WO2015012107A1 - トランジスタ - Google Patents

トランジスタ Download PDF

Info

Publication number
WO2015012107A1
WO2015012107A1 PCT/JP2014/068316 JP2014068316W WO2015012107A1 WO 2015012107 A1 WO2015012107 A1 WO 2015012107A1 JP 2014068316 W JP2014068316 W JP 2014068316W WO 2015012107 A1 WO2015012107 A1 WO 2015012107A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
transistor
silver
carbon atoms
gate electrode
Prior art date
Application number
PCT/JP2014/068316
Other languages
English (en)
French (fr)
Inventor
孝典 松本
純一 竹谷
Original Assignee
トッパン・フォームズ株式会社
国立大学法人大阪大学
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トッパン・フォームズ株式会社, 国立大学法人大阪大学, 国立大学法人東京大学 filed Critical トッパン・フォームズ株式会社
Priority to JP2015528220A priority Critical patent/JP6225992B2/ja
Priority to CN201480041463.0A priority patent/CN105393361B/zh
Priority to US14/906,000 priority patent/US10074818B2/en
Publication of WO2015012107A1 publication Critical patent/WO2015012107A1/ja
Priority to HK16109839.8A priority patent/HK1221820A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/481Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver

Definitions

  • the present invention relates to a novel transistor with high carrier mobility.
  • This application claims priority based on Japanese Patent Application No. 2013-152669 filed in Japan on July 23, 2013 and Japanese Patent Application No. 2014-055595 filed in Japan on March 18, 2014, and the contents thereof Is hereby incorporated by reference.
  • Transistors are used in a wide range of fields such as electronic circuits such as computers, thin film transistors (TFT), and radio frequency identification (RFID) ICs.
  • a transistor is usually configured to include a gate electrode, an insulating layer, a semiconductor layer, a source electrode, and a drain electrode on a substrate, and in recent years, an organic transistor including a semiconductor layer (organic semiconductor layer) made of an organic material has been developed. Yes.
  • Organic transistors are flexible and can be manufactured in a simplified process by taking advantage of the characteristics of organic materials that can be stacked by various printing and coating methods that can be applied in the air instead of under vacuum. Because it can, it is highly useful.
  • One of the important indicators for comparing transistor performance is carrier mobility.
  • a transistor when a voltage is applied to the gate electrode, carriers are generated in the vicinity of the interface between the semiconductor layer and the insulating layer to increase the electrical conductivity.
  • the carrier When a voltage is applied between the source electrode and the drain electrode, the carrier is generated. Moves to the source or drain electrode, and a current flows. At this time, when the carrier mobility is high, the transistor operates quickly from ON to OFF or from OFF to ON, and the current value increases, which is a preferable characteristic.
  • the surface of the insulating layer has low smoothness (large irregularities), and the vicinity of the interface between the semiconductor layer and the insulating layer
  • the carrier moves along the interface, the actual moving distance of the carrier is affected by the unevenness on the surface of the insulating layer, and becomes longer than the case where the unevenness is small (high smoothness).
  • the moving speed of the carrier that is, the mobility is lowered. Therefore, in such a transistor, it is important to increase the smoothness of the surface of the insulating layer.
  • Patent Document 1 requires an operation of placing and removing a glass plate or the like
  • Patent Document 2 requires an operation of forming a smoothing layer, both of which are transistors. There is a problem that the manufacturing process is complicated.
  • the smoothness of the surface of the insulating layer is influenced by the surface of the gate electrode arranged in contact with the insulating layer. If the smoothness of the surface of the gate electrode is low (the unevenness is large), the smoothness As a result, the smoothness of the surface of the insulating layer is similarly lowered.
  • neither of the methods described in Patent Documents 1 and 2 can fundamentally solve this problem when the gate electrode is formed by a simplified process. If the gate electrode is formed by a method such as vacuum vapor deposition or sputtering, the surface smoothness can be increased, but a special apparatus is required, the process becomes complicated, and the cost becomes high. If it is formed by various printing methods or coating methods, it can be formed in the air as in the case of the semiconductor layer described above, so it can be manufactured at a lower cost by a more simplified process, but the surface smoothness is lowered. Because it will end up.
  • An object of the present invention is to provide a transistor including a gate electrode that has a high surface smoothness and can be formed by a simplified process.
  • the present invention comprises a gate electrode, an insulating layer, a semiconductor layer, a source electrode and a drain electrode on a substrate, wherein the gate electrode is formed using ⁇ -ketocarboxylate represented by the following general formula (1)
  • a transistor is provided.
  • R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 2- ",” CY 1 3- “,” R 1 -CHY 1- ",” R 2 O- “,” R 5 R 4 N- “,” (R 3 O) 2 CY 1- "or” R 6 —C ( ⁇ O) —CY 1 2 — ”;
  • Y 1 is each independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom;
  • R 1 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group;
  • R 2 is an aliphatic having 1 to 20 carbon atoms
  • R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms;
  • R 4 and R 5 are each independently an alipha
  • the transistor of the present invention may have a bottom gate / bottom contact type structure or a bottom gate / top contact type structure.
  • the surface roughness of the gate electrode based on “ISO4287: 1997” may be 1 to 10 nm.
  • the gate electrode may have a thickness of 10 to 1000 nm, and the insulating layer may have a thickness of 10 to 1000 nm.
  • the gate electrode can be formed by a simplified process with high surface smoothness.
  • FIG. 4 is a graph showing the evaluation results of the transistor of Example 1.
  • 4 is a graph showing the evaluation results of the transistor of Example 1.
  • 4 is a graph showing the evaluation results of the transistor of Example 1.
  • 10 is a graph showing the evaluation results of the transistor of Example 2.
  • 10 is a graph showing the evaluation results of the transistor of Example 2.
  • 6 is a schematic cross-sectional view showing a transistor of Comparative Example 1.
  • 10 is a graph showing the evaluation results of the transistor of Comparative Example 1.
  • 10 is a graph showing the evaluation results of the transistor of Comparative Example 1.
  • 10 is a graph showing the evaluation results of the transistor of Comparative Example 1.
  • 10 is a graph showing evaluation results of a transistor of Comparative Example 2.
  • 10 is a graph showing evaluation results of a transistor of Comparative Example 2.
  • 10 is a graph showing evaluation results of a transistor of Comparative Example 3.
  • 10 is a graph showing evaluation results of a transistor of Comparative Example 3.
  • 10 is a graph showing evaluation results of a transistor of Comparative Example 3.
  • 10 is a graph showing evaluation results of the transistor of Example 3.
  • 10 is a graph showing the evaluation results of the transistor of Example 3.
  • 10 is a graph showing the evaluation results of the transistor of Example 3.
  • 10 is a graph showing evaluation results of a transistor of Comparative Example 4.
  • 10 is a graph showing evaluation results of a transistor of Comparative Example 4.
  • 10 is a graph showing evaluation results of a transistor of Comparative Example 4.
  • 10 is a graph showing the evaluation results of the transistor of Example 4.
  • 10 is a graph showing the evaluation results of the transistor of Example 4.
  • 10 is a graph showing the evaluation results of the transistor of Example 5.
  • 10 is a graph showing the evaluation results of the transistor of Example 5.
  • 10 is a graph for obtaining a maximum frequency during rectification in a circuit manufactured using the transistor of Example 5.
  • 10 is a graph showing the evaluation results of the transistor of Example 6.
  • 10 is a graph showing the evaluation results of the transistor of Example 6.
  • 14 is a graph for obtaining a maximum frequency at the time of rectification in a circuit manufactured using the transistor of Example 6.
  • 10 is a graph showing the evaluation results of the transistor of Example 7.
  • 10 is a graph showing the evaluation results of the transistor of Example 7.
  • 10 is a graph showing the evaluation results of the transistor of Example 7.
  • 10 is a graph for obtaining a maximum frequency during rectification in a circuit manufactured using the transistor of Example 7.
  • the transistor according to the present invention includes a gate electrode, an insulating layer, a semiconductor layer, a source electrode, and a drain electrode on a substrate, and the gate electrode is a silver ⁇ -ketocarboxylate represented by the following general formula (1) (hereinafter, “ It is formed using a silver ⁇ -ketocarboxylate (sometimes abbreviated as “1”).
  • the gate electrode uses silver ⁇ -ketocarboxylate (1) and, unlike vacuum deposition or sputtering that needs to be performed under vacuum, by various printing methods or coating methods that can be performed under the atmosphere, It can be formed by a simplified process.
  • the smoothness of the surface of the gate electrode is high, so that the transistor has high carrier mobility.
  • the smoothness of the surface of the gate electrode is high, even if the insulating layer is sufficiently thin, the smoothness of the surface is not lowered, and the thickness can be arbitrarily set.
  • R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 2- ",” CY 1 3- “,” R 1 -CHY 1- ",” R 2 O- “,” R 5 R 4 N- “,” (R 3 O) 2 CY 1- "or” R 6 —C ( ⁇ O) —CY 1 2 — ”;
  • Y 1 is each independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom;
  • R 1 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group;
  • R 2 is an aliphatic having 1 to 20 carbon atoms
  • R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms;
  • R 4 and R 5 are each independently an alipha
  • the transistor according to the present invention can have the same configuration as that of a conventional transistor except that a gate electrode is formed using silver ⁇ -ketocarboxylate (1).
  • FIG. 1 is a schematic cross-sectional view showing an example of a transistor according to the present invention.
  • the transistor 1 shown here has a bottom-gate / top-contact structure, and includes a gate electrode 12, an insulating layer 13, and a semiconductor layer 14 in this order on a substrate 11, and a source electrode 15 and a drain on the semiconductor layer 14.
  • the electrodes 16 are configured so as to face each other.
  • the gate electrode 12 is provided on the substrate 11 via the modification layer 17, the modification layer 17 is on the entire surface of one main surface (upper surface) of the substrate 11, and the gate electrode 12 is on one main surface of the modification layer 17. (Upper surface) is provided on the entire surface.
  • the source electrode 15 and the drain electrode 16 are respectively provided on the semiconductor layer 14 via the intermediate layer 18, and the intermediate layer 18 is only in a region where the source electrode 15 and the drain electrode 16 exist on the semiconductor layer 14. Is provided.
  • the substrate 11 has a two-layer structure in which an insulating layer made of silicon dioxide is formed on the surface portion of the impurity-doped silicon layer (the silicon insulating layer side is the side where the gate electrode 12 is formed), glass, and resin. Well-known things can be illustrated.
  • the substrate 11 preferably has a high surface smoothness.
  • the thickness of the substrate 11 is preferably 10 ⁇ m to 5 mm.
  • the gate electrode 12 is formed using silver ⁇ -ketocarboxylate (1), and is made of metallic silver or is composed mainly of metallic silver.
  • “having metallic silver as a main component” means that the ratio of metallic silver is sufficiently high so that it can be regarded as being composed solely of metallic silver.
  • the ratio of metallic silver is 95% by mass or more. It is preferable that it is 97 mass% or more, and it is especially preferable that it is 99 mass% or more.
  • the upper limit of the ratio of the said metal silver is 100 mass%, 99.9 mass%, 99.8 mass%, 99.7 mass%, 99.6 mass%, 99.5 mass%, 99. It can be selected from any of 4% by mass, 99.3% by mass, 99.2% by mass and 99.1% by mass.
  • the thickness of the gate electrode 12 is preferably 10 to 1000 nm.
  • the gate electrode 12 is formed using ⁇ -ketocarboxylate (1), the surface is highly smooth and the surface roughness is preferably 10 nm or less, more preferably 5 nm or less. Moreover, as a lower limit of the surface roughness of the gate electrode 12, 1 nm can be selected, for example.
  • surface roughness is based on JIS B0601: 2001 (ISO4287: 1997), means arithmetic average roughness (Ra), and is a reference length from the roughness curve in the direction of the average line.
  • the X-axis is taken in the direction of the average line of the extracted portion
  • the Y-axis is taken in the direction of the vertical magnification
  • the gate electrode 12 is preferably provided on the substrate 11 via a modification layer 17.
  • a suitable component as the modification layer 17 is selected.
  • the thickness of the modification layer 17 is preferably 0.1 to 100 nm.
  • Examples of the modification layer 17 that functions as an adhesion layer include those formed using a silane coupling agent, and are preferably self-assembled monolayers.
  • a silane coupling agent the general formula “(R 101 O) 3 SiCH 2 (CH 2 ) r CH 2 NR 201 R 301 (wherein, r is 1 or 8, R 101 is an alkyl group, The three R 101's may be the same or different from each other; R 201 and R 301 are each independently a hydrogen atom, an alkyl group or an aryl group. 2013-040124).
  • R 101 is an alkyl group, which may be linear, branched or cyclic, but is preferably linear or branched, and preferably has 1 to 5 carbon atoms.
  • the three R 101 may be the same or different from each other.
  • R 201 and R 301 are each independently a hydrogen atom, an alkyl group or an aryl group.
  • the alkyl group in R 201 and R 301 may be linear, branched or cyclic, but is preferably linear or branched, and preferably has 1 to 10 carbon atoms.
  • the aryl group in R 201 and R 301 may be monocyclic or polycyclic, but preferably has 1 to 12 carbon atoms, and is preferably monocyclic such as a phenyl group.
  • R 101 is a methyl group or an ethyl group
  • R 201 is a hydrogen atom
  • R 301 is a hydrogen atom, a methyl group, an ethyl group, a hexyl group, or an aryl group
  • R 101 is a methyl group Or an ethyl group
  • R 201 and R 301 are both a methyl group, an ethyl group, a hexyl group, or an aryl group.
  • C R 101 is a methyl group or an ethyl group
  • R 201 and R 301 are independent of each other.
  • Examples of the material of the insulating layer (gate insulating film) 13 include known compounds such as inorganic compounds such as silicon oxide, silicon nitride, and aluminum oxide; organic compounds such as benzocyclobutene, polyimide, and polyolefin-based thermosetting resin. .
  • the insulating layer 13 may be made of one kind of material, or may be made of two or more kinds of materials. When the insulating layer 13 is made of two or more kinds of materials, the combination and ratio of the materials can be arbitrarily adjusted.
  • the thickness of the insulating layer 13 is preferably 10 to 1000 nm.
  • the material of the semiconductor layer 14 may be either an organic semiconductor or a compound semiconductor in which two or more atoms are bonded by an ionic bond, and may be appropriately selected from known materials according to the purpose.
  • the compound semiconductor include gallium nitride (GaN), gallium arsenide (GaAs), zinc oxide (ZnO), tin oxide (SnO 2 ), indium gallium zinc oxide (IGZO), and the like.
  • organic semiconductor examples include rubrene, DNTT (dinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophene), alkyl-DNTT, TIPS pentacene (6,13-Bis ( triisopropyrylthynyl) pentacene), DNBDT (dinaphtho [2,3-d: 2 ', 3'-d'] benzo [1,2-b: 4,5-b '] dithiophene), alkyl-DNBDT, PDIF-CN 2 PBTTT (poly [2,5-bis (3-alkylthiophen-2-yl) thieno (3,2-b) thiophene]), pDA2T (poly (dialkylthioneo [3,2-b] thiophene- co-bi hiophene)), P3HT (poly (3-hexylthiophene)), PQT (poly [5,5′-bis
  • the thickness of the semiconductor layer 14 is preferably 10 to 100 nm.
  • alkyl-DNTT means a compound in which one or more hydrogen atoms in DNTT are substituted with an alkyl group
  • alkyl-DNBDT means one or more hydrogen atoms in DNBDT. A compound in which an atom is substituted with an alkyl group.
  • the material of the source electrode 15 and the drain electrode 16 known metals such as single metals such as gold, platinum, silver, aluminum and titanium; metal oxides such as indium tin oxide (ITO) and zinc oxide (ZnO) are known. Can be illustrated.
  • the thicknesses of the source electrode 15 and the drain electrode 16 are preferably 10 to 1000 nm.
  • the source electrode 15 and the drain electrode 16 are preferably provided on the semiconductor layer 14 via the intermediate layer 18, and by selecting an appropriate component, the intermediate layer 18 is For example, it can be a hole injection layer or an electron accepting layer.
  • the thickness of the intermediate layer 18 is preferably 0.2 to 10 nm.
  • the material of the intermediate layer 18 functioning as a hole injection layer or an electron accepting layer may be a known material such as 3,4-polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS), etc.
  • F6-TNAP 1,3,4,5,7,8-hexafluorotetracyanonaphthoquinodimethane
  • F6-TNAP 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane
  • F4 -TCNQ 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane
  • F4-TCNQ (sometimes abbreviated as” -TCNQ ").
  • F6-TNAP and F4-TCNQ can be produced, for example, by the method described in “Chem. Mater. 2010, 22, 3926-3932”.
  • the distance L (hereinafter sometimes abbreviated as “channel length”) L between the source electrode 15 and the drain electrode 16 is preferably 0.2 to 100 ⁇ m. Further, the widths of the source electrode 15 and the drain electrode 16 in the direction perpendicular to the facing direction (not shown in FIG. 1, refer to reference sign W in FIG. .) Is preferably 1 to 5000 ⁇ m.
  • the transistor 1 when a voltage is applied to the gate electrode 12, carriers (holes, electrons) are generated in the vicinity of the interface between the semiconductor layer 14 and the insulating layer 13, the electrical conductivity is increased, and the source electrode 15 and the drain are increased. When a voltage is applied between the electrodes 16, carriers move to the source electrode 15 or the drain electrode 16, and a current flows. At this time, carriers move along the interface in the vicinity of the interface between the semiconductor layer 14 and the insulating layer 13.
  • the transistor 1 has a high smoothness on the surface of the gate electrode 12 (the unevenness is small), so that the insulating layer 13 provided on the gate electrode 12 reflects the smoothness. Regardless of whether the thickness is thick or thin, the smoothness of the surface is increased.
  • the carriers move along the interface in the vicinity of the interface between the semiconductor layer 14 and the insulating layer 13.
  • the unevenness is large. It becomes significantly shorter than the case (low smoothness).
  • the transistor 1 has high carrier mobility.
  • the transistor according to the present invention is not limited to the one shown here, and any transistor formed using ⁇ -ketocarboxylate (1) as a gate electrode may be provided. For example, the effect of the present invention is not impaired. Within the range, the configuration of the transistor 1 may be partially changed.
  • the transistor according to the present invention is preferably a bottom gate type in which a gate electrode is provided on the substrate side (lower side in FIG. 1) from the semiconductor layer, and the source electrode and the drain electrode as illustrated in FIG. In addition to the bottom gate / top contact type structure provided on the opposite side of the substrate from the substrate (upper side in FIG. 1), for example, the source electrode and the drain electrode as illustrated in FIG.
  • FIG. 2 the same components as those shown in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and detailed description thereof is omitted. The same applies to the following drawings relating to transistors.
  • the 2 includes a gate electrode 12 and an insulating layer 13 on a substrate 11 in this order, and a source electrode 25 and a drain electrode 26 on the insulating layer 13 so as to face each other.
  • the gate electrode 12 is provided on the substrate 11 via the modification layer 17, the modification layer 17 is on the entire surface of one main surface (upper surface) of the substrate 11, and the gate electrode 12 is on one main surface of the modification layer 17. (Upper surface) is provided on the entire surface.
  • Each of the source electrode 25 and the drain electrode 26 is covered with an intermediate layer 28, and the semiconductor layer 24 is provided on the source electrode 25 and the drain electrode 26 via the intermediate layer 28.
  • the semiconductor layer 24 is further provided on the surface of the insulating layer 13 where the source electrode 25, the drain electrode 26, and the intermediate layer 28 are not provided.
  • the substrate 11, the gate electrode 12, the insulating layer 13, and the modification layer 17 in the transistor 2 are the same as the substrate 11, the gate electrode 12, the insulating layer 13, and the modification layer 17 in the transistor 1 illustrated in FIG.
  • the semiconductor layer 24, the source electrode 25, and the drain electrode 26 in the transistor 2 are the same as the semiconductor layer 14, the source electrode 15, and the drain electrode 16 in the transistor 1 shown in FIG.
  • the layer 24, the source electrode 25, and the drain electrode 26 can be configured such that the maximum thickness is the same as the above-described thickness of the semiconductor layer 14, the source electrode 15, and the drain electrode 16.
  • the intermediate layer 28 in the transistor 2 is the same as the intermediate layer 18 in the transistor 1 shown in FIG. 1 except that the shape is different.
  • the transistor in which the gate electrode is provided on the entire upper surface of the substrate or the modification layer has been described.
  • the gate electrode may be patterned.
  • the transistor 3 shown in FIG. 3 is the same as the transistor 1 shown in FIG. 1 except that the gate electrode 32 is provided on a part of the upper surface of the modification layer 17 (substrate 11).
  • the transistor according to the present invention a transistor in which the gate electrode 12 is provided on a part of the upper surface of the modification layer 17 (substrate 11) in the transistor 2 shown in FIG. 2 is also preferable.
  • the substrate 11, semiconductor layer 14, source electrode 15, drain electrode 16, modification layer 17 and intermediate layer 18 in the transistor 3 are the substrate 11, semiconductor layer 14, source electrode 15, drain electrode 16, modification in the transistor 1 shown in FIG. It is the same as the layer 17 and the intermediate layer 18.
  • the modification layer 17 may be provided only in the region on the substrate 11 where the gate electrode 32 is formed.
  • the gate electrode 32 and the insulating layer 33 in the transistor 3 are the same as the gate electrode 12 and the insulating layer 13 in the transistor 1 shown in FIG. 1 except that the shapes are different.
  • the insulating layer 33 has a maximum thickness. Can be configured to be the same as the above-described thickness of the insulating layer 13.
  • Transistor according to the present invention has a high carrier mobility than the other transistors, for example, preferably in a linear region 4.7 cm 2 / Vs or more, preferably 4.0 cm 2 / Vs or more in the saturated region It is possible. Accordingly, the transistor according to the present invention can have a more preferable characteristic by setting the threshold voltage in a preferable range, reducing the OFF current, and increasing the current ON / OFF ratio.
  • the carrier mobility can be obtained by a known method. For example, the relationship between the drain current I D and the gate voltage V G when the drain voltage V D of the transistor is a predetermined value is obtained. Using (ii), the carrier mobility can be calculated.
  • ⁇ lin is the carrier mobility in the linear region
  • ⁇ sat is the carrier mobility in the saturation region
  • L is the channel length
  • W is the channel width
  • C i is the insulating layer (The capacitance per unit area
  • I D is the drain current
  • V D is the drain voltage
  • V G is the gate voltage.
  • the transistor according to the present invention is suitable for operating at a high frequency, and is particularly suitable when the channel length is shortened to, for example, 10 ⁇ m or less.
  • the maximum frequency during rectification in a circuit incorporating the transistor according to the present invention can be preferably 13.5 MHz or more. It is particularly useful for RFID communication.
  • the transistor 1 can be manufactured, for example, by the following method.
  • 4A to 4F are schematic cross-sectional views for explaining an example of the manufacturing method of the transistor 1.
  • FIG. 4A to 4F are schematic cross-sectional views for explaining an example of the manufacturing method of the transistor 1.
  • the modification layer 17 is formed on the substrate 11.
  • the formation method of the modification layer 17 may be selected according to the material.
  • the modification layer 17 can be formed by applying a liquid composition containing the silane coupling agent on the substrate 11 and drying the composition. It can be applied by a method using a coater (spin coating method) or the like.
  • the modification layer 17 can also be formed by disposing the silane coupling agent and the substrate 11 in a sealed container and heating the silane coupling agent to adhere to the substrate 11 by heating as necessary. .
  • the gate electrode 12 is formed on the modification layer 17.
  • a silver ink composition containing silver ⁇ -ketocarboxylate (1) is prepared, and this is deposited on the surface of the modification layer 17, and if necessary, drying treatment or heating (firing) treatment. It can be formed by appropriately selecting post-treatment such as metal silver and forming metallic silver.
  • the silver ink composition and the adhesion method thereof will be described in more detail later.
  • the heat treatment may be performed also as a drying treatment.
  • the silver ink composition is not applied to the entire surface of the modification layer 17.
  • a metallic silver is formed by adhering only to the region of the part, or a silver layer obtained by adhering the silver ink composition to the entire surface of the modification layer 17 as described above to form metallic silver is obtained by photolithography.
  • the gate electrode may be patterned by etching into a desired shape.
  • photolithography and etching may be performed by a known method, a resist pattern may be formed on the silver layer, and the exposed silver layer may be removed by etching.
  • an insulating layer 13 is formed on the substrate 11 so as to cover the gate electrode 12.
  • the insulating layer 13 can be formed by a known method such as spin coating, sputtering, or atomic layer deposition (ALD method).
  • a gas (adsorption gas) of a raw material compound is introduced and adsorbed onto a substrate in a reaction chamber under vacuum conditions, and after forming a single layer with the molecules, excess molecules are removed by purging, Introducing a reactive compound gas (reactive gas), reacting with a single layer, generating a target product, and removing one by-product and excess reactive compound by purge, repeating one cycle of film formation
  • a reactive compound gas reactive gas
  • an alumina (Al 2 O 3 ) film when an alumina (Al 2 O 3 ) film is formed, an organic aluminum compound gas such as triethylaluminum is used as an adsorption gas, an oxidizing compound gas such as water or ozone is used as a reaction gas, and nitrogen is used as a purge gas. An inert gas such as a gas can be used. Details of the ALD method are disclosed in various documents such as “JP-A No. 2003-347042”.
  • the semiconductor layer 14 is formed on the insulating layer 13.
  • the semiconductor layer 14 may be formed by a known method according to its material.
  • the semiconductor layer 14 made of an inorganic semiconductor can be formed by a vacuum deposition method, and the semiconductor layer 14 made of an organic semiconductor can be formed by various printing methods or coating methods. Can be formed.
  • a liquid composition in which a raw material (semiconductor compound) for constituting the semiconductor layer 14 is blended is used for printing or coating.
  • a raw material semiconductor compound for constituting the semiconductor layer 14 is blended
  • a method of forming a semiconductor film by supplying a raw material solution (the liquid composition) onto a substrate to form droplets and drying the droplets (hereinafter abbreviated as “edge casting method”).
  • edge casting method the semiconductor layer 14 can be formed.
  • the intermediate layer 18 is formed on the semiconductor layer 14. What is necessary is just to form the intermediate
  • the intermediate layer 18 can be formed by adhering a liquid composition containing raw materials for constituting the intermediate layer 18 onto the semiconductor layer 14 by various printing methods and drying it.
  • the intermediate layer 18 can also be formed on the semiconductor layer 14 by vacuum deposition. For example, after forming a film made of the material of the intermediate layer 18 by vacuum deposition, the film is patterned into a desired shape by photolithography. Alternatively, the intermediate layer 18 having a desired shape may be directly formed by a vacuum deposition method through a metal mask.
  • the source electrode 15 and the drain electrode 16 are formed on the intermediate layer 18.
  • the source electrode 15 and the drain electrode 16 can be formed by a known method. For example, after a film made of the material of these electrodes is formed by a vacuum deposition method, the film is patterned into a desired shape by photolithography. Alternatively, an electrode having a desired shape may be directly formed by a vacuum deposition method through a metal mask.
  • the gate electrode 12 can be formed by various printing methods or coating methods in the atmosphere using the silver ink composition, and the surface smoothness of the insulating layer 13 can be increased when the insulating layer 13 is formed. Further, since it is not necessary to separately form a smoothing layer on the insulating layer 13, the transistor 1 can be manufactured at a low cost by a simplified process. In addition, since the surface of the gate electrode 12 has high smoothness, the transistor 1 has high carrier mobility.
  • the transistor 2 is different from the semiconductor layer 24, the source electrode 25, the drain electrode 26, and the intermediate layer 28 except for the order and shape of the semiconductor layer 24, the source electrode 15, the drain electrode 16, and the intermediate layer 18.
  • the transistor 1 can be manufactured by the same method.
  • the silver ink composition is formulated with silver ⁇ -ketocarboxylate (1).
  • a liquid one is preferable, and one in which silver ⁇ -ketocarboxylate (1) is dissolved or uniformly dispersed is preferable.
  • One kind of silver ⁇ -ketocarboxylate (1) may be used alone, or two or more kinds may be used in combination. When two or more kinds are used in combination, the combination and ratio thereof can be arbitrarily adjusted.
  • the silver ⁇ -ketocarboxylate (1) is represented by the general formula (1).
  • R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 ” in which one or more hydrogen atoms may be substituted with a substituent.
  • the aliphatic hydrocarbon group having 1 to 20 carbon atoms in R may be any of linear, branched and cyclic (aliphatic cyclic group), and may be monocyclic or polycyclic when cyclic. . Further, the aliphatic hydrocarbon group may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group. The aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms. Preferred examples of the aliphatic hydrocarbon group for R include an alkyl group, an alkenyl group, and an alkynyl group.
  • Examples of the linear or branched alkyl group in R include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n -Pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4- Methylpentyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 3-ethylbutyl group 1-ethyl-1-methylpropyl group,
  • Examples of the cyclic alkyl group in R include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, 2- Examples thereof include an adamantyl group and a tricyclodecyl group.
  • alkenyl group in R examples include a vinyl group (ethenyl group, —CH ⁇ CH 2 ), an allyl group (2-propenyl group, —CH 2 —CH ⁇ CH 2 ), and a 1-propenyl group (—CH ⁇ CH—CH).
  • one single bond (C—C) between carbon atoms of the alkyl group in R such as ethynyl group (—C ⁇ CH), propargyl group (—CH 2 —C ⁇ CH), etc. ) Is substituted with a triple bond (C ⁇ C).
  • one or more hydrogen atoms may be substituted with a substituent, and preferred examples of the substituent include a fluorine atom, a chlorine atom, and a bromine atom.
  • the number and position of substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other. That is, all the substituents may be the same, all the substituents may be different, or only some of the substituents may be different.
  • one or more hydrogen atoms may be substituted with a substituent.
  • the substituent include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms.
  • a monovalent group formed by bonding the aliphatic hydrocarbon group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group (—OH), a cyano group (—C ⁇ N), a phenoxy group (—O—), C 6 H 5 ) and the like can be exemplified, and the number and position of substituents are not particularly limited.
  • the plural substituents may be the same as or different from each other.
  • Examples of the aliphatic hydrocarbon group that is a substituent include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 16.
  • Y 1 in R is independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom.
  • a plurality of Y 1 may be the same as each other. May be different.
  • R 1 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group (C 6 H 5 —), and the aliphatic hydrocarbon group in R 1 has 1 to 19 carbon atoms. Except for this point, the same aliphatic hydrocarbon groups as those in R can be exemplified.
  • R 2 in R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and examples thereof are the same as the aliphatic hydrocarbon group in R.
  • R 3 in R is an aliphatic hydrocarbon group having 1 to 16 carbon atoms, and examples thereof are the same as the aliphatic hydrocarbon group in R except that the carbon number is 1 to 16.
  • R 4 and R 5 in R are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms. That is, R 4 and R 5 may be the same as or different from each other, and examples thereof are the same as the aliphatic hydrocarbon group for R except that the number of carbon atoms is 1 to 18.
  • R 6 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group or a group represented by the formula “AgO—”. The aliphatic hydrocarbon group in R 6 has 1 to Except for being 19, the same aliphatic hydrocarbon groups as those described above for R can be exemplified.
  • R is a linear or branched alkyl group, a group represented by the general formula “R 6 —C ( ⁇ O) —CY 1 2 —”, a hydroxyl group, or a phenyl group. preferable.
  • R 6 represents a linear or branched alkyl group, or a group represented by a hydroxyl group or a formula "AgO-”.
  • each X 1 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A benzyl group (C 6 H 5 —CH 2 —), a cyano group, an N-phthaloyl-3-aminopropyl group, a 2-ethoxyvinyl group (C 2 H 5 —O—CH ⁇ CH—), or the general formula “R 7 O— ”,“ R 7 S— ”,“ R 7 —C ( ⁇ O) — ”or“ R 7 —C ( ⁇ O) —O— ”.
  • Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in X 1 include those similar to the aliphatic hydrocarbon group in R.
  • Examples of the halogen atom in X 1 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the substituent include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), A nitro group (—NO 2 ) and the like can be exemplified, and the number and position of substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
  • R 7 in X 1 represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group (C 4 H 3 S—), a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A diphenyl group (biphenyl group, C 6 H 5 —C 6 H 4 —);
  • Examples of the aliphatic hydrocarbon group for R 7 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 10 carbon atoms.
  • halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom
  • R 7 is a thienyl group or a diphenyl group
  • the bonding position of these groups with an adjacent group or atom oxygen atom, sulfur atom, carbonyl group, carbonyloxy group
  • the thienyl group may be either a 2-thienyl group or a 3-thienyl group.
  • two X 1 s may be bonded as one group through a double bond with a carbon atom sandwiched between two carbonyl groups.
  • Examples thereof include a group represented by the formula “ ⁇ CH—C 6 H 4 —NO 2 ”.
  • X 1 is preferably a hydrogen atom, a linear or branched alkyl group, a benzyl group, or a group represented by the general formula “R 7 —C ( ⁇ O) —” among the above. It is preferable that at least one X 1 is a hydrogen atom.
  • ⁇ -ketocarboxylate (1) can further reduce the concentration of the remaining raw materials and impurities in the conductor (metal silver) formed by post-treatment such as drying treatment or heating (firing) treatment.
  • post-treatment such as drying treatment or heating (firing) treatment.
  • the ⁇ -ketocarboxylate (1) is decomposed at a low temperature of preferably 60 to 210 ° C., more preferably 60 to 200 ° C. without using a reducing agent known in the art, as will be described later. It is possible to form metallic silver. And by using together with a reducing agent, it decomposes at a lower temperature to form metallic silver.
  • silver ⁇ -ketocarboxylate (1) may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
  • the content of silver derived from the silver ⁇ -ketocarboxylate (1) is preferably 5% by mass or more, and more preferably 10% by mass or more. By being in such a range, the formed metallic silver is excellent in quality.
  • the upper limit of the silver content is not particularly limited as long as the effects of the present invention are not impaired, but it is preferably 25% by mass in consideration of handling properties and the like.
  • silver derived from silver ⁇ -ketocarboxylate (1) refers to silver in ⁇ -ketocarboxylate (1) blended at the time of production of the silver ink composition unless otherwise specified.
  • the silver ink composition includes, in addition to silver ⁇ -ketocarboxylate (1), an amine compound having a carbon number of 25 or less, a quaternary ammonium salt, ammonia, and ammonium obtained by reacting the amine compound or ammonia with an acid. It is preferable to incorporate one or more nitrogen-containing compounds selected from the group consisting of salts (hereinafter sometimes simply referred to as “nitrogen-containing compounds”).
  • an amine compound having 25 or less carbon atoms is referred to as “amine compound”
  • a quaternary ammonium salt having 25 or less carbon atoms is referred to as “quaternary ammonium salt”
  • an ammonium salt obtained by reacting an amine compound having 25 or less carbon atoms with an acid Is sometimes abbreviated as “ammonium salt derived from an amine compound”, and an ammonium salt formed by reacting ammonia with an acid is sometimes abbreviated as “ammonium salt derived from ammonia”.
  • the amine compound has 1 to 25 carbon atoms, and may be any of primary amine, secondary amine, and tertiary amine.
  • the quaternary ammonium salt has 4 to 25 carbon atoms.
  • the amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group (—NH 2 ) of the primary amine) may be one, or two or more.
  • Examples of the primary amine include monoalkylamines, monoarylamines, mono (heteroaryl) amines, and diamines in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the monoalkylamine may be linear, branched or cyclic, and examples thereof are the same as the alkyl group in R, and are linear or branched having 1 to 19 carbon atoms. It is preferably a chain alkyl group or a cyclic alkyl group having 3 to 7 carbon atoms.
  • preferable monoalkylamine examples include n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, sec-butylamine, tert-butylamine, 3-aminopentane, 3 Examples include -methylbutylamine, 2-aminooctane, 2-ethylhexylamine, and 1,2-dimethyl-n-propylamine.
  • aryl group constituting the monoarylamine examples include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and the like, and preferably has 6 to 10 carbon atoms.
  • the heteroaryl group constituting the mono (heteroaryl) amine has a heteroatom as an atom constituting the aromatic ring skeleton, and the heteroatom includes a nitrogen atom, a sulfur atom, an oxygen atom, and a boron atom. Can be illustrated.
  • the number of the said hetero atom which comprises an aromatic ring frame is not specifically limited, One may be sufficient and two or more may be sufficient. When there are two or more, these heteroatoms may be the same or different from each other. That is, these heteroatoms may all be the same, may all be different, or may be partially different.
  • the heteroaryl group may be either monocyclic or polycyclic, and the number of ring members (the number of atoms constituting the ring skeleton) is not particularly limited, but is preferably a 3- to 12-membered ring.
  • Examples of the monoaryl group having 1 to 4 nitrogen atoms as the heteroaryl group include pyrrolyl group, pyrrolinyl group, imidazolyl group, pyrazolyl group, pyridyl group, pyrimidyl group, pyrazinyl group, pyridazinyl group, triazolyl group, tetrazolyl group A pyrrolidinyl group, an imidazolidinyl group, a piperidinyl group, a pyrazolidinyl group, and a piperazinyl group, which are preferably 3- to 8-membered rings, and more preferably 5- to 6-membered rings.
  • Examples of the monoaryl group having one oxygen atom as the heteroaryl group include a furanyl group, preferably a 3- to 8-membered ring, and more preferably a 5- to 6-membered ring.
  • Examples of the monoaryl group having one sulfur atom as the heteroaryl group include a thienyl group, preferably a 3- to 8-membered ring, and more preferably a 5- to 6-membered ring.
  • Examples of the monoaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, and a morpholinyl group.
  • it is a 5- to 6-membered ring.
  • the monoaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a thiazolyl group, a thiadiazolyl group, and a thiazolidinyl group, and is a 3- to 8-membered ring.
  • a 5- to 6-membered ring is preferable.
  • Examples of the polyaryl having 1 to 5 nitrogen atoms as the heteroaryl group include indolyl group, isoindolyl group, indolizinyl group, benzimidazolyl group, quinolyl group, isoquinolyl group, indazolyl group, benzotriazolyl group, tetra Examples thereof include a zolopyridyl group, a tetrazolopyridazinyl group, and a dihydrotriazolopyridazinyl group, preferably a 7-12 membered ring, and more preferably a 9-10 membered ring.
  • Examples of the polyaryl group having 1 to 3 sulfur atoms as the heteroaryl group include a dithiaphthalenyl group and a benzothiophenyl group, preferably a 7 to 12 membered ring, preferably a 9 to 10 membered ring. More preferably, it is a ring.
  • Examples of the polyaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzoxazolyl group and a benzooxadiazolyl group. Preferably, it is a 9 to 10 membered ring.
  • Examples of the polyaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzothiazolyl group and a benzothiadiazolyl group, and is a 7 to 12 membered ring. Preferably, it is a 9 to 10 membered ring.
  • the diamine only needs to have two amino groups, and the positional relationship between the two amino groups is not particularly limited.
  • the preferred diamine in the monoalkylamine, monoarylamine or mono (heteroaryl) amine, one hydrogen atom other than the hydrogen atom constituting the amino group (—NH 2 ) is substituted with an amino group.
  • the diamine preferably has 1 to 10 carbon atoms, and more preferable examples include ethylenediamine, 1,3-diaminopropane, and 1,4-diaminobutane.
  • secondary amine examples include dialkylamine, diarylamine, di (heteroaryl) amine and the like in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the dialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 9 carbon atoms, or having 3 to 7 carbon atoms.
  • a cyclic alkyl group is preferred.
  • Two alkyl groups in one molecule of dialkylamine may be the same as or different from each other.
  • Specific examples of preferable dialkylamines include N-methyl-n-hexylamine, diisobutylamine, and di (2-ethylhexyl) amine.
  • the aryl group constituting the diarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms. Two aryl groups in one molecule of diarylamine may be the same as or different from each other.
  • the heteroaryl group constituting the di (heteroaryl) amine is the same as the heteroaryl group constituting the mono (heteroaryl) amine, and is preferably a 6-12 membered ring.
  • Two heteroaryl groups in one molecule of di (heteroaryl) amine may be the same or different from each other.
  • tertiary amine examples include trialkylamine and dialkylmonoarylamine in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the trialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 19 carbon atoms, or 3 to 7 carbon atoms.
  • the cyclic alkyl group is preferably.
  • the three alkyl groups in one molecule of trialkylamine may be the same as or different from each other. That is, all three alkyl groups may be the same, all may be different, or only a part may be different.
  • Preferable examples of the trialkylamine include N, N-dimethyl-n-octadecylamine and N, N-dimethylcyclohexylamine.
  • the alkyl group constituting the dialkyl monoarylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 6 carbon atoms, or 3 to 3 carbon atoms. 7 is a cyclic alkyl group. Two alkyl groups in one molecule of dialkyl monoarylamine may be the same or different from each other.
  • the aryl group constituting the dialkyl monoarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms.
  • examples of the quaternary ammonium salt include halogenated tetraalkylammonium, in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the halogenated tetraalkylammonium is the same as the alkyl group constituting the monoalkylamine, and preferably has 1 to 19 carbon atoms.
  • the four alkyl groups in one molecule of the tetraalkylammonium halide may be the same as or different from each other. That is, all four alkyl groups may be the same, all may be different, or only a part may be different.
  • halogen constituting the halogenated tetraalkylammonium examples include fluorine, chlorine, bromine and iodine.
  • Specific examples of the preferred tetraalkylammonium halide include dodecyltrimethylammonium bromide.
  • the chain amine compound and the quaternary organic ammonium salt have been mainly described.
  • the nitrogen atom constituting the amine moiety or the ammonium salt moiety is a ring skeleton structure ( A heterocyclic compound which is a part of a heterocyclic skeleton structure) may be used. That is, the amine compound may be a cyclic amine, and the quaternary ammonium salt may be a cyclic ammonium salt.
  • the ring (ring containing the nitrogen atom constituting the amine moiety or ammonium salt moiety) structure may be either monocyclic or polycyclic, and the number of ring members (number of atoms constituting the ring skeleton) is also particularly limited. Any of an aliphatic ring and an aromatic ring may be sufficient. If it is a cyclic amine, a pyridine can be illustrated as a preferable thing.
  • the “hydrogen atom optionally substituted with a substituent” means a nitrogen atom constituting an amine moiety or an ammonium salt moiety.
  • the number of substituents at this time is not particularly limited, and may be one or two or more, and all of the hydrogen atoms may be substituted with a substituent.
  • the plural substituents may be the same as or different from each other. That is, the plurality of substituents may all be the same, may all be different, or only some may be different. Further, the position of the substituent is not particularly limited.
  • Examples of the substituent in the amine compound and the quaternary ammonium salt include an alkyl group, an aryl group, a halogen atom, a cyano group, a nitro group, a hydroxyl group, and a trifluoromethyl group (—CF 3 ).
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group constituting the monoalkylamine has a substituent
  • the alkyl group has an aryl group as a substituent, a linear or branched alkyl group having 1 to 9 carbon atoms, or a substituent
  • a cyclic alkyl group having 3 to 7 carbon atoms having an alkyl group having 1 to 5 carbon atoms is preferable, and a monoalkylamine having such a substituent is specifically 2-phenylethylamine. , Benzylamine, and 2,3-dimethylcyclohexylamine.
  • aryl group and the alkyl group which are substituents may further have one or more hydrogen atoms substituted with halogen atoms, and as monoalkylamines having such substituents substituted with halogen atoms, And 2-bromobenzylamine.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the aryl group constituting the monoarylamine has a substituent
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms having a halogen atom as the substituent, and the monoaryl having such a substituent
  • Specific examples of the amine include bromophenylamine.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group constituting the dialkylamine has a substituent
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 9 carbon atoms and having a hydroxyl group or an aryl group as a substituent.
  • Specific examples of the dialkylamine having such a substituent include diethanolamine and N-methylbenzylamine.
  • the amine compound is n-propylamine, n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, sec-butylamine, tert-butylamine, 3-aminopentane, 3-methyl.
  • the ammonium salt derived from the amine compound is an ammonium salt obtained by reacting the amine compound with an acid
  • the acid may be an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid, or an organic acid such as acetic acid.
  • the type of acid is not particularly limited.
  • the ammonium salt derived from the amine compound include, but are not limited to, n-propylamine hydrochloride, N-methyl-n-hexylamine hydrochloride, N, N-dimethyl-n-octadecylamine hydrochloride and the like. .
  • ammonium salt derived from ammonia is an ammonium salt obtained by reacting ammonia with an acid, and examples of the acid include the same ones as in the case of the ammonium salt derived from the amine compound.
  • examples of the ammonium salt derived from ammonia include ammonium chloride, but are not limited thereto.
  • the amine compound, the quaternary ammonium salt, the ammonium salt derived from the amine compound and the ammonium salt derived from ammonia may be used singly or in combination of two or more. .
  • the combination and ratio can be adjusted arbitrarily.
  • you may use individually by 1 type selected from the group which consists of said amine compound, quaternary ammonium salt, ammonium salt derived from an amine compound, and ammonium salt derived from ammonia More than one species may be used in combination.
  • the combination and ratio can be adjusted arbitrarily.
  • the compounding amount of the nitrogen-containing compound is preferably 0.2 to 15 mol, more preferably 0.3 to 5 mol, per mol of the silver carboxylate.
  • the silver ink composition is further improved in stability and the quality of metallic silver is further improved.
  • the conductive layer can be formed more stably without performing heat treatment at a high temperature.
  • the silver ink composition preferably contains alcohol in addition to ⁇ -ketocarboxylate (1).
  • the alcohol may be linear, branched or cyclic, and when it is cyclic, it may be monocyclic or polycyclic.
  • the alcohols may be monohydric alcohols or polyhydric alcohols. Especially, it is preferable that the said alcohol is linear or branched.
  • Preferred examples of the alcohol include acetylene alcohols represented by the following general formula (2) (hereinafter sometimes abbreviated as “acetylene alcohol (2)”), and carbon atoms not corresponding to the acetylene alcohol (2). Examples thereof include 1 to 7 alcohols (hereinafter sometimes abbreviated as “other alcohols”).
  • the term “alcohol” is not limited to “other alcohols”, but includes “acetylene alcohol (2)” in general, unless otherwise specified. Shall mean.
  • R ′ and R ′′ are each independently an alkyl group having 1 to 20 carbon atoms, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
  • the acetylene alcohol (2) is represented by the general formula (2).
  • R ′ and R ′′ are each independently an alkyl group having 1 to 20 carbon atoms or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group having 1 to 20 carbon atoms in R ′ and R ′′ may be linear, branched or cyclic, and when it is cyclic, it may be monocyclic or polycyclic. Examples of the alkyl group in R ′ and R ′′ include the same alkyl groups as in R.
  • Examples of the substituent in which the hydrogen atom of the phenyl group in R ′ and R ′′ may be substituted include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms, the aliphatic carbon Examples thereof include a monovalent group formed by bonding a hydrogen group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group, a cyano group, a phenoxy group, and the like, and the hydrogen atom of the phenyl group in R may be substituted. This is the same as the substituent. And the number and position of a substituent are not specifically limited, When there are two or more substituents, these several substituents may mutually be same or different.
  • R ′ and R ′′ are preferably an alkyl group having 1 to 20 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
  • Examples of preferable acetylene alcohol (2) include 3,5-dimethyl-1-hexyn-3-ol, 3-methyl-1-butyn-3-ol, and 3-methyl-1-pentyn-3-ol.
  • the blending amount of acetylene alcohol (2) in the silver ink composition is 0.03 to 0.7 mole per mole of silver ⁇ -ketocarboxylate (1). Is more preferable, and 0.05 to 0.3 mol is more preferable. By setting it as such a range, stability of a silver ink composition improves more.
  • the other alcohol having 1 to 7 carbon atoms preferably has 2 to 5 carbon atoms, and more specifically, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2 Examples thereof include monohydric alcohols such as methyl-1-propanol, 2-methyl-2-propanol and 1-pentanol; dihydric alcohols such as ethylene glycol and propylene glycol.
  • the blending amount of the other alcohol in the silver ink composition is preferably 0.2 to 4 parts by mass per 1 part by mass of the silver ⁇ -ketocarboxylate (1). More preferably, it is 0.5 to 2 parts by mass.
  • the blending amount of the other alcohol is equal to or higher than the lower limit, the silver ink composition is improved in handleability, and when it is equal to or lower than the upper limit, metallic silver can be formed more efficiently.
  • the alcohol may be used alone or in combination of two or more. When two or more kinds are used in combination, the combination and ratio can be arbitrarily adjusted.
  • the silver ink composition may contain a reducing agent that does not correspond to the alcohol in addition to silver ⁇ -ketocarboxylate (1).
  • a reducing agent By blending a reducing agent, the silver ink composition can more easily form metallic silver.
  • metallic silver having sufficient conductivity can be formed even by heat treatment at a low temperature.
  • the reducing agent is one or more reducing compounds selected from the group consisting of oxalic acid, hydrazine and a compound represented by the following general formula (5) (hereinafter sometimes abbreviated as “compound (5)”). (Hereinafter, sometimes simply abbreviated as “reducing compound”).
  • compound (5) a compound represented by the following general formula (5) (hereinafter, sometimes simply abbreviated as “reducing compound”).
  • the reducing compound is at least one selected from the group consisting of oxalic acid (HOOC—COOH), hydrazine (H 2 N—NH 2 ) and the compound represented by the general formula (5) (compound (5)). It is. That is, the reducing compound to be blended may be only one kind, or two or more kinds. When two or more kinds are used in combination, the combination and ratio can be arbitrarily adjusted.
  • R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, an N, N-dialkylamino group, a hydroxyl group or an amino group.
  • the alkyl group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms and may be linear, branched or cyclic, and is the same as the alkyl group in R in the general formula (1) The thing can be illustrated.
  • the alkoxy group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms, and examples thereof include monovalent groups in which the alkyl group in R 21 is bonded to an oxygen atom.
  • the N, N-dialkylamino group having 20 or less carbon atoms in R 21 has 2 to 20 carbon atoms, and the two alkyl groups bonded to the nitrogen atom may be the same as or different from each other. Each alkyl group has 1 to 19 carbon atoms. However, the total value of the carbon number of these two alkyl groups is 2 to 20.
  • the alkyl group bonded to the nitrogen atom may be linear, branched or cyclic, respectively, and the alkyl group in R of the general formula (1) except that it has 1 to 19 carbon atoms. The thing similar to group can be illustrated.
  • hydrazine may be monohydrate (H 2 N—NH 2 .H 2 O).
  • the reducing compound includes formic acid (HC ( ⁇ O) —OH), methyl formate (HC— ⁇ O) —OCH 3 ), ethyl formate (HC— ⁇ O) —OCH 2 CH 3 ). , Butyl formate (HC ( ⁇ O) —O (CH 2 ) 3 CH 3 ), propanal (HC ( ⁇ O) —CH 2 CH 3 ), butanal (HC ( ⁇ O) — ( CH 2 ) 2 CH 3 ), hexanal (HC ( ⁇ O) — (CH 2 ) 4 CH 3 ), formamide (HC ( ⁇ O) —NH 2 ), N, N-dimethylformamide (H—) C ( ⁇ O) —N (CH 3 ) 2 ) or oxalic acid is preferred.
  • the compounding amount of the reducing agent is preferably 0.04 to 3.5 mol, and 0.06 to 2.5 mol per mol of the ⁇ -ketocarboxylate (1). More preferably.
  • the silver ink composition may contain other components other than silver ⁇ -ketocarboxylate (1), nitrogen-containing compound, alcohol and reducing agent.
  • the other components in the silver ink composition can be arbitrarily selected according to the purpose, and are not particularly limited. Preferred examples thereof include solvents other than alcohol, and can be arbitrarily selected according to the type and amount of compounding components. it can.
  • One of these other components in the silver ink composition may be used alone, or two or more thereof may be used in combination. When two or more kinds are used in combination, the combination and ratio can be arbitrarily adjusted.
  • the ratio of the blending amount of the other components to the total blending component is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • All the components in the silver ink composition may be dissolved, or some or all of the components may not be dissolved, but it is preferable that the undissolved components are uniformly dispersed.
  • the silver ink composition can be obtained by blending components other than silver ⁇ -ketocarboxylate (1) and silver ⁇ -ketocarboxylate (1). At the time of blending each component, all the components may be added and then mixed, or some components may be mixed while being added sequentially, or all components may be mixed while being added sequentially. Good. However, in this invention, it is preferable to mix
  • the mixing method is not particularly limited, and may be appropriately selected from known methods such as a method of mixing by rotating a stirrer or a stirring blade, a method of mixing using a mixer, a method of adding ultrasonic waves, and the like. .
  • the temperature at the time of compounding is not particularly limited as long as each compounding component does not deteriorate, but it is preferably ⁇ 5 to 60 ° C.
  • the blending time (mixing time) is not particularly limited as long as each blending component does not deteriorate, but it is preferably 5 minutes to 5 hours.
  • the resulting blend (silver ink composition) tends to generate heat relatively easily.
  • the temperature at the time of compounding of the reducing agent is high, since this compound is in the same state as at the time of heat treatment of the silver ink composition described later, the decomposition promoting action of the silver carboxylate by the reducing agent, It is speculated that the formation of metallic silver may be initiated in at least part of the silver carboxylate.
  • a silver ink composition containing such metallic silver may be able to form the target metallic silver by performing post-treatment under milder conditions than the silver ink composition not containing metallic silver.
  • the target metallic silver may be formed by performing post-treatment under the same mild conditions.
  • post-treatment can be performed by heat treatment at a lower temperature or by drying treatment at normal temperature without performing heat treatment.
  • the target metallic silver can be formed.
  • the silver ink composition containing such metal silver can be handled in the same manner as the silver ink composition not containing metal silver, and the handleability is not particularly inferior.
  • a silver ink composition can be made to adhere on the board
  • the printing method include screen printing method, flexographic printing method, offset printing method, dip printing method, ink jet printing method, dispenser printing method, gravure printing method, gravure offset printing method, pad printing method and the like.
  • the coating method include spin coaters, air knife coaters, curtain coaters, die coaters, blade coaters, roll coaters, gate roll coaters, bar coaters, rod coaters, gravure coaters, and other methods such as wire bars. It can be illustrated.
  • the amount of the silver ink composition deposited on the substrate 11 (modifying layer 17) or the blending amount of the silver ⁇ -ketocarboxylate (1) in the silver ink composition is adjusted.
  • the thickness of the gate electrode 12 can be adjusted.
  • the silver ink composition deposited on the substrate 11 When the silver ink composition deposited on the substrate 11 is subjected to a drying treatment, it may be performed by a known method, for example, under normal pressure, reduced pressure, or air blowing conditions. It may be performed in any of an active gas atmosphere. Also, the drying temperature is not particularly limited, and may be either heat drying or room temperature drying. As a preferable drying method when the heat treatment is unnecessary, a method of drying in the atmosphere at 18 to 30 ° C. can be exemplified.
  • the conditions may be adjusted as appropriate according to the type of compounding component of the silver ink composition.
  • the heating temperature is preferably 60 to 200 ° C, more preferably 70 to 180 ° C.
  • the heating time may be adjusted according to the heating temperature, but usually it is preferably 0.2 to 12 hours, more preferably 0.4 to 10 hours.
  • silver ⁇ -ketocarboxylate (1) decomposes at a low temperature without using a reducing agent known in the art. Reflecting such decomposition temperature, the silver ink composition can form metallic silver at an extremely lower temperature than the conventional one as described above.
  • the method for heat treatment of the silver ink composition is not particularly limited, and for example, heating by an electric furnace, heating by a thermal head, heating by far infrared irradiation, or the like can be performed.
  • the heat treatment of the silver ink composition may be performed in the air or in an inert gas atmosphere. And you may carry out under any of normal pressure and pressure reduction.
  • Example 1 ⁇ Manufacture of transistors> (Manufacture of silver ink composition) Silver 2-methylacetoacetate (1 part by mass), 2-ethylhexylamine (2 parts by mass, 3.5-fold molar amount with respect to silver 2-methylacetoacetate), and methanol (1 part by mass) at 5 to 10 ° C. The silver ink composition was obtained by stirring for minutes.
  • a transistor was manufactured according to the following procedure by the method described with reference to FIGS. 4A to 4F.
  • a glass substrate having a thickness of 0.7 mm is combined with 3-aminopropyltrimethoxysilane ((CH 3 O) 3 SiCH 2 CH 2 CH 2 NH 2 , “KBM-903” manufactured by Shin-Etsu Silicone Co., Ltd.), which is a silane coupling agent.
  • silane coupling agent (CH 3 O) 3 SiCH 2 CH 2 CH 2 NH 2 , “KBM-903” manufactured by Shin-Etsu Silicone Co., Ltd.)
  • the silver ink composition produced as described above is applied onto the modification layer by spin coating (2000 rpm, 20 seconds), and heat treatment is performed at 80 ° C. for 30 minutes and further at 150 ° C. for 30 minutes.
  • a gate electrode having a thickness of 100 nm was formed.
  • the surface roughness (Ra) was measured in accordance with JIS B0601: 2001 (ISO 4287: 1997) and found to be 4 nm.
  • a mesitylene solution of benzocyclobutene (hereinafter sometimes abbreviated as “BCB”) having a concentration of 18% by mass is applied onto the gate electrode by spin coating, and is applied at 50 to 250 ° C. for about 10 hours.
  • BCB benzocyclobutene
  • a semiconductor layer (organic semiconductor layer) having a thickness of 50 nm made of alkyl-DNBDT was formed on the insulating layer by an edge casting method described in “International Publication No. 2011/040155”.
  • an intermediate layer made of F6-TNAP and having a thickness of 0.5 nm was formed on the semiconductor layer by vacuum deposition.
  • a source electrode and a drain electrode made of gold and having a thickness of 30 nm were formed on the intermediate layer by vacuum deposition so that the channel length was 100 ⁇ m.
  • the transistor according to the present invention was manufactured.
  • a plan view of the obtained transistor is shown in FIG. In FIG. 5, the symbol W indicates the channel width.
  • Example 2 Example 1 except that an insulating layer made of polyimide having a thickness of 200 nm (hereinafter sometimes abbreviated as “PI”) was formed by spin coating instead of the insulating layer made of BCB having a thickness of 300 nm.
  • the transistor was manufactured by the same method.
  • the obtained transistor was evaluated in the same manner as in Example 1.
  • the results are shown in Table 1.
  • 7A to 7C are graphs showing the relationship between the drain current ID and the gate voltage V G and the relationship (output characteristics) between the drain current ID and the drain voltage V D at this time.
  • Figure 7C I The relationship between D and V D is shown respectively.
  • a comparative transistor having a conventional gate electrode was manufactured by the following procedure.
  • a 7 nm thick chromium (Cr) layer, a 50 nm thick gold (Au) layer, and a 7 nm thick chromium (Cr) layer are formed in this order on a 0.7 mm thick glass substrate by vacuum deposition.
  • the gate electrode was formed by stacking. With respect to this gate electrode, the surface roughness (Ra) of the upper chromium layer was measured in accordance with JIS B0601: 2001 (ISO4287: 1997) and found to be 1 nm.
  • an insulating layer having a thickness of 300 nm, a semiconductor layer having a thickness of 50 nm (organic semiconductor layer), an intermediate layer having a thickness of 0.5 nm, and a thickness are formed on the gate electrode (the upper chromium layer) in the same manner as in Example 1.
  • a source electrode and a drain electrode each having a thickness of 30 nm were formed.
  • a conventional transistor was manufactured.
  • a schematic cross-sectional view of the obtained transistor is shown in FIG.
  • reference numeral 9 denotes a transistor
  • reference numeral 92 denotes a gate electrode
  • reference numerals 92a and 92c denote chrome layers
  • reference numeral 92b denotes a gold layer.
  • the plan view (not shown) of the transistor 9 is the same as that of the transistor 1 of the first embodiment (FIG. 5).
  • the obtained transistor was evaluated in the same manner as in Example 1.
  • the results are shown in Table 1.
  • 9A to 9C are graphs showing the relationship between the drain current ID and the gate voltage V G and the relationship (output characteristics) between the drain current ID and the drain voltage V D at this time.
  • Figure 9B relationship between I D and V G in the saturation region (V D -20V)
  • FIG. 9C and I D The relationship with V D is shown respectively.
  • FIG. 2 A transistor was manufactured in the same manner as in Comparative Example 1 except that an insulating layer made of PI having a thickness of 200 nm was formed by spin coating instead of the insulating layer made of BCB having a thickness of 300 nm. The obtained transistor was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • 10A to 10C are graphs showing the relationship between the drain current ID and the gate voltage V G and the relationship (output characteristics) between the drain current ID and the drain voltage V D at this time.
  • FIG. 10C and I D The relationship with V D is shown respectively.
  • a comparative transistor including a gate electrode formed of silver nanoparticle ink was manufactured by the following procedure.
  • a silver nanoparticle ink (“NPS-J” manufactured by Harima Chemicals Co., Ltd., average particle size: 12 nm, solid content: 62 to 67% by mass, solvent: tetradecane) is spin coated on a glass substrate having a thickness of 0.7 mm.
  • a heat treatment was performed at 150 ° C. for 30 minutes to form a gate electrode having a thickness of 100 nm on the glass substrate.
  • the surface roughness (Ra) was measured in accordance with JIS B0601: 2001 (ISO 4287: 1997) and found to be 21 nm.
  • an insulating layer having a thickness of 300 nm, a semiconductor layer having a thickness of 50 nm (organic semiconductor layer), an intermediate layer having a thickness of 0.5 nm, and a source electrode having a thickness of 30 nm are formed on the gate electrode in the same manner as in Example 1.
  • a drain electrode was formed.
  • a conventional transistor was manufactured.
  • the schematic cross-sectional view of the obtained transistor is the same as FIG. 1 except that the modification layer is not provided, and the plan view is the same as FIG. 5 (not shown).
  • the obtained transistor was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • FIGS. 11A to 11C are graphs showing the relationship between the drain current ID and the gate voltage V G and the relationship (output characteristics) between the drain current ID and the drain voltage V D at this time.
  • FIG. 11C is I The relationship between D and V D is shown respectively.
  • the transistors of Examples 1 and 2 were formed by vacuum deposition because the surface roughness of the gate electrode formed by a coating method using ⁇ -ketocarboxylate (1) in air was small.
  • the mobility of carriers was higher than that of the transistors of Comparative Examples 1 and 2 using the gate electrode having the same or less surface roughness.
  • the threshold voltage was in an appropriate numerical range, the OFF current was low, and the current ON / OFF ratio was large.
  • I D and V G, I D and V D are both showed a clear correlation.
  • the transistors of Examples 1 and 2 had excellent characteristics.
  • the surface roughness of the gate electrode formed by a coating method using silver nanoparticles in the atmosphere was large. Further, although the transistor of Comparative Example 3 did not operate, it was assumed that the gate electrode penetrated the insulating layer and reached the source electrode or the drain electrode because the gate current was large.
  • Example 3 An olefin liquid (a liquid containing a cycloolefin-based thermosetting resin, “ES2110-10” manufactured by Nippon Zeon Co., Ltd.) is applied onto the gate electrode by a spin coating method (3000 rpm, 30 seconds), and the coating is performed at 150 ° C. for 60 minutes.
  • a transistor was manufactured in the same manner as in Example 1 except that, by heating, an insulating layer made of olefin having a thickness of 300 nm was formed instead of the insulating layer made of BCB having a thickness of 300 nm. The obtained transistor was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • FIGS. 12A to 12C are graphs showing the relationship between the drain current ID and the gate voltage V G and the relationship (output characteristics) between the drain current ID and the drain voltage V D at this time.
  • FIG. 12C is I The relationship between D and V D is shown respectively.
  • a silicon wafer having a two-layer structure (N-type highly doped silicon in which a surface is thermally oxidized to form a silicon dioxide layer having a thickness of 100 nm) is used, and the silicon dioxide layer is used as a part of an insulating layer and an N-type silicon layer.
  • the surface roughness (Ra) of this silicon dioxide layer was measured in accordance with JIS B0601: 2001 (ISO 4287: 1997).
  • an insulating layer made of olefin having a thickness of 300 nm was formed on the silicon dioxide layer by spin coating in the same manner as in Example 3.
  • FIGS. 13A to 13C are graphs showing the relationship between the drain current ID and the gate voltage V G and the relationship (output characteristics) between the drain current ID and the drain voltage V D at this time.
  • Figure 13C I The relationship between D and V D is shown respectively.
  • the transistor of Example 3 is similar to the transistors of Examples 1 and 2 in that the surface roughness of the gate electrode formed by coating using silver ⁇ -ketocarboxylate (1) in the atmosphere.
  • the carrier mobility was small.
  • the threshold voltage was in an appropriate numerical range, the OFF current was low, and the current ON / OFF ratio was large.
  • I D and V G, I D and V D are both showed a clear correlation.
  • the transistor of Comparative Example 4 also had the same characteristics as the transistor of Example 3.
  • the transistor shown in FIG. 3 was manufactured according to the following procedure.
  • the silver ink composition produced above was applied on a 100 mm thick polyethylene naphthalate substrate (PEN substrate) by spin coating (2000 rpm, 20 seconds), 30 minutes at 100 ° C., and 30 minutes at 150 ° C. By performing the partial heat treatment, a silver layer having a thickness of 100 nm was formed on the PEN substrate.
  • PEN substrate polyethylene naphthalate substrate
  • the formed silver layer was patterned into a linear shape having a thickness of 100 nm and a width of 10 ⁇ m by photolithography and etching to form a gate electrode.
  • photolithography “S1805” manufactured by Shipley Co., Ltd. was used as a resist, and this was coated on the silver layer by spin coating (1000 rpm, 30 seconds), heated at 90 ° C. for 10 minutes, and then 100 mW / cm.
  • the resist pattern was formed by developing for 1 minute using a developer (“NMD-3” manufactured by Tokyo Ohka Kogyo Co., Ltd.) and heating at 120 ° C. for 20 minutes.
  • the exposed silver layer was removed using a silver etching solution (“SEA-1” manufactured by Kanto Chemical Co., Inc.), and the remaining resist was removed by washing with acetone to form a gate electrode.
  • SEA-1 silver etching solution manufactured by Kanto Chemical Co., Inc.
  • the remaining resist was removed by washing with acetone to form a gate electrode.
  • the surface roughness (Ra) was measured in accordance with JIS B0601: 2001 (ISO 4287: 1997) and found to be 4 nm.
  • an olefin liquid (Nippon Zeon Corporation) was applied to the surface of the laminate (the surface of the PEN substrate and the gate electrode) obtained by stacking the gate electrode on the PEN substrate obtained above by a spin coating method (3000 rpm, 30 seconds). “ES2110-10”) was applied and heated at 150 ° C. for 60 minutes to form an insulating layer made of olefin having a thickness of 400 nm.
  • a mask is provided on the insulating layer so that a predetermined pattern can be formed, a semiconductor composed of alkyl-DNBDT is vapor-deposited at 140 ° C., and the mask is removed to remove a semiconductor layer having a thickness of 25 nm on the insulating layer. (Organic semiconductor layer) was formed.
  • gold is deposited on the surface of the laminate obtained by stacking the gate electrode, the insulating layer, and the semiconductor layer in this order on the PEN substrate (the surface of the insulating layer and the semiconductor layer) to form a gold layer. did.
  • the formed gold layer was patterned by photolithography and etching so that the channel length was 5 ⁇ m, thereby forming a source electrode and a drain electrode.
  • “OSCOR 2312” manufactured by Orthogonal Co. was used as a resist, and this was coated on a gold layer by a spin coating method (2000 rpm, 30 seconds), heated at 60 ° C. for 20 minutes, and then 300 mW / cm.
  • the resist pattern was formed by exposing with 2 and heating at 60 degreeC for 20 minutes, and developing using a developing solution ("Novec7300" by 3M).
  • the exposed gold layer is removed using an etching solution (“AurumS-50790” manufactured by Kanto Chemical Co., Inc.), and the remaining resist is removed using a cleaning solution (“Novec7100” manufactured by 3M).
  • a transistor was manufactured by forming a source electrode and a drain electrode each made of gold and having a thickness of 50 nm.
  • 14A to 14C are graphs showing the relationship between the drain current ID and the gate voltage VG and the relationship (output characteristics) between the drain current ID and the drain voltage VD at this time.
  • FIG. 14C shows the relationship between ID and VD. Each is shown.
  • FIG. 15 a circuit having the configuration shown in FIG. 15 was manufactured, and the maximum frequency during rectification was obtained. More specifically, it is as follows.
  • symbols G, D, and S mean the gate electrode, drain electrode, and source electrode of the transistor obtained above, respectively.
  • V in minimum value of input AC voltage
  • V out DC voltage output (rectified) to the capacitor
  • Example 5 ⁇ Manufacture of transistors> The same silver ink composition as in Example 4 was applied onto a 0.7 mm thick glass substrate by spin coating (1000 rpm, 20 seconds), and heat-treated at 100 ° C. for 30 minutes and further at 150 ° C. for 30 minutes. Thus, a silver layer having a thickness of 200 nm was formed on the glass substrate.
  • the formed silver layer was patterned into a linear shape having a thickness of 200 nm and a width of 10 ⁇ m by photolithography and etching to form a gate electrode.
  • photolithography and etching were performed in the same manner as in Example 4.
  • the surface roughness (Ra) was measured in accordance with JIS B0601: 2001 (ISO 4287: 1997) and found to be 4 nm.
  • an alumina layer having a thickness of 130 nm was formed on the surface of the laminate (the surface of the glass substrate and the gate electrode) obtained by stacking the gate electrode on the glass substrate by the ALD method.
  • the ALD method triethylaluminum gas was used as an adsorption gas, H 2 O gas was used as a reaction gas, nitrogen gas was introduced into a reaction chamber as a carrier gas, and nitrogen gas was used as a purge gas.
  • the temperature during film formation was 150 ° C.
  • the flow rate of nitrogen gas was 300 sccm when it was used as a carrier gas, and 1500 sccm when it was used as a purge gas.
  • the pressure in the reaction chamber was 40 Pa.
  • the introduction time of triethylaluminum gas was 0.3 seconds
  • the introduction time of H 2 O gas was 0.3 seconds
  • the introduction time of purge gas (nitrogen gas) was 1 second.
  • an olefin liquid (“ES2110-10” manufactured by Nippon Zeon Co., Ltd.) was applied onto the alumina layer by spin coating (2000 rpm, 30 seconds), and heated at 150 ° C. for 60 minutes to obtain a thickness of 30 nm.
  • An olefin layer was formed.
  • an insulating layer was formed by laminating the alumina layer and the olefin layer in this order from the substrate side.
  • a semiconductor layer (organic semiconductor layer) with a thickness of 25 nm is formed on the insulating layer by the same method as in Example 4, and a source electrode and a drain electrode with a thickness of 50 nm made of gold are formed on the semiconductor layer.
  • a transistor was manufactured.
  • FIGS. 17A to 17C show graphs of the relationship between the drain current ID and the gate voltage VG and the relationship (output characteristics) between the drain current ID and the drain voltage VD at this time.
  • FIG. 17C shows the relationship between ID and VD.
  • required is shown in FIG.
  • Example 6 A transistor was manufactured in the same manner as in Example 5 except that the resist pattern in photolithography was changed and a source electrode and a drain electrode having a channel length of 2 ⁇ m were formed. The obtained transistor was evaluated in the same manner as in Example 4. The results are shown in Table 3.
  • 19A to 19C are graphs showing the relationship between the drain current ID and the gate voltage VG and the relationship (output characteristic) between the drain current ID and the drain voltage VD at this time.
  • FIG. 19C shows the relationship between ID and VD. Each is shown.
  • required is shown in FIG.
  • Example 7 The condition of the spin coating method at the time of forming the silver layer was changed to 2000 rpm, 20 seconds, 4000 rpm, 20 seconds, a gate electrode having a thickness of 40 nm was formed, and the resist pattern was changed by photolithography, and the channel length was 2 ⁇ m.
  • a transistor was manufactured in the same manner as in Example 4 except that the source electrode and the drain electrode were formed. The obtained transistor was evaluated in the same manner as in Example 4. The results are shown in Table 3.
  • graphs of the relationship between the drain current ID and the gate voltage VG and the relationship (output characteristics) between the drain current ID and the drain voltage VD are shown in FIGS. 21A to 21C.
  • FIG. 21C shows the relationship between ID and VD. Each is shown.
  • FIG. 22 shows a graph obtained when the maximum frequency during rectification is obtained.
  • the transistors of Examples 4 to 7 are the same as the transistors of Examples 1 to 3, except that the gate electrodes formed by coating using silver ⁇ -ketocarboxylate (1) in the atmosphere are used.
  • the surface roughness was small and the carrier mobility was high.
  • the threshold voltage was in an appropriate numerical range, the OFF current was low, and the current ON / OFF ratio was large.
  • FIGS. 14A to 14C, 17A to 17C, 19A to 19C, and 21A to 21C, ID and VG and ID and VD all showed clear correlations. .
  • the transistors of Examples 4 to 7 had excellent characteristics.
  • the transistors of Examples 4 to 7 have a short channel length and are advantageous for operation at a high frequency, and are more practical. However, this is because the maximum frequency during rectification is large. Was confirmed.
  • the present invention can be used in computer electronic circuits, TFT ICs, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本発明は、表面の平滑性が高くかつ簡略化された工程で形成可能なゲート電極を備えたトランジスタを提供することを課題とする。 本発明のトランジスタは、基板(11)上にゲート電極(12)、絶縁層(13)、半導体層(14)、ソース電極(15)及びドレイン電極(16)を備え、前記ゲート電極(12)が、下記一般式(1)で表わされるβ-ケトカルボン酸銀を用いて形成されている。

Description

トランジスタ
 本発明は、キャリアの移動度が高い新規のトランジスタに関する。
 本願は、2013年7月23日に日本に出願された特願2013-152669号、2014年3月18日に日本に出願された特願2014-055595号に基づき優先権を主張し、その内容をここに援用する。
 トランジスタは、コンピュータ等の電子回路や、TFT(thin film transistor)、RFID(Radio Frequency IDentification)のIC等、幅広い分野で利用されている。
 トランジスタは、通常、基板上にゲート電極、絶縁層、半導体層、ソース電極及びドレイン電極を備えて構成され、近年では有機材料からなる半導体層(有機半導体層)を備えた有機トランジスタも開発されている。有機トランジスタは、柔軟性を有する、真空下ではなく大気下において適用可能な各種印刷法や塗布法等によって積層できるという有機材料の特徴を生かして、フレキシブルな回路をより簡略化された工程で製造できるため、有用性が高い。
 トランジスタの性能を比較する重要な指標の一つとして、キャリアの移動度がある。トランジスタでは、ゲート電極に電圧が印加されると、半導体層の絶縁層との界面近傍にキャリアが生成して電気伝導度が上昇し、ソース電極及びドレイン電極間に電圧が印加されると、キャリアがソース電極又はドレイン電極に移動して、電流が流れる。このとき、キャリアの移動度が高いと、トランジスタはON(オン)からOFF(オフ)又はOFFからONへの動作が速く、電流値も大きくなり、好ましい特性となる。
 一方で、ゲート電極を半導体層よりも基板側(下側)に備えるボトムゲート型のトランジスタでは、絶縁層の表面の平滑性が低い(凹凸が大きい)と、半導体層の絶縁層との界面近傍において、キャリアが前記界面に沿って移動するために、キャリアの実際の移動距離は、絶縁層の表面の凹凸の影響を受けて、凹凸が小さい(平滑性が高い)場合よりも長くなってしまい、キャリアの移動速度、すなわち移動度が低くなってしまう。そこで、このようなトランジスタでは、絶縁層の表面の平滑性を高くすることが重要となる。
 これに対して、絶縁層の表面の平滑性を高くする方法としては、光硬化性樹脂を用いて塗膜を形成した後、この塗膜上に表面の平滑性が高いガラス板等を載せた状態で光を照射して前記樹脂を硬化させて絶縁層を形成し、前記ガラス板等を除去する方法が開示されている(特許文献1参照)。また、絶縁層表面の平滑性の影響を緩和する方法として、絶縁層上に平滑化層を形成し、この平滑化層上に有機半導体層を形成する方法が開示されている(特許文献2参照)。
 しかし、特許文献1に記載の方法では、ガラス板等の配置及び除去という操作が必要であり、特許文献2に記載の方法では、平滑化層の形成という操作が必要であって、いずれもトランジスタの製造工程が煩雑であるという問題点があった。
 そもそも絶縁層の表面の平滑性は、絶縁層に接して配置されているゲート電極の表面の影響を受けるものであり、ゲート電極の表面の平滑性が低い(凹凸が大きい)と、その平滑性を反映して、絶縁層の表面も同様に平滑性が低くなってしまう。これに対して、特許文献1及び2に記載の方法はいずれも、ゲート電極を簡略化された工程で形成する際に、この問題点を根本的に解決できるものではない。ゲート電極を真空蒸着やスパッタリング等の方法で形成すれば、表面の平滑性を高くできるが、特殊な装置が必要となり、さらに工程も煩雑となって、高コストになってしまうし、ゲート電極を各種印刷法や塗布法等によって形成すれば、上記の半導体層の場合と同様に、大気下において形成できるため、より簡略化された工程によって低コストで製造できるものの、表面の平滑性が低くなってしまうからである。
特開2004-063975号公報 特開2010-238869号公報
 本発明は、表面の平滑性が高くかつ簡略化された工程で形成可能なゲート電極を備えたトランジスタを提供することを課題とする。
 本発明は、基板上にゲート電極、絶縁層、半導体層、ソース電極及びドレイン電極を備え、前記ゲート電極が、下記一般式(1)で表わされるβ-ケトカルボン酸銀を用いて形成されたものであることを特徴とするトランジスタを提供する。
Figure JPOXMLDOC01-appb-C000002
 (式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基であり;
 Yはそれぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子であり;Rは炭素数1~19の脂肪族炭化水素基又はフェニル基であり;Rは炭素数1~20の脂肪族炭化水素基であり;Rは炭素数1~16の脂肪族炭化水素基であり;R及びRはそれぞれ独立に炭素数1~18の脂肪族炭化水素基であり;Rは炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり;
 Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基であり;
 Rは、炭素数1~10の脂肪族炭化水素基、チエニル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基である。)
 本発明のトランジスタは、ボトムゲート・ボトムコンタクト型構造、又はボトムゲート・トップコンタクト型構造を有するものであってもよい。
 本発明のトランジスタは、前記ゲート電極の「ISO4287:1997」に基づく表面粗さが1~10nmであってもよい。
 本発明のトランジスタは、前記ゲート電極の厚さが10~1000nmであり、前記絶縁層の厚さが10~1000nmであってもよい。
 本発明のトランジスタは、ゲート電極が、表面の平滑性が高くかつ簡略化された工程で形成可能である。
本発明に係るトランジスタの一例を示す概略断面図である。 本発明に係るトランジスタの他の例を示す概略断面図である。 本発明に係るトランジスタの他の例を示す概略断面図である。 本発明に係るトランジスタの製造方法の一例を説明するための概略断面図である。 本発明に係るトランジスタの製造方法の一例を説明するための概略断面図である。 本発明に係るトランジスタの製造方法の一例を説明するための概略断面図である。 本発明に係るトランジスタの製造方法の一例を説明するための概略断面図である。 本発明に係るトランジスタの製造方法の一例を説明するための概略断面図である。 本発明に係るトランジスタの製造方法の一例を説明するための概略断面図である。 実施例1のトランジスタを示す平面図である。 実施例1のトランジスタの評価結果を示すグラフである。 実施例1のトランジスタの評価結果を示すグラフである。 実施例1のトランジスタの評価結果を示すグラフである。 実施例2のトランジスタの評価結果を示すグラフである。 実施例2のトランジスタの評価結果を示すグラフである。 実施例2のトランジスタの評価結果を示すグラフである。 比較例1のトランジスタを示す概略断面図である。 比較例1のトランジスタの評価結果を示すグラフである。 比較例1のトランジスタの評価結果を示すグラフである。 比較例1のトランジスタの評価結果を示すグラフである。 比較例2のトランジスタの評価結果を示すグラフである。 比較例2のトランジスタの評価結果を示すグラフである。 比較例2のトランジスタの評価結果を示すグラフである。 比較例3のトランジスタの評価結果を示すグラフである。 比較例3のトランジスタの評価結果を示すグラフである。 比較例3のトランジスタの評価結果を示すグラフである。 実施例3のトランジスタの評価結果を示すグラフである。 実施例3のトランジスタの評価結果を示すグラフである。 実施例3のトランジスタの評価結果を示すグラフである。 比較例4のトランジスタの評価結果を示すグラフである。 比較例4のトランジスタの評価結果を示すグラフである。 比較例4のトランジスタの評価結果を示すグラフである。 実施例4のトランジスタの評価結果を示すグラフである。 実施例4のトランジスタの評価結果を示すグラフである。 実施例4のトランジスタの評価結果を示すグラフである。 実施例4のトランジスタを評価するために、このトランジスタを用いて作製した回路の図である。 実施例4のトランジスタを用いて作製した回路における、整流時の最大周波数を求めるためのグラフである。 実施例5のトランジスタの評価結果を示すグラフである。 実施例5のトランジスタの評価結果を示すグラフである。 実施例5のトランジスタの評価結果を示すグラフである。 実施例5のトランジスタを用いて作製した回路における、整流時の最大周波数を求めるためのグラフである。 実施例6のトランジスタの評価結果を示すグラフである。 実施例6のトランジスタの評価結果を示すグラフである。 実施例6のトランジスタの評価結果を示すグラフである。 実施例6のトランジスタを用いて作製した回路における、整流時の最大周波数を求めるためのグラフである。 実施例7のトランジスタの評価結果を示すグラフである。 実施例7のトランジスタの評価結果を示すグラフである。 実施例7のトランジスタの評価結果を示すグラフである。 実施例7のトランジスタを用いて作製した回路における、整流時の最大周波数を求めるためのグラフである。
 本発明のトランジスタの好ましい例について以下に説明する。ただし、本発明はこれら例のみに限定されることはなく、例えば、本発明の趣旨を逸脱しない範囲で、追加、省略、置換、及びその他の変更(量、数、位置、サイズなど)が可能である。
<<トランジスタ>>
 本発明に係るトランジスタは、基板上にゲート電極、絶縁層、半導体層、ソース電極及びドレイン電極を備え、前記ゲート電極が、下記一般式(1)で表わされるβ-ケトカルボン酸銀(以下、「β-ケトカルボン酸銀(1)」と略記することがある)を用いて形成されたものであることを特徴とする。
 前記ゲート電極は、β-ケトカルボン酸銀(1)を用いることで、真空下で行う必要がある真空蒸着やスパッタリング等とは異なり、大気下で行うことができる各種印刷法又は塗布法等により、簡略化された工程で形成できる。さらに、β-ケトカルボン酸銀(1)を用いることで、ゲート電極の表面の平滑性が高いので、前記トランジスタは、キャリアの移動度が高いものとなる。また、ゲート電極の表面の平滑性が高いため、前記絶縁層は厚さを十分に薄くしても、その表面の平滑性が低くなることはなく、厚さを任意に設定できる。
Figure JPOXMLDOC01-appb-C000003
 (式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基であり;
 Yはそれぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子であり;Rは炭素数1~19の脂肪族炭化水素基又はフェニル基であり;Rは炭素数1~20の脂肪族炭化水素基であり;Rは炭素数1~16の脂肪族炭化水素基であり;R及びRはそれぞれ独立に炭素数1~18の脂肪族炭化水素基であり;Rは炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり;
 Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基であり;
 Rは、炭素数1~10の脂肪族炭化水素基、チエニル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基である。)
 本発明に係るトランジスタは、ゲート電極として、β-ケトカルボン酸銀(1)を用いて形成されたものを備えている点以外は、従来のトランジスタと同様の構成とすることができる。
 図1は、本発明に係るトランジスタの一例を示す概略断面図である。
 ここに示すトランジスタ1は、ボトムゲート・トップコンタクト型構造を有するものであり、基板11上にゲート電極12、絶縁層13及び半導体層14をこの順に備え、半導体層14上にソース電極15及びドレイン電極16を、これらが対向するように備えて構成されている。また、ゲート電極12は修飾層17を介して基板11上に設けられており、修飾層17は基板11の一方の主面(上面)全面に、ゲート電極12は修飾層17の一方の主面(上面)全面に、それぞれ設けられている。そして、ソース電極15及びドレイン電極16はそれぞれ中間層18を介して半導体層14上に設けられており、中間層18は、半導体層14上のソース電極15及びドレイン電極16が存在する領域のみに設けられている。
 基板11としては、不純物ドープシリコン層の表面部に二酸化ケイ素からなる絶縁層が形成された二層構造のもの(シリコン絶縁層側がゲート電極12の形成側となる)、ガラスからなるもの、樹脂からなるもの等、公知のものが例示できる。また、基板11は表面の平滑性が高いものが好ましい。
 基板11の厚さは10μm~5mmであることが好ましい。
 ゲート電極12は、β-ケトカルボン酸銀(1)を用いて形成されたものであり、金属銀からなるもの又は金属銀を主成分とするものである。ここで「金属銀を主成分とする」とは、金属銀の比率が、見かけ上金属銀だけからなるとみなし得る程度に十分に高いことを意味し、例えば、金属銀の比率が95質量%以上であることが好ましく、97質量%以上であることがより好ましく、99質量%以上であることが特に好ましい。また、前記金属銀の比率の上限値は、例えば、100質量%、99.9質量%、99.8質量%、99.7質量%、99.6質量%、99.5質量%、99.4質量%、99.3質量%、99.2質量%及び99.1質量%のいずれかから選択できる。
 ゲート電極12の厚さは10~1000nmであることが好ましい。
 ゲート電極12は、β-ケトカルボン酸銀(1)を用いて形成されていることにより、表面の平滑性が高く、表面粗さが好ましくは10nm以下、より好ましくは5nm以下のものである。また、ゲート電極12の表面粗さの下限値としては、例えば、1nmを選択できる。ここで、「表面粗さ」とは、JIS B0601:2001(ISO4287:1997)に基づくものであり、算術平均粗さ(Ra)を意味し、粗さ曲線からその平均線の方向に基準長さlだけを抜き取り、この抜取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=Z(x)で表したときに、以下の式(II)によって求められた値をナノメートル(nm)単位で表示したものである。
Figure JPOXMLDOC01-appb-M000004
 ゲート電極12は、ここに示すように、基板11の材質によっては、基板11上に修飾層17を介して設けられていることが好ましく、例えば、修飾層17として適した成分のものを選択することで、ゲート電極12の基板11への密着性を向上させることができる。
 修飾層17の厚さは0.1~100nmであることが好ましい。
 密着層として機能する修飾層17としては、シランカップリング剤を用いて形成されたものが例示でき、自己組織化単分子膜であることが好ましい。
 前記シランカップリング剤としては、一般式「(R101O)SiCH(CHCHNR201301(式中、rは1又は8であり;R101はアルキル基であり、3個のR101は互いに同一でも異なっていてもよく;R201及びR301はそれぞれ独立に水素原子、アルキル基又はアリール基である。)」で表されるものが例示できる(例えば、特開2013-040124号公報参照)。
 式中、rは1又は8である。
 R101はアルキル基であり、直鎖状、分岐鎖状及び環状のいずれでもよいが、直鎖状又は分岐鎖状であることが好ましく、炭素数が1~5であることが好ましい。3個のR101は互いに同一でも異なっていてもよい。
 R201及びR301はそれぞれ独立に水素原子、アルキル基又はアリール基である。
 R201及びR301における前記アルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよいが、直鎖状又は分岐鎖状であることが好ましく、炭素数が1~10であることが好ましい。
 R201及びR301における前記アリール基は、単環状及び多環状のいずれでもよいが、炭素数が1~12であることが好ましく、フェニル基等、単環状であることが好ましい。
 前記シランカップリング剤で好ましいものとしては、
 (a)R101がメチル基又はエチル基であり、R201が水素原子であり、R301が水素原子、メチル基、エチル基、ヘキシル基又はアリール基であるもの
 (b)R101がメチル基又はエチル基であり、R201及びR301が共に、メチル基、エチル基、ヘキシル基又はアリール基であるもの
 (c)R101がメチル基又はエチル基であり、R201及びR301がそれぞれ独立にメチル基、エチル基、ヘキシル基又はアリール基であり、ただしR201及びR301が互いに同一ではないもの
が例示でき、より好ましいものとして具体的には、
 式「(CHCHO)SiCH(CHCHN(CH」で表されるもの
 式「(CHO)SiCHCHCHN(C」で表されるもの
 式「(CHCHO)SiCH(CHCHNHC」で表されるもの
 式「(CHCHO)SiCH(CHCHN(C」で表されるもの
 式「(CHO)SiCHCHCHNH」で表されるもの
が例示できる。
 絶縁層(ゲート絶縁膜)13の材質としては、酸化ケイ素、窒化ケイ素、酸化アルミニウム等の無機化合物;ベンゾシクロブテン、ポリイミド、ポリオレフィン系熱硬化性樹脂等の有機化合物等、公知のものが例示できる。
 絶縁層13は、一種の材質からなるものでもよいし、二種以上の材質からなるものでもよく、二種以上の材質からなる場合、その材質の組み合わせ及び比率は、任意に調節できる。
 絶縁層13の厚さは10~1000nmであることが好ましい。
 半導体層14の材質は、有機半導体、及び2個以上の原子がイオン結合により結合してなる化合物半導体のいずれでもよく、目的に応じて公知のものから適宜選択すればよい。
 前記化合物半導体としては、窒化ガリウム(GaN)、ヒ化ガリウム(GaAs)、酸化亜鉛(ZnO)、酸化錫(SnO)、酸化インジウムガリウム亜鉛(IGZO)等が例示できる。
 前記有機半導体としては、ルブレン、DNTT(dinaphtho[2,3-b:2’,3’-f]thieno [3,2-b]thiophene)、アルキル-DNTT、TIPSペンタセン(6,13-Bis(triisopropylsilylethynyl)pentacene)、DNBDT(dinaphtho[2,3-d:2’,3’-d’]benzo[1,2-b:4,5-b’]dithiophene)、アルキル-DNBDT、PDIF-CN等の低分子材料;pBTTT(poly[2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene])、pDA2T(poly(dialkylthieno[3,2-b]thiophene-co-bithiophene))、P3HT(poly(3-hexylthiophene))、PQT(poly[5,5’-bis(3-alkyl-2-thienyl)-2,2’-bithiophene])等の高分子材料;グラフェン、多層グラフェン、CNT(カーボンナノチューブ)、C60(フラーレン)等の炭素材料等が例示できる。
 半導体層14の厚さは10~100nmであることが好ましい。
 なお、ここで、「アルキル-DNTT」とは、DNTT中の1個以上の水素原子がアルキル基で置換された化合物を意味し、「アルキル-DNBDT」とは、DNBDT中の1個以上の水素原子がアルキル基で置換された化合物を意味する。
 ソース電極15及びドレイン電極16の材質としては、金、白金、銀、アルミニウム、チタン等の単体金属;インジウム・スズ酸化物(ITO)、酸化亜鉛(ZnO)等の金属酸化物等、公知のものが例示できる。
 ソース電極15及びドレイン電極16の厚さは10~1000nmであることが好ましい。
 ソース電極15及びドレイン電極16は、ここに示すように、半導体層14上に中間層18を介して設けられていることが好ましく、適した成分のものを選択することで、中間層18を、例えば正孔注入層又は電子受容層とすることができる。
 中間層18の厚さは0.2~10nmであることが好ましい。
 正孔注入層又は電子受容層として機能する中間層18の材質は、3,4-ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)等をはじめ、公知のものでよいが、好ましいものとしては、1,3,4,5,7,8-ヘキサフルオロテトラシアノナフトキノジメタン(1,3,4,5,7,8-Hexafluorotetracyanonaphthoquinodimethane、以下、「F6-TNAP」と略記することがある)、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane、以下、「F4-TCNQ」と略記することがある)が例示できる。F6-TNAP及びF4-TCNQは、例えば、「Chem.Mater.2010,22,3926-3932」に記載の方法で製造できる。
 ソース電極15及びドレイン電極16間の距離(以下、「チャネル長」と略記することがある)Lは、0.2~100μmであることが好ましい。
 また、ソース電極15及びドレイン電極16の、これらの対向方向に対して垂直な方向の幅(図1においては図示略、図5における符号W参照。以下、「チャネル幅」と略記することがある。)は、1~5000μmであることが好ましい。
 トランジスタ1は、ゲート電極12に電圧が印加されると、半導体層14の絶縁層13との界面近傍にキャリア(正孔、電子)が生成して電気伝導度が上昇し、ソース電極15及びドレイン電極16間に電圧が印加されると、キャリアがソース電極15又はドレイン電極16に移動して、電流が流れる。このとき、半導体層14の絶縁層13との界面近傍においては、キャリアが前記界面に沿って移動する。
 一方で、トランジスタ1は、ゲート電極12の表面の平滑性が高い(凹凸が小さい)ことにより、その平滑性を反映して、ゲート電極12上に設けられた絶縁層13も、その厚さによらず(厚さが厚い場合及び薄い場合のいずれにおいても)表面の平滑性が高くなる。したがって、半導体層14の絶縁層13との界面近傍において、キャリアは前記界面に沿って移動するが、キャリアの移動距離は、絶縁層13の表面の凹凸の影響を受けたとしても、凹凸が大きい(平滑性が低い)場合よりも顕著に短くなる。これにより、トランジスタ1はキャリアの移動度が高いものとなる。
 本発明に係るトランジスタは、ここに示すものに限定されず、ゲート電極としてβ-ケトカルボン酸銀(1)を用いて形成されたものを備えていればよく、例えば、本発明の効果を損なわない範囲内において、トランジスタ1の構成が一部変更されたものでもよい。
 本発明に係るトランジスタは、ゲート電極を半導体層よりも基板側(図1においては下側)に備えたボトムゲート型のものが好ましく、図1に例示するような、ソース電極及びドレイン電極を半導体層に対して基板とは反対側(図1においては上側)に備えたボトムゲート・トップコンタクト型構造を有するもの以外に、例えば、図2に例示するような、ソース電極及びドレイン電極を半導体層に対して基板側(図1においては下側)に備えたボトムゲート・ボトムコンタクト型構造を有するものが挙げられる。なお、図2中、図1に示すものと同じ構成要素には、図1と同じ符号を付して、その詳細な説明は省略する。これは、以降のトランジスタに関する図においても同様である。
 図2に示すトランジスタ2は、基板11上にゲート電極12及び絶縁層13をこの順に備え、絶縁層13上にソース電極25及びドレイン電極26を、これらが対向するように備えている。また、ゲート電極12は修飾層17を介して基板11上に設けられており、修飾層17は基板11の一方の主面(上面)全面に、ゲート電極12は修飾層17の一方の主面(上面)全面に、それぞれ設けられている。また、ソース電極25及びドレイン電極26はそれぞれ、表面が中間層28で覆われており、この中間層28を介して、ソース電極25及びドレイン電極26上に半導体層24が設けられている。半導体層24は、さらに、絶縁層13のソース電極25、ドレイン電極26及び中間層28が設けられていない部位の表面上にも設けられている。
 トランジスタ2における基板11、ゲート電極12、絶縁層13及び修飾層17は、図1に示すトランジスタ1における基板11、ゲート電極12、絶縁層13及び修飾層17と同じものである。
 トランジスタ2における半導体層24、ソース電極25及びドレイン電極26は、形状が異なる点以外は、図1に示すトランジスタ1における半導体層14、ソース電極15及びドレイン電極16と同じものであり、例えば、半導体層24、ソース電極25及びドレイン電極26は、その最大の厚さが、半導体層14、ソース電極15及びドレイン電極16の上記の厚さと同じとなるように構成することができる。
 トランジスタ2における中間層28は、形状が異なる点以外は、図1に示すトランジスタ1における中間層18と同じものである。
 ここまでは、ゲート電極が基板又は修飾層の上面全面に設けられているトランジスタについて説明したが、本発明に係るトランジスタとしては、図3に示すように、ゲート電極が基板又は修飾層の上面の一部に設けられているものも好適であり、この場合、ゲート電極はパターニングされていてもよい。
 図3に示すトランジスタ3は、ゲート電極32が修飾層17(基板11)の上面の一部に設けられていること以外は、図1に示すトランジスタ1と同じものである。なお、本発明に係るトランジスタとしては、図2に示すトランジスタ2において、ゲート電極12が修飾層17(基板11)の上面の一部に設けられているように構成されたものも好適である。
 トランジスタ3における基板11、半導体層14、ソース電極15、ドレイン電極16、修飾層17及び中間層18は、図1に示すトランジスタ1における基板11、半導体層14、ソース電極15、ドレイン電極16、修飾層17及び中間層18と同じものである。なお、修飾層17は、基板11上のゲート電極32が形成されている領域のみに設けられていてもよい。
 トランジスタ3におけるゲート電極32及び絶縁層33は、形状が異なる点以外は、図1に示すトランジスタ1におけるゲート電極12及び絶縁層13と同じものであり、例えば、絶縁層33は、その最大の厚さが、絶縁層13の上記の厚さと同じとなるように構成することができる。
 本発明に係るトランジスタは、他のトランジスタよりもキャリアの移動度が高く、例えば、線形領域においては好ましくは4.7cm/Vs以上、飽和領域においては好ましくは4.0cm/Vs以上とすることが可能である。また、それに伴って本発明に係るトランジスタは、閾値電圧を好ましい範囲とし、OFF電流を低く、電流ON/OFF比を大きくして、より好ましい特性を有するものとすることも可能である。
 キャリアの移動度は公知の方法で求められる。例えば、トランジスタのドレイン電圧Vが所定の値である場合のドレイン電流Iとゲート電圧Vとの関係を求め、線形領域においては下記一般式(i)を、飽和領域においては下記一般式(ii)をそれぞれ用いて、キャリアの移動度を算出できる。
Figure JPOXMLDOC01-appb-M000005
 (式中、μlinは線形領域におけるキャリアの移動度であり;μsatは飽和領域におけるキャリアの移動度であり;Lはチャネル長であり;Wはチャネル幅であり;Cは絶縁層の単位面積当たりの静電容量であり;Iはドレイン電流であり;Vはドレイン電圧であり;Vはゲート電圧である。)
 本発明に係るトランジスタは、高周波数で動作させるのに好適なものであり、特にチャネル長を、例えば、10μm以下等のように短くすることで、より好適なものとなる。例えば、実施例で後述するように、本発明に係るトランジスタを組み込んだ回路における、整流時の最大周波数を、好ましくは13.5MHz以上とすることが可能であり、このようなトランジスタは、例えば、RFID通信用として特に有用である。
 トランジスタ1は、例えば、以下の方法で製造できる。図4A~図4Fは、トランジスタ1の製造方法の一例を説明するための概略断面図である。
 まず、図4Aに示すように、基板11上に修飾層17を形成する。
 修飾層17は、その材質に応じて形成方法を選択すればよい。例えば、シランカップリング剤を用いる場合、修飾層17は、シランカップリング剤が配合されてなる液状組成物を基板11上に塗工して乾燥させることで形成でき、前記液状組成物は、スピンコーター用いる方法(スピンコート法)等で塗工できる。また、修飾層17は、シランカップリング剤と基板11を密閉容器中に配置して、必要に応じて加熱することにより、シランカップリング剤を気化させて基板11上に付着させることでも形成できる。
 次いで、図4Bに示すように、修飾層17上にゲート電極12を形成する。
 ゲート電極12は、β-ケトカルボン酸銀(1)が配合されてなる銀インク組成物を調製し、これを修飾層17の表面上に付着させ、必要に応じて乾燥処理や加熱(焼成)処理等の後処理を適宜選択して行い、金属銀を形成することで形成できる。銀インク組成物及びその付着方法については、後ほど、より詳細に説明する。加熱処理は、乾燥処理を兼ねて行ってもよい。
 図3に示すような、ゲート電極が修飾層(基板)の上面の一部に設けられているトランジスタを製造する場合には、例えば、銀インク組成物を修飾層17の表面全面ではなく、一部の領域のみに付着させて金属銀を形成するか、又は上記のように銀インク組成物を修飾層17の表面全面に付着させ、金属銀を形成して得られた銀層を、フォトリソグラフィー及びエッチングにより、所望の形状にパターニングしてゲート電極とすればよい。ここで、フォトリソグラフィー及びエッチングは、公知の方法で行えばよく、銀層上にレジストパターンを形成し、露出されている銀層をエッチングで除去すればよい。
 次いで、図4Cに示すように、ゲート電極12を覆うように基板11上に絶縁層13を形成する。絶縁層13は、スピンコート法、スパッタリング法、アトミックレイヤーデポジション(ALD法)等、公知の方法で形成できる。
 ALD法は、真空条件下の反応室内で基板上に原料化合物のガス(吸着ガス)を導入して吸着させ、その分子で単層を形成した後、余剰分の分子をパージで除去し、次いで、反応性化合物のガス(反応ガス)を導入して、単層と反応させて、目的物を生成させ、副生物と余剰の反応性化合物をパージで除去するという、膜形成の1サイクルを繰り返し行うことにより、目的物の目的とする厚さの膜を形成する手法である。例えば、アルミナ(Al)の膜を形成する場合には、吸着ガスとしてトリエチルアルミニウム等の有機アルミニウム化合物のガスを、反応ガスとして水、オゾン等の酸化性化合物のガスを、パージガスとして窒素ガス等の不活性ガスを用いることができる。ALD法の詳細は、例えば、「特開2003-347042号公報」等、種々の文献で開示されている。
 次いで、図4Dに示すように、絶縁層13上に半導体層14を形成する。
 半導体層14は、その材質に応じて公知の方法で形成すればよく、例えば、無機半導体からなる半導体層14は真空蒸着法で形成でき、有機半導体からなる半導体層14は各種印刷法又は塗布法で形成できる。印刷法又は塗布法においては、半導体層14を構成するための原料(半導体化合物)が配合されてなる液状組成物を印刷又は塗布に供する。
 また、例えば、「国際公開第2011/040155号」において、図1A、1B、2A及び2B等を引用して記載されている方法、すなわち、基板及び端面接触部材を用い、端面接触部材に接触するように基板上に原料溶液(前記液状組成物)を供給して液滴を形成し、この液滴を乾燥させることで半導体膜を形成する方法(以下、「エッジキャスト法」と略記することがある)でも、半導体層14を形成できる。
 次いで、図4Eに示すように、半導体層14上に中間層18を形成する。
 中間層18は、その材質に応じて公知の方法で形成すればよい。例えば、中間層18は、これを構成するための原料が配合されてなる液状組成物を、半導体層14上に各種印刷法で付着させ、乾燥させることで形成できる。また、中間層18は、半導体層14上に真空蒸着法でも形成でき、例えば、中間層18の材質からなる膜を真空蒸着法により形成した後、フォトリソグラフィーによりこの膜を所望の形状にパターニングして形成してもよいし、金属マスクを介して直接所望の形状の中間層18を真空蒸着法により形成してもよい。
 次いで、図4Fに示すように、中間層18上に、ソース電極15及びドレイン電極16を形成する。
 ソース電極15及びドレイン電極16は、公知の方法で形成でき、例えば、これら電極の材質からなる膜を真空蒸着法により形成した後、フォトリソグラフィーによりこの膜を所望の形状にパターニングして形成してもよいし、金属マスクを介して直接所望の形状の電極を真空蒸着法により形成してもよい。
 上記の製造方法においては、ゲート電極12は、銀インク組成物を用いて大気下で各種印刷法又は塗布法等で形成でき、さらに、絶縁層13の形成時にその表面の平滑性を高くしたり、絶縁層13上に平滑化層を別途形成したりする必要もないため、トランジスタ1はより簡略化された工程によって低コストで製造できる。しかも、ゲート電極12の表面は平滑性が高いため、トランジスタ1はキャリアの移動度が高いものとなる。
 なお、トランジスタ2は、半導体層24、ソース電極25、ドレイン電極26及び中間層28の形成順と形状が、半導体層14、ソース電極15、ドレイン電極16及び中間層18の場合と異なる点以外は、トランジスタ1と同様の方法で製造できる。
<銀インク組成物>
 前記銀インク組成物は、β-ケトカルボン酸銀(1)が配合されてなるものである。
 銀インク組成物としては、液状のものが好ましく、β-ケトカルボン酸銀(1)が溶解又は均一に分散されたものが好ましい。
 β-ケトカルボン酸銀(1)は、一種を単独で使用してもよいし、二種以上を併用してもよく、二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
[β-ケトカルボン酸銀(1)]
 β-ケトカルボン酸銀(1)は、前記一般式(1)で表される。
 式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基である。
 Rにおける炭素数1~20の脂肪族炭化水素基は、直鎖状、分岐鎖状及び環状(脂肪族環式基)のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。また、前記脂肪族炭化水素基は、飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基のいずれでもよい。そして、前記脂肪族炭化水素基は、炭素数が1~10であることが好ましく、1~6であることがより好ましい。Rにおける好ましい前記脂肪族炭化水素基としては、アルキル基、アルケニル基、アルキニル基が例示できる。
 Rにおける直鎖状又は分枝鎖状の前記アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、3-エチルブチル基、1-エチル-1-メチルプロピル基、n-ヘプチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、4,4-ジメチルペンチル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、4-エチルペンチル基、2,2,3-トリメチルブチル基、1-プロピルブチル基、n-オクチル基、イソオクチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、5-エチルヘキシル基、1,1-ジメチルヘキシル基、2,2-ジメチルヘキシル基、3,3-ジメチルヘキシル基、4,4-ジメチルヘキシル基、5,5-ジメチルヘキシル基、1-プロピルペンチル基、2-プロピルペンチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基が例示できる。
 Rにおける環状の前記アルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基が例示できる。
 Rにおける前記アルケニル基としては、ビニル基(エテニル基、-CH=CH)、アリル基(2-プロペニル基、-CH-CH=CH)、1-プロペニル基(-CH=CH-CH)、イソプロペニル基(-C(CH)=CH)、1-ブテニル基(-CH=CH-CH-CH)、2-ブテニル基(-CH-CH=CH-CH)、3-ブテニル基(-CH-CH-CH=CH)、シクロヘキセニル基、シクロペンテニル基等の、Rにおける前記アルキル基の炭素原子間の1個の単結合(C-C)が二重結合(C=C)に置換された基が例示できる。
 Rにおける前記アルキニル基としては、エチニル基(-C≡CH)、プロパルギル基(-CH-C≡CH)等の、Rにおける前記アルキル基の炭素原子間の1個の単結合(C-C)が三重結合(C≡C)に置換された基が例示できる。
 Rにおける炭素数1~20の脂肪族炭化水素基は、1個以上の水素原子が置換基で置換されていてもよく、好ましい前記置換基としては、フッ素原子、塩素原子、臭素原子が例示できる。また、置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。すなわち、すべての置換基が同一であってもよいし、すべての置換基が異なっていてもよく、一部の置換基のみが異なっていてもよい。
 Rにおけるフェニル基は、1個以上の水素原子が置換基で置換されていてもよく、好ましい前記置換基としては、炭素数が1~16の飽和又は不飽和の一価の脂肪族炭化水素基、前記脂肪族炭化水素基が酸素原子に結合してなる一価の基、フッ素原子、塩素原子、臭素原子、水酸基(-OH)、シアノ基(-C≡N)、フェノキシ基(-O-C)等が例示でき、置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
 置換基である前記脂肪族炭化水素基としては、炭素数が1~16である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
 RにおけるYは、それぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子である。そして、一般式「R-CY -」、「CY -」及び「R-C(=O)-CY -」においては、それぞれ複数個のYは、互いに同一でも異なっていてもよい。
 RにおけるRは、炭素数1~19の脂肪族炭化水素基又はフェニル基(C-)であり、Rにおける前記脂肪族炭化水素基としては、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
 RにおけるRは、炭素数1~20の脂肪族炭化水素基であり、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
 RにおけるRは、炭素数1~16の脂肪族炭化水素基であり、炭素数が1~16である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
 RにおけるR及びRは、それぞれ独立に炭素数1~18の脂肪族炭化水素基である。すなわち、R及びRは、互いに同一でも異なっていてもよく、炭素数が1~18である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
 RにおけるRは、炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり、Rにおける前記脂肪族炭化水素基としては、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
 Rは、上記の中でも、直鎖状若しくは分枝鎖状のアルキル基、一般式「R-C(=O)-CY -」で表される基、水酸基又はフェニル基であることが好ましい。そして、Rは、直鎖状若しくは分枝鎖状のアルキル基、水酸基又は式「AgO-」で表される基であることが好ましい。
 一般式(1)において、Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基(C-CH-)、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基(C-O-CH=CH-)、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基である。
 Xにおける炭素数1~20の脂肪族炭化水素基としては、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
 Xにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。
 Xにおけるフェニル基及びベンジル基は、1個以上の水素原子が置換基で置換されていてもよく、好ましい前記置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、ニトロ基(-NO)等が例示でき、置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
 XにおけるRは、炭素数1~10の脂肪族炭化水素基、チエニル基(CS-)、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基(ビフェニル基、C-C-)である。Rにおける前記脂肪族炭化水素基としては、炭素数が1~10である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。また、Rにおけるフェニル基及びジフェニル基の前記置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)等が例示でき、置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
 Rがチエニル基又はジフェニル基である場合、これらの、Xにおいて隣接する基又は原子(酸素原子、硫黄原子、カルボニル基、カルボニルオキシ基)との結合位置は、特に限定されない。例えば、チエニル基は、2-チエニル基及び3-チエニル基のいずれでもよい。
 一般式(1)において、2個のXは、2個のカルボニル基で挟まれた炭素原子と二重結合を介して1個の基として結合していてもよく、このようなものとしては式「=CH-C-NO」で表される基が例示できる。
 Xは、上記の中でも、水素原子、直鎖状若しくは分枝鎖状のアルキル基、ベンジル基、又は一般式「R-C(=O)-」で表される基であることが好ましく、少なくとも一方のXが水素原子であることが好ましい。
 β-ケトカルボン酸銀(1)は、2-メチルアセト酢酸銀(CH-C(=O)-CH(CH)-C(=O)-OAg)、アセト酢酸銀(CH-C(=O)-CH-C(=O)-OAg)、2-エチルアセト酢酸銀(CH-C(=O)-CH(CHCH)-C(=O)-OAg)、プロピオニル酢酸銀(CHCH-C(=O)-CH-C(=O)-OAg)、イソブチリル酢酸銀((CHCH-C(=O)-CH-C(=O)-OAg)、ピバロイル酢酸銀((CHC-C(=O)-CH-C(=O)-OAg)、2-n-ブチルアセト酢酸銀(CH-C(=O)-CH(CHCHCHCH)-C(=O)-OAg)、2-ベンジルアセト酢酸銀(CH-C(=O)-CH(CH)-C(=O)-OAg)、ベンゾイル酢酸銀(C-C(=O)-CH-C(=O)-OAg)、ピバロイルアセト酢酸銀((CHC-C(=O)-CH-C(=O)-CH-C(=O)-OAg)、イソブチリルアセト酢酸銀((CHCH-C(=O)-CH-C(=O)-CH-C(=O)-OAg)、2-アセチルピバロイル酢酸銀((CHC-C(=O)-CH(-C(=O)-CH)-C(=O)-OAg)、2-アセチルイソブチリル酢酸銀((CHCH-C(=O)-CH(-C(=O)-CH)-C(=O)-OAg)、又はアセトンジカルボン酸銀(AgO-C(=O)-CH-C(=O)-CH-C(=O)-OAg)であることが好ましく、2-メチルアセト酢酸銀、アセト酢酸銀、2-エチルアセト酢酸銀、プロピオニル酢酸銀、イソブチリル酢酸銀、ピバロイル酢酸銀、2-n-ブチルアセト酢酸銀、2-ベンジルアセト酢酸銀、ベンゾイル酢酸銀、ピバロイルアセト酢酸銀、イソブチリルアセト酢酸銀、又はアセトンジカルボン酸銀であることがより好ましい。
 β-ケトカルボン酸銀(1)は、乾燥処理や加熱(焼成)処理等の後処理により形成された導電体(金属銀)において、残存する原料や不純物の濃度をより低減できる。原料や不純物が少ない程、例えば、形成された金属銀同士の接触が良好となり、導通が容易となり、抵抗率が低下する。
 β-ケトカルボン酸銀(1)は、後述するように、当該分野で公知の還元剤等を使用しなくても、好ましくは60~210℃、より好ましくは60~200℃という低温で分解し、金属銀を形成することが可能である。そして、還元剤と併用することで、より低温で分解して金属銀を形成する。
 本発明において、β-ケトカルボン酸銀(1)は、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
 銀インク組成物において、β-ケトカルボン酸銀(1)に由来する銀の含有量は、5質量%以上であることが好ましく、10質量%以上であることがより好ましい。このような範囲であることで、形成された金属銀は品質により優れたものとなる。前記銀の含有量の上限値は、本発明の効果を損なわない限り特に限定されないが、取り扱い性等を考慮すると25質量%であることが好ましい。
 なお、本明細書において、「β-ケトカルボン酸銀(1)に由来する銀」とは、特に断りの無い限り、銀インク組成物の製造時に配合されたβ-ケトカルボン酸銀(1)中の銀を意味し、配合後に引き続きβ-ケトカルボン酸銀(1)を構成している銀と、配合後にβ-ケトカルボン酸銀(1)が分解して生じた分解物中の銀及び銀自体と、の両方を含む概念とする。
[含窒素化合物]
 前記銀インク組成物は、β-ケトカルボン酸銀(1)以外に、さらに、炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びに前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される一種以上の含窒素化合物(以下、単に「含窒素化合物」と略記することがある)が配合されてなるものが好ましい。
 以下、炭素数25以下のアミン化合物を「アミン化合物」、炭素数25以下の第4級アンモニウム塩を「第4級アンモニウム塩」、炭素数25以下のアミン化合物が酸と反応してなるアンモニウム塩を「アミン化合物由来のアンモニウム塩」、アンモニアが酸と反応してなるアンモニウム塩を「アンモニア由来のアンモニウム塩」と略記することがある。
(アミン化合物、第4級アンモニウム塩)
 前記アミン化合物は、炭素数が1~25であり、第1級アミン、第2級アミン及び第3級アミンのいずれでもよい。また、前記第4級アンモニウム塩は、炭素数が4~25である。前記アミン化合物及び第4級アンモニウム塩は、鎖状及び環状のいずれでもよい。また、アミン部位又はアンモニウム塩部位を構成する窒素原子(例えば、第1級アミンのアミノ基(-NH)を構成する窒素原子)の数は1個でもよいし、2個以上でもよい。
 前記第1級アミンとしては、1個以上の水素原子が置換基で置換されていてもよいモノアルキルアミン、モノアリールアミン、モノ(ヘテロアリール)アミン、ジアミン等が例示できる。
 前記モノアルキルアミンを構成するアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよく、Rにおける前記アルキル基と同様のものが例示でき、炭素数が1~19の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。
 好ましい前記モノアルキルアミンとして、具体的には、n-ブチルアミン、n-へキシルアミン、n-オクチルアミン、n-ドデシルアミン、n-オクタデシルアミン、sec-ブチルアミン、tert-ブチルアミン、3-アミノペンタン、3-メチルブチルアミン、2-アミノオクタン、2-エチルヘキシルアミン、1,2-ジメチル-n-プロピルアミンが例示できる。
 前記モノアリールアミンを構成するアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基等が例示でき、炭素数が6~10であることが好ましい。
 前記モノ(ヘテロアリール)アミンを構成するヘテロアリール基は、芳香族環骨格を構成する原子として、ヘテロ原子を有するものであり、前記ヘテロ原子としては、窒素原子、硫黄原子、酸素原子、ホウ素原子が例示できる。また、芳香族環骨格を構成する前記へテロ原子の数は特に限定されず、1個でもよいし、2個以上でもよい。2個以上である場合、これらへテロ原子は互いに同一でも異なっていてもよい。すなわち、これらへテロ原子は、すべて同じでもよいし、すべて異なっていてもよく、一部だけ異なっていてもよい。
 前記ヘテロアリール基は、単環状及び多環状のいずれでもよく、その環員数(環骨格を構成する原子の数)も特に限定されないが、3~12員環であることが好ましい。
 前記ヘテロアリール基で、窒素原子を1~4個有する単環状のものとしては、ピロリル基、ピロリニル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピリミジル基、ピラジニル基、ピリダジニル基、トリアゾリル基、テトラゾリル基、ピロリジニル基、イミダゾリジニル基、ピペリジニル基、ピラゾリジニル基、ピペラジニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、酸素原子を1個有する単環状のものとしては、フラニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1個有する単環状のものとしては、チエニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、酸素原子を1~2個及び窒素原子を1~3個有する単環状のものとしては、オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基、モルホリニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1~2個及び窒素原子を1~3個有する単環状のものとしては、チアゾリル基、チアジアゾリル基、チアゾリジニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、窒素原子を1~5個有する多環状のものとしては、インドリル基、イソインドリル基、インドリジニル基、ベンズイミダゾリル基、キノリル基、イソキノリル基、インダゾリル基、ベンゾトリアゾリル基、テトラゾロピリジル基、テトラゾロピリダジニル基、ジヒドロトリアゾロピリダジニル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1~3個有する多環状のものとしては、ジチアナフタレニル基、ベンゾチオフェニル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
 前記ヘテロアリール基で、酸素原子を1~2個及び窒素原子を1~3個有する多環状のものとしては、ベンゾオキサゾリル基、ベンゾオキサジアゾリル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1~2個及び窒素原子を1~3個有する多環状のものとしては、ベンゾチアゾリル基、ベンゾチアジアゾリル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
 前記ジアミンは、アミノ基を2個有していればよく、2個のアミノ基の位置関係は特に限定されない。好ましい前記ジアミンとしては、前記モノアルキルアミン、モノアリールアミン又はモノ(ヘテロアリール)アミンにおいて、アミノ基(-NH)を構成する水素原子以外の1個の水素原子が、アミノ基で置換されたものが例示できる。
 前記ジアミンは炭素数が1~10であることが好ましく、より好ましいものとしてはエチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタンが例示できる。
 前記第2級アミンとしては、1個以上の水素原子が置換基で置換されていてもよいジアルキルアミン、ジアリールアミン、ジ(ヘテロアリール)アミン等が例示できる。
 前記ジアルキルアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、ジアルキルアミン一分子中の2個のアルキル基は、互いに同一でも異なっていてもよい。
 好ましい前記ジアルキルアミンとして、具体的には、N-メチル-n-ヘキシルアミン、ジイソブチルアミン、ジ(2-エチルへキシル)アミンが例示できる。
 前記ジアリールアミンを構成するアリール基は、前記モノアリールアミンを構成するアリール基と同様であり、炭素数が6~10であることが好ましい。また、ジアリールアミン一分子中の2個のアリール基は、互いに同一でも異なっていてもよい。
 前記ジ(ヘテロアリール)アミンを構成するヘテロアリール基は、前記モノ(ヘテロアリール)アミンを構成するヘテロアリール基と同様であり、6~12員環であることが好ましい。また、ジ(ヘテロアリール)アミン一分子中の2個のヘテロアリール基は、互いに同一でも異なっていてもよい。
 前記第3級アミンとしては、1個以上の水素原子が置換基で置換されていてもよいトリアルキルアミン、ジアルキルモノアリールアミン等が例示できる。
 前記トリアルキルアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~19の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、トリアルキルアミン一分子中の3個のアルキル基は、互いに同一でも異なっていてもよい。すなわち、3個のアルキル基は、すべてが同じでもよいし、すべてが異なっていてもよく、一部だけが異なっていてもよい。
 好ましい前記トリアルキルアミンとして、具体的には、N,N-ジメチル-n-オクタデシルアミン、N,N-ジメチルシクロヘキシルアミンが例示できる。
 前記ジアルキルモノアリールアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~6の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、ジアルキルモノアリールアミン一分子中の2個のアルキル基は、互いに同一でも異なっていてもよい。
 前記ジアルキルモノアリールアミンを構成するアリール基は、前記モノアリールアミンを構成するアリール基と同様であり、炭素数が6~10であることが好ましい。
 本発明において、前記第4級アンモニウム塩としては、1個以上の水素原子が置換基で置換されていてもよいハロゲン化テトラアルキルアンモニウム等が例示できる。
 前記ハロゲン化テトラアルキルアンモニウムを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~19であることが好ましい。また、ハロゲン化テトラアルキルアンモニウム一分子中の4個のアルキル基は、互いに同一でも異なっていてもよい。すなわち、4個のアルキル基は、すべてが同じでもよいし、すべてが異なっていてもよく、一部だけが異なっていてもよい。
 前記ハロゲン化テトラアルキルアンモニウムを構成するハロゲンとしては、フッ素、塩素、臭素、ヨウ素が例示できる。
 好ましい前記ハロゲン化テトラアルキルアンモニウムとして、具体的には、ドデシルトリメチルアンモニウムブロミドが例示できる。
 ここまでは、主に鎖状のアミン化合物及び第4級有機アンモニウム塩について説明したが、前記アミン化合物及び第4級アンモニウム塩は、アミン部位又はアンモニウム塩部位を構成する窒素原子が環骨格構造(複素環骨格構造)の一部であるようなヘテロ環化合物であってもよい。すなわち、前記アミン化合物は環状アミンでもよく、前記第4級アンモニウム塩は環状アンモニウム塩でもよい。この時の環(アミン部位又はアンモニウム塩部位を構成する窒素原子を含む環)構造は、単環状及び多環状のいずれでもよく、その環員数(環骨格を構成する原子の数)も特に限定されず、脂肪族環及び芳香族環のいずれでもよい。
 環状アミンであれば、好ましいものとして、ピリジンが例示できる。
 前記第1級アミン、第2級アミン、第3級アミン及び第4級アンモニウム塩において、「置換基で置換されていてもよい水素原子」とは、アミン部位又はアンモニウム塩部位を構成する窒素原子に結合している水素原子以外の水素原子である。この時の置換基の数は特に限定されず、1個でもよいし、2個以上でもよく、前記水素原子のすべてが置換基で置換されていてもよい。置換基の数が複数の場合には、これら複数個の置換基は互いに同一でも異なっていてもよい。すなわち、複数個の置換基はすべて同じでもよいし、すべて異なっていてもよく、一部だけが異なっていてもよい。また、置換基の位置も特に限定されない。
 前記アミン化合物及び第4級アンモニウム塩における前記置換基としては、アルキル基、アリール基、ハロゲン原子、シアノ基、ニトロ基、水酸基、トリフルオロメチル基(-CF)等が例示できる。ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。
 前記モノアルキルアミンを構成するアルキル基が置換基を有する場合、かかるアルキル基は、置換基としてアリール基を有する、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基、又は置換基として好ましくは炭素数が1~5のアルキル基を有する、炭素数が3~7の環状のアルキル基が好ましく、このような置換基を有するモノアルキルアミンとして、具体的には、2-フェニルエチルアミン、ベンジルアミン、2,3-ジメチルシクロヘキシルアミンが例示できる。
 また、置換基である前記アリール基及びアルキル基は、さらに1個以上の水素原子がハロゲン原子で置換されていてもよく、このようなハロゲン原子で置換された置換基を有するモノアルキルアミンとしては、2-ブロモベンジルアミンが例示できる。ここで、前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。
 前記モノアリールアミンを構成するアリール基が置換基を有する場合、かかるアリール基は、置換基としてハロゲン原子を有する、炭素数が6~10のアリール基が好ましく、このような置換基を有するモノアリールアミンとして、具体的には、ブロモフェニルアミンが例示できる。ここで、前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。
 前記ジアルキルアミンを構成するアルキル基が置換基を有する場合、かかるアルキル基は、置換基として水酸基又はアリール基を有する、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基が好ましく、このような置換基を有するジアルキルアミンとして、具体的には、ジエタノールアミン、N-メチルベンジルアミンが例示できる。
 前記アミン化合物は、n-プロピルアミン、n-ブチルアミン、n-へキシルアミン、n-オクチルアミン、n-ドデシルアミン、n-オクタデシルアミン、sec-ブチルアミン、tert-ブチルアミン、3-アミノペンタン、3-メチルブチルアミン、2-アミノオクタン、2-エチルヘキシルアミン、2-フェニルエチルアミン、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、N-メチル-n-ヘキシルアミン、ジイソブチルアミン、N-メチルベンジルアミン、ジ(2-エチルへキシル)アミン、1,2-ジメチル-n-プロピルアミン、N,N-ジメチル-n-オクタデシルアミン又はN,N-ジメチルシクロヘキシルアミンであることが好ましい。
(アミン化合物由来のアンモニウム塩)
 本発明において、前記アミン化合物由来のアンモニウム塩は、前記アミン化合物が酸と反応してなるアンモニウム塩であり、前記酸は、塩酸、硫酸、硝酸等の無機酸でもよいし、酢酸等の有機酸でもよく、酸の種類は特に限定されない。
 前記アミン化合物由来のアンモニウム塩としては、n-プロピルアミン塩酸塩、N-メチル-n-ヘキシルアミン塩酸塩、N,N-ジメチル-n-オクタデシルアミン塩酸塩等が例示できるが、これらに限定されない。
(アンモニア由来のアンモニウム塩)
 本発明において、前記アンモニア由来のアンモニウム塩は、アンモニアが酸と反応してなるアンモニウム塩であり、ここで酸としては、前記アミン化合物由来のアンモニウム塩の場合と同じものが例示できる。
 前記アンモニア由来のアンモニウム塩としては、塩化アンモニウム等が例示できるが、これに限定されない。
 本発明においては、前記アミン化合物、第4級アンモニウム塩、アミン化合物由来のアンモニウム塩及びアンモニア由来のアンモニウム塩は、それぞれ一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
 そして、前記含窒素化合物としては、前記アミン化合物、第4級アンモニウム塩、アミン化合物由来のアンモニウム塩及びアンモニア由来のアンモニウム塩からなる群から選択される一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
 銀インク組成物において、前記含窒素化合物の配合量は、前記カルボン酸銀の配合量1モルあたり0.2~15モルであることが好ましく、0.3~5モルであることがより好ましい。
 前記含窒素化合物の配合量を上記のように規定することで、銀インク組成物は安定性がより向上し、金属銀の品質がより向上する。さらに、高温による加熱処理を行わなくても、より安定して導電層を形成できる。
[アルコール]
 銀インク組成物は、β-ケトカルボン酸銀(1)以外に、さらにアルコールが配合されてなるものが好ましい。
 前記アルコールは、直鎖状、分岐鎖状及び環状のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。
 また、前記アルコール類は、一価アルコール及び多価アルコールのいずれでもよい。
 なかでも、前記アルコールは、直鎖状又は分岐鎖状であることが好ましい。
 好ましい前記アルコールとしては、下記一般式(2)で表されるアセチレンアルコール類(以下、「アセチレンアルコール(2)」と略記することがある)、及び前記アセチレンアルコール(2)に該当しない炭素数が1~7のアルコール(以下、「その他のアルコール」と略記することがある)が例示できる。
 なお、本明細書においては、単なる「アルコール」との記載は、特に断りの無い限り、「その他のアルコール」だけではなく、「アセチレンアルコール(2)」も含めてこれらを包括するアルコール類全般を意味するものとする。
Figure JPOXMLDOC01-appb-C000006
 (式中、R’及びR’’は、それぞれ独立に炭素数1~20のアルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基である。)
(アセチレンアルコール(2))
 アセチレンアルコール(2)は、前記一般式(2)で表される。
 式中、R’及びR’’は、それぞれ独立に炭素数1~20のアルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基である。
 R’及びR’’における炭素数1~20のアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。R’及びR’’における前記アルキル基としては、Rにおける前記アルキル基と同様のものが例示できる。
 R’及びR’’におけるフェニル基の水素原子が置換されていてもよい前記置換基としては、炭素数が1~16の飽和又は不飽和の一価の脂肪族炭化水素基、前記脂肪族炭化水素基が酸素原子に結合してなる一価の基、フッ素原子、塩素原子、臭素原子、水酸基、シアノ基、フェノキシ基等が例示でき、Rにおけるフェニル基の水素原子が置換されていてもよい前記置換基と同様である。そして、置換基の数及び位置は特に限定されず、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
 R’及びR’’は、炭素数1~20のアルキル基であることが好ましく、炭素数1~10の直鎖状又は分岐鎖状のアルキル基であることがより好ましい。
 好ましいアセチレンアルコール(2)としては、3,5-ジメチル-1-ヘキシン-3-オール、3-メチル-1-ブチン-3-オール、3-メチル-1-ペンチン-3-オールが例示できる。
 アセチレンアルコール(2)を用いる場合、銀インク組成物において、アセチレンアルコール(2)の配合量は、β-ケトカルボン酸銀(1)の配合量1モルあたり0.03~0.7モルであることが好ましく、0.05~0.3モルであることがより好ましい。このような範囲とすることで、銀インク組成物の安定性がより向上する。
 炭素数が1~7の前記その他のアルコールは、炭素数が2~5であることが好ましく、より具体的には、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、1-ペンタノール等の一価アルコール;エチレングリコール、プロピレングリコール等の二価アルコールが例示できる。
 前記その他のアルコールを用いる場合、銀インク組成物において、前記その他のアルコールの配合量は、β-ケトカルボン酸銀(1)の配合量1質量部あたり0.2~4質量部であることが好ましく、0.5~2質量部であることがより好ましい。その他のアルコールの前記配合量が前記下限値以上であることで、銀インク組成物は取り扱い性がより向上し、前記上限値以下であることで、金属銀をより効率的に形成できる。
 前記アルコールは、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合で、その組み合わせ及び比率は、任意に調節できる。
[還元剤]
 銀インク組成物は、β-ケトカルボン酸銀(1)以外に、さらに前記アルコールに該当しない還元剤が配合されてなるものでもよい。還元剤を配合することで、前記銀インク組成物は、金属銀をより形成し易くなり、例えば、低温での加熱処理でも十分な導電性を有する金属銀を形成できる。
 前記還元剤は、シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物(以下、「化合物(5)」と略記することがある)からなる群から選択される一種以上の還元性化合物(以下、単に「還元性化合物」と略記することがある)であることが好ましい。
 H-C(=O)-R21 ・・・・(5)
 (式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
(還元性化合物)
 前記還元性化合物は、シュウ酸(HOOC-COOH)、ヒドラジン(HN-NH)及び前記一般式(5)で表される化合物(化合物(5))からなる群から選択される一種以上である。すなわち、配合される還元性化合物は、一種のみでよいし、二種以上でもよく、二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
 式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。
 R21における炭素数20以下のアルキル基は、炭素数が1~20であり、直鎖状、分岐鎖状及び環状のいずれでもよく、前記一般式(1)のRにおける前記アルキル基と同様のものが例示できる。
 R21における炭素数20以下のアルコキシ基は、炭素数が1~20であり、R21における前記アルキル基が酸素原子に結合してなる一価の基が例示できる。
 R21における炭素数20以下のN,N-ジアルキルアミノ基は、炭素数が2~20であり、窒素原子に結合している2個のアルキル基は、互いに同一でも異なっていてもよく、前記アルキル基はそれぞれ炭素数が1~19である。ただし、これら2個のアルキル基の炭素数の合計値が2~20である。
 窒素原子に結合している前記アルキル基は、それぞれ直鎖状、分岐鎖状及び環状のいずれでもよく、炭素数が1~19である点以外は、前記一般式(1)のRにおける前記アルキル基と同様のものが例示できる。
 前記還元性化合物として、ヒドラジンは、一水和物(HN-NH・HO)を用いてもよい。
 前記還元性化合物は、ギ酸(H-C(=O)-OH)、ギ酸メチル(H-C(=O)-OCH)、ギ酸エチル(H-C(=O)-OCHCH)、ギ酸ブチル(H-C(=O)-O(CHCH)、プロパナール(H-C(=O)-CHCH)、ブタナール(H-C(=O)-(CHCH)、ヘキサナール(H-C(=O)-(CHCH)、ホルムアミド(H-C(=O)-NH)、N,N-ジメチルホルムアミド(H-C(=O)-N(CH)又はシュウ酸であることが好ましい。
 銀インク組成物において、還元剤の配合量は、β-ケトカルボン酸銀(1)の配合量1モルあたり0.04~3.5モルであることが好ましく、0.06~2.5モルであることがより好ましい。このように規定することで、銀インク組成物は、より容易に、より安定して金属銀を形成できる。
[その他の成分]
 銀インク組成物は、β-ケトカルボン酸銀(1)、含窒素化合物、アルコール及び還元剤以外の、その他の成分が配合されてなるものでもよい。
 銀インク組成物における前記その他の成分は、目的に応じて任意に選択でき、特に限定されず、好ましいものとしては、アルコール以外の溶媒が例示でき、配合成分の種類や量に応じて任意に選択できる。
 銀インク組成物における前記その他の成分は、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合で、その組み合わせ及び比率は、任意に調節できる。
 銀インク組成物において、配合成分の総量に対する前記その他の成分の配合量の割合は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 銀インク組成物中の成分は、すべて溶解していてもよいし、一部又はすべてが溶解していなくてもよいが、溶解していない成分は、均一に分散されていることが好ましい。
 銀インク組成物は、β-ケトカルボン酸銀(1)、及びβ-ケトカルボン酸銀(1)以外の成分を配合することで得られる。
 各成分の配合時には、すべての成分を添加してからこれらを混合してもよいし、一部の成分を順次添加しながら混合してもよく、すべての成分を順次添加しながら混合してもよい。ただし、本発明においては、還元剤は滴下により配合することが好ましく、さらに滴下速度の変動を抑制することで、金属銀の表面粗さをより低減できる傾向にある。
 混合方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法、ミキサーを使用して混合する方法、超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 配合時の温度は、各配合成分が劣化しない限り特に限定されないが、-5~60℃であることが好ましい。
 また、配合時間(混合時間)も、各配合成分が劣化しない限り特に限定されないが、5分~5時間であることが好ましい。
 例えば、還元剤の配合時には、得られる配合物(銀インク組成物)は比較的発熱し易い。そして、還元剤の配合時の温度が高い場合、この配合物は、後述する銀インク組成物の加熱処理時と同様の状態になるため、還元剤による前記カルボン酸銀の分解促進作用によって、前記カルボン酸銀の少なくとも一部において金属銀の形成が開始されることがあると推測される。このような金属銀を含有する銀インク組成物は、金属銀を含有しない銀インク組成物よりも温和な条件で後処理を行うことにより、目的とする金属銀を形成できることがある。また、還元剤の配合量が十分に多い場合にも、同様に温和な条件で後処理を行うことにより、目的とする金属銀を形成できることがある。このように、β-ケトカルボン酸銀(1)の分解を促進する条件を採用することで、後処理として、より低温での加熱処理で、あるいは加熱処理を行わずに常温での乾燥処理のみで、目的とする金属銀を形成できることがある。また、このような金属銀を含有する銀インク組成物は、金属銀を含有しない銀インク組成物と同様に取り扱うことができ、特に取り扱い性が劣ることもない。
 銀インク組成物は、例えば、印刷法、塗布法、浸漬法等の公知の方法で基板11(修飾層17)上に付着させることができる。
 前記印刷法としては、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、ディップ式印刷法、インクジェット式印刷法、ディスペンサー式印刷法、グラビア印刷法、グラビアオフセット印刷法、パッド印刷法等が例示できる。
 前記塗布法としては、スピンコーター、エアーナイフコーター、カーテンコーター、ダイコーター、ブレードコーター、ロールコーター、ゲートロールコーター、バーコーター、ロッドコーター、グラビアコーター等の各種コーターや、ワイヤーバー等を用いる方法が例示できる。
 上記のゲート電極12を形成する工程においては、基板11(修飾層17)上に付着させる銀インク組成物の量、又は銀インク組成物におけるβ-ケトカルボン酸銀(1)の配合量を調節することで、ゲート電極12の厚さを調節できる。
 基板11上に付着させた銀インク組成物を乾燥処理する場合には、公知の方法で行えばよく、例えば、常圧下、減圧下及び送風条件下のいずれで行ってもよく、大気下及び不活性ガス雰囲気下のいずれでおこなってもよい。そして、乾燥温度も特に限定されず、加熱乾燥及び常温乾燥のいずれでもよい。加熱処理が不要な場合の好ましい乾燥方法としては、18~30℃で大気下において乾燥させる方法が例示できる。
 基板11上に付着させた銀インク組成物を加熱(焼成)処理する場合、その条件は、銀インク組成物の配合成分の種類に応じて適宜調節すればよい。通常は、加熱温度が60~200℃であることが好ましく、70~180℃であることがより好ましい。加熱時間は、加熱温度に応じて調節すればよいが、通常は、0.2~12時間であることが好ましく、0.4~10時間であることがより好ましい。β-ケトカルボン酸銀(1)は、例えば、酸化銀等の金属銀形成材料とは異なり、当該分野で公知の還元剤等を使用しなくても、低温で分解する。そして、このような分解温度を反映して、前記銀インク組成物は、上記のように、従来のものより極めて低温で金属銀を形成できる。
 銀インク組成物の加熱処理の方法は特に限定されず、例えば、電気炉による加熱、感熱方式の熱ヘッドによる加熱、遠赤外線照射による加熱等で行うことができる。また、銀インク組成物の加熱処理は、大気下で行ってもよいし、不活性ガス雰囲気下で行ってもよい。そして、常圧下及び減圧下のいずれで行ってもよい。
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。
[実施例1]
<トランジスタの製造>
(銀インク組成物の製造)
 2-メチルアセト酢酸銀(1質量部)、2-エチルヘキシルアミン(2質量部、2-メチルアセト酢酸銀に対して3.5倍モル量)、及びメタノール(1質量部)を5~10℃で10分間撹拌することにより、銀インク組成物を得た。
(トランジスタの製造)
 図4A~図4Fを参照して説明した方法により、以下の手順でトランジスタを製造した。
 厚さ0.7mmのガラス基板を、シランカップリング剤である3-アミノプロピルトリメトキシシラン((CHO)SiCHCHCHNH、信越シリコーン社製「KBM-903」)と共に密閉容器中に配置して、100℃で加熱することで、前記シランカップリング剤の蒸気を前記基板に接触させ、前記基板表面に厚さ1nmの修飾層を形成した。
 次いで、スピンコート法(2000rpm、20秒)により上記で製造した銀インク組成物を修飾層上に塗工し、80℃で30分、さらに150℃で30分加熱処理することで、修飾層上に厚さ100nmのゲート電極を形成した。
 このゲート電極について、表面粗さ(Ra)をJIS B0601:2001(ISO4287:1997)に準拠して測定したところ、4nmであった。
 次いで、濃度が18質量%であるベンゾシクロブテン(以下、「BCB」と略記することがある)のメシチレン溶液を、スピンコート法でゲート電極上に塗工し、50~250℃で約10時間加熱することで、ゲート電極上に厚さ300nmのBCBからなる絶縁層を形成した。
 次いで、「国際公開第2011/040155号」に記載のエッジキャスト法により、絶縁層上にアルキル-DNBDTからなる厚さ50nmの半導体層(有機半導体層)を形成した。
 次いで、真空蒸着法により、半導体層上にF6-TNAPからなる厚さ0.5nmの中間層を形成した。
 次いで、真空蒸着法により、中間層上に金からなる厚さ30nmのソース電極及びドレイン電極を、チャネル長が100μmとなるようにそれぞれ形成した。
 以上の工程を経て、本発明に係るトランジスタを製造した。得られたトランジスタの平面図を図5に示す。図5中、符号Wはチャネル幅を示す。
<トランジスタの評価>
 得られたトランジスタについて、キャリアの移動度、閾値電圧、OFF電流、電流ON/OFF比をそれぞれ測定した。結果を表1に示す。また、このときのドレイン電流Iとゲート電圧Vとの関係、及びドレイン電流Iとドレイン電圧Vとの関係(出力特性)についてのグラフを図6A~図6Cに示す。図6Aは線形領域(V=-0.5V)におけるIとVとの関係、図6Bは飽和領域(V=-10V)におけるIとVとの関係、図6CはIとVとの関係を、それぞれ示す。
[実施例2]
 厚さ300nmのBCBからなる絶縁層に代えて、スピンコート法により、厚さ200nmのポリイミド(以下、「PI」と略記することがある)からなる絶縁層を形成したこと以外は、実施例1と同じ方法でトランジスタを製造した。
 そして、得られたトランジスタについて、実施例1と同様に評価を行った。結果を表1に示す。また、このときのドレイン電流Iとゲート電圧Vとの関係、及びドレイン電流Iとドレイン電圧Vとの関係(出力特性)についてのグラフを図7A~図7Cに示す。図7Aは線形領域(V=-0.5V)におけるIとVとの関係、図7Bは飽和領域(V=-10V)におけるIとVとの関係、図7CはIとVとの関係を、それぞれ示す。
[比較例1]
 以下の手順で、従来のゲート電極を備えた比較用のトランジスタを製造した。
 厚さ0.7mmのガラス基板上に、真空蒸着法により、厚さ7nmのクロム(Cr)層、厚さ50nmの金(Au)層、及び厚さ7nmのクロム(Cr)層をこの順で積層して、ゲート電極を形成した。
 このゲート電極について、上層のクロム層の表面粗さ(Ra)をJIS B0601:2001(ISO4287:1997)に準拠して測定したところ、1nmであった。
 以降、ゲート電極(上層のクロム層)上に、実施例1と同じ方法で、厚さ300nmの絶縁層、厚さ50nmの半導体層(有機半導体層)、厚さ0.5nmの中間層 並びに厚さ30nmのソース電極及びドレイン電極をそれぞれ形成した。
 以上の工程を経て、従来品のトランジスタを製造した。得られたトランジスタの概略断面図を図8に示す。図8中、符号9はトランジスタを、符号92はゲート電極を、符号92a及び92cはクロム層を、符号92bは金層を、それぞれ示す。なお、トランジスタ9の平面図(図示略)は、実施例1のトランジスタ1の場合(図5)と同様である。
 そして、得られたトランジスタについて、実施例1と同様に評価を行った。結果を表1に示す。また、このときのドレイン電流Iとゲート電圧Vとの関係、及びドレイン電流Iとドレイン電圧Vとの関係(出力特性)についてのグラフを図9A~図9Cに示す。図9Aは線形領域(V=-1V)におけるIとVとの関係、図9Bは飽和領域(V=-20V)におけるIとVとの関係、図9CはIとVとの関係を、それぞれ示す。
[比較例2]
 厚さ300nmのBCBからなる絶縁層に代えて、スピンコート法により、厚さ200nmのPIからなる絶縁層を形成したこと以外は、比較例1と同じ方法でトランジスタを製造した。
 そして、得られたトランジスタについて、実施例1と同様に評価を行った。結果を表1に示す。また、このときのドレイン電流Iとゲート電圧Vとの関係、及びドレイン電流Iとドレイン電圧Vとの関係(出力特性)についてのグラフを図10A~図10Cに示す。図10Aは線形領域(V=-1V)におけるIとVとの関係、図10Bは飽和領域(V=-10V)におけるIとVとの関係、図10CはIとVとの関係を、それぞれ示す。
[比較例3]
 以下の手順で、銀ナノ粒子インクで形成したゲート電極を備えた比較用のトランジスタを製造した。
 厚さ0.7mmのガラス基板上に、スピンコート法により、銀ナノ粒子インク(ハリマ化成社製「NPS-J」、平均粒子径:12nm、固形分:62~67質量%、溶媒:テトラデカン)を塗工し、150℃で30分加熱処理することで、ガラス基板上に厚さ100nmのゲート電極を形成した。
 このゲート電極について、表面粗さ(Ra)をJIS B0601:2001(ISO4287:1997)に準拠して測定したところ、21nmであった。
 以降、ゲート電極上に、実施例1と同じ方法で、厚さ300nmの絶縁層、厚さ50nmの半導体層(有機半導体層)、厚さ0.5nmの中間層 並びに厚さ30nmのソース電極及びドレイン電極をそれぞれ形成した。
 以上の工程を経て、従来品のトランジスタを製造した。得られたトランジスタの概略断面図は、修飾層を備えていない点以外は図1と同様であり、平面図は図5と同様である(図示略)。
 そして、得られたトランジスタについて、実施例1と同様に評価を行った。結果を表1に示す。また、このときのドレイン電流Iとゲート電圧Vとの関係、及びドレイン電流Iとドレイン電圧Vとの関係(出力特性)についてのグラフを図11A~図11Cに示す。図11Aは線形領域(V=-0.5V)におけるIとVとの関係、図11Bは飽和領域(V=-10V)におけるIとVとの関係、図11CはIとVとの関係を、それぞれ示す。
Figure JPOXMLDOC01-appb-T000007
 表1から明らかなように、実施例1~2のトランジスタは、大気下においてβ-ケトカルボン酸銀(1)を用いて塗布法で形成したゲート電極の表面粗さが小さく、真空蒸着で形成し、表面粗さが同等以下のゲート電極を用いた比較例1~2のトランジスタよりも、キャリアの移動度が高かった。また、閾値電圧が適度な数値範囲にあり、OFF電流が低く、電流ON/OFF比が大きかった。さらに、図6A~図6C及び図7A~図7Cに示すように、IとV、IとVは、いずれも明りょうな相関関係を示していた。このように、実施例1~2のトランジスタは、優れた特性を有していた。
 一方、比較例3のトランジスタは、大気下において銀ナノ粒子を用いて塗布法で形成したゲート電極の表面粗さが大きかった。また、比較例3のトランジスタは動作しなかったが、これはゲート電流が大きいことから、ゲート電極が絶縁層を貫通し、ソース電極又はドレイン電極にまで達しているからであると推測された。
[実施例3]
 スピンコート法(3000rpm、30秒)により、ゲート電極上にオレフィン液(シクロオレフィン系熱硬化性樹脂を含有する液、日本ゼオン社製「ES2110-10」)を塗工し、150℃で60分加熱することで、厚さ300nmのBCBからなる絶縁層に代えて、厚さ300nmのオレフィンからなる絶縁層を形成したこと以外は、実施例1と同じ方法でトランジスタを製造した。
 そして、得られたトランジスタについて、実施例1と同様に評価を行った。結果を表2に示す。また、このときのドレイン電流Iとゲート電圧Vとの関係、及びドレイン電流Iとドレイン電圧Vとの関係(出力特性)についてのグラフを図12A~図12Cに示す。図12Aは線形領域(V=-0.5V)におけるIとVとの関係、図12Bは飽和領域(V=-10V)におけるIとVとの関係、図12CはIとVとの関係を、それぞれ示す。
[比較例4]
 2層構造のシリコンウェハー(表面が熱酸化されて厚さ100nmの二酸化ケイ素層が形成されたN型ハイドープシリコン)を用い、その二酸化ケイ素層を絶縁層の一部として、またN型シリコン層を基板とゲート電極とを兼ねるものとして、それぞれ用い、この二酸化ケイ素層について、表面粗さ(Ra)をJIS B0601:2001(ISO4287:1997)に準拠して測定したところ、0.1nmであった。
 次いで、前記二酸化ケイ素層上に、スピンコート法により、実施例3の場合と同じ方法で厚さ300nmのオレフィンからなる絶縁層を形成した。
 以降、実施例3と同じ方法で、厚さ50nmの半導体層(有機半導体層)、厚さ0.5nmの中間層 並びに厚さ30nmのソース電極及びドレイン電極をそれぞれ形成した。
 以上の工程を経て、従来品のトランジスタを製造した。
 そして、得られたトランジスタについて、実施例1と同様に評価を行った。結果を表2に示す。また、このときのドレイン電流Iとゲート電圧Vとの関係、及びドレイン電流Iとドレイン電圧Vとの関係(出力特性)についてのグラフを図13A~図13Cに示す。図13Aは線形領域(V=-0.5V)におけるIとVとの関係、図13Bは飽和領域(V=-30V)におけるIとVとの関係、図13CはIとVとの関係を、それぞれ示す。
Figure JPOXMLDOC01-appb-T000008
 表2から明らかなように、実施例3のトランジスタは、実施例1~2のトランジスタと同様に、大気下においてβ-ケトカルボン酸銀(1)を用いて塗布法で形成したゲート電極の表面粗さが小さく、キャリアの移動度が高かった。また、閾値電圧が適度な数値範囲にあり、OFF電流が低く、電流ON/OFF比が大きかった。さらに、図12A~図12Cに示すように、IとV、IとVは、いずれも明りょうな相関関係を示していた。このように、実施例3のトランジスタは、優れた特性を有していた。
 比較例4のトランジスタも、実施例3のトランジスタと同様の特性を有していた。
[実施例4]
<トランジスタの製造>
(銀インク組成物の製造)
 2-メチルアセト酢酸銀(1質量部)、2-エチルヘキシルアミン(2質量部、2-メチルアセト酢酸銀に対して3.5倍モル量)、メタノール(1質量部)、及び3,5-ジメチル-1-ヘキシン-3-オール(0.04質量部、2-メチルアセト酢酸銀に対して0.07倍モル量)を5~10℃で10分間撹拌することにより、銀インク組成物を得た。
(トランジスタの製造)
 以下の手順で、図3に示すトランジスタを製造した。
 厚さ100mmのポリエチレンナフタレート製基板(PEN基板)上に、上記で製造した銀インク組成物をスピンコート法(2000rpm、20秒)により塗工し、100℃で30分、さらに150℃で30分加熱処理することで、PEN基板上に厚さ100nmの銀層を形成した。
 次いで、フォトリソグラフィーとエッチングにより、形成した銀層を厚さ100nm、幅10μmの線状にパターニングして、ゲート電極を形成した。
 このとき、フォトリソグラフィーでは、レジストとしてシプレイ社製「S1805」を用い、スピンコート法(1000rpm、30秒)によりこれを銀層上に塗工し、90℃で10分加熱した後、100mW/cmで露光し、現像液(東京応化社製「NMD-3」)を用いて1分現像して、120℃で20分加熱することで、レジストパターンを形成した。
 また、エッチングでは、銀エッチング液(関東化学社製「SEA-1」)を用いて、露出された銀層を除去し、残っていたレジストをアセトン洗浄で除去することにより、ゲート電極を形成した。
 このゲート電極について、表面粗さ(Ra)をJIS B0601:2001(ISO4287:1997)に準拠して測定したところ、4nmであった。
 次いで、上記で得られた、PEN基板上にゲート電極が積層された積層物の表面(PEN基板及びゲート電極の表面)に、スピンコート法(3000rpm、30秒)により、オレフィン液(日本ゼオン社製「ES2110-10」)を塗工し、150℃で60分加熱することで、厚さ400nmのオレフィンからなる絶縁層を形成した。
 次いで、この絶縁層上に、所定のパターンを形成できるようにマスクを設置し、アルキル-DNBDTからなる半導体を140℃で蒸着させ、マスクを取り除くことにより、絶縁層上に厚さ25nmの半導体層(有機半導体層)を形成した。
 次いで、上記で得られた、PEN基板上にゲート電極、絶縁層及び半導体層がこの順に積層された積層物の表面(絶縁層及び半導体層の表面)に、金を蒸着させ、金層を形成した。
 次いで、フォトリソグラフィーとエッチングにより、形成した金層を、チャネル長が5μmとなるようにパターニングして、ソース電極及びドレイン電極を形成した。
 このとき、フォトリソグラフィーでは、レジストとしてOrthogonal社製「OSCOR2312」を用い、スピンコート法(2000rpm、30秒)によりこれを金層上に塗工し、60℃で20分加熱した後、300mW/cmで露光し、60℃で20分加熱してから、現像液(3M社製「Novec7300」)を用いて現像することで、レジストパターンを形成した。
 また、エッチングでは、エッチング液(関東化学社製「AurumS-50790」)を用いて、露出された金層を除去し、残っていたレジストを洗浄液(3M社製「Novec7100」)で除去することにより、金からなる厚さ50nmのソース電極及びドレイン電極をそれぞれ形成して、トランジスタを製造した。
<トランジスタの評価>
 得られたトランジスタについて、実施例1と同様に評価を行った。結果を表3に示す。また、このときのドレイン電流IDとゲート電圧VGとの関係、及びドレイン電流IDとドレイン電圧VDとの関係(出力特性)についてのグラフを図14A~図14Cに示す。図14Aは線形領域(V=-1V)におけるIDとVGとの関係、図14Bは飽和領域(VD=-20V)におけるIDとVGとの関係、図14CはIDとVDとの関係を、それぞれ示す。
 さらに、得られたトランジスタを用いて、図15に示す構成の回路を作製し、整流時の最大周波数を求めた。より具体的には、以下のとおりである。なお、図15において、符号G、D、Sは、それぞれ上記で得られたトランジスタのゲート電極、ドレイン電極、ソース電極を意味する。
 この回路において、入力信号(Function Generator)の周波数を変化させ、周波数ごとのVin(入力された交流電圧の最小値)と、Vout(コンデンサに出力(整流)された直流電圧)とを測定し、Vout/Vinを算出して、グラフにプロットし、曲線を求めた。そして、低周波数側で一定となっているVout/Vinの値の3dB分(前記値の約70%)に相当する値を算出し、この値と交差する周波数を求め、これを整流時の最大周波数とした。結果を表3に示す。またこのとき得られたグラフを図16に示す。
[実施例5]
<トランジスタの製造>
 スピンコート法(1000rpm、20秒)により、実施例4と同じ銀インク組成物を厚さ0.7mmのガラス基板上に塗工し、100℃で30分、さらに150℃で30分加熱処理することで、ガラス基板上に厚さ200nmの銀層を形成した。
 次いで、フォトリソグラフィーとエッチングにより、形成した銀層を厚さ200nm、幅10μmの線状にパターニングして、ゲート電極を形成した。このとき、フォトリソグラフィーとエッチングは、実施例4の場合と同じ方法で行った。
 このゲート電極について、表面粗さ(Ra)をJIS B0601:2001(ISO4287:1997)に準拠して測定したところ、4nmであった。
 次いで、上記で得られた、ガラス基板上にゲート電極が積層された積層物の表面(ガラス基板及びゲート電極の表面)に、ALD法により、厚さ130nmのアルミナ層を形成した。ALD法は、吸着ガスとしてトリエチルアルミニウムガスを、反応ガスとしてHOガスをそれぞれ用い、窒素ガスをキャリアガスとしてこれらを反応室内に導入し、パージガスとして窒素ガスを用いて行った。膜生成時の温度(成膜温度)は150℃とした。窒素ガスの流量は、これをキャリアガスとして用いた場合は300sccmとし、パージガスとして用いた場合は1500sccmとした。反応室内の圧力は40Paとした。トリエチルアルミニウムガスの導入時間は0.3秒、HOガスの導入時間は0.3秒、パージガス(窒素ガス)の導入時間は1秒とした。
 さらに、このアルミナ層上に、スピンコート法(2000rpm、30秒)により、オレフィン液(日本ゼオン社製「ES2110-10」)を塗工し、150℃で60分加熱することで、厚さ30nmのオレフィン層を形成した。以上により、基板側から前記アルミナ層及びオレフィン層がこの順に積層されてなる絶縁層を形成した。
 次いで、実施例4と同じ方法で、絶縁層上に厚さ25nmの半導体層(有機半導体層)を形成し、この半導体層上に金からなる厚さ50nmのソース電極及びドレイン電極をそれぞれ形成して、トランジスタを製造した。
<トランジスタの評価>
 得られたトランジスタについて、実施例4と同様に評価を行った。結果を表3に示す。また、このときのドレイン電流IDとゲート電圧VGとの関係、及びドレイン電流IDとドレイン電圧VDとの関係(出力特性)についてのグラフを図17A~図17Cに示す。図17Aは線形領域(V=-1V)におけるIDとVGとの関係、図17Bは飽和領域(VD=-20V)におけるIDとVGとの関係、図17CはIDとVDとの関係を、それぞれ示す。また、整流時の最大周波数を求めたときに得られたグラフを図18に示す。
[実施例6]
 フォトリソグラフィーでのレジストパターンを変更し、チャネル長が2μmのソース電極及びドレイン電極を形成したこと以外は、実施例5と同じ方法でトランジスタを製造した。
 そして、得られたトランジスタについて、実施例4と同様に評価を行った。結果を表3に示す。また、このときのドレイン電流IDとゲート電圧VGとの関係、及びドレイン電流IDとドレイン電圧VDとの関係(出力特性)についてのグラフを図19A~図19Cに示す。図19Aは線形領域(V=-1V)におけるIDとVGとの関係、図19Bは飽和領域(VD=-10V)におけるIDとVGとの関係、図19CはIDとVDとの関係を、それぞれ示す。また、整流時の最大周波数を求めたときに得られたグラフを図20に示す。
[実施例7]
 銀層形成時のスピンコート法の条件を2000rpm、20秒に代えて4000rpm、20秒として、厚さ40nmのゲート電極を形成し、さらに、フォトリソグラフィーでのレジストパターンを変更し、チャネル長が2μmのソース電極及びドレイン電極を形成したこと以外は、実施例4と同じ方法でトランジスタを製造した。
 そして、得られたトランジスタについて、実施例4と同様に評価を行った。結果を表3に示す。また、このときのドレイン電流IDとゲート電圧VGとの関係、及びドレイン電流IDとドレイン電圧VDとの関係(出力特性)についてのグラフを図21A~図21Cに示す。図21Aは線形領域(V=-1V)におけるIDとVGとの関係、図21Bは飽和領域(VD=-20V)におけるIDとVGとの関係、図21CはIDとVDとの関係を、それぞれ示す。また、整流時の最大周波数を求めたときに得られたグラフを図22に示す。
Figure JPOXMLDOC01-appb-T000009
 表3から明らかなように、実施例4~7のトランジスタは、実施例1~3のトランジスタと同様に、大気下においてβ-ケトカルボン酸銀(1)を用いて塗布法で形成したゲート電極の表面粗さが小さく、キャリアの移動度が高かった。また、閾値電圧が適度な数値範囲にあり、OFF電流が低く、電流ON/OFF比が大きかった。さらに、図14A~図14C、図17A~図17C、図19A~図19C及び図21A~図21Cに示すように、IDとVG、IDとVDは、いずれも明りょうな相関関係を示していた。このように、実施例4~7のトランジスタは、優れた特性を有していた。
 さらに、実施例4~7のトランジスタは、チャネル長が短く、高周波数で動作させるのに有利で、より実用性が高いものであるが、整流時の最大周波数がいずれも大きいことで、このことが確認された。
 本発明は、コンピュータの電子回路や、TFTのIC等で利用可能である。
 1,2,3 トランジスタ
 11 基板
 12,32 ゲート電極
 13,33 絶縁層
 14,24 半導体層
 15,25 ソース電極
 16,26 ドレイン電極
 17 修飾層
 18,28 中間層
 L チャネル長
 W チャネル幅

Claims (4)

  1.  基板上にゲート電極、絶縁層、半導体層、ソース電極及びドレイン電極を備え、
     前記ゲート電極が、下記一般式(1)で表わされるβ-ケトカルボン酸銀を用いて形成されたものであるトランジスタ。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基であり;
     Yはそれぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子であり;Rは炭素数1~19の脂肪族炭化水素基又はフェニル基であり;Rは炭素数1~20の脂肪族炭化水素基であり;Rは炭素数1~16の脂肪族炭化水素基であり;R及びRはそれぞれ独立に炭素数1~18の脂肪族炭化水素基であり;Rは炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり;
     Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基であり;
     Rは、炭素数1~10の脂肪族炭化水素基、チエニル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基である。)
  2.  ボトムゲート・ボトムコンタクト型構造、又はボトムゲート・トップコンタクト型構造を有する請求項1に記載のトランジスタ。
  3.  前記ゲート電極の「ISO4287:1997」に基づく表面粗さが1~10nmである請求項1に記載のトランジスタ。
  4.  前記ゲート電極の厚さが10~1000nmであり、前記絶縁層の厚さが10~1000nmである請求項1に記載のトランジスタ。
PCT/JP2014/068316 2013-07-23 2014-07-09 トランジスタ WO2015012107A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015528220A JP6225992B2 (ja) 2013-07-23 2014-07-09 トランジスタ
CN201480041463.0A CN105393361B (zh) 2013-07-23 2014-07-09 晶体管
US14/906,000 US10074818B2 (en) 2013-07-23 2014-07-09 Transistor
HK16109839.8A HK1221820A1 (zh) 2013-07-23 2016-08-17 晶體管

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013152669 2013-07-23
JP2013-152669 2013-07-23
JP2014-055595 2014-03-18
JP2014055595 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015012107A1 true WO2015012107A1 (ja) 2015-01-29

Family

ID=52393155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068316 WO2015012107A1 (ja) 2013-07-23 2014-07-09 トランジスタ

Country Status (6)

Country Link
US (1) US10074818B2 (ja)
JP (2) JP6225992B2 (ja)
CN (1) CN105393361B (ja)
HK (1) HK1221820A1 (ja)
TW (1) TW201515115A (ja)
WO (1) WO2015012107A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190914A (ja) * 2015-03-31 2016-11-10 トッパン・フォームズ株式会社 金属インク組成物及び配線板
JP2018503985A (ja) * 2015-02-04 2018-02-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 低コンタクト抵抗を有する有機電界効果トランジスタ
WO2018181907A1 (ja) * 2017-03-31 2018-10-04 ダイキン工業株式会社 スルホン酸、カルボン酸又はそれらの塩
CN110446723A (zh) * 2017-03-31 2019-11-12 大金工业株式会社 含氟聚合物的制造方法、聚合用表面活性剂和表面活性剂的使用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249001B2 (ja) * 2018-09-04 2023-03-30 国立大学法人 東京大学 有機半導体素子、歪みセンサ、振動センサ及び有機半導体素子の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277552A (ja) * 2006-04-06 2007-10-25 Xerox Corp 半導体およびそれから作製した電子デバイス
JP2009197133A (ja) * 2008-02-21 2009-09-03 Osaka Industrial Promotion Organization β−ケトカルボン酸銀を含有するインク

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347042A (ja) 2002-05-24 2003-12-05 Denso Corp 有機電子デバイス用の封止膜およびその製造方法
JP2004063975A (ja) 2002-07-31 2004-02-26 Mitsubishi Chemicals Corp 電界効果トランジスタ
EP1609191A1 (en) * 2003-03-31 2005-12-28 Canon Kabushiki Kaisha Organic thin film transistor and manufacturing method thereof
US7683195B2 (en) * 2005-07-04 2010-03-23 Osaka Industrial Promotional Organization Silver β-ketocarboxylate, material comprising the same for forming silver metal, and use thereof
US8207525B2 (en) 2006-12-04 2012-06-26 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor
JP5530061B2 (ja) * 2007-11-01 2014-06-25 トッパン・フォームズ株式会社 インク、及び配線を形成する方法
JP5540543B2 (ja) 2009-03-31 2014-07-02 大日本印刷株式会社 有機トランジスタの製造方法
JP5397921B2 (ja) 2009-10-02 2014-01-22 国立大学法人大阪大学 有機半導体膜の製造方法
JP2013040124A (ja) 2011-08-15 2013-02-28 Osaka Univ 自己組織化単分子膜形成用の化合物及びそれを用いた有機半導体素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277552A (ja) * 2006-04-06 2007-10-25 Xerox Corp 半導体およびそれから作製した電子デバイス
JP2009197133A (ja) * 2008-02-21 2009-09-03 Osaka Industrial Promotion Organization β−ケトカルボン酸銀を含有するインク

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503985A (ja) * 2015-02-04 2018-02-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 低コンタクト抵抗を有する有機電界効果トランジスタ
JP2016190914A (ja) * 2015-03-31 2016-11-10 トッパン・フォームズ株式会社 金属インク組成物及び配線板
WO2018181907A1 (ja) * 2017-03-31 2018-10-04 ダイキン工業株式会社 スルホン酸、カルボン酸又はそれらの塩
JPWO2018181907A1 (ja) * 2017-03-31 2019-07-11 ダイキン工業株式会社 スルホン酸、カルボン酸又はそれらの塩
CN110446723A (zh) * 2017-03-31 2019-11-12 大金工业株式会社 含氟聚合物的制造方法、聚合用表面活性剂和表面活性剂的使用
JP2020169221A (ja) * 2017-03-31 2020-10-15 ダイキン工業株式会社 スルホン酸、カルボン酸又はそれらの塩
CN110446723B (zh) * 2017-03-31 2021-10-12 大金工业株式会社 含氟聚合物的制造方法、聚合用表面活性剂和表面活性剂的使用
JP7121307B2 (ja) 2017-03-31 2022-08-18 ダイキン工業株式会社 スルホン酸、カルボン酸又はそれらの塩
US11440875B2 (en) 2017-03-31 2022-09-13 Daikin Industries, Ltd. Sulfonic acid, carboxylic acid, and salts thereof
US11512155B2 (en) 2017-03-31 2022-11-29 Daikin Industries, Ltd. Production method for fluoropolymer, surfactant for polymerization, and use of surfactant
US12012470B2 (en) 2017-03-31 2024-06-18 Daikin Industries, Ltd. Production method for fluoropolymer, surfactant for polymerization, and use of surfactant

Also Published As

Publication number Publication date
TW201515115A (zh) 2015-04-16
JP6225992B2 (ja) 2017-11-08
JP2017183733A (ja) 2017-10-05
CN105393361B (zh) 2018-07-06
JP6357726B2 (ja) 2018-07-18
HK1221820A1 (zh) 2017-06-09
US10074818B2 (en) 2018-09-11
US20160155969A1 (en) 2016-06-02
JPWO2015012107A1 (ja) 2017-03-02
CN105393361A (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
JP6357726B2 (ja) トランジスタ
JP4415653B2 (ja) 薄膜トランジスタの製造方法
Wu et al. A simple and efficient approach to a printable silver conductor for printed electronics
JP4407311B2 (ja) 薄膜トランジスタの製造方法
Li et al. Coffee-ring defined short channels for inkjet-printed metal oxide thin-film transistors
EP2975649A1 (en) Field effect transistor
WO2009081968A1 (ja) 金属酸化物半導体の製造方法およびこれを用いる半導体素子
US8748873B2 (en) Electronic device with dual semiconducting layer
US8367459B2 (en) Organic semiconductor interface preparation
US8895354B2 (en) Method of forming organic semiconductor device that includes forming electrode contact layer by treating electrode surfaces with substance containing substituted arene
Boudinet et al. Influence of the semi-conductor layer thickness on electrical performance of staggered n-and p-channel organic thin-film transistors
Chung et al. Contact resistance of inkjet-printed silver source–drain electrodes in bottom-contact OTFTs
Liu et al. Solvent-vapor induced self-assembly of a conjugated polymer: A correlation between solvent nature and transistor performance
Long et al. Solution processed vanadium pentoxide as charge injection layer in polymer field-effect transistor with Mo electrodes
JP2010258058A (ja) 金属酸化物半導体の製造方法、金属酸化物半導体および薄膜トランジスタ
Jung et al. Toward ultraviolet solution processed ZrOx/IZO transistors with top-gate and dual-gate operation: Selection of solvents, precursors, stabilizers, and additive elements
Oh et al. N-type organic field-effect transistor using polymeric blend gate insulator with controlled surface properties
US10333084B2 (en) Semiconductor film, oxide microparticle dispersion, method for manufacturing semiconductor film, and thin film transistor
CN106463408B (zh) 有机半导体元件
JP2010258206A (ja) 金属酸化物半導体の製造方法、金属酸化物半導体及びこれを用いた半導体素子、薄膜トランジスタ
Jung et al. Naphthalenetetracarboxylic diimide layer-based transistors with nanometer oxide and side chain dielectrics operating below one volt
KR101259711B1 (ko) 유기 반도체 소자 및 유기 전극
Onojima et al. Organic field-effect transistors based on single-crystalline active layer and top-gate insulator consistently fabricated by electrostatic spray deposition
JP6029897B2 (ja) 発光素子
Puntambekar et al. Improving the Organic Semiconductor-Metal Contact Interface in Printed High Performance Organic TFTs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041463.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14906000

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015528220

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829977

Country of ref document: EP

Kind code of ref document: A1