WO2014045438A1 - ターボ分子ポンプ - Google Patents
ターボ分子ポンプ Download PDFInfo
- Publication number
- WO2014045438A1 WO2014045438A1 PCT/JP2012/074390 JP2012074390W WO2014045438A1 WO 2014045438 A1 WO2014045438 A1 WO 2014045438A1 JP 2012074390 W JP2012074390 W JP 2012074390W WO 2014045438 A1 WO2014045438 A1 WO 2014045438A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base
- temperature
- cooling
- spacer
- refrigerant
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/006—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by influencing fluid temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/044—Holweck-type pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/584—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/5853—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps heat insulation or conduction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/60—Fluid transfer
- F05D2260/607—Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles
Definitions
- the present invention relates to a turbo molecular pump provided with a turbine blade part and a thread groove pump part.
- a turbo molecular pump provided with a turbine blade portion and a thread groove pump portion is used for evacuation of a process chamber in processes such as dry etching and CVD.
- a large amount of gas is exhausted by the turbo molecular pump, the frictional heat generated by the moving blade (rotary blade) is transmitted in the order of the moving blade, stationary blade (fixed blade), spacer, and base, and the cooling pipe provided in the base The heat is dissipated into the cooling water.
- the temperature of the rotor including the moving blades may exceed the allowable temperature.
- the speed of expansion due to creep increases, and the rotor may come into contact with the stator in a period shorter than the design life.
- a reaction product is generated during etching or CVD, and the reaction product is likely to be deposited on the screw stator of the thread groove pump portion. Since the clearance between the screw stator and the rotor is very small, if a reaction product accumulates on the screw stator, the screw stator and the rotor are fixed, and the rotor may not be able to start rotating.
- the turbo molecular pump includes a first cooling water channel that cools the rotor blade portion, and a device (heater and second cooling water channel) for adjusting the temperature of the screw stator. ing.
- the first cooling water channel is provided on the outer peripheral surface of the pump casing, and the fixed wing accommodated in the pump casing is cooled by cooling the pump casing.
- a turbo molecular pump includes a rotor formed with a plurality of stages of rotating blades and a cylindrical portion, and a plurality of stages of fixed blades arranged alternately with respect to the plurality of stages of rotating blades.
- a stator disposed through a gap with respect to the cylindrical portion, a plurality of spacers positioned on a base to which the stator is fixed, positioning a plurality of fixed blades, a heater provided on the base, and a stator
- a temperature sensor that detects the temperature
- a temperature adjustment unit that controls the heater on and off based on the temperature detected by the temperature sensor and adjusts the temperature of the stator to be a reaction product deposition prevention temperature, and includes a plurality of spacers.
- At least one of the spacers disposed on the base side of the inside is further cooled by a cooling medium, and further includes a heat insulating member provided between the base and the spacer disposed on the base.
- the spacer cooled by the cooling medium includes a spacer portion stacked together with other spacers, and a first refrigerant flow path through which the cooling medium flows. It is preferable that the cooling unit is configured such that the refrigerant supply unit and the refrigerant discharge unit of the first refrigerant channel are arranged on the pump atmosphere side.
- the second refrigerant flow path through which the cooling medium flows is formed, and further includes a base cooling part that cools the base, and the temperature adjustment part is The temperature of the stator is preferably adjusted by controlling the heater on / off and the amount of cooling medium supplied to the base cooling section based on the temperature detected by the temperature sensor.
- the refrigerant discharge part of the first refrigerant flow path, the refrigerant supply side of the second refrigerant flow path, and the refrigerant that bypasses the second refrigerant flow path A three-way valve that is connected to each pipe and switches the inflow destination of the cooling medium discharged from the refrigerant discharge portion of the first refrigerant flow path to the refrigerant supply side of the second refrigerant flow path or the refrigerant pipe that bypasses the second refrigerant flow path
- the temperature adjustment unit switches the three-way valve to the refrigerant pipe and turns on the heater when the temperature sensor detection temperature is lower than the reaction product accumulation prevention temperature, and the temperature sensor detection temperature is the reaction product accumulation temperature.
- the spacer arranged closest to the base side is cooled by the cooling medium. It is preferable to do this.
- the turbomolecular pump further includes a pump casing that is sandwiched between the plurality of spacers stacked on the base and bolted to the base,
- the heat insulating member is preferably a heat insulating washer that is mounted between a spacer that is attached to a bolt for fixing a bolt and is cooled by a cooling medium, and a base.
- FIG. 1 is a cross-sectional view showing a schematic configuration of the pump body 1.
- FIG. 2 is an enlarged view of a portion of the cooling spacer 23b of FIG.
- FIG. 3 is a view of the cooling spacer 23b as viewed from the direction A in FIG.
- FIG. 4 is a diagram illustrating the temperature adjustment operation.
- FIG. 5 is a diagram illustrating a first modification of the cooling spacer.
- FIG. 6 is a diagram illustrating a second modification of the cooling spacer.
- FIG. 7 is a plan view of the ring washer.
- FIG. 8 is a diagram showing a case where the on-off valve 54 is used in the cooling piping system.
- FIG. 9 is a view showing a temperature control device in which the base cooling pipe 46 is omitted.
- FIG. 1 is a diagram showing a schematic configuration of a turbo molecular pump according to the present invention.
- the turbo molecular pump includes a pump body 1 shown in FIG. 1 and a control unit (not shown) that drives and controls the pump body 1.
- the control unit includes a main control unit that controls the entire pump body, a motor control unit that drives a motor 36 described later, a bearing control unit that controls a magnetic bearing provided in the pump body 1, and a temperature control described later.
- a control unit 511 and the like are provided.
- an active magnetic bearing type turbo molecular pump will be described as an example.
- the present invention is also applied to a turbo molecular pump using a passive magnetic bearing using a permanent magnet, a turbo molecular pump using a mechanical bearing, or the like. can do.
- the rotor 30 is formed with a plurality of stages of rotor blades 30a and a cylindrical portion 30b provided on the exhaust downstream side of the rotor blades 30a.
- the rotor 30 is fastened to a shaft 31 that is a rotating shaft.
- the rotor 30 and the shaft 31 constitute a pump rotating body.
- the shaft 31 is supported in a non-contact manner by magnetic bearings 37, 38, 39 provided on the base 20.
- the electromagnet constituting the axial magnetic bearing 39 is disposed so as to sandwich the rotor disk 35 provided at the lower end of the shaft 31 in the axial direction.
- the pump rotor (rotor 30 and shaft 31) magnetically levitated by the magnetic bearings 37 to 39 is driven to rotate at high speed by the motor 36.
- a three-phase brushless motor is used as the motor 36.
- a motor stator 36a of the motor 36 is provided on the base 20, and a motor rotor 36b including a permanent magnet is provided on the shaft 31 side.
- the shaft 31 is supported by the emergency mechanical bearings 26a and 26b.
- the fixed blades 22 are respectively disposed between the upper and lower rotary blades 30a.
- the plurality of stages of fixed blades 22 are positioned on the base 20 by a plurality of spacers 23a and cooling spacers 23b. Each of the plurality of stages of fixed blades 22 is sandwiched between spacers 23a.
- a cooling spacer 23b is provided at the lowermost stage of the laminate composed of a plurality of stages of fixed blades 22 and a plurality of spacers 23a. The detailed configuration of the portion where the cooling spacer 23b is disposed will be described later.
- a turbine blade portion TP composed of a rotary blade 30a and a fixed blade 22, and a thread groove pump portion SP composed of a cylindrical portion 30b and a screw stator 24.
- a screw groove is formed on the screw stator 24 side, but a screw groove may be formed on the cylindrical portion 30b side.
- An exhaust port 25 is provided at the exhaust port 20 a of the base 20, and a back pump is connected to the exhaust port 25.
- the base 20 is provided with a base cooling pipe 46, a heater 42, and a temperature sensor 43 for controlling the temperature of the screw stator 24.
- the temperature control of the screw stator 24 will be described later.
- the heater 42 composed of a band heater is mounted so as to be wound around the side surface of the base 20.
- a sheath heater may be embedded in the base 20.
- the temperature sensor 43 for example, a thermistor, a thermocouple, or a platinum temperature sensor is used.
- FIG. 2 is an enlarged view of a portion where the cooling spacer 23b of FIG. 1 is provided.
- the stacked body in which the plurality of stages of fixed blades 22 and the plurality of spacers 23a are alternately stacked is placed on the cooling spacer 23b.
- the cooling spacer 23b includes a flange portion 232 in which the spacer cooling pipe 45 is provided, and a spacer portion 231 that is laminated together with other spacers 23a.
- FIG. 3 is a plan view of the cooling spacer 23b of FIG. 2 as viewed from the A direction.
- the cooling spacer 23b is a ring-shaped member similar to the spacer 23a.
- a circular groove 234 that accommodates the spacer cooling pipe 45 is formed in the flange portion 232.
- a plurality of through holes 230 for fastening bolts are formed on the outer peripheral side of the groove 234.
- the gap between the spacer cooling pipe 45 and the groove 234 is filled with heat conductive grease, good heat conductive resin, solder, or the like.
- the spacer cooling pipe 45 is bent into a substantially circular shape, and the refrigerant supply part 45a and the refrigerant discharge part 45b of the spacer cooling pipe 45 are drawn out to the side of the cooling spacer 23b.
- a piping joint 50 is attached to the refrigerant supply part 45a and the refrigerant discharge part 45b.
- the cooling medium for example, cooling water
- the cooling medium flows into the spacer cooling pipe 45 from the refrigerant supply unit 45a flows in a circular shape along the spacer cooling pipe 45 and is discharged from the refrigerant discharge unit 45b.
- the casing 21 is mounted such that the flange 21 c faces the flange portion 232 of the cooling spacer 23 b and is fixed to the base 20 by the bolt 40.
- Each bolt 40 is provided with a heat washer 44 that functions as a heat insulating member.
- the heat insulating washer 44 is disposed between the base 20 and the cooling spacer 23b, and insulates the base 20 and the cooling spacer 23b.
- a material used for the heat insulating washer 44 a material having a lower thermal conductivity than a material (for example, aluminum) used for the spacer 23a or the cooling spacer 23b is used.
- a resin for example, epoxy resin having a heat resistant temperature of 120 ° C. or higher is desirable.
- a vacuum seal 48 is provided between the flange portion 232 of the cooling spacer 23b and the base 20, and a vacuum seal 47 is also provided between the flange portion 232 and the flange 21c.
- the screw stator 24 is fixed to the base 20 with bolts 49.
- the base 20 is heated by a heater 42 and cooled by a base cooling pipe 46 through which a cooling medium flows.
- the temperature sensor 43 is disposed in the vicinity of the portion of the base 20 where the screw stator 24 is fixed.
- the cooling spacer 23b is cooled by a cooling medium flowing in the spacer cooling pipe 45. Therefore, the heat of the fixed blade 22 is transmitted in the order of the spacers 23a and the cooling spacers 23b as indicated by broken arrows, and is radiated to the cooling medium in the spacer cooling pipe 45.
- the heating by the heater 42 and the cooling by the base cooling pipe 46 are controlled so that the temperature of the screw stator 24 is equal to or higher than the temperature at which the reaction product does not accumulate.
- a temperature higher than the sublimation temperature of the reaction product is employed.
- a heat insulating washer 44 is disposed between the cooling spacer 23b and the base 20 so that heat does not flow from the base 20 in a high temperature state to the fixed blade 22 side.
- a gap is formed between the cooling spacer 23b and the flange 21c through the vacuum seal 47, heat flows into the cooling spacer 23b from the casing 21 side. There is no.
- FIG. 4 is a diagram for explaining the cooling piping system and the temperature adjustment operation.
- the three-way valve 52 is connected to a refrigerant discharge part 45 b of the spacer cooling pipe 45, a refrigerant supply part 46 a of the base cooling pipe 46, and a bypass pipe 53.
- the other end of the bypass pipe 53 is connected to the refrigerant discharge part 46 b of the base cooling pipe 46.
- Switching of the three-way valve 52 is controlled by a temperature control unit 511 of a control unit 51 that drives and controls the pump body 1.
- the temperature control unit 511 controls switching of the three-way valve 52 and on / off of the heater 42 based on the temperature detected by the temperature sensor 43.
- the temperature control unit 511 switches the outflow side of the three-way valve 52 to the bypass pipe 53 to bypass the cooling medium from the three-way valve 52 to the refrigerant discharge unit 46b. .
- the heater 42 is turned on. As a result, the base 20 is heated by the heater 42 and the temperatures of the base 20 and the screw stator 24 rise.
- the predetermined temperature is a temperature equal to or higher than the sublimation temperature of the reaction product described above, and is stored in advance in a storage unit (not shown) of the temperature adjustment control unit 511.
- the predetermined temperature is set in consideration of the temperature difference between the portion where the temperature sensor 43 is provided and the screw stator 24.
- the temperature control unit 511 When the temperature detected by the temperature sensor 43 is equal to or higher than the predetermined temperature, the temperature control unit 511 turns off the heater 42 and switches the outflow side of the three-way valve 52 to the refrigerant supply unit 46a of the base cooling pipe 46 for cooling. The medium is supplied to the base cooling pipe 46. By performing such temperature control by the temperature control unit 511, the temperature of the screw stator 24 is maintained at or above the sublimation temperature of the reaction product, and deposition of the reaction product can be prevented.
- the cooling medium is constantly supplied to the spacer cooling pipe 45, the fixed blade 22 is kept at a low temperature by the cooling spacer 23b. As a result, heat radiation from the rotary blade 30a to the fixed blade 22 due to radiation is promoted, and the temperature of the rotor 30 can be maintained at a lower temperature than before, and the exhaust flow rate can be increased. Since the temperature level in the spacer cooling pipe 45 is lower than the temperature level in the base cooling pipe 46, the cooling medium is preferably flowed in the order of the spacer cooling pipe 45 and the base cooling pipe 46.
- FIG. 5 is a view showing a first modification of the cooling spacer 23b shown in FIG.
- the cooling spacer 23c shown in FIG. 5 is an integrated body of the cooling spacer 23b shown in FIG. 2 and the spacer 23a arranged on the upper stage thereof.
- Other configurations are the same as those shown in FIG. Thereby, the number of parts can be reduced.
- FIG. 6 is a view showing a second modification of the cooling spacer 23b.
- the cooling spacer 23d constitutes a second spacer counted from the base side.
- the cooling spacer 23d includes a spacer portion 231 that functions as a spacer, a flange portion 232 where the spacer cooling pipe 45 is provided, and a cylindrical connecting portion 233 that connects the spacer portion 231 and the flange portion 232.
- the plurality of fixed wings 22 are positioned by a plurality of spacers 23 a and spacer portions 231. Therefore, a ring-shaped heat insulating member 44c is arranged between the base-side first spacer 23a and the base 20. A heat insulating member is not provided between the flange portion 232 and the base 20, and a gap is formed.
- the heat of the fixed blade 22 and the spacer 23a is transmitted to the spacer portion 231 of the cooling spacer 23d as indicated by the broken arrow, and is radiated to the cooling medium of the spacer cooling pipe 45 through the connecting portion 233 and the flange portion 232.
- the heat insulating member disposed between the cooling spacer 23 b and the base 20 is the heat insulating washer 44, and the heat insulating washer 44 is attached to each bolt 40, but instead of the plurality of heat insulating washers 44.
- a ring-shaped heat insulating washer 44b as shown in FIG. 7 may be used.
- a heat insulating layer made of resin or the like is formed on the surface of the base 20 facing the cooling spacer 23b or the surface of the cooling spacer 23b facing the base 20. Also good.
- the three-way valve 52 is used in the cooling piping system, but a configuration as shown in FIG.
- the refrigerant supply part 45 a of the spacer cooling pipe 45 and the refrigerant supply part 46 a of the base cooling pipe 46 are connected via an on-off valve 54.
- the temperature control unit 511 controls the opening / closing of the on-off valve 54 based on the temperature detected by the temperature sensor 43. That is, when only cooling by the spacer cooling pipe 45 is performed, the opening / closing valve 54 is closed, and when performing temperature control and cooling by the spacer cooling pipe 45, the opening / closing valve 54 is opened.
- Other controls are the same as those in the configuration of FIG.
- the temperature of the screw stator 24 can be adjusted even with a temperature control device that omits the base cooling pipe 46 as shown in FIG.
- the mechanism for cooling the fixed blade 22 is the same as that shown in FIG.
- the temperature sensor 43 is disposed on the base 20, but the temperature sensor 43 may be disposed on the screw stator 24. With such a configuration, the temperature of the screw stator 24 can be detected more accurately.
- the spacer cooling pipe 45 is disposed in the groove 234.
- the method of forming the flow path of the cooling medium in the cooling spacer 23b is not limited to this.
- the cooling spacer 23b may be formed by aluminum casting, and the spacer cooling pipe 45 may be embedded during the casting.
- the spacer cooling pipe 45 is provided in one of the spacers arranged on the base side among the spacers for positioning the fixed blade 22, that is, the cooling spacer 23b. And cooled by the cooling medium flowing in the spacer cooling pipe 45. Then, by disposing the heat insulating washer 44 between the cooling spacer 23b disposed on the base 20 and the base 20, heat flows into the cooling spacer 23b from the base 20 which is in a high temperature state due to temperature control. Is preventing. As a result, the cooling of the fixed blades 22 and the heating of the screw stator 24 by temperature control can be effectively performed, the exhaust flow rate can be increased, and deposition of reaction products on the screw stator 24 can be prevented.
- the spacer arranged on the base side has the following meaning.
- the spacers 23a and the cooling spacers 23b are combined to provide a total of ten steps of spacers, and the lower five of these are the base side spacers.
- the lower four stages are the base side stator.
- the purpose of the cooling spacer 23b is to cool the fixed blade 22, and in order to reduce the heat inflow from the base 20 side to the fixed blade 22 side as much as possible, the position of the cooling spacer 23b is the maximum of the spacers 23a and 23b. It is preferable to provide the lower stage, that is, the most base side. Of course, as shown in FIG. 8, a heat insulating member 44 c may be provided between the spacer 23 a and the base 20 so as to be disposed other than the lowest stage. Furthermore, two or more cooling spacers 23b may be provided.
- the outer side of the flange portion 232 provided with the spacer cooling pipe 45 is disposed on the atmosphere side of the vacuum seals 47 and 48, and the refrigerant of the spacer cooling pipe 45 is disposed on the atmosphere side portion.
- coolant discharge part 45b are arrange
- a base cooling pipe 46 is provided in the base 20, and the heater 42 is turned on / off based on the temperature detected by the temperature sensor 43, and the switching of the three-way valve 52 that turns on / off the flow of the cooling medium into the base cooling pipe 46 is controlled.
- the temperature of the screw stator 24 can be adjusted to a temperature at which reaction product accumulation can be prevented. As a result, deposition of reaction products on the screw stator 24 can be prevented.
- the refrigerant discharge portion 45b of the cooling spacer 23b, the refrigerant supply side 46a of the base cooling pipe 46, and the bypass pipe 53 that bypasses the base cooling pipe 46 are connected to each other, and the inflow destination of the cooling medium discharged from the cooling spacer 23b is connected. Further, by further including a three-way valve 52 that switches to the refrigerant supply side 46a of the base cooling pipe 46 or the bypass pipe 53, the cooling medium supply line to the turbo molecular pump can be combined into one.
- the structure is excellent in assemblability.
- the number of the bolts 40 is also different, but even in such a case, it can be easily dealt with by changing the number of the heat insulating washers 44.
- a heat insulating member may be disposed in the gap between the bolt 40 and the cooling spacer 23b. It is good also as a shape where a part is inserted in the bolt hole of the cooling spacer 23b.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Abstract
Description
本発明の第2の態様によると、第1の態様のターボ分子ポンプにおいて、冷却媒体により冷却されるスペーサは、他のスペーサとともに積層されるスペーサ部と、冷却媒体が流れる第1冷媒流路が形成された冷却部とを有し、冷却部は、第1冷媒流路の冷媒供給部および冷媒排出部がポンプ大気側に配置されるのが好ましい。
本発明の第3の態様によると、第1または2の態様のターボ分子ポンプにおいて、冷却媒体が流れる第2冷媒流路が形成され、ベースを冷却するベース冷却部をさらに備え、温度調整部は、温度センサの検出温度に基づいてヒータのオンオフとベース冷却部への冷却媒体供給量とをそれぞれ制御することにより、ステータの温度を調整するのが好ましい。
本発明の第4の態様によると、第3の態様のターボ分子ポンプにおいて、第1冷媒流路の冷媒排出部、第2冷媒流路の冷媒供給側、および第2冷媒流路をバイパスする冷媒配管がそれぞれ接続され、第1冷媒流路の冷媒排出部から排出された冷却媒体の流入先を、第2冷媒流路の冷媒供給側または第2冷媒流路をバイパスする冷媒配管に切り替える三方弁をさらに備え、温度調整部は、温度センサの検出温度が反応生成物堆積防止温度未満の場合には、三方弁を冷媒配管に切り替えるとともにヒータをオンし、温度センサの検出温度が反応生成物堆積防止温度以上の場合には、三方弁を第2冷媒流路の冷媒供給側に切り替えるとともにヒータをオフするのが好ましい。
本発明の第5の態様によると、第1乃至4の態様のいずれかのターボ分子ポンプにおいて、ベース上に積層された複数のスペーサの内、最もベース側に配置されるスペーサを冷却媒体により冷却するのが好ましい。
本発明の第6の態様によると、第5の態様のターボ分子ポンプにおいて、ベース上に積層された複数のスペーサをベースとの間に挟持し、ベースにボルト固定されるポンプケーシングをさらに備え、断熱部材は、ボルト固定用のボルトに装着され、冷却媒体により冷却されるスペーサとベースとの間に配置される断熱性座金であるのが好ましい。
Claims (6)
- 複数段の回転翼と円筒部とが形成されたロータと、
前記複数段の回転翼に対して交互に配置される複数段の固定翼と、
前記円筒部に対して隙間を介して配置されるステータと、
前記ステータが固定されるベース上に積層され、前記複数段の固定翼を位置決めする複数のスペーサと、
前記ベースに設けられたヒータと、
前記ステータの温度を検出する温度センサと、
前記温度センサの検出温度に基づいて前記ヒータをオンオフ制御し、前記ステータの温度が反応生成物堆積防止温度となるように調整する温度調整部と、を備え、
前記複数のスペーサの内のベース側に配置されるスペーサの少なくとも一つは、冷却媒体によって冷却され、
前記ベースと該ベース上に配置された前記スペーサとの間に設けられる断熱部材をさらに備える、ターボ分子ポンプ。 - 請求項1に記載のターボ分子ポンプにおいて、
前記冷却媒体により冷却されるスペーサは、他のスペーサとともに積層されるスペーサ部と、冷却媒体が流れる第1冷媒流路が形成された冷却部とを有し、
前記冷却部は、前記第1冷媒流路の冷媒供給部および冷媒排出部がポンプ大気側に配置されている、ターボ分子ポンプ。 - 請求項1または2に記載のターボ分子ポンプにおいて、
冷却媒体が流れる第2冷媒流路が形成され、前記ベースを冷却するベース冷却部をさらに備え、
前記温度調整部は、前記温度センサの検出温度に基づいて前記ヒータのオンオフと前記ベース冷却部への冷却媒体供給量とをそれぞれ制御することにより、前記ステータの温度を調整する、ターボ分子ポンプ。 - 請求項3に記載のターボ分子ポンプにおいて、
前記第1冷媒流路の冷媒排出部、前記第2冷媒流路の冷媒供給側、および前記第2冷媒流路をバイパスする冷媒配管がそれぞれ接続され、前記第1冷媒流路の冷媒排出部から排出された冷却媒体の流入先を、前記第2冷媒流路の冷媒供給側または前記第2冷媒流路をバイパスする冷媒配管に切り替える三方弁をさらに備え、
前記温度調整部は、
前記温度センサの検出温度が前記反応生成物堆積防止温度未満の場合には、前記三方弁を前記冷媒配管に切り替えるとともに前記ヒータをオンし、
前記温度センサの検出温度が前記反応生成物堆積防止温度以上の場合には、前記三方弁を前記第2冷媒流路の冷媒供給側に切り替えるとともに前記ヒータをオフする、ターボ分子ポンプ。 - 請求項1乃至4のいずれか一項に記載のターボ分子ポンプにおいて、
前記ベース上に積層された複数のスペーサの内、最もベース側に配置されるスペーサを冷却媒体により冷却する、ターボ分子ポンプ。 - 請求項5に記載のターボ分子ポンプにおいて、
前記ベース上に積層された前記複数のスペーサを前記ベースとの間に挟持し、前記ベースにボルト固定されるポンプケーシングをさらに備え、
前記断熱部材は、前記ボルト固定用のボルトに装着され、前記冷却媒体により冷却されるスペーサと前記ベースとの間に配置される断熱性座金である、ターボ分子ポンプ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/074390 WO2014045438A1 (ja) | 2012-09-24 | 2012-09-24 | ターボ分子ポンプ |
JP2014536533A JP5924414B2 (ja) | 2012-09-24 | 2012-09-24 | ターボ分子ポンプ |
CN201280073600.XA CN104350283B (zh) | 2012-09-24 | 2012-09-24 | 涡轮分子泵 |
US14/417,983 US9745989B2 (en) | 2012-09-24 | 2012-09-24 | Turbo-molecular pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/074390 WO2014045438A1 (ja) | 2012-09-24 | 2012-09-24 | ターボ分子ポンプ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014045438A1 true WO2014045438A1 (ja) | 2014-03-27 |
Family
ID=50340787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/074390 WO2014045438A1 (ja) | 2012-09-24 | 2012-09-24 | ターボ分子ポンプ |
Country Status (4)
Country | Link |
---|---|
US (1) | US9745989B2 (ja) |
JP (1) | JP5924414B2 (ja) |
CN (1) | CN104350283B (ja) |
WO (1) | WO2014045438A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015190404A (ja) * | 2014-03-28 | 2015-11-02 | 株式会社島津製作所 | 真空ポンプ |
WO2015177514A1 (en) * | 2014-05-19 | 2015-11-26 | Edwards Limited | Vacuum system |
JP2015229949A (ja) * | 2014-06-04 | 2015-12-21 | 株式会社島津製作所 | ターボ分子ポンプ |
JP2015229936A (ja) * | 2014-06-03 | 2015-12-21 | 株式会社島津製作所 | 真空ポンプ |
JP2017166360A (ja) * | 2016-03-14 | 2017-09-21 | 株式会社島津製作所 | 温度制御装置およびターボ分子ポンプ |
CN107208650A (zh) * | 2015-02-25 | 2017-09-26 | 埃地沃兹日本有限公司 | 适配器及真空泵 |
WO2021166777A1 (ja) * | 2020-02-19 | 2021-08-26 | エドワーズ株式会社 | 真空ポンプ及びコントローラ |
WO2022186075A1 (ja) * | 2021-03-04 | 2022-09-09 | エドワーズ株式会社 | 真空ポンプ |
JP2022156223A (ja) * | 2021-03-31 | 2022-10-14 | エドワーズ株式会社 | 真空ポンプ |
JP2024055254A (ja) * | 2022-10-07 | 2024-04-18 | エドワーズ株式会社 | 真空ポンプ |
KR20240157020A (ko) | 2022-03-11 | 2024-10-31 | 에드워즈 가부시키가이샤 | 진공 펌프 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6069981B2 (ja) * | 2012-09-10 | 2017-02-01 | 株式会社島津製作所 | ターボ分子ポンプ |
JP6386737B2 (ja) * | 2014-02-04 | 2018-09-05 | エドワーズ株式会社 | 真空ポンプ |
JP6375631B2 (ja) * | 2014-02-05 | 2018-08-22 | 株式会社島津製作所 | ターボ分子ポンプ |
JP6353257B2 (ja) * | 2014-03-31 | 2018-07-04 | エドワーズ株式会社 | 排気口部品、および真空ポンプ |
JP6705169B2 (ja) * | 2015-12-28 | 2020-06-03 | 株式会社島津製作所 | 監視装置および監視プログラム |
JP6583122B2 (ja) * | 2016-04-22 | 2019-10-02 | 株式会社島津製作所 | 監視装置および真空ポンプ |
GB2553374B (en) * | 2016-09-06 | 2021-05-12 | Edwards Ltd | Temperature sensor for a high speed rotating machine |
JP6942610B2 (ja) * | 2017-07-14 | 2021-09-29 | エドワーズ株式会社 | 真空ポンプ、該真空ポンプに適用される温度調節用制御装置、検査用治具、及び温度調節機能部の診断方法 |
US10655638B2 (en) | 2018-03-15 | 2020-05-19 | Lam Research Corporation | Turbomolecular pump deposition control and particle management |
JP7147401B2 (ja) * | 2018-09-12 | 2022-10-05 | 株式会社島津製作所 | ターボ分子ポンプ |
JP7705722B2 (ja) * | 2021-03-19 | 2025-07-10 | エドワーズ株式会社 | 真空ポンプ及び真空ポンプの制御装置 |
KR102669881B1 (ko) * | 2022-02-08 | 2024-05-28 | (주)엘오티베큠 | 버퍼 챔버를 갖는 터보 분자 펌프 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6469797A (en) * | 1987-09-11 | 1989-03-15 | Hitachi Ltd | Vacuum pump |
JPH07508082A (ja) * | 1992-06-19 | 1995-09-07 | ライボルト アクチエンゲゼルシヤフト | 気体摩擦真空ポンプ |
JPH10205486A (ja) * | 1997-01-24 | 1998-08-04 | Pfeiffer Vacuum Gmbh | 真空ポンプ |
JP2001032789A (ja) * | 1999-07-23 | 2001-02-06 | Anelva Corp | 分子ポンプ |
JP2002180988A (ja) * | 2000-10-03 | 2002-06-26 | Ebara Corp | 真空ポンプ |
JP2003148379A (ja) * | 2001-11-15 | 2003-05-21 | Mitsubishi Heavy Ind Ltd | ターボ分子ポンプ |
JP2003278691A (ja) * | 2002-03-20 | 2003-10-02 | Boc Edwards Technologies Ltd | 真空ポンプ |
JP2005036665A (ja) * | 2003-07-16 | 2005-02-10 | Osaka Vacuum Ltd | 分子ポンプ |
JP2005083271A (ja) * | 2003-09-09 | 2005-03-31 | Boc Edwards Kk | 真空ポンプ |
JP2008038764A (ja) * | 2006-08-07 | 2008-02-21 | Shimadzu Corp | ターボ分子ポンプおよびそのための電源装置 |
JP2011127483A (ja) * | 2009-12-16 | 2011-06-30 | Shimadzu Corp | ターボ分子ポンプ |
JP3168845U (ja) * | 2011-04-19 | 2011-06-30 | 株式会社島津製作所 | ターボ分子ポンプ |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2611039B2 (ja) | 1990-10-25 | 1997-05-21 | 株式会社島津製作所 | 磁気軸受タ−ボ分子ポンプ |
US6793466B2 (en) * | 2000-10-03 | 2004-09-21 | Ebara Corporation | Vacuum pump |
WO2011021428A1 (ja) * | 2009-08-21 | 2011-02-24 | エドワーズ株式会社 | 真空ポンプ |
-
2012
- 2012-09-24 JP JP2014536533A patent/JP5924414B2/ja active Active
- 2012-09-24 WO PCT/JP2012/074390 patent/WO2014045438A1/ja active Application Filing
- 2012-09-24 CN CN201280073600.XA patent/CN104350283B/zh active Active
- 2012-09-24 US US14/417,983 patent/US9745989B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6469797A (en) * | 1987-09-11 | 1989-03-15 | Hitachi Ltd | Vacuum pump |
JPH07508082A (ja) * | 1992-06-19 | 1995-09-07 | ライボルト アクチエンゲゼルシヤフト | 気体摩擦真空ポンプ |
JPH10205486A (ja) * | 1997-01-24 | 1998-08-04 | Pfeiffer Vacuum Gmbh | 真空ポンプ |
JP2001032789A (ja) * | 1999-07-23 | 2001-02-06 | Anelva Corp | 分子ポンプ |
JP2002180988A (ja) * | 2000-10-03 | 2002-06-26 | Ebara Corp | 真空ポンプ |
JP2003148379A (ja) * | 2001-11-15 | 2003-05-21 | Mitsubishi Heavy Ind Ltd | ターボ分子ポンプ |
JP2003278691A (ja) * | 2002-03-20 | 2003-10-02 | Boc Edwards Technologies Ltd | 真空ポンプ |
JP2005036665A (ja) * | 2003-07-16 | 2005-02-10 | Osaka Vacuum Ltd | 分子ポンプ |
JP2005083271A (ja) * | 2003-09-09 | 2005-03-31 | Boc Edwards Kk | 真空ポンプ |
JP2008038764A (ja) * | 2006-08-07 | 2008-02-21 | Shimadzu Corp | ターボ分子ポンプおよびそのための電源装置 |
JP2011127483A (ja) * | 2009-12-16 | 2011-06-30 | Shimadzu Corp | ターボ分子ポンプ |
JP3168845U (ja) * | 2011-04-19 | 2011-06-30 | 株式会社島津製作所 | ターボ分子ポンプ |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10253778B2 (en) | 2014-03-28 | 2019-04-09 | Shimadzu Corporation | Vacuum pump |
JP2015190404A (ja) * | 2014-03-28 | 2015-11-02 | 株式会社島津製作所 | 真空ポンプ |
WO2015177514A1 (en) * | 2014-05-19 | 2015-11-26 | Edwards Limited | Vacuum system |
US10514040B2 (en) | 2014-05-19 | 2019-12-24 | Edwards Limited | Vacuum system |
JP2015229936A (ja) * | 2014-06-03 | 2015-12-21 | 株式会社島津製作所 | 真空ポンプ |
US10161404B2 (en) | 2014-06-04 | 2018-12-25 | Shimadzu Corporation | Turbo-molecular pump |
CN105275836A (zh) * | 2014-06-04 | 2016-01-27 | 株式会社岛津制作所 | 涡轮分子泵 |
JP2015229949A (ja) * | 2014-06-04 | 2015-12-21 | 株式会社島津製作所 | ターボ分子ポンプ |
CN107208650A (zh) * | 2015-02-25 | 2017-09-26 | 埃地沃兹日本有限公司 | 适配器及真空泵 |
US20180038375A1 (en) * | 2015-02-25 | 2018-02-08 | Edwards Japan Limited | Adaptor and vacuum pump |
EP3263905A4 (en) * | 2015-02-25 | 2018-10-24 | Edwards Japan Limited | Adaptor and vacuum pump |
US11466692B2 (en) | 2015-02-25 | 2022-10-11 | Edwards Japan Limited | Adaptor and vacuum pump |
JP2017166360A (ja) * | 2016-03-14 | 2017-09-21 | 株式会社島津製作所 | 温度制御装置およびターボ分子ポンプ |
WO2021166777A1 (ja) * | 2020-02-19 | 2021-08-26 | エドワーズ株式会社 | 真空ポンプ及びコントローラ |
JP2021131042A (ja) * | 2020-02-19 | 2021-09-09 | エドワーズ株式会社 | 真空ポンプ及びコントローラ |
US12066029B2 (en) | 2020-02-19 | 2024-08-20 | Edwards Japan Limited | Vacuum pump and controller |
JP7689415B2 (ja) | 2020-02-19 | 2025-06-06 | エドワーズ株式会社 | 真空ポンプ及びコントローラ |
WO2022186075A1 (ja) * | 2021-03-04 | 2022-09-09 | エドワーズ株式会社 | 真空ポンプ |
JP2022134773A (ja) * | 2021-03-04 | 2022-09-15 | エドワーズ株式会社 | 真空ポンプ |
EP4303446A4 (en) * | 2021-03-04 | 2025-01-08 | Edwards Japan Limited | VACUUM PUMP |
JP7680226B2 (ja) | 2021-03-04 | 2025-05-20 | エドワーズ株式会社 | 真空ポンプ |
JP2022156223A (ja) * | 2021-03-31 | 2022-10-14 | エドワーズ株式会社 | 真空ポンプ |
KR20240157020A (ko) | 2022-03-11 | 2024-10-31 | 에드워즈 가부시키가이샤 | 진공 펌프 |
JP2024055254A (ja) * | 2022-10-07 | 2024-04-18 | エドワーズ株式会社 | 真空ポンプ |
Also Published As
Publication number | Publication date |
---|---|
US20150226229A1 (en) | 2015-08-13 |
JP5924414B2 (ja) | 2016-05-25 |
US9745989B2 (en) | 2017-08-29 |
CN104350283B (zh) | 2016-08-24 |
JPWO2014045438A1 (ja) | 2016-08-18 |
CN104350283A (zh) | 2015-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5924414B2 (ja) | ターボ分子ポンプ | |
JP6484919B2 (ja) | ターボ分子ポンプ | |
JP6375631B2 (ja) | ターボ分子ポンプ | |
WO2019188732A1 (ja) | 真空ポンプ | |
US11680585B2 (en) | Vacuum pump | |
US10704555B2 (en) | Stator-side member and vacuum pump | |
JP2015190404A (ja) | 真空ポンプ | |
JP7677502B2 (ja) | ターボ分子ポンプ | |
JP2002227765A (ja) | 真空ポンプ | |
JP7552497B2 (ja) | ターボ分子ポンプ | |
JP4899598B2 (ja) | ターボ分子ポンプ | |
CN105952665B (zh) | 涡轮分子泵 | |
JP2611039B2 (ja) | 磁気軸受タ−ボ分子ポンプ | |
JP7147401B2 (ja) | ターボ分子ポンプ | |
JP3168845U (ja) | ターボ分子ポンプ | |
JP7668765B2 (ja) | 真空ポンプ、制御装置および制御方法 | |
JP5772994B2 (ja) | ターボ分子ポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12885023 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014536533 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14417983 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12885023 Country of ref document: EP Kind code of ref document: A1 |