WO2018043072A1 - 真空ポンプ、および真空ポンプに備わる回転円筒体 - Google Patents
真空ポンプ、および真空ポンプに備わる回転円筒体 Download PDFInfo
- Publication number
- WO2018043072A1 WO2018043072A1 PCT/JP2017/028865 JP2017028865W WO2018043072A1 WO 2018043072 A1 WO2018043072 A1 WO 2018043072A1 JP 2017028865 W JP2017028865 W JP 2017028865W WO 2018043072 A1 WO2018043072 A1 WO 2018043072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vacuum pump
- reduced diameter
- outer diameter
- rotor
- diameter
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/044—Holweck-type pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/522—Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
- F04D29/526—Details of the casing section radially opposing blade tips
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/403—Casings; Connections of working fluid especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D3/00—Axial-flow pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2210/00—Working fluids
- F05D2210/10—Kind or type
- F05D2210/12—Kind or type gaseous, i.e. compressible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/20—Three-dimensional
- F05D2250/29—Three-dimensional machined; miscellaneous
- F05D2250/292—Three-dimensional machined; miscellaneous tapered
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/50—Inlet or outlet
- F05D2250/52—Outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/94—Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
- F05D2260/941—Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction
Definitions
- the present invention relates to a vacuum pump and a rotating cylinder provided in the vacuum pump. Specifically, the present invention relates to a vacuum pump that reduces stress applied to the rotating cylinder, and a rotating cylinder provided in the vacuum pump.
- Some vacuum pumps for performing evacuation processing in a disposed vacuum chamber include a rotating body and a thread groove exhaust element (a thread groove type exhaust mechanism / thread groove pump section).
- the vacuum pump provided with the thread groove exhaust element is provided with a rotating cylinder body (rotor cylindrical portion) having no rotor blades on the lower side of the rotor body where the rotor blades are disposed. The gas is compressed.
- a vacuum pump including such a vacuum pump provided with a rotor cylindrical portion generates stress on the inner diameter side of the rotor cylindrical portion due to centrifugal force, and the stress may exceed a design standard value.
- FIG. 6 is a view for explaining a conventional vacuum pump 1000. As shown in FIG.
- the conventional vacuum pump 1000 is provided with a rotor cylindrical portion 1001 that is opposed to the screw groove exhaust element 20 in the axial direction via a gap (clearance).
- a creep phenomenon occurs in which the rotor cylindrical portion 1001 gradually deforms and expands due to long-term motion at a high temperature.
- the creep life which is a period until the clearance between the thread groove exhaust element 20 and the rotor cylindrical portion 1001 is reduced by a predetermined amount due to this creep phenomenon, is preferably as long as possible from the viewpoint of maintenance cost.
- the outer diameter of the rotor blade is set to the exhaust port side and the intake port side for the purpose of preventing local stress and temperature rise at the rotor blade and the portion supporting the rotor blade even when rotating at high speed. It describes the technology to be different.
- An object of the present invention is to provide a vacuum pump capable of reducing stress without reducing the rotational speed of a rotating cylinder (rotating body), and a rotating cylinder provided in the vacuum pump.
- the exterior body in which the inlet port and the exhaust port were formed the thread groove
- a vacuum pump comprising: a rotating cylindrical body including a reduced diameter portion having an outer diameter smaller than an outer diameter of the facing portion in the extending portion.
- the reduced diameter portion has a bottom surface perpendicular to the axial direction of the rotating shaft at a part of the outer diameter side of the reduced diameter portion, and the bottom surface and the outside of the reduced diameter portion.
- the vacuum pump according to the second aspect wherein the position of the bottom surface of the reduced diameter portion coincides with the position of the starting point of the extending portion.
- the said reduced diameter part is formed by providing a gradient in at least one part from the said starting point of the extending
- a vacuum pump as described is provided.
- the starting point of the said gradient of the said diameter reduction part corresponds with the said starting point of the said extending
- the vacuum pump of Claim 4 characterized by the above-mentioned is provided.
- a rotating cylinder provided in the vacuum pump according to at least one of the first to fifth aspects.
- the stress in the part due to the creep life in the rotating cylindrical body can be reduced without reducing the rotational speed.
- the performance can be maintained or improved.
- the vacuum pump according to the embodiment of the present invention has an outer diameter smaller than the outer diameter on the intake port side in the lower portion on the exhaust port side of the rotor cylindrical portion (rotating cylindrical body) provided in the vacuum pump.
- a reduced diameter portion (taper / chamfering) is provided. More specifically, the lowermost end portion (exhaust port side end portion) of the rotor cylindrical portion is designed to be longer than the thread groove exhaust element, and the extending portion is provided. Then, a reduced diameter portion having an outer diameter smaller than that of the portion (opposing portion) facing the screw groove exhaust element on the inlet side of the rotor cylindrical portion is provided in the extending portion of the rotor cylindrical portion.
- the stress generated on the inner diameter side during rotation is smaller as the outer diameter is smaller. Therefore, the configuration having the reduced diameter portion described above can reduce the rotational speed of the rotating body (rotor cylindrical portion, etc.) The stress generated on the inner diameter side of the rotor cylindrical portion can be reduced.
- FIG. 1 is a diagram showing a schematic configuration example of a vacuum pump 1 according to the first embodiment of the present invention, and shows a cross-sectional view of the vacuum pump 1 in the axial direction.
- the diameter direction of the rotor blade is described as a “diameter (diameter / radius) direction”
- the direction perpendicular to the diameter direction of the rotor blade is described as an “axial direction (or axial direction)”.
- a casing (outer cylinder) 2 forming an exterior body of the vacuum pump 1 has a substantially cylindrical shape, and a housing of the vacuum pump 1 together with a base 3 provided at a lower portion (exhaust port 6 side) of the casing 2. Is configured. And inside this housing
- the gas transfer mechanism includes a rotating body (such as the rotary blade 9 / rotor cylindrical portion 10) that is rotatably supported and a fixed portion (fixed blade 30 / screw groove exhaust) fixed to the casing. Element 20).
- a controller for controlling the operation of the vacuum pump 1 is connected to the outside of the exterior body of the vacuum pump 1 through a dedicated line.
- An intake port 4 for introducing a gas into the vacuum pump 1 is formed at the end of the casing 2.
- a flange portion 5 is formed on the end surface of the casing 2 on the intake port 4 side so as to project to the outer peripheral side.
- the base 3 is formed with an exhaust port 6 for exhausting gas from the vacuum pump 1.
- the rotating body includes a shaft 7 which is a rotating shaft, a rotor 8 disposed on the shaft 7, a plurality of rotor blades 9 provided on the rotor 8, and a rotor cylindrical portion (skirt portion) provided on the exhaust port 6 side. 10 is provided.
- Each rotor blade 9 is configured by a disk-shaped disk member that extends radially perpendicular to the axis of the shaft 7.
- the rotor cylindrical portion 10 is configured by a cylindrical member having a cylindrical shape concentric with the rotation axis of the rotor 8.
- the rotor cylindrical portion 10 is provided with a reduced diameter portion. The reduced diameter portion will be described later.
- a motor unit for rotating the shaft 7 at a high speed is provided in the middle of the shaft 7 in the axial direction, and is included in the stator column 80. Further, in the stator column 80, a radial magnetic bearing device for supporting the shaft 7 in the radial direction (radial direction) in a non-contact manner on the intake port 4 side and the exhaust port 6 side with respect to the motor portion of the shaft 7. Is provided. In addition, an axial magnetic bearing device for supporting the shaft 7 in the axial direction (axial direction) in a non-contact manner is provided at the lower end of the shaft 7.
- a fixed portion is formed on the inner peripheral side of the casing (casing 2).
- This fixed portion is composed of a fixed blade 30 and a blade that is inclined from the plane perpendicular to the axis of the shaft 7 by a predetermined angle and extends from the inner peripheral surface of the casing 2 toward the shaft 7.
- the fixed wings 30 are separated and fixed by a fixed wing spacer 40 having a cylindrical shape.
- the rotary blades 9 and the fixed blades 30 are alternately arranged and formed in a plurality of stages in the axial direction. In order to satisfy the discharge performance required for the vacuum pump 1, any number of rotor parts and A stator component can be provided.
- a thread groove exhaust element 20 (a thread groove type exhaust mechanism) is disposed on the exhaust port 6 side.
- a thread groove (spiral groove) is formed on the surface of the thread groove exhaust element 20 facing the rotor cylindrical portion 10.
- the side of the thread groove exhaust element 20 facing the rotor cylindrical portion 10 (that is, the inner peripheral surface parallel to the axis of the vacuum pump 1) faces the outer peripheral surface of the rotor cylindrical portion 10 with a predetermined clearance.
- the facing surface of the thread groove exhaust element 20 facing the rotor cylindrical portion 10 and the rotor cylindrical portion 10 face each other with a predetermined clearance therebetween, so that the inner circumferential surface of the thread groove exhaust element 20 on the axial direction side.
- the gas transfer mechanism which transfers gas by the thread groove formed in is comprised.
- the clearance is preferably as small as possible.
- the direction of the spiral groove formed in the thread groove exhaust element 20 is the direction toward the exhaust port 6 when the gas is transported in the rotational direction of the rotor 8 in the spiral groove.
- the vacuum pump 1 can perform a vacuum evacuation process in a vacuum chamber (not shown) disposed in the vacuum pump 1.
- FIG. 2 is a view for explaining the facing portion 10t, the extending portion 11, and the reduced diameter portion 11a in the rotor cylindrical portion 10.
- FIG. 3 is an enlarged view of the facing portion 10 t and the extending portion 11 in the rotor cylindrical portion 10.
- the rotor cylindrical portion 10 has an opposed portion 10 t that faces the screw groove exhaust element 20 in the axial direction with a predetermined gap and an exhaust port more than the screw groove exhaust element 20. It has the extending
- the inner diameter of the facing portion 10t in the rotor cylindrical portion 10 will be described as r, and the outer diameter will be described as Rt.
- the outer diameter of the lowermost end portion (exhaust port 6 side) of the reduced diameter portion 11a will be described as Rs, and the recurring outer diameter of the reduced diameter portion 11a will be described as m.
- “graded outer diameter” is used to mean “outer diameter that changes little by little”.
- the rotor cylindrical portion 10 provided in the vacuum pump 1 according to the present embodiment includes a portion of the rotor cylindrical portion 10 (opposing portion 10t) that is not the extended portion 11 in the extended portion 11 extended toward the exhaust port 6 with respect to the thread groove exhaust element 20.
- the rotor cylindrical portion 10 has a portion (the reduced diameter portion 11a) having a gradient of a predetermined angle ⁇ a (FIG. 3A) on the outer diameter side of the extending portion 11.
- This gradient can be configured, for example, by designing the outer diameter side of the extending portion 11 into a tapered shape or by chamfering the outer diameter side of the extending portion 11.
- the predetermined angle ⁇ a indicates a portion formed by the extension line L of the outer diameter surface and the extension line n of the recurring outer diameter m in the facing part 10t of the rotor cylindrical part 10.
- the starting point (starting point) of the extending portion 11 and the starting point of the reduced diameter portion 11a are configured to be the same.
- the present invention is not limited to this. That is, a part of the extending portion 11 on the intake port 4 side that is extended from the facing portion 10t has the same outer diameter Rt as the facing portion 10t, and then has a gradually increasing outer diameter m that is reduced in diameter. You may make it the structure which provides the diameter reducing part 11a. That is, the reduced diameter portion 11a may be configured to be formed in at least a part of the extending portion 11 (see the configuration of the rotor cylindrical portion 100 in FIG. 4 described later).
- the outer diameter Rs of the lowermost end portion (exhaust port 6 side) of the extending portion 11 and the value of the recurring outer diameter m of the lowermost end portion (exhaust port 6 side) of the reduced diameter portion 11a coincide.
- the present invention is not limited to this. That is, the value of the recurring outer diameter m at the lowermost end portion of the reduced diameter portion 11a may coincide with the value of the inner diameter r of the facing portion 10t.
- FIGS. 3B and 3C are diagrams for explaining a modification of the reduced diameter portion 11a (FIG. 3A).
- 3B shows a reduced diameter portion 11b according to the first modification
- FIG. 3C shows a reduced diameter portion 11c according to the second modification.
- the reduced diameter portion may be configured as a reduced diameter portion 11b having an angle ⁇ b larger than the predetermined angle (gradient) ⁇ a of the reduced diameter portion 11a described above. .
- the entire reduced diameter portion is configured as a reduced diameter portion 11c having the same outer diameter. Also good. That is, the reduced diameter portion 11c has a surface F (bottom surface) perpendicular to the axial direction of the vacuum pump 1 on the intake port 4 side, and an angle formed by this surface F and the outer diameter side surface of the reduced diameter portion 11c.
- the surface F by the side of the inlet port 4 formed in the diameter-reduced part 11c matched the position of the starting point of the extending part 11, it is not restricted to this.
- the position of the surface F formed in the reduced diameter portion 11c may be configured to be formed at a position that is lowered by about several mm on the exhaust port 6 side from the starting point of the extending portion 11. That is, the reduced diameter portion 11 c may be configured to be formed in at least a part of the extended portion 11.
- FIG. 4 shows a rotor cylindrical portion 100 having a reduced diameter portion 12 having a starting point different from the starting point of the extending portion 11 together with an enlarged cross-sectional view of a portion surrounded by a dotted line ⁇ .
- ⁇ L is the axial length of the extending portion 11 in the rotor cylindrical portion 100
- the length a is the axial length of the reduced diameter portion 12
- the area A is cut out to form the reduced diameter portion 12.
- Sectional areas cutout area / right triangle part surrounded by a solid diagonal line and two dotted lines
- the vertical axis indicates the length (p) of the inner diameter of the rotor cylindrical portion 100 from the inlet 4 side
- the horizontal axis indicates the vacuum pump provided with the rotor cylindrical portion 100.
- the stress value (analyzed value at the time of simulation) on the inner diameter side of one rotor cylindrical portion 100 is taken.
- the cut area A (not cut out) is compared to the analysis value “no (area A)” where the cut area A is not provided (that is, the stretched portion 11 and the reduced diameter portion 12 are not provided). It can be seen that the stress generated on the inner diameter side of the reduced diameter portion 12 is smaller in the structure in which the portion is provided with a triangle or a rectangle.
- the analysis result shown in FIG. 5 shows that when the cut-out area A is set to the same value, the configuration of “a> m” can reduce the stress most. Therefore, as long as there is no special restriction, it is not necessary to design the axial length ⁇ L of the extending portion 11 in the rotor cylindrical portion 100 to be larger than the axial length a of the reduced diameter portion 12. That is, the extending portion 11 and the reduced diameter portion 12 are not necessarily configured to satisfy ⁇ L> a.
- the vacuum pump 1 including the rotor cylindrical portion 100 reduces the stress generated on the inner diameter side of the rotor cylindrical portion 100 due to the structure of the extending portion 11 and the reduced diameter portion 12. 4 and 5, the rotor cylindrical portion 100 is used as an example, but the same result can be obtained even when the rotor cylindrical portion 10 is used.
- the gradient of the reduced diameter portion 12 is configured to be linear in the cross section, but is not limited thereto.
- the gradient of the reduced diameter portion 12 may be formed in a curved shape in the cross section.
- Vacuum pump 2 Casing (outer cylinder) DESCRIPTION OF SYMBOLS 3 Base 4 Intake port 5 Flange part 6 Exhaust port 7 Shaft 8 Rotor 9 Rotor blade 10 Rotor cylindrical part 10t Opposing part 11 Extend part 11a Reduced diameter part 11b Reduced diameter part 11c Reduced diameter part 12 Reduced diameter part 20 Screw groove exhaust element 30 Fixed blade 40 Fixed blade spacer 80 Stator column 100 Rotor cylindrical portion 1000 Conventional vacuum pump 1001 Rotor cylindrical portion
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Non-Positive Displacement Air Blowers (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Rotary Pumps (AREA)
Abstract
【課題】回転円筒体(回転体)の回転数を下げることなく応力を低減させることが可能な真空ポンプ、および真空ポンプに備わる回転円筒体を提供する。 【解決手段】本発明に係る真空ポンプは、真空ポンプに備わるロータ円筒部(回転円筒体)の排気口側下部において、吸気口側の外径よりも小さい外径を有する縮径部が設けられる。より詳しくは、ロータ円筒部の最下端部(排気口側端部)をねじ溝排気要素(ねじ溝型排気機構)より長く設計して延伸部を設ける。そして、そのロータ円筒部の延伸部に、ロータ円筒部の吸気口側であり且つねじ溝排気要素と対向する部分(対向部)よりも外径の大きさが小さい縮径部を設ける。上述した縮径部を有する構成により、回転体(ロータ円筒部)の回転数を下げずとも、ロータ円筒部の内径側に発生する応力を低減させることができる。
Description
本発明は、真空ポンプ、および真空ポンプに備わる回転円筒体に関する。
詳しくは、回転円筒体に加わる応力を低減する真空ポンプ、および真空ポンプに備わる回転円筒体に関する。
詳しくは、回転円筒体に加わる応力を低減する真空ポンプ、および真空ポンプに備わる回転円筒体に関する。
配設される真空室内の真空排気処理を行うための真空ポンプには、回転体とねじ溝排気要素(ねじ溝型排気機構/ねじ溝ポンプ部)を備えているものがある。当該ねじ溝排気要素を備えた真空ポンプは、回転体における回転翼が配設された下側に、回転翼のない回転円筒体(ロータ円筒部)を設け、回転翼外側のねじ溝排気要素内のガスを圧縮する構成になっている。
このようなロータ円筒部が設けられる真空ポンプを含め、一般的に真空ポンプでは、遠心力によりロータ円筒部の内径側に対して応力が生じ、その応力が設計基準値を超える虞があった。
図6は、従来の真空ポンプ1000を説明するための図である。
図6に示したように、従来の真空ポンプ1000には、ねじ溝排気要素20と隙間(クリアランス)を介して軸方向に対向してロータ円筒部1001が配設される。このロータ円筒部1001に応力が生じると、高温下での長期運動によってロータ円筒部1001が徐々に変形・膨張するクリープ現象が生じる。
このクリープ現象によりねじ溝排気要素20とロータ円筒部1001とのクリアランスが規定値量小さくなるまでの期間であるクリープ寿命は、メンテナンスコストの観点から可能な限り長い方がよい。
このようなロータ円筒部が設けられる真空ポンプを含め、一般的に真空ポンプでは、遠心力によりロータ円筒部の内径側に対して応力が生じ、その応力が設計基準値を超える虞があった。
図6は、従来の真空ポンプ1000を説明するための図である。
図6に示したように、従来の真空ポンプ1000には、ねじ溝排気要素20と隙間(クリアランス)を介して軸方向に対向してロータ円筒部1001が配設される。このロータ円筒部1001に応力が生じると、高温下での長期運動によってロータ円筒部1001が徐々に変形・膨張するクリープ現象が生じる。
このクリープ現象によりねじ溝排気要素20とロータ円筒部1001とのクリアランスが規定値量小さくなるまでの期間であるクリープ寿命は、メンテナンスコストの観点から可能な限り長い方がよい。
特許文献1には、高速で回転しても回転翼やそれを支持する箇所において局部的な応力や温度上昇を生じさせないことを目的として、回転翼の外径を排気口側と吸気口側とで異ならせる技術について記載されている。
また、上述した特許文献1のような構成の他に、回転体(回転翼/回転円筒体)の回転数を下げることで応力を低減するようにしていた。
しかしながら、回転体の回転数を下げれば排気性能は低下してしまっていた。
しかしながら、回転体の回転数を下げれば排気性能は低下してしまっていた。
本発明は、回転円筒体(回転体)の回転数を下げることなく応力を低減させることが可能な真空ポンプ、および真空ポンプに備わる回転円筒体を提供することを目的とする。
請求項1記載の本願発明では、吸気口と排気口が形成された外装体と、前記外装体に固定され、ねじ溝を有するねじ溝型排気機構と、前記外装体に内包され、回転自在に支持された回転軸と、前記回転軸に配設され、前記ねじ溝型排気機構と隙間を介して対向する対向部および前記ねじ溝型排気機構よりも下流側に延伸した延伸部を有し、当該延伸部において前記対向部の外径よりも小さい外径を有する縮径部を備える回転円筒体と、を具備することを特徴とする真空ポンプを提供する。
請求項2記載の本願発明では、前記縮径部は、当該縮径部の外径側の一部に前記回転軸の軸方向と垂直な底面を有し、前記底面と当該縮径部の外径面とで形成される角度は直角であることを特徴とする請求項1に記載の真空ポンプ
を提供する。
請求項3記載の本願発明では、前記縮径部の前記底面の位置は、前記延伸部の起点の位置と一致することを特徴とする請求項2に記載の真空ポンプを提供する。
請求項4記載の本願発明では、前記縮径部は、前記延伸部の前記起点から終点にかけての少なくとも一部に勾配を設けることで形成されることを特徴とする請求項1または請求項2に記載の真空ポンプを提供する。
請求項5記載の本願発明では、前記縮径部の前記勾配の起点は、前記延伸部の前記起点と一致することを特徴とする請求項4に記載の真空ポンプを提供する。
請求項6記載の本願発明では、前記請求項1から前記請求項5の少なくとも1項に記載された真空ポンプに備わる回転円筒体を提供する。
請求項2記載の本願発明では、前記縮径部は、当該縮径部の外径側の一部に前記回転軸の軸方向と垂直な底面を有し、前記底面と当該縮径部の外径面とで形成される角度は直角であることを特徴とする請求項1に記載の真空ポンプ
を提供する。
請求項3記載の本願発明では、前記縮径部の前記底面の位置は、前記延伸部の起点の位置と一致することを特徴とする請求項2に記載の真空ポンプを提供する。
請求項4記載の本願発明では、前記縮径部は、前記延伸部の前記起点から終点にかけての少なくとも一部に勾配を設けることで形成されることを特徴とする請求項1または請求項2に記載の真空ポンプを提供する。
請求項5記載の本願発明では、前記縮径部の前記勾配の起点は、前記延伸部の前記起点と一致することを特徴とする請求項4に記載の真空ポンプを提供する。
請求項6記載の本願発明では、前記請求項1から前記請求項5の少なくとも1項に記載された真空ポンプに備わる回転円筒体を提供する。
本発明によれば、回転円筒体におけるクリープ寿命に起因する部分の応力を、回転数を下げずに低減することができるので、回転数を下げる設計にして応力を低減させる構成に比べて、排気性能を維持または向上させることができる。
(i)実施形態の概要
本発明の実施形態に係る真空ポンプでは、真空ポンプに備わるロータ円筒部(回転円筒体)の排気口側下部において、吸気口側の外径よりも小さい外径を有する縮径部(テーパ/面取り)が設けられる。
より詳しくは、ロータ円筒部の最下端部(排気口側端部)をねじ溝排気要素より長く設計して延伸部を設ける。そして、そのロータ円筒部の延伸部に、ロータ円筒部の吸気口側であり且つねじ溝排気要素と対向する部分(対向部)よりも外径の大きさが小さい縮径部を設ける。
ロータ円筒部においては、回転時に内径側に発生する応力は外径が小さいほど小さくなるので、上述した縮径部を有する構成により、回転体(ロータ円筒部など)の回転数を下げずとも、ロータ円筒部の内径側に発生する応力を低減させることができる。
本発明の実施形態に係る真空ポンプでは、真空ポンプに備わるロータ円筒部(回転円筒体)の排気口側下部において、吸気口側の外径よりも小さい外径を有する縮径部(テーパ/面取り)が設けられる。
より詳しくは、ロータ円筒部の最下端部(排気口側端部)をねじ溝排気要素より長く設計して延伸部を設ける。そして、そのロータ円筒部の延伸部に、ロータ円筒部の吸気口側であり且つねじ溝排気要素と対向する部分(対向部)よりも外径の大きさが小さい縮径部を設ける。
ロータ円筒部においては、回転時に内径側に発生する応力は外径が小さいほど小さくなるので、上述した縮径部を有する構成により、回転体(ロータ円筒部など)の回転数を下げずとも、ロータ円筒部の内径側に発生する応力を低減させることができる。
(ii)実施形態の詳細
以下、本発明の好適な実施の形態について、図1から図5を参照して詳細に説明する。
(真空ポンプ1の構成)
図1は、本発明の第1実施形態に係る真空ポンプ1の概略構成例を示した図であり、真空ポンプ1の軸線方向の断面図を示している。
なお、本発明の実施形態では、便宜上、回転翼の直径方向を「径(直径・半径)方向」、回転翼の直径方向と垂直な方向を「軸線方向(または軸方向)」として説明する。
真空ポンプ1の外装体を形成するケーシング(外筒)2は、略円筒状の形状をしており、ケーシング2の下部(排気口6側)に設けられたベース3と共に真空ポンプ1の筐体を構成している。そして、この筐体の内部には、真空ポンプ1に排気機能を発揮させる構造物である気体移送機構が収納されている。
本実施形態では、この気体移送機構は、回転自在に支持された回転体(回転翼9/ロータ円筒部10など)と、筐体に対して固定された固定部(固定翼30/ねじ溝排気要素20など)から構成されている。
また、図示しないが、真空ポンプ1の外装体の外部には、真空ポンプ1の動作を制御する制御装置が専用線を介して接続されている。
以下、本発明の好適な実施の形態について、図1から図5を参照して詳細に説明する。
(真空ポンプ1の構成)
図1は、本発明の第1実施形態に係る真空ポンプ1の概略構成例を示した図であり、真空ポンプ1の軸線方向の断面図を示している。
なお、本発明の実施形態では、便宜上、回転翼の直径方向を「径(直径・半径)方向」、回転翼の直径方向と垂直な方向を「軸線方向(または軸方向)」として説明する。
真空ポンプ1の外装体を形成するケーシング(外筒)2は、略円筒状の形状をしており、ケーシング2の下部(排気口6側)に設けられたベース3と共に真空ポンプ1の筐体を構成している。そして、この筐体の内部には、真空ポンプ1に排気機能を発揮させる構造物である気体移送機構が収納されている。
本実施形態では、この気体移送機構は、回転自在に支持された回転体(回転翼9/ロータ円筒部10など)と、筐体に対して固定された固定部(固定翼30/ねじ溝排気要素20など)から構成されている。
また、図示しないが、真空ポンプ1の外装体の外部には、真空ポンプ1の動作を制御する制御装置が専用線を介して接続されている。
ケーシング2の端部には、当該真空ポンプ1へ気体を導入するための吸気口4が形成されている。また、ケーシング2の吸気口4側の端面には、外周側へ張り出したフランジ部5が形成されている。
また、ベース3には、当該真空ポンプ1から気体を排気するための排気口6が形成されている。
また、ベース3には、当該真空ポンプ1から気体を排気するための排気口6が形成されている。
回転体は、回転軸であるシャフト7、このシャフト7に配設されたロータ8、ロータ8に設けられた複数枚の回転翼9、排気口6側に設けられたロータ円筒部(スカート部)10を備える。
各回転翼9は、シャフト7の軸線に対して垂直に放射状に伸びた円板形状の円板部材により構成される。
また、ロータ円筒部10は、ロータ8の回転軸線と同心の円筒形状をした円筒部材により構成される。本実施形態では、このロータ円筒部10に縮径部が設けられる。なお、縮径部については後述する。
各回転翼9は、シャフト7の軸線に対して垂直に放射状に伸びた円板形状の円板部材により構成される。
また、ロータ円筒部10は、ロータ8の回転軸線と同心の円筒形状をした円筒部材により構成される。本実施形態では、このロータ円筒部10に縮径部が設けられる。なお、縮径部については後述する。
シャフト7の軸線方向中程には、シャフト7を高速回転させるためのモータ部が設けられ、ステータコラム80に内包されている。
さらに、ステータコラム80内には、シャフト7のモータ部に対して吸気口4側と排気口6側に、シャフト7をラジアル方向(径方向)に非接触で支持するための径方向磁気軸受装置が設けられている。また、シャフト7の下端には、シャフト7を軸線方向(アキシャル方向)に非接触で支持するための軸方向磁気軸受装置が設けられている。
さらに、ステータコラム80内には、シャフト7のモータ部に対して吸気口4側と排気口6側に、シャフト7をラジアル方向(径方向)に非接触で支持するための径方向磁気軸受装置が設けられている。また、シャフト7の下端には、シャフト7を軸線方向(アキシャル方向)に非接触で支持するための軸方向磁気軸受装置が設けられている。
筐体(ケーシング2)の内周側には、固定部(ステータ部)が形成されている。この固定部は、固定翼30と、シャフト7の軸線に対し垂直な平面から所定の角度だけ傾斜してケーシング2の内周面からシャフト7に向かって伸びたブレードから構成されている。そして、固定翼30は円筒形状をした固定翼スペーサ40により互いに隔てられて固定されている。
なお、回転翼9と固定翼30は互い違いに配置され、軸線方向に複数段形成されるが、真空ポンプ1に要求される排出性能を満たすために、必要に応じて任意の数のロータ部品およびステータ部品を設けることができる。
なお、回転翼9と固定翼30は互い違いに配置され、軸線方向に複数段形成されるが、真空ポンプ1に要求される排出性能を満たすために、必要に応じて任意の数のロータ部品およびステータ部品を設けることができる。
本実施形態に係る真空ポンプ1では、排気口6側にねじ溝排気要素20(ねじ溝型排気機構)が配設される。
ねじ溝排気要素20のロータ円筒部10との対向面には、ネジ溝(らせん溝)が形成されている。
ねじ溝排気要素20におけるロータ円筒部10との対向面側(すなわち、真空ポンプ1の軸線に平行な内周面)は、所定のクリアランスを隔ててロータ円筒部10の外周面と対面しており、ロータ円筒部10が高速回転すると、真空ポンプ1で圧縮されたガスがロータ円筒部10の回転に伴ってネジ溝にガイドされながら排気口6側へ送出されるようになっている。すなわち、ネジ溝は、ガスを輸送する流路となっている。
このように、ねじ溝排気要素20におけるロータ円筒部10との対向面と、ロータ円筒部10とが、所定のクリアランスを隔てて対向することにより、ねじ溝排気要素20の軸線方向側内周面に形成されたネジ溝でガスを移送する気体移送機構を構成している。
なお、ガスが吸気口4側へ逆流する力を低減させるために、このクリアランスは小さければ小さいほど好ましい。
また、ねじ溝排気要素20に形成されたらせん溝の方向は、らせん溝内をロータ8の回転方向にガスが輸送された場合、排気口6に向かう方向である。
また、らせん溝の深さは、排気口6に近づくにつれて浅くなるようになっており、らせん溝を輸送されるガスは排気口6に近づくにつれて圧縮されるようになっている。
上述した構成により、真空ポンプ1は、当該真空ポンプ1に配設される真空室(図示しない)内の真空排気処理を行うことができる。
ねじ溝排気要素20のロータ円筒部10との対向面には、ネジ溝(らせん溝)が形成されている。
ねじ溝排気要素20におけるロータ円筒部10との対向面側(すなわち、真空ポンプ1の軸線に平行な内周面)は、所定のクリアランスを隔ててロータ円筒部10の外周面と対面しており、ロータ円筒部10が高速回転すると、真空ポンプ1で圧縮されたガスがロータ円筒部10の回転に伴ってネジ溝にガイドされながら排気口6側へ送出されるようになっている。すなわち、ネジ溝は、ガスを輸送する流路となっている。
このように、ねじ溝排気要素20におけるロータ円筒部10との対向面と、ロータ円筒部10とが、所定のクリアランスを隔てて対向することにより、ねじ溝排気要素20の軸線方向側内周面に形成されたネジ溝でガスを移送する気体移送機構を構成している。
なお、ガスが吸気口4側へ逆流する力を低減させるために、このクリアランスは小さければ小さいほど好ましい。
また、ねじ溝排気要素20に形成されたらせん溝の方向は、らせん溝内をロータ8の回転方向にガスが輸送された場合、排気口6に向かう方向である。
また、らせん溝の深さは、排気口6に近づくにつれて浅くなるようになっており、らせん溝を輸送されるガスは排気口6に近づくにつれて圧縮されるようになっている。
上述した構成により、真空ポンプ1は、当該真空ポンプ1に配設される真空室(図示しない)内の真空排気処理を行うことができる。
(ロータ円筒部10の構成)
上述したロータ円筒部10について、図2および図3を用いて詳細を説明する。
図2は、ロータ円筒部10における対向部10t、延伸部11、ならびに縮径部11aを説明するための図である。
図3は、ロータ円筒部10における対向部10tおよび延伸部11の拡大図である。
図2および図3(a)に示したように、ロータ円筒部10は、ねじ溝排気要素20と所定の隙間を隔てて軸線方向に対向する対向部10t、ねじ溝排気要素20よりも排気口6側に延伸した延伸部11ならびに縮径部11aを有する。
また、本実施形態では、ロータ円筒部10における対向部10tの内径をr、外径をRtとして説明する。そして、縮径部11aの最下端部(排気口6側)の外径をRs、縮径部11aの漸化外径をmとして説明する。なお、本実施形態では、「少しずつ変化する外径」という意味で「漸化外径」を用いる。
本実施形態に係る真空ポンプ1に備わるロータ円筒部10は、ねじ溝排気要素20よりも排気口6側に延伸した延伸部11において、延伸部11ではない部分のロータ円筒部10(対向部10t)の外径Rtよりも小さい漸化外径m(r<m<Rt)を有する縮径部11aが形成される。この漸化外径mは、吸気口4側から排気口6側にかけて値が小さくなる。
言い換えると、本実施形態に係るロータ円筒部10は、延伸部11の外径側において、所定の角度θa(図3(a))の勾配を有する部分(縮径部11a)を有する。この勾配は、例えば、延伸部11の外径側をテーパ形状に設計したり、あるいは延伸部11の外径側に面取りを施すなどして構成することができる。
なお、本実施形態では、所定の角度θaは、ロータ円筒部10の対向部10tにおける外径面の延長線Lと漸化外径mの延長線nとで形成される部分を指す。
上述したロータ円筒部10について、図2および図3を用いて詳細を説明する。
図2は、ロータ円筒部10における対向部10t、延伸部11、ならびに縮径部11aを説明するための図である。
図3は、ロータ円筒部10における対向部10tおよび延伸部11の拡大図である。
図2および図3(a)に示したように、ロータ円筒部10は、ねじ溝排気要素20と所定の隙間を隔てて軸線方向に対向する対向部10t、ねじ溝排気要素20よりも排気口6側に延伸した延伸部11ならびに縮径部11aを有する。
また、本実施形態では、ロータ円筒部10における対向部10tの内径をr、外径をRtとして説明する。そして、縮径部11aの最下端部(排気口6側)の外径をRs、縮径部11aの漸化外径をmとして説明する。なお、本実施形態では、「少しずつ変化する外径」という意味で「漸化外径」を用いる。
本実施形態に係る真空ポンプ1に備わるロータ円筒部10は、ねじ溝排気要素20よりも排気口6側に延伸した延伸部11において、延伸部11ではない部分のロータ円筒部10(対向部10t)の外径Rtよりも小さい漸化外径m(r<m<Rt)を有する縮径部11aが形成される。この漸化外径mは、吸気口4側から排気口6側にかけて値が小さくなる。
言い換えると、本実施形態に係るロータ円筒部10は、延伸部11の外径側において、所定の角度θa(図3(a))の勾配を有する部分(縮径部11a)を有する。この勾配は、例えば、延伸部11の外径側をテーパ形状に設計したり、あるいは延伸部11の外径側に面取りを施すなどして構成することができる。
なお、本実施形態では、所定の角度θaは、ロータ円筒部10の対向部10tにおける外径面の延長線Lと漸化外径mの延長線nとで形成される部分を指す。
また、本実施形態では、延伸部11の起点(始点)と縮径部11aの起点が一致する構成にしたが、これに限ることはない。つまり、対向部10tよりも延伸させた延伸部11の吸気口4側の一部を対向部10tと同じ大きさの外径Rtとし、続けて、縮径していく漸化外径mを有する縮径部11aを設ける構成にしてもよい。すなわち、縮径部11aは、延伸部11の少なくとも一部に形成される構成(後述する図4のロータ円筒部100の構成を参照)にすればよい。
また、本実施形態では、延伸部11の最下端部(排気口6側)の外径Rsと、縮径部11aの最下端部(排気口6側)における漸化外径mの値が一致する構成にしたが、これに限ることはない。つまり、縮径部11aの最下端部における漸化外径mの値と対向部10tの内径rの値とが一致する構成にしてもよい。
図3(b)および(c)は、縮径部11a(図3(a))の変形例を説明するための図である。
図3(b)には、変形例1に係る縮径部11bが、図3(c)には、変形例2に係る縮径部11cが各々示されている。
縮径部は、図3(b)に示したように、上述した縮径部11aが有する所定の角度(勾配)θaよりも大きな角度θbを有する縮径部11bのように構成にしてもよい。
図3(b)には、変形例1に係る縮径部11bが、図3(c)には、変形例2に係る縮径部11cが各々示されている。
縮径部は、図3(b)に示したように、上述した縮径部11aが有する所定の角度(勾配)θaよりも大きな角度θbを有する縮径部11bのように構成にしてもよい。
あるいは、図3(c)に示したように、外径として漸化外径mを有する構成にするのではなく、縮径部全体が同じ外径を有する縮径部11cのように構成にしてもよい。
すなわち、縮径部11cは、吸気口4側が真空ポンプ1の軸方向と垂直な面F(底面)を有し、かつ、この面Fと縮径部11cの外径側面とで形成される角度が直角(R)になるように縮径部11cを構成する。この場合は、上述した所定の角度θcはθc=90度になる。
すなわち、縮径部11cは、吸気口4側が真空ポンプ1の軸方向と垂直な面F(底面)を有し、かつ、この面Fと縮径部11cの外径側面とで形成される角度が直角(R)になるように縮径部11cを構成する。この場合は、上述した所定の角度θcはθc=90度になる。
なお、図3(c)では、縮径部11cに形成される吸気口4側の面Fは延伸部11の起点の位置と一致する構成にしたが、これに限ることはない。縮径部11cに形成される面Fの位置は、延伸部11の起点よりも排気口6側に数mm程度下がった位置に形成される構成にしてもよい。すなわち、縮径部11cは、延伸部11の少なくとも一部に形成される構成にすればよい。
図4および図5は、本実施形態に係る真空ポンプ1の応力低減効果を説明するための図である。
図4には、延伸部11の起点とは起点が異なる縮径部12を有するロータ円筒部100が、点線αで囲まれた部分の断面拡大図とともに示されている。
ΔLは、ロータ円筒部100における延伸部11の軸方向の長さ、長さaは縮径部12における軸方向の長さ、そして、面積Aは縮径部12を形成するために切り取られた部分の断面積(切り取り面積/実線の斜線と2本の点線とで囲まれた直角三角形の部分)を各々示している。
図5は、応力低減効果を比較した表であり、縦軸にロータ円筒部100の内径における吸気口4側からの長さ(p)をとり、横軸にロータ円筒部100を備えた真空ポンプ1のロータ円筒部100の内径側の応力値(シミュレーション時の解析値)をとっている。
図5に示したように、切り取り面積Aを設けていない(すなわち、延伸部11および縮径部12を設けていない)「(面積A)無し」の解析値に対し、切り取り面積A(切り取った部分が三角形または長方形)を設けた構造の方が、縮径部12の内径側に発生する応力が小さくなることが分かる。
さらに、図5に示した解析結果により、切り取り面積Aを同値にした場合は、「a>m」の構成が最も応力を低減させることができることがわかる。
したがって、特別な制約が無い限り、ロータ円筒部100における延伸部11の軸方向の長さΔLを、縮径部12における軸方向の長さaよりも大きく設計する必要はない。すなわち、必ずしもΔL>aになるように延伸部11および縮径部12を構成しなくてもよい。
このように、ロータ円筒部100を備えた真空ポンプ1は、延伸部11および縮径部12の構造により、ロータ円筒部100の内径側に発生する応力を低減することがわかる。
なお、図4および図5では一例としてロータ円筒部100を用いたが、ロータ円筒部10を用いても同様の結果がいえる。
図4には、延伸部11の起点とは起点が異なる縮径部12を有するロータ円筒部100が、点線αで囲まれた部分の断面拡大図とともに示されている。
ΔLは、ロータ円筒部100における延伸部11の軸方向の長さ、長さaは縮径部12における軸方向の長さ、そして、面積Aは縮径部12を形成するために切り取られた部分の断面積(切り取り面積/実線の斜線と2本の点線とで囲まれた直角三角形の部分)を各々示している。
図5は、応力低減効果を比較した表であり、縦軸にロータ円筒部100の内径における吸気口4側からの長さ(p)をとり、横軸にロータ円筒部100を備えた真空ポンプ1のロータ円筒部100の内径側の応力値(シミュレーション時の解析値)をとっている。
図5に示したように、切り取り面積Aを設けていない(すなわち、延伸部11および縮径部12を設けていない)「(面積A)無し」の解析値に対し、切り取り面積A(切り取った部分が三角形または長方形)を設けた構造の方が、縮径部12の内径側に発生する応力が小さくなることが分かる。
さらに、図5に示した解析結果により、切り取り面積Aを同値にした場合は、「a>m」の構成が最も応力を低減させることができることがわかる。
したがって、特別な制約が無い限り、ロータ円筒部100における延伸部11の軸方向の長さΔLを、縮径部12における軸方向の長さaよりも大きく設計する必要はない。すなわち、必ずしもΔL>aになるように延伸部11および縮径部12を構成しなくてもよい。
このように、ロータ円筒部100を備えた真空ポンプ1は、延伸部11および縮径部12の構造により、ロータ円筒部100の内径側に発生する応力を低減することがわかる。
なお、図4および図5では一例としてロータ円筒部100を用いたが、ロータ円筒部10を用いても同様の結果がいえる。
なお、本実施形態では、縮径部12の勾配を断面において直線状で形成する構成としたが、これに限られることはない。たとえば、図示しないが、縮径部12の勾配を断面において曲線状で形成する構成にしてもよい。
上述した構成により、本実施形態では、ロータ円筒部10(100)を含む回転体の回転数を下げずに、ロータ円筒部10(100)におけるクリープ寿命に起因する部分である縮径部(11a、11b、11c、12)の内径側にかかる応力を低減することができる。
また、回転数を下げずともクリープ現象を防止することができるので、回転数を下げることによる真空ポンプ1の排気性能の低下を防止することができる。
あるいは、この構成によりロータ円筒部10(100)を含むロータ部の回転数を上げることができ得るので、真空ポンプ1の排気性能を向上させることができる。
また、回転数を下げずともクリープ現象を防止することができるので、回転数を下げることによる真空ポンプ1の排気性能の低下を防止することができる。
あるいは、この構成によりロータ円筒部10(100)を含むロータ部の回転数を上げることができ得るので、真空ポンプ1の排気性能を向上させることができる。
なお、本発明の実施形態および各変形例は、必要に応じて各々を組み合わせる構成にしてもよい。
また、本発明は、本発明の精神を逸脱しない限り種々の改変をなすことができる。そして、本発明が当該改変されたものに及ぶことは当然である。
1 真空ポンプ
2 ケーシング(外筒)
3 ベース
4 吸気口
5 フランジ部
6 排気口
7 シャフト
8 ロータ
9 回転翼
10 ロータ円筒部
10t 対向部
11 延伸部
11a 縮径部
11b 縮径部
11c 縮径部
12 縮径部
20 ねじ溝排気要素
30 固定翼
40 固定翼スペーサ
80 ステータコラム
100 ロータ円筒部
1000 従来の真空ポンプ
1001 ロータ円筒部
2 ケーシング(外筒)
3 ベース
4 吸気口
5 フランジ部
6 排気口
7 シャフト
8 ロータ
9 回転翼
10 ロータ円筒部
10t 対向部
11 延伸部
11a 縮径部
11b 縮径部
11c 縮径部
12 縮径部
20 ねじ溝排気要素
30 固定翼
40 固定翼スペーサ
80 ステータコラム
100 ロータ円筒部
1000 従来の真空ポンプ
1001 ロータ円筒部
Claims (6)
- 吸気口と排気口が形成された外装体と、
前記外装体に固定され、ねじ溝を有するねじ溝型排気機構と、
前記外装体に内包され、回転自在に支持された回転軸と、
前記回転軸に配設され、前記ねじ溝型排気機構と隙間を介して対向する対向部および前記ねじ溝型排気機構よりも下流側に延伸した延伸部を有し、当該延伸部において前記対向部の外径よりも小さい外径を有する縮径部を備える回転円筒体と、
を具備することを特徴とする真空ポンプ。
- 前記縮径部は、当該縮径部の外径側の一部に前記回転軸の軸方向と垂直な底面を有し、前記底面と当該縮径部の外径面とで形成される角度は直角であることを特徴とする請求項1に記載の真空ポンプ。
- 前記縮径部の前記底面の位置は、前記延伸部の起点の位置と一致することを特徴とする請求項2に記載の真空ポンプ。
- 前記縮径部は、前記延伸部の前記起点から終点にかけての少なくとも一部に勾配を設けることで形成されることを特徴とする請求項1または請求項2に記載の真空ポンプ。
- 前記縮径部の前記勾配の起点は、前記延伸部の前記起点と一致することを特徴とする請求項4に記載の真空ポンプ。
- 前記請求項1から前記請求項5の少なくとも1項に記載された真空ポンプに備わる回転円筒体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780049929.5A CN109563841B (zh) | 2016-08-30 | 2017-08-09 | 真空泵及真空泵中具备的旋转圆筒体 |
KR1020187034339A KR102418911B1 (ko) | 2016-08-30 | 2017-08-09 | 진공 펌프 및 진공 펌프에 구비되는 회전 원통체 |
EP17846081.2A EP3524821A4 (en) | 2016-08-30 | 2017-08-09 | VACUUM PUMP AND ROTATING CYLINDRICAL BODY INSTALLED IN A VACUUM PUMP |
US16/327,154 US11078925B2 (en) | 2016-08-30 | 2017-08-09 | Vacuum pump and rotating cylindrical body included in vacuum pump |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-168083 | 2016-08-30 | ||
JP2016168083A JP7015106B2 (ja) | 2016-08-30 | 2016-08-30 | 真空ポンプ、および真空ポンプに備わる回転円筒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018043072A1 true WO2018043072A1 (ja) | 2018-03-08 |
Family
ID=61300606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/028865 WO2018043072A1 (ja) | 2016-08-30 | 2017-08-09 | 真空ポンプ、および真空ポンプに備わる回転円筒体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11078925B2 (ja) |
EP (1) | EP3524821A4 (ja) |
JP (1) | JP7015106B2 (ja) |
KR (1) | KR102418911B1 (ja) |
CN (1) | CN109563841B (ja) |
WO (1) | WO2018043072A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020125714A (ja) | 2019-02-04 | 2020-08-20 | エドワーズ株式会社 | 真空ポンプ及び真空ポンプに用いられる接続ポート |
JP7546412B2 (ja) | 2020-08-21 | 2024-09-06 | エドワーズ株式会社 | 真空ポンプ、固定翼、およびスペーサ |
JP2022062902A (ja) * | 2020-10-09 | 2022-04-21 | エドワーズ株式会社 | 真空ポンプ、および真空ポンプに備わる回転円筒体 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10246197A (ja) | 1997-03-05 | 1998-09-14 | Ebara Corp | ターボ分子ポンプ |
WO2012077411A1 (ja) * | 2010-12-10 | 2012-06-14 | エドワーズ株式会社 | 真空ポンプ |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5286576A (en) | 1976-01-14 | 1977-07-19 | Hitachi Ltd | Particle pump for gas centrifugation |
NL8303927A (nl) | 1983-11-16 | 1985-06-17 | Ultra Centrifuge Nederland Nv | Hoog-vacuum moleculair pomp. |
JPH0759955B2 (ja) | 1988-07-15 | 1995-06-28 | ダイキン工業株式会社 | 真空ポンプ |
FR2634829B1 (fr) * | 1988-07-27 | 1990-09-14 | Cit Alcatel | Pompe a vide |
JPH03222895A (ja) | 1990-01-26 | 1991-10-01 | Hitachi Koki Co Ltd | ねじ溝真空ポンプ |
JP3518343B2 (ja) | 1998-06-19 | 2004-04-12 | 株式会社島津製作所 | ターボ形真空排気装置 |
US20080131288A1 (en) * | 2006-11-30 | 2008-06-05 | Shimadzu Corporation | Vacuum pump |
CN102597527B (zh) * | 2009-08-26 | 2015-06-24 | 株式会社岛津制作所 | 涡轮分子泵及转子的制造方法 |
JP6390098B2 (ja) * | 2013-12-25 | 2018-09-19 | 株式会社島津製作所 | 真空ポンプ |
-
2016
- 2016-08-30 JP JP2016168083A patent/JP7015106B2/ja active Active
-
2017
- 2017-08-09 WO PCT/JP2017/028865 patent/WO2018043072A1/ja unknown
- 2017-08-09 CN CN201780049929.5A patent/CN109563841B/zh active Active
- 2017-08-09 US US16/327,154 patent/US11078925B2/en active Active
- 2017-08-09 KR KR1020187034339A patent/KR102418911B1/ko active IP Right Grant
- 2017-08-09 EP EP17846081.2A patent/EP3524821A4/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10246197A (ja) | 1997-03-05 | 1998-09-14 | Ebara Corp | ターボ分子ポンプ |
WO2012077411A1 (ja) * | 2010-12-10 | 2012-06-14 | エドワーズ株式会社 | 真空ポンプ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3524821A4 |
Also Published As
Publication number | Publication date |
---|---|
JP7015106B2 (ja) | 2022-02-02 |
KR20190040131A (ko) | 2019-04-17 |
US11078925B2 (en) | 2021-08-03 |
CN109563841A (zh) | 2019-04-02 |
EP3524821A4 (en) | 2020-07-22 |
JP2018035718A (ja) | 2018-03-08 |
CN109563841B (zh) | 2024-07-30 |
KR102418911B1 (ko) | 2022-07-08 |
US20190195238A1 (en) | 2019-06-27 |
EP3524821A1 (en) | 2019-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3388681B1 (en) | Linked-type screw groove spacer, and vacuum pump | |
US9909592B2 (en) | Vacuum pump | |
JP4749054B2 (ja) | ターボ分子ポンプ、およびターボ分子ポンプの組み立て方法 | |
WO2018043072A1 (ja) | 真空ポンプ、および真空ポンプに備わる回転円筒体 | |
JP6331491B2 (ja) | 真空ポンプ | |
CN109844321B (zh) | 真空泵、以及真空泵中具备的螺旋状板、间隔件及旋转圆筒体 | |
JP2010265894A (ja) | 真空ポンプ | |
JP6433812B2 (ja) | アダプタ及び真空ポンプ | |
JP2010265895A (ja) | 真空ポンプ | |
US10132329B2 (en) | Vacuum pump | |
JP5577798B2 (ja) | ターボ分子ポンプ | |
WO2021010347A1 (ja) | 真空ポンプ | |
JP2018200042A (ja) | 真空排気装置、真空ポンプおよび真空バルブ | |
JP2004360697A (ja) | 真空ポンプ用固定翼の製造方法およびそれにより得られる固定翼 | |
KR102716036B1 (ko) | 연결형 나사홈 스페이서, 및 진공 펌프 | |
JP2005194994A (ja) | ターボ型真空ポンプ | |
JP2006257988A (ja) | 真空ポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187034339 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17846081 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017846081 Country of ref document: EP Effective date: 20190401 |