していないため、かかる接触部を介する熱伝導は殆ど生じない。 
以上説明した図9の真空ポンプP2によると、前記の通り、ガス流路全体Rのうち排気側ガス流路R2を構成する固定部品としての最下段の固定翼7Aをそれ以外の部品から断熱手段10で断熱し、かつ、そのように断熱された最下段の固定翼7Aを加熱手段11により熱伝導で直接加熱する構成を採用したため、下記《第1-2の作用効果》及び《第2-2の作用効果》が得られる。 
《第1-2の作用効果》 図9の真空ポンプP2では、加熱手段11は熱伝導で最下段の固定翼7Aを直接加熱するから、かかる加熱が排気するガスの流量の影響を受けることはない。また、その加熱対象となる最下段の固定翼7Aは断熱手段10によって断熱されるから、生成物堆積防止の観点から高温化が必要な最下段の固定翼7Aだけを集中的に効率よく加熱すること、及びその加熱により排気側ガス流路R2での生成物の堆積を防止することが可能である。 
《第2-2の作用効果》 さらに、この図9の真空ポンプP2によると、加熱手段11で加熱される最下段の固定翼7Aは断熱手段10で断熱されるから、最下段の固定翼7A以外の部品が当該加熱手段10で加熱されることはない。従って、加熱手段10での加熱による高温化やそれによる強度低下を防止したい部品、例えば最下段の固定翼7Aより上段に位置する回転翼6や固定翼7などの部品の高温化と、それによる当該部品の強度低下を効果的に防止することができ、回転翼7の回転数を従来以上に高めて、ポンプ排気性能の向上を図ることが可能である。 
以上説明した図9の真空ポンプP2では、固定部品である最下段の固定翼7Aのみを断熱手段10で断熱し、かつ、最下段の固定翼7Aを加熱手段11によって熱伝導で直接加熱したが、これとは別の実施形態として、最下段の固定翼7Aより上段の固定翼についても、断熱空間14と断熱スペーサ15とからなる断熱手段10で断熱し、かつ、そのように断熱された複数の固定翼をヒータ13からなる加熱手段11によって熱伝導で直接加熱する構成を採用することもできる。 
《第3の実施形態》 図10は、本発明の第3の実施形態である真空ポンプの一部を示した断面図であり、同図の真空ポンプの基本的な構成、例えば、ガス流路Rの具体的な構成等は図9の真空ポンプと同様であるため、同一部材には同一符号を付し、その詳細説明は省略する。 
この図10の真空ポンプP3では、下記の《構成A》と《構成B》の採用により、複数の固定翼(具体的には、最下段の固定翼7Aとそれより数えて2段目の固定翼7B)を断熱空間14と断熱スペーサ15とからなる断熱手段10により断熱し、かつ、これら複数の固定翼7A、7Bをヒータ13からなる加熱手段11により熱伝導で直接加熱する構成を採用している。 
《構成A》 ポンプベースB上端部の固定翼位置決め部5は、最下段の回転翼7Aから数えて3段目の固定翼7Cの下部まで延長され、その固定翼位置決め部5上に前記3段目の固定翼7Cが載置されるとともに、かかる固定翼位置決め部5と最下段の回転翼7Aから数えて2段目の固定翼7Bとの間に、断熱スペーサ15が介在する構成。 
《構成B》 取付け部12はその下部側から上部側の上ベース部B1に締結手段D4で締め付け、これにより、取付け部12からポンプベースB上端部の固定翼位置決め部5までの間に積み上げられて介在する全ての部品、すなわち、取付け部12上に載置してある最下段の固定翼7A、最下段の固定翼7Aから数えて2段目の固定翼7B、これらの固定翼7A、7B間に介在する固定翼位置決めスペーサ9、及び、断熱スペーサ15が一体化されるとともに、最下段の固定翼7A、固定翼位置決めスペーサ9、及び、最下段の固定翼7Aから数えて2段目の固定翼7Bが、熱伝導で熱的に繋がる構成。 
以上説明した図3の真空ポンプP3によると、ガス流路全体Rのうち排気側ガス流路R2を構成する固定部品としての複数の固定翼7A、7Bをそれ以外の部品から断熱手段10で断熱し、かつ、そのように断熱された複数の固定翼7A、7Bを加熱手段11により熱伝導で直接加熱する構成を採用したため、先に説明した図2の真空ポンプP2と同様の作用効果(前記《第1-2の作用効果》及び《第2-2の作用効果》を参照)が奏し得られる。
2 ガス排気口3 ステータコラム4 ロータ4A 連結部4B 第1の筒体4C 第2の筒体5 固定翼位置決め部6 回転翼7 固定翼7A 最下段の固定翼7B 最下段の固定翼から数えて2段目の固定翼7C 最下段の固定翼から数えて3段目の固定翼8 ネジ溝ポンプステータ8A ネジ溝9 固定翼位置決めスペーサ10 断熱手段11 加熱手段12 取付け部13 ヒータ14 断熱空間15 断熱スペーサ16 凹部17 シール手段18 冷却管C ポンプケースB ポンプベースD1、D2、D3、D4 締結手段P1、P2、P3 真空ポンプR ガス流路R1 吸気側ガス流路R2 排気側ガス流路S1 ヒータ制御用の温度センサS2 水冷管バルブ制御用の温度センサ

Claims (10)

  1. ポンプベースと、 前記ポンプベース上に配置されたロータと、 前記ロータをその軸心周りに回転可能に支持し回転駆動する支持及び駆動手段と、 前記ロータの回転により吸気したガスを排出口に導くガス流路と、 を具備した真空ポンプにおいて、 前記ガス流路全体のうち排気側ガス流路を構成する固定部品をそれ以外の部品から断熱する断熱手段と、 前記断熱手段により断熱された前記固定部品を加熱する加熱手段と、を備えたこと を特徴とする真空ポンプ。
  2. 前記排気側ガス流路は、前記ロータの外周面と、これに対向するネジ溝ポンプステータと、により形成されるネジ溝状の流路であり、 前記固定部品は、前記ネジ溝ポンプステータであること を特徴とする請求項1に記載の真空ポンプ。
  3. 前記排気側ガス流路は、前記ロータの外周面に配設された回転翼と、該回転翼によって前記ガス流路の下流側へ向かう運動量が付与されたガス分子を前記ガス流路の下流側へ導く固定翼と、により形成される流路であり、 前記固定部品は、前記固定翼であること を特徴とする請求項1から2のいずれかに記載の真空ポンプ。
  4. 前記加熱手段は、前記固定部品に取付け部を設け、該取付け部にヒータを埋設することにより、該ヒータが前記固定部品を加熱する構造になっていること を特徴とする請求項1から3のいずれかに記載の真空ポンプ。
  5. 前記固定部品の前記取付け部は、シール手段が設けられることにより、大気側に配設されていること を特徴とする請求項4に記載の真空ポンプ。
  6. 前記断熱手段は、断熱空間と断熱スペーサによって、前記固定部品を断熱する構造であること を特徴とする請求項1から5のいずれかに記載の真空ポンプ。
  7. 前記ポンプベースは、少なくとも上ベース部と下ベース部に分割され、分割された該上ベース部と該下ベース部を締結手段で接合することにより、前記上ベース部と前記下ベース部とが熱伝導のある構造となっていること を特徴とする請求項1から6のいずれかに記載の真空ポンプ。
  8. 前記断熱空間は、 前記ポンプベースと前記固定部品の間の隙間であること を特徴とする請求項6に記載の真空ポンプ。
  9. 前記断熱スペーサは、 前記固定部品とその下部に位置する前記ポンプベースとの間に介在され、かつ、前記固定部品と前記ポンプベースとを締結することにより、前記固定部品を支持すること を特徴とする請求項6に記載の真空ポンプ。
  10. 前記上ベース部と前記下ベース部の双方、又は、いずれか一方に、冷却手段が設けられていること を特徴とする請求項7に記載の真空ポンプ。
PCT/JP2014/065154 2013-07-31 2014-06-06 真空ポンプ WO2015015902A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14832961.8A EP3029328B1 (en) 2013-07-31 2014-06-06 Vacuum pump
KR1020157032437A KR102167208B1 (ko) 2013-07-31 2014-06-06 진공 펌프
CN201480040478.5A CN105358835A (zh) 2013-07-31 2014-06-06 真空泵
US14/905,110 US10954962B2 (en) 2013-07-31 2014-06-06 Vacuum pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-158629 2013-07-31
JP2013158629A JP6735058B2 (ja) 2013-07-31 2013-07-31 真空ポンプ

Publications (1)

Publication Number Publication Date
WO2015015902A1 true WO2015015902A1 (ja) 2015-02-05

Family

ID=52431446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065154 WO2015015902A1 (ja) 2013-07-31 2014-06-06 真空ポンプ

Country Status (6)

Country Link
US (1) US10954962B2 (ja)
EP (1) EP3029328B1 (ja)
JP (1) JP6735058B2 (ja)
KR (1) KR102167208B1 (ja)
CN (1) CN105358835A (ja)
WO (1) WO2015015902A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089582A (ja) * 2015-11-16 2017-05-25 エドワーズ株式会社 真空ポンプ
JP2022514236A (ja) * 2018-12-12 2022-02-10 エドワーズ リミテッド 多段ターボ分子ポンプ
WO2022124239A1 (ja) * 2020-12-11 2022-06-16 エドワーズ株式会社 真空ポンプ、真空ポンプの固定部品、及び真空ポンプの支持部品
WO2024135679A1 (ja) * 2022-12-19 2024-06-27 エドワーズ株式会社 真空ポンプ

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6664269B2 (ja) * 2016-04-14 2020-03-13 東京エレクトロン株式会社 加熱装置およびターボ分子ポンプ
JP7098882B2 (ja) * 2017-04-03 2022-07-12 株式会社島津製作所 真空ポンプ
JP6943629B2 (ja) 2017-05-30 2021-10-06 エドワーズ株式会社 真空ポンプとその加熱装置
JP6942610B2 (ja) * 2017-07-14 2021-09-29 エドワーズ株式会社 真空ポンプ、該真空ポンプに適用される温度調節用制御装置、検査用治具、及び温度調節機能部の診断方法
JP6957320B2 (ja) * 2017-11-17 2021-11-02 エドワーズ株式会社 真空ポンプ、および真空ポンプに備わる高温ステータ、ガス排気口
JP6967954B2 (ja) * 2017-12-05 2021-11-17 東京エレクトロン株式会社 排気装置、処理装置及び排気方法
JP7224168B2 (ja) 2017-12-27 2023-02-17 エドワーズ株式会社 真空ポンプおよびこれに用いられる固定部品、排気ポート、制御手段
WO2019131682A1 (ja) 2017-12-27 2019-07-04 エドワーズ株式会社 真空ポンプおよびこれに用いられる固定部品、排気ポート、制御手段
JP7048391B2 (ja) 2018-03-30 2022-04-05 エドワーズ株式会社 真空ポンプ
JP7164981B2 (ja) * 2018-07-19 2022-11-02 エドワーズ株式会社 真空ポンプ
JP7467882B2 (ja) * 2019-10-28 2024-04-16 株式会社島津製作所 真空ポンプ
JP7566540B2 (ja) * 2020-09-10 2024-10-15 エドワーズ株式会社 真空ポンプ
JP7459811B2 (ja) 2021-01-25 2024-04-02 株式会社島津製作所 真空ポンプ
JP2022145225A (ja) * 2021-03-19 2022-10-03 エドワーズ株式会社 真空ポンプ、真空ポンプの制御装置及びリモート制御装置
JP2023000108A (ja) * 2021-06-17 2023-01-04 エドワーズ株式会社 真空ポンプ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310696A (ja) * 1996-03-21 1997-12-02 Osaka Shinku Kiki Seisakusho:Kk 分子ポンプ
JP3098140B2 (ja) 1993-06-17 2000-10-16 株式会社大阪真空機器製作所 複合分子ポンプ
EP2228539A2 (en) * 2003-08-08 2010-09-15 Edwards Japan Limited Vacuum pump
JP4703279B2 (ja) * 2004-06-25 2011-06-15 株式会社大阪真空機器製作所 複合分子ポンプの断熱構造

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227989A (ja) * 1987-03-16 1988-09-22 Seiko Instr & Electronics Ltd タ−ボ分子ポンプ
JPH04116295A (ja) * 1990-09-06 1992-04-16 Fujitsu Ltd 軸流分子ポンプ
JP3160504B2 (ja) 1995-09-05 2001-04-25 三菱重工業株式会社 ターボ分子ポンプ
DE19702456B4 (de) * 1997-01-24 2006-01-19 Pfeiffer Vacuum Gmbh Vakuumpumpe
JP2001132682A (ja) * 1999-10-29 2001-05-18 Shimadzu Corp ターボ分子ポンプ
JP3912964B2 (ja) * 2000-07-03 2007-05-09 三菱重工業株式会社 ターボ分子ポンプ
US6793466B2 (en) * 2000-10-03 2004-09-21 Ebara Corporation Vacuum pump
JP4222747B2 (ja) * 2000-10-03 2009-02-12 株式会社荏原製作所 真空ポンプ
JP2002115692A (ja) 2000-10-04 2002-04-19 Osaka Vacuum Ltd 複合真空ポンプ
JP2002285992A (ja) * 2001-03-27 2002-10-03 Boc Edwards Technologies Ltd 真空ポンプ装置
JP4250353B2 (ja) * 2001-06-22 2009-04-08 エドワーズ株式会社 真空ポンプ
DE10142567A1 (de) 2001-08-30 2003-03-20 Pfeiffer Vacuum Gmbh Turbomolekularpumpe
JP3961273B2 (ja) * 2001-12-04 2007-08-22 Bocエドワーズ株式会社 真空ポンプ
JP3098140U (ja) 2003-05-28 2004-02-19 スーパー工業株式会社 高圧水噴射装置
JP4916655B2 (ja) * 2004-11-17 2012-04-18 株式会社島津製作所 真空ポンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3098140B2 (ja) 1993-06-17 2000-10-16 株式会社大阪真空機器製作所 複合分子ポンプ
JPH09310696A (ja) * 1996-03-21 1997-12-02 Osaka Shinku Kiki Seisakusho:Kk 分子ポンプ
EP2228539A2 (en) * 2003-08-08 2010-09-15 Edwards Japan Limited Vacuum pump
JP4703279B2 (ja) * 2004-06-25 2011-06-15 株式会社大阪真空機器製作所 複合分子ポンプの断熱構造

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089582A (ja) * 2015-11-16 2017-05-25 エドワーズ株式会社 真空ポンプ
WO2017086135A1 (ja) * 2015-11-16 2017-05-26 エドワーズ株式会社 真空ポンプ
KR20180082423A (ko) 2015-11-16 2018-07-18 에드워즈 가부시키가이샤 진공 펌프
CN108350894A (zh) * 2015-11-16 2018-07-31 埃地沃兹日本有限公司 真空泵
US10907653B2 (en) 2015-11-16 2021-02-02 Edwards Japan Limited Vacuum pump
KR102620442B1 (ko) * 2015-11-16 2024-01-03 에드워즈 가부시키가이샤 진공 펌프
JP2022514236A (ja) * 2018-12-12 2022-02-10 エドワーズ リミテッド 多段ターボ分子ポンプ
WO2022124239A1 (ja) * 2020-12-11 2022-06-16 エドワーズ株式会社 真空ポンプ、真空ポンプの固定部品、及び真空ポンプの支持部品
WO2024135679A1 (ja) * 2022-12-19 2024-06-27 エドワーズ株式会社 真空ポンプ

Also Published As

Publication number Publication date
EP3029328A1 (en) 2016-06-08
JP6735058B2 (ja) 2020-08-05
US10954962B2 (en) 2021-03-23
EP3029328B1 (en) 2023-10-25
KR20160037837A (ko) 2016-04-06
US20160160877A1 (en) 2016-06-09
JP2015031153A (ja) 2015-02-16
KR102167208B1 (ko) 2020-10-19
EP3029328A4 (en) 2017-03-22
CN105358835A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2015015902A1 (ja) 真空ポンプ
KR102214002B1 (ko) 진공 펌프
WO2019188732A1 (ja) 真空ポンプ
JP6287475B2 (ja) 真空ポンプ
JP6484919B2 (ja) ターボ分子ポンプ
KR102123135B1 (ko) 진공 펌프
WO2014045438A1 (ja) ターボ分子ポンプ
KR102214001B1 (ko) 진공 펌프, 및 이 진공 펌프에 이용되는 단열 스페이서
EP2894347B1 (en) Stator member and vacuum pump
KR20220092858A (ko) 진공 펌프
JP2020012423A (ja) 真空ポンプ
CN103104512A (zh) 涡轮分子泵装置
JP2016518550A (ja) ポンプ装置
WO2018043072A1 (ja) 真空ポンプ、および真空ポンプに備わる回転円筒体
WO2023106154A1 (ja) 真空ポンプおよび良熱伝導性部品
US20160090979A1 (en) Pump arrangement
JP2004270692A (ja) 分子ポンプの断熱構造
JP7378447B2 (ja) 真空ポンプおよび固定部品
JP7546410B2 (ja) 真空ポンプおよび真空ポンプ用回転翼
JP2004239258A (ja) 真空ポンプ装置
JP2024107319A (ja) ターボ分子ポンプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040478.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832961

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157032437

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14905110

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014832961

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE