JP3912964B2 - ターボ分子ポンプ - Google Patents

ターボ分子ポンプ Download PDF

Info

Publication number
JP3912964B2
JP3912964B2 JP2000200695A JP2000200695A JP3912964B2 JP 3912964 B2 JP3912964 B2 JP 3912964B2 JP 2000200695 A JP2000200695 A JP 2000200695A JP 2000200695 A JP2000200695 A JP 2000200695A JP 3912964 B2 JP3912964 B2 JP 3912964B2
Authority
JP
Japan
Prior art keywords
heat
casing
blade
gas
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000200695A
Other languages
English (en)
Other versions
JP2002021775A (ja
Inventor
知明 岡村
勝久 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000200695A priority Critical patent/JP3912964B2/ja
Publication of JP2002021775A publication Critical patent/JP2002021775A/ja
Application granted granted Critical
Publication of JP3912964B2 publication Critical patent/JP3912964B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸方向に交互に配列された複数の動翼(回転翼)及び静翼(固定翼)によって、吸気口から吸引したガスを排気口へ真空排気するターボ分子ポンプに関するものである。
特に本発明では、ガス分圧が高くなると固化が生じるガスを吸引する場合であっても、ターボ分子ポンプ内での固化物の付着を効果的に防止できるように工夫したものである。
【0002】
【従来の技術】
図3は、従来のターボ分子ポンプの縦断面図を示すものである。同図に示すようにケーシング1(ポンプ本体)には、ガスの吸気口2及び排気口3が設けられ、その間には、静翼(固定翼)4がスペーサ19によってその位置が固定されて取り付けられている。
【0003】
ロータ6には動翼(回転翼)5とねじ溝ポンプ段9が取付けられ、回転軸7によって回転される。そして、複数の動翼5と複数の静翼4とが軸方向に交互に配設されている。
【0004】
回転軸7と、この回転軸7の周りに配置されたステータ8との間には、ロータ6を高速回転させるために、上部の磁気軸受10と下部の磁気軸受11と軸方向軸受としての磁気軸受12とモータ13が設けられている。
【0005】
ケーシング1の外に位置する加熱部15は、加熱用電気ヒータ14によって加熱され、熱良導体17を介して放熱板20へ熱を伝えている。
【0006】
加熱部15とケーシング1との間には断熱スペーサ18が介装され、ケーシング1及びステータ8は、加熱部15,熱良導体17及び放熱板20から熱隔離されている。また、放熱板20の外周面とケーシング1の内側のスペーサ19との間の空間には、熱遮蔽板21が装設されており、この熱遮蔽板21により、放熱板20からの放射熱をスペーサ19及びケーシング1側へ伝えないように遮蔽している。
【0007】
また、放熱板20とケーシング1側の間には、ガスがバイパスしないように、Oリング23によりシールがされている。
【0008】
ケーシング1には、冷却用の冷却通路22が設けられており、この冷却通路22を通過する冷却水によってケーシング1が冷却され、アルミ合金材料により構成されたロータ6の温度が許容温度以下に抑えられるようになっている。
【0009】
以上のターボ分子ポンプでは、動翼5と回転軸7とを持つロータ6がモータ13により高速回転すると、ガスは、ガス吸気口2から動翼5,静翼4及びねじ溝ポンプ段9のガス流路を経て排気口3の方向へ流れて真空排気され、吸気口2が高真空になると共に排気口3が低真空となる。
【0010】
このとき、加熱部15を電気ヒータ14等の加熱手段により加熱し、加熱部15の熱を熱良導体17を経て放熱板20に伝え、同放熱板20を加熱し、ねじ溝ポンプ段9,回転体及びその周辺部のガス温度を上げて固化物の付着を防止している。
【0011】
ここで「固化物の付着」について説明する。このターボ分子ポンプは、例えば、半導体製造装置を真空引きする場合に使用されており、この場合には、塩化アルミガスを吸引することがある。この塩化アルミの昇華特性は、図4に示すようになっており、ガス圧が高くなるにつれて昇華温度も高くなり、グラフ線から下が固体になる範囲を示している。ターボ分子ポンプでは、吸気口2側が高真空(分圧が低い)で排気口3側が低真空(分圧が高い)となるため、排気口3側のねじ溝ポンプ段9側において分圧が高くなり固化が発生し易い。このため分圧の高い排気口3側において加熱して、固化物の付着を防いでいるのである。
【0012】
【発明が解決しようとする課題】
従来のターボ分子ポンプは、ガスを排気する際、ポンプ内部の発熱により、回転体が高温になるため、回転体材料に使用されているアルミ合金材料がクリープや強度低下を起こす原因になっており、この対策としてケーシング(ポンプ本体)1が冷却水等の冷却手段により冷却されている。
【0013】
しかしながら、ケーシング1を冷却すると、ケーシング1内の温度が、排気するガスの昇華温度以下になり、ガス流路の内部に固化物が付着し、ポンプの性能低下や接触による故障等を引き起こすので、ねじ溝ポンプ段9〜ガス出口周りのガス流路に放熱板20を設けて電気ヒータ等の加熱手段によって加熱し、ガス温度を固化温度以上に加熱していたが、加熱温度が十分に届かない部分の排気口3に近い下流側の静翼4の近傍には、固化物が付着してしまう現象が起きていた。
【0014】
このため、固化物を定期的に取り除くメンテナンス作業が必要となり、ターボ分子ポンプの操業が低下するという問題があった。
【0015】
またケーシング1を冷却すると、ケーシング1内の温度が、排気するガスの昇華温度以下になり、ガス流路の内部に固化物が付着し、ポンプの性能低下や接触による故障等を引き起こすので、ねじ溝ポンプ段9〜ガス出口周りのガス流路に放熱板20を設けて外部からの電気ヒータ等の加熱手段によって加熱し、ガス温度を固化温度以上に加熱するためには、電気ヒータの容量を大きくする必要があった。
【0016】
本発明は、上記従来技術の問題を解消するために提案するものであり、放熱板を下流側の静翼またはスペーサに接触させることで、ガス温度を昇華温度以上に加熱して固化物の付着を防止し、ケーシング内部の洗浄等のメンテナンス作業を不要にできるターボ分子ポンプを提供することを目的としている。
【0018】
【課題を解決するための手段】
上記課題を解決する本発明の構成は、ケーシング内に、軸方向に交互に配列された複数の動翼及び複数の静翼と、前記複数の静翼相互を軸方向に離間しつつ位置固定するため軸方向に並んで配置されたスペーサと、ガス流路のうち前記動翼及び前記静翼よりも下流側に位置するガス流路を外部から供給された熱で加熱する放熱板とを備えたターボ分子ポンプにおいて、
前記放熱板の上流側部分に形成されており、複数の前記スペーサのうち前記静翼の下方に位置するスペーサに接触している熱伝導部と、
前記熱伝導部よりも下流側に配置されており、熱が前記ケーシングに伝わるのを防止する下流側の断熱スペーサと、
前記熱伝導部よりも上流側に位置しつつ前記スペーサに介装された上流側の断熱スペーサとを設けたことを特徴とする。
また本発明の構成は、ケーシング内に、軸方向に交互に配列された複数の動翼及び複数の静翼と、前記複数の静翼相互を軸方向に離間しつつ位置固定するため軸方向に並んで配置されたスペーサと、ガス流路のうち前記動翼及び前記静翼よりも下流側に位置するガス流路を外部から供給された熱で加熱する放熱板とを備えたターボ分子ポンプにおいて、
前記放熱板の上流側部分に形成されており、複数の前記静翼のうち下流側の静翼に接触している熱伝導部と、
前記熱伝導部よりも下流側に配置されており、熱が前記ケーシングに伝わるのを防止する下流側の断熱スペーサと、
前記熱伝導部よりも上流側に位置しつつ前記スペーサに介装された上流側の断熱スペーサとを設けたことを特徴とする。
【0019】
また本発明の構成は、上流側の断熱スペーサの位置は、ケーシング内でのガス圧力とガス固化温度と動翼温度により決定されていることを特徴とする。
【0022】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づき詳細に説明する。なお従来技術と同一部分には同一符号を付して説明をする。
【0023】
<第1の実施の形態>
図1は、本発明の第1の実施の形態にかかるターボ分子ポンプの縦断面図を示すものである。同図に示すようにケーシング1(ポンプ本体)には、ガスの吸気口2及び排気口3が設けられ、その間には、静翼(固定翼)4がスペーサ19によってその位置が固定されて取り付けられている。
【0024】
ロータ6には動翼(回転翼)5とねじ溝ポンプ段9が取付けられ、回転軸7によって回転される。そして、複数の動翼5と複数の静翼4とが軸方向に交互に配設されている。結局、吸気口2から排気口3に至るガス流路には、交互配置された複数の動翼5及び複数の静翼4と、ねじ溝ポンプ段9が、ガスの流れ方向に沿い順に設置されている。
【0025】
回転軸7と、この回転軸7の周りに配置されたステータ8との間には、ロータ6を高速回転させるために、上部の磁気軸受10と下部の磁気軸受11と軸方向軸受としての磁気軸受12とモータ13が設けられている。
【0026】
ケーシング1の外に位置する加熱部15は、加熱用電気ヒータ14によって加熱され、熱良導体17を介して放熱板20へ熱を伝えている。この放熱板20は、ねじ溝ポンプ段9が位置するガス流路を加熱する、即ち、ガス流路のうち動翼5及び静翼4よりも下流側に位置するガス流路を加熱する。
【0027】
加熱部15とケーシング1との間には断熱スペーサ18が介装され、ケーシング1及びステータ8は、加熱部15,熱良導体17及び放熱板20から熱隔離されている。また、放熱板20の外周面とケーシング1の内側のスペーサ19との間の空間には、熱遮蔽板21が装設されており、この熱遮蔽板21により、放熱板20からの放射熱をスペーサ19及びケーシング1側へ伝えないように遮蔽している。
【0028】
また、放熱板20とケーシング1側の間には、ガスがバイパスしないように、Oリング23によりシールがされている。
【0029】
ケーシング1には、冷却用の冷却通路22が設けられており、この冷却通路22を通過する冷却水によってケーシング1が冷却され、アルミ合金材料により構成されたロータ6の温度が許容温度以下に抑えられるようになっている。
【0030】
ここまでの構成は従来技術と同一であるが、本実施の形態では更に、次の様な新規な構成が採用されている。
【0031】
即ち、複数のスペーサ19は、複数の静翼4を軸方向に離間しつつ位置固定するため、軸方向に並んで配置されている。放熱板20は、ねじ溝ポンプ段9とスペーサ19の間のガス流路、即ち、ガス流路のうち動翼5及び静翼4よりも下流側に位置するガス流路に装設されると共に、排気口3に近い下流側の静翼4bに熱を伝達させるため、熱伝導部20aを介して、複数のスペーサ19のうち下流側の静翼4bの下方に位置するスペーサ19に面接触している。
なお、放熱板20を下流側の静翼4bに接触させるように構成してもよい。
【0032】
また、排気口3に近い下流側の静翼4bと吸気口2に近い上流側の静翼4aとの間に断熱スペーサ18aを設け、また、熱伝導部20aを介して放熱板20が接触しているスペーサ19と熱伝導部20aの直下のケーシング1との間にも断熱スペーサ18bを設けて熱隔離をしている。
【0033】
なお断熱スペーサ18aの位置は、ケーシング1内でのガス圧力とガス固化温度と動翼5の温度を考慮して決定している。具体的には、
(1) ガス圧力が高い場合には、断熱スペーサ18aの位置を、更に上流側に設定することができ、
(2) ガス固化温度が高い場合には、断熱スペーサ18aの位置を、更に下流側に設定することができ、
(3) 動翼温度が高い場合には、断熱スペーサ18aの位置を、更に下流側に設定することができる。
【0034】
以上のターボ分子ポンプでは、動翼5と回転軸7とを持つロータ6がモータ13により高速回転すると、ガスは、ガス吸気口2から動翼5,静翼4及びねじ溝ポンプ段9のガス流路を経て排気口3の方向へ流れて真空排気され、吸気口2が高真空になると共に排気口3が低真空となる。
【0035】
このとき、加熱部15を電気ヒータ14等の加熱手段により加熱し、加熱部15の熱を熱良導体17を経て放熱板20に伝え、同放熱板20を加熱し、ねじ溝ポンプ段9、回転体及びその周辺部のガス温度を上げて固化物の付着を防止している。
【0036】
このとき、放熱板20からの放熱温度は、アルミ合金材からなる回転体等の強度に影響しない範囲で、ガスの昇華温度より高い温度となるように、加熱部15を加熱する電気ヒータ14が制御されている。
【0037】
一方、ロータ6で発生した熱は、動翼5→上流側の静翼4a→スペーサ19→ケーシング1に伝わり、ケーシング1の対流で冷却される経路と、ロータ6→ステータ8→ケーシング1に伝わり、冷却通路22の冷却水で冷却される経路とで、回転体の温度上昇を許容温度以下に抑えている。
【0038】
上記のターボ分子ポンプでは、吸気口2からのガス圧力は、動翼5,静翼4及びねじ溝ポンプ段9を経て次第に圧力が高くなり、排気口3から排気される。このガス圧力の変化に対応して、ガス圧力が高くなり昇華温度も高くなる位置へ放熱板20を配置し、ガスの昇華温度より高くなるように放熱温度が設定されている。
【0039】
しかも、放熱板20を下流側の静翼4bまたは下流側のスペーサ19に接触させているので、放熱板20はねじ溝ポンプ段9及び下流側の静翼4bのガス流路のガス温度を昇華温度以上に加熱して固化物の付着を防止することができる。このため、ケーシング1内部の洗浄等のメンテナンス作業を不要にでき、連続運転が可能となる。
【0040】
更に、加熱したい下流側の静翼4bとロータ温度を冷却するための伝熱経路となる上流側の静翼4aの間に断熱スペーサ18aを入れているのでロータの全体温度を上昇させることなく昇華温度の高い下流側のガス流路のみを昇温することが可能となった。これにより回転体のクリープや強度低下することなくプロセスガスの固化付着を防止することができる。
【0041】
以上のとおり第1の実施の形態では、放熱板20によってガス流路の温度を上昇させて、アルミ合金材料からなる回転体等の強度に影響しない温度範囲で、かつ、ガスの昇華温度より高くしたので、ガス流路への固化物の付着が防止される効果がある。
なお第1の実施の形態ではねじ溝ポンプ段のあるターボ分子ポンプを説明したが、本発明は、ねじ溝ポンプ段のないターボ分子ポンプにも適用することができる。
【0042】
<第2の実施の形態>
図2は、本発明の第2の実施の形態にかかるターボ分子ポンプの縦断面図を示すものである。同図に示すようにケーシング1(ポンプ本体)には、ガスの吸気口2及び排気口3が設けられ、その間には、静翼(固定翼)4がスペーサ19によってその位置が固定されて取り付けられている。
【0043】
ロータ6には動翼(回転翼)5とねじ溝ポンプ段9が取付けられ、回転軸7によって回転される。そして、複数の動翼5と複数の静翼4とが軸方向に交互に配設されている。結局、吸気口2から排気口3に至るガス流路には、交互配置された複数の動翼5及び複数の静翼4と、ねじ溝ポンプ段9が、ガスの流れ方向に沿い順に設置されている。
【0044】
回転軸7と、この回転軸7の周りに配置されたステータ8との間には、ロータ6を高速回転させるために、上部の磁気軸受10と下部の磁気軸受11と軸方向軸受としての磁気軸受12とモータ13が設けられている。
【0045】
ケーシング1の外に位置する加熱部15は、加熱用電気ヒータ14によって加熱され、熱良導体17を介して放熱板20へ熱を伝えている。この放熱板20は、ねじ溝ポンプ段9が位置するガス流路を加熱する、即ち、ガス流路のうち動翼5及び静翼4よりも下流側に位置するガス流路を加熱する。
【0046】
加熱部15とケーシング1との間には断熱スペーサ18が介装され、ケーシング1及びステータ8は、加熱部15,熱良導体17及び放熱板20から熱隔離されている。また、放熱板20の外周面とケーシング1の内側のスペーサ19との間の空間には、熱遮蔽板21が装設されており、この熱遮蔽板21により、放熱板20からの放射熱をスペーサ19及びケーシング1側へ伝えないように遮蔽している。
【0047】
また、放熱板20とケーシング1側の間には、ガスがバイパスしないように、Oリング23によりシールがされている。
【0048】
ケーシング1には、冷却用の冷却通路22が設けられており、この冷却通路22を通過する冷却水によってケーシング1が冷却され、アルミ合金材料により構成されたロータ6の温度が許容温度以下に抑えられるようになっている。
【0049】
ここまでの構成は従来技術と同一であるが、本実施の形態では更に、次の様な新規な構成が採用されている。
【0050】
即ち、放熱板20の下端面には、良熱伝導体24が取付けられている。この良熱伝導体24の端面(上端面)には、コイル25を埋め込むためのドーナツ状の溝が形成されており、同溝にコイル25が埋め込まれている。また、同溝はコイルを埋め込んだ状態で腐食性ガスの侵入を防ぐため耐蝕性,絶縁性および気密性に優れた材料であるエポキシ系樹脂等でモールドされて密閉されている。
【0051】
コネクタ26は、外部からコイル25に高周波電流を供給するものであり、ポンプ内部の真空を維持できるよう気密性のすぐれたものを使用している。このコネクタ26のピンにはコイル25につながるリード線が接続されると共に、外部に配置したインバータ等の高周波電源27が接続されている。このため、高周波電源27から出力された高周波電流が、コネクタ26を介してコイル25に供給されるようになっている。
【0052】
以上のターボ分子ポンプでは、動翼5と回転軸7とを持つロータ6がモータ13により高速回転すると、ガスは、ガス吸気口2から動翼5,静翼4及びねじ溝ポンプ段9のガス流路を経て排気口3の方向へ流れて真空排気され、吸気口2が高真空になると共に排気口3が低真空となる。
【0053】
このとき、ポンプ内部に設けられた放熱板20に取付けられた良熱伝導体24に埋め込まれたコイル25に、インバータ等の高周波電源27で高周波電流を流すことにより、コイル25に発生する銅損、及び、良熱伝導帯24で発生する鉄損により良熱伝導体24が加熱され、良熱伝導体24に直結している放熱板20に熱を伝え、同放熱板20を加熱する。このようにして加熱された放熱板20はガス流路を加熱するため、ねじ溝ポンプ段9、下流側静翼4b、回転体及びその周辺部への固化物の付着を防止する。なお前述した「銅損」は、コイル25のコイル巻数,高周波電流値及び高周波電流の周波数に比例し、前述した「鉄損」は、コイル25の巻数,高周波電流値に比例し及び高周波電流の周波数の約2乗に比例する。
【0054】
放熱板20からの放熱温度は、アルミ合金材からなる回転体等の強度に影響しない範囲で、ガスの昇華温度より高い温度となるように、高周波電流値又は周波数が制御されている。なお高周波電源27は、電流値が2〜3Aで、周波数が2000〜3000Hzの高周波電流をコイル25に供給する
【0055】
更に、排気口3での固化物の付着を防止するために、排気口3のポンプ外部に設けられた加熱部15を電気ヒータ14により加熱し、加熱部15の熱をポンプ内部の熱良導体17を経て良熱伝導体24に伝え、放熱板20を加熱する構造も併用することができる。図2は本機構を併用した事例を示す。
【0056】
なお、この場合もアルミ合金材からなる回転体等の強度に影響しない範囲で、ガスの昇華温度より高い温度となるように、加熱部15を加熱する電気ヒータ14が制御されている。
【0057】
上記のターボ分子ポンプでは、吸気口2からのガス圧力は、動翼5,静翼4及びねじ溝ポンプ段9を経て次第に圧力が高くなり、排気口3から排気される。このガス圧力の変化に対応して、ガス圧力が高くなり昇華温度も高くなる位置へ放熱板20を配置し、ガスの昇華温度より高くなるように放熱温度が設定されている。
【0058】
しかも、コイル25に高周波電流を流して放熱板20を直接加熱する方法としたので、従来のケーシング1による伝熱損失を削除でき、低電力で目標温度に昇温することが可能となった。つまり、ケーシング1全体を加熱することなく、放熱板20をうず電流により直接加熱するため、ガス流路のうち固化が生じやすい部分のみをねらって効果的な加熱ができるのである。また、コイル25に通電する高周波電流の周波数を高くすれば更に小型化できる。
【0059】
更に、内部で放熱板20を直接昇温させる構造としたので加熱機構を簡素化でき、低電力化できることでも加熱部の小型化に寄与できた。
【0060】
以上のとおり第2の実施の形態では、放熱板20によってガス流路の温度を上昇させて、アルミ合金材料からなる回転体等の強度に影響しない温度範囲で、かつ、低電力、小型、簡素機構でガス流路への固化物の付着が防止される効果がある。
なお第2の実施の形態ではねじ溝ポンプ段のあるターボ分子ポンプを説明したが、本発明は、ねじ溝ポンプ段のないターボ分子ポンプにも適用することができる。
【0061】
【発明の効果】
以上実施例と共に具体的に説明したように本発明では、ケーシング内に、軸方向に交互に配列された複数の動翼及び複数の静翼と、前記複数の静翼相互を軸方向に離間しつつ位置固定するため軸方向に並んで配置されたスペーサと、ガス流路のうち前記動翼及び前記静翼よりも下流側に位置するガス流路を外部から供給された熱で加熱する放熱板とを備えたターボ分子ポンプにおいて、
前記放熱板の上流側部分に形成されており、複数の前記スペーサのうち前記静翼の下方に位置するスペーサに、または複数の前記静翼のうち下流側の静翼に、接触している熱伝導部と、
前記熱伝導部よりも下流側に配置されており、熱が前記ケーシングに伝わるのを防止する下流側の断熱スペーサと、
前記熱伝導部よりも上流側に位置しつつ前記スペーサに介装された上流側の断熱スペーサとを設けた構成とした。
また本発明では、上流側の断熱スペーサの位置は、ケーシング内でのガス圧力とガス固化温度と動翼温度により決定されている構成とした。
【0062】
このような構成にしたため、放熱板はねじ溝ポンプ段及び下流側静翼のガス流路のガス温度を昇華温度以上に加熱して固化物の付着を防止しケーシング内部の洗浄等のメンテナンス作業を不要にでき、連続運転が可能となるので、ターボ分子ポンプの操業度を一段と高める効果を奏したものであり産業上極めて有益なものである。
さらに、加熱したい下流側静翼とロータ温度を冷却するための伝熱経路となる上流側静翼の間に断熱スペーサを入れているのでロータの全体温度を上昇させることなく昇華温度の高い下流側のガス流路のみを昇温することが可能となった。これにより回転体のクリープや強度低下することなくプロセスガスの固化付着を防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態にかかるターボ分子ポンプを示す縦断面図。
【図2】本発明の第2の実施の形態にかかるターボ分子ポンプを示す縦断面図。
【図3】従来のターボ分子ポンプを示す縦断面図。
【図4】塩化アルミ(AlCl3 )の分圧と昇華温度の関係を示すグラフ。
【符号の説明】
1 ケーシング
2 吸気口
3 排気口
4 静翼
5 動翼
6 ロータ
7 回転軸
8 ステータ
9 ねじ溝ポンプ段
10,11,12 磁気軸受
13 モータ
14 加熱用電気ヒータ
15 加熱部
17 熱良導体
18,18a,18b 断熱スペーサ
19 スペーサ
20 放熱板
21 熱遮蔽板
22 冷却通路
23 Oリング
24 良熱伝導体
25 コイル
26 コネクタ
27 高周波電源

Claims (3)

  1. ケーシング内に、軸方向に交互に配列された複数の動翼及び複数の静翼と、前記複数の静翼相互を軸方向に離間しつつ位置固定するため軸方向に並んで配置されたスペーサと、ガス流路のうち前記動翼及び前記静翼よりも下流側に位置するガス流路を外部から供給された熱で加熱する放熱板とを備えたターボ分子ポンプにおいて、
    前記放熱板の上流側部分に形成されており、複数の前記スペーサのうち前記静翼の下方に位置するスペーサに接触している熱伝導部と、
    前記熱伝導部よりも下流側に配置されており、熱が前記ケーシングに伝わるのを防止する下流側の断熱スペーサと、
    前記熱伝導部よりも上流側に位置しつつ前記スペーサに介装された上流側の断熱スペーサとを設けたことを特徴とするターボ分子ポンプ。
  2. ケーシング内に、軸方向に交互に配列された複数の動翼及び複数の静翼と、前記複数の静翼相互を軸方向に離間しつつ位置固定するため軸方向に並んで配置されたスペーサと、ガス流路のうち前記動翼及び前記静翼よりも下流側に位置するガス流路を外部から供給された熱で加熱する放熱板とを備えたターボ分子ポンプにおいて、
    前記放熱板の上流側部分に形成されており、複数の前記静翼のうち下流側の静翼に接触している熱伝導部と、
    前記熱伝導部よりも下流側に配置されており、熱が前記ケーシングに伝わるのを防止する下流側の断熱スペーサと、
    前記熱伝導部よりも上流側に位置しつつ前記スペーサに介装された上流側の断熱スペーサとを設けたことを特徴とするターボ分子ポンプ。
  3. 上流側の断熱スペーサの位置は、ケーシング内でのガス圧力とガス固化温度と動翼温度により決定されていることを特徴とする請求項1または請求項2のターボ分子ポンプ。
JP2000200695A 2000-07-03 2000-07-03 ターボ分子ポンプ Expired - Lifetime JP3912964B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000200695A JP3912964B2 (ja) 2000-07-03 2000-07-03 ターボ分子ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000200695A JP3912964B2 (ja) 2000-07-03 2000-07-03 ターボ分子ポンプ

Publications (2)

Publication Number Publication Date
JP2002021775A JP2002021775A (ja) 2002-01-23
JP3912964B2 true JP3912964B2 (ja) 2007-05-09

Family

ID=18698525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000200695A Expired - Lifetime JP3912964B2 (ja) 2000-07-03 2000-07-03 ターボ分子ポンプ

Country Status (1)

Country Link
JP (1) JP3912964B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935509B2 (ja) * 2007-06-05 2012-05-23 株式会社島津製作所 ターボ分子ポンプ
FR2923556A1 (fr) * 2007-11-09 2009-05-15 Alcatel Lucent Sas Unite de pompage et dispositif de chauffage correspondant
JP2014029129A (ja) * 2012-07-31 2014-02-13 Edwards Kk 真空ポンプ
CN104870825B (zh) * 2013-01-31 2018-07-31 埃地沃兹日本有限公司 真空泵
JP6735058B2 (ja) * 2013-07-31 2020-08-05 エドワーズ株式会社 真空ポンプ
JP6390478B2 (ja) * 2015-03-18 2018-09-19 株式会社島津製作所 真空ポンプ
JP6666696B2 (ja) * 2015-11-16 2020-03-18 エドワーズ株式会社 真空ポンプ
JP6957320B2 (ja) * 2017-11-17 2021-11-02 エドワーズ株式会社 真空ポンプ、および真空ポンプに備わる高温ステータ、ガス排気口
JP7348753B2 (ja) * 2019-05-31 2023-09-21 エドワーズ株式会社 真空ポンプ、および連結型ネジ溝スペーサ
JP7456394B2 (ja) * 2021-01-22 2024-03-27 株式会社島津製作所 真空ポンプ
JP7378447B2 (ja) 2021-08-27 2023-11-13 エドワーズ株式会社 真空ポンプおよび固定部品

Also Published As

Publication number Publication date
JP2002021775A (ja) 2002-01-23

Similar Documents

Publication Publication Date Title
JP3160504B2 (ja) ターボ分子ポンプ
JP3912964B2 (ja) ターボ分子ポンプ
JP7048391B2 (ja) 真空ポンプ
KR102214002B1 (ko) 진공 펌프
WO2012046495A1 (ja) 真空ポンプ制御装置及び真空ポンプ
CN208986739U (zh) 盘式电机
JP4222747B2 (ja) 真空ポンプ
JP2003269367A (ja) 真空ポンプ
JP2013542707A (ja) 軸方向磁束電気機器
JP2003269369A (ja) 真空ポンプ
JP5796948B2 (ja) 真空ポンプ
JP2002048088A (ja) 真空ポンプ
JP2968188B2 (ja) 真空ポンプ装置
CN114364880A (zh) 真空泵
JP2002303293A (ja) ターボ分子ポンプ
JP2865959B2 (ja) ターボ分子ポンプ
KR20180081336A (ko) 전동 과급기
JP4916655B2 (ja) 真空ポンプ
EP3808983B1 (en) Vacuum pump with heater in the side cover
JP3084622B2 (ja) ターボ分子ポンプ
JPH0974716A (ja) 電動機のロータ冷却構造
JP3456558B2 (ja) ターボ分子ポンプ
JP2004270692A (ja) 分子ポンプの断熱構造
KR20040059944A (ko) 모터 방열 모듈
JP4566354B2 (ja) 分子ポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R151 Written notification of patent or utility model registration

Ref document number: 3912964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

EXPY Cancellation because of completion of term