WO2015011809A1 - ハイブリッド作業機械 - Google Patents

ハイブリッド作業機械 Download PDF

Info

Publication number
WO2015011809A1
WO2015011809A1 PCT/JP2013/070112 JP2013070112W WO2015011809A1 WO 2015011809 A1 WO2015011809 A1 WO 2015011809A1 JP 2013070112 W JP2013070112 W JP 2013070112W WO 2015011809 A1 WO2015011809 A1 WO 2015011809A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine speed
generator
target engine
engine
motor
Prior art date
Application number
PCT/JP2013/070112
Other languages
English (en)
French (fr)
Inventor
宏昭 武
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to CN201380063685.8A priority Critical patent/CN104837700B/zh
Priority to US14/650,417 priority patent/US9550413B2/en
Priority to PCT/JP2013/070112 priority patent/WO2015011809A1/ja
Priority to KR1020157013219A priority patent/KR20150069025A/ko
Priority to DE112013005377.2T priority patent/DE112013005377T5/de
Priority to JP2013550428A priority patent/JP5759019B1/ja
Publication of WO2015011809A1 publication Critical patent/WO2015011809A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/0205Circuit arrangements for generating control signals using an auxiliary engine speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B7/00Arrangements for obtaining smooth engagement or disengagement of automatic control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a hybrid work machine capable of performing engine assist control while suppressing deterioration of heat balance between a transformer and a capacitor.
  • Patent Document 2 when it is determined whether or not the generator motor is to be subjected to the engine torque assist operation, and the engine motor is to be subjected to the engine torque assist operation, the power generation operation is described according to the required power generation amount.
  • the hybrid work machine has a hybrid controller that performs engine assist control and power generation control, a pump controller that controls flow rate of a hydraulic pump, and an engine controller that controls the engine speed of the engine.
  • the hybrid controller calculates a generator required minimum engine speed, which is the minimum engine speed for securing the power generation output.
  • the pump controller selects a large number of revolutions between the target engine speed required from the operation amount of the operation lever, load output, etc. and the generator required minimum engine speed output from the hybrid controller, and sets it as the final target engine speed.
  • the engine controller controls the final target engine speed.
  • the hybrid controller performs engine assist control for increasing the engine speed by the generator motor when a deviation occurs in which the final target engine speed becomes larger than the actual engine speed by a certain value or more. Do.
  • the hybrid controller calculates a high target engine speed for generator control in order to secure necessary generated power, and as a result, performs engine assist. As a result, the capacitor voltage further decreases.
  • This further decrease in the capacitor voltage increases the input / output current to the transformer, which is a voltage converter for the capacitor and the capacitor, and when it deviates from the optimum voltage value that results in a low loss set in advance in the transformer, As the difference between the voltage values increases, the conversion loss increases, and the heat balance between the transformer and the capacitor deteriorates.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a hybrid work machine capable of performing engine assist control while suppressing deterioration of heat balance between a transformer and a capacitor.
  • a hybrid work machine stores an engine, a generator motor connected to a drive shaft of the engine, and electric power generated by the generator motor. Or a battery that supplies power to the generator motor, a motor that is driven by at least one of the power generated by the generator motor and the power stored in the battery, the generator motor, and the motor.
  • a transformer provided between the battery, a target engine speed calculator for calculating a target engine speed based on at least an engine load and a generator / motor output state, and a livestock state and power generation of the battery
  • the generator required minimum engine speed which is the minimum engine speed for securing the electric power generated by the battery according to the machine motor speed, is output.
  • a control unit a target engine speed calculation unit for engine control that calculates and outputs a target engine speed for engine control based on the target engine speed and the minimum engine speed required for the generator; and the engine control An engine control unit for controlling the engine speed based on the target engine speed, the target engine speed as a generator control target engine speed, and the generator control target engine speed and generator motor speed And an assist control unit for controlling engine assist.
  • a hybrid work machine stores an engine, a generator motor connected to a drive shaft of the engine, and electric power generated by the generator motor, or supplies electric power to the generator motor.
  • a power generation control unit that outputs a generator required minimum engine speed that is a minimum engine speed for securing the engine, and the target engine speed and
  • a target engine speed calculation unit for engine control that calculates and outputs a target engine speed for engine control based on the minimum engine speed required for the generator, and an engine speed based on the target engine speed for engine control
  • An engine control unit that controls the number, an output processing unit that outputs the target engine speed as a target engine speed for
  • the output processing unit may be configured such that the generator required minimum engine speed exceeds the target engine speed, or the storage battery voltage exceeds a predetermined voltage.
  • the target engine speed is output as the generator control target engine speed.
  • the target engine speed control unit includes a target engine output setting line that defines a target engine output and a matching route on a torque diagram with respect to the engine speed. The engine speed at the intersection is calculated as the target engine speed.
  • the voltage conversion ratio of the transformer matches the turn ratio of the number of turns of the coil on the input side and the number of turns of the coil on the output side. It is characterized by that.
  • the target engine speed calculation unit calculates the target engine speed based on at least the state of the engine load and the generator motor output
  • the assist control unit calculates the target engine speed for generator control. Since the engine assist is controlled based on the target engine speed for generator control and the generator motor speed for generator control, useless engine assist accompanying an increase in the minimum engine speed required for the generator And the deterioration of the heat balance of the transformer and the capacitor can be suppressed.
  • FIG. 1 is a perspective view showing a hybrid excavator as an example of a hybrid work machine.
  • FIG. 2 is a block diagram showing a device configuration of the hybrid excavator shown in FIG.
  • FIG. 3 is a circuit diagram showing a detailed configuration of the transformer.
  • FIG. 4 is a block diagram illustrating configurations of a hybrid controller, a pump controller, and an engine controller related to engine assist control.
  • FIG. 5 is a time chart showing an example of engine assist control.
  • FIG. 6 is a block diagram illustrating configurations of a hybrid controller, a pump controller, and an engine controller according to a modified example of the engine assist control.
  • FIG. 7 is a flowchart showing a prohibition condition determination processing procedure by the prohibition condition determination processing unit.
  • FIG. 8 is a torque diagram with respect to engine speed showing an outline of the low-speed matching control.
  • FIG. 1 is a perspective view showing a hybrid excavator 1 which is an example of a hybrid work machine.
  • FIG. 2 is a block diagram showing a device configuration of the hybrid excavator 1 shown in FIG.
  • the concept of a simple work machine that is not a hybrid includes construction machines such as a hydraulic excavator, a bulldozer, a dump truck, and a wheel loader, and these construction machines have a driving force from an engine and other power supply elements.
  • a hybrid work machine having a configuration unique to a hybrid having an electric motor that is driven by exchanging electric power between them is referred to as a hybrid work machine.
  • the hybrid excavator 1 includes a vehicle main body 2 and a work implement 3.
  • the vehicle main body 2 includes a lower traveling body 4 and an upper swing body 5.
  • the lower traveling body 4 has a pair of traveling devices 4a.
  • Each traveling device 4a has a crawler belt 4b.
  • Each traveling device 4a drives the crawler belt 4b by the rotational driving of the right traveling hydraulic motor 34 and the left traveling hydraulic motor 35 shown in FIG.
  • the upper turning body 5 is provided on the upper part of the lower traveling body 4 so as to be turnable.
  • the upper turning body 5 includes a turning motor 23 for turning itself.
  • the turning motor 23 is connected to a drive shaft of a swing machinery 24 (reduction gear).
  • the rotational force of the swing motor 23 is transmitted through the swing machinery 24, and the transmitted rotational force is transmitted to the upper swing body 5 through a swing pinion, a swing circle, and the like (not shown), thereby turning the upper swing body 5.
  • the swing motor 23 is an electric motor driven by electricity supplied from the generator motor 19 or the capacitor 25, but may be a hydraulic motor driven by hydraulic pressure.
  • the turning motor 23 is driven to turn the upper turning body 5, but the motor is provided with a hydraulic pump or the lower traveling body 4 for driving the work machine 3. It may be driven.
  • the upper slewing body 5 is provided with a cab 6.
  • the upper swing body 5 includes a fuel tank 7, a hydraulic oil tank 8, an engine room 9, and a counterweight 10.
  • the fuel tank 7 stores fuel for driving an engine 17 as an internal combustion engine.
  • the hydraulic oil tank 8 includes a hydraulic cylinder such as a boom hydraulic cylinder 14, an arm hydraulic cylinder 15 and a bucket hydraulic cylinder 16, and a hydraulic motor (hydraulic actuator) such as a right traveling hydraulic motor 34 and a left traveling hydraulic motor 35.
  • the hydraulic oil discharged from the hydraulic pump 18 is stored in the hydraulic equipment.
  • the engine room 9 houses various devices such as an engine 17, a hydraulic pump 18, a generator motor 19, and a capacitor 25 as a capacitor.
  • the counterweight 10 is disposed behind the engine chamber 9.
  • the work implement 3 is attached to the front center position of the upper swing body 5 and includes a boom 11, an arm 12, a bucket 13, a boom hydraulic cylinder 14, an arm hydraulic cylinder 15, and a bucket hydraulic cylinder 16.
  • the base end portion of the boom 11 is connected to the upper swing body 5 so as to be swingable. Further, the distal end portion on the side opposite to the proximal end portion of the boom 11 is rotatably connected to the proximal end portion of the arm 12.
  • a bucket 13 is rotatably connected to a distal end portion on the opposite side of the base end portion of the arm 12. The bucket 13 is connected to the bucket hydraulic cylinder 16 via a link.
  • the boom hydraulic cylinder 14, the arm hydraulic cylinder 15, and the bucket hydraulic cylinder 16 are hydraulic cylinders (hydraulic actuators) that extend and contract with hydraulic fluid discharged from the hydraulic pump 18.
  • the boom hydraulic cylinder 14 swings the boom 11.
  • the arm hydraulic cylinder 15 swings the arm 12.
  • the bucket hydraulic cylinder 16 swings the bucket 13.
  • the hybrid excavator 1 includes an engine 17, a hydraulic pump 18, and a generator motor 19 as drive sources.
  • a diesel engine is used as the engine 17, and a variable displacement hydraulic pump is used as the hydraulic pump 18.
  • the hydraulic pump 18 is, for example, a swash plate type hydraulic pump that changes the pump capacity by changing the tilt angle of the swash plate 18a, but is not limited thereto.
  • the engine 17 includes a rotation sensor 41 for detecting the rotation speed (the number of rotations per unit time) of the engine 17.
  • a signal indicating the rotation speed (engine speed) of the engine 17 detected by the rotation sensor 41 is acquired by the engine controller C12 and input from the engine controller C12 to the hybrid controller C2 via the in-vehicle network.
  • the rotation sensor 41 detects the engine speed of the engine 17.
  • the hydraulic pump 18 and the generator motor 19 are connected directly or indirectly to the drive shaft 20 of the engine 17, and the hydraulic pump 18 and the generator motor 19 are driven when the engine 17 is driven.
  • the hydraulic drive system includes an operation valve 33, a boom hydraulic cylinder 14, an arm hydraulic cylinder 15, a bucket hydraulic cylinder 16, a right traveling hydraulic motor 34, a left traveling hydraulic motor 35, and the like. These hydraulic devices are driven as a hydraulic oil supply source to the hydraulic drive system.
  • the operation valve 33 is a flow direction control valve, moves a spool (not shown) according to the operation direction of the operation levers 32L and 32R, regulates the flow direction of hydraulic oil to each hydraulic actuator, and controls the operation levers 32L and 32L.
  • the 32R and hydraulic oil corresponding to the operation amount of a travel lever are supplied to the boom hydraulic cylinder 14, the arm hydraulic cylinder 15, the bucket hydraulic cylinder 16, the right travel hydraulic motor 34, the left travel hydraulic motor 35, or the like. It supplies to the hydraulic actuator.
  • the output of the engine 17 may be transmitted to the hydraulic pump 18 or the generator motor 19 via a PTO (Power Take Off) shaft.
  • the pump pressure of the hydraulic oil discharged from the hydraulic pump 18 is detected by the pressure sensor 61 and input to another controller C1.
  • the other controller C1 includes controllers such as a pump controller C11 and an engine controller C12 other than the hybrid controller C2.
  • the electric drive system includes a first inverter 21 connected to the generator motor 19 via a power cable, a second inverter 22 connected to the first inverter 21 via a wiring harness, a first inverter 21 and a second inverter.
  • a transformer 26 as a transformer provided via a wiring harness between the inverter 22, a capacitor 25 connected to the transformer 26 via a contactor 27 (electromagnetic contactor), and power to the second inverter 22 And a turning motor 23 connected through a cable.
  • the contactor 27 normally closes the electric circuit of the capacitor 25 and the transformer 26 and is in an energized state.
  • the hybrid controller C2 determines that it is necessary to open the electric circuit due to leakage detection or the like. When the determination is made, the hybrid controller C2 provides an instruction signal for switching the contactor 27 from the energizable state to the disconnected state. Output. Then, the contactor 27 receiving the instruction signal from the hybrid controller C2 opens the electric circuit.
  • the turning motor 23 is mechanically coupled to the swing machinery 24 as described above. At least one of the power generated by the generator motor 19 and the power stored in the capacitor 25 serves as a power source for the swing motor 23, and the upper swing body 5 is swung via the swing machinery 24. That is, the turning motor 23 turns and accelerates the upper turning body 5 by performing a power running operation with electric power supplied from at least one of the generator motor 19 and the capacitor 25.
  • the revolving motor 23 performs a regenerative operation when the upper revolving structure 5 decelerates and decelerates, and supplies (charges) electric power (regenerative energy) generated by the regenerative operation to the capacitor 25 or the engine 17 via the generator motor 19. Return axis output to.
  • the turning motor 23 is provided with a rotation sensor 55 that detects the rotation speed of the turning motor 23 (the turning motor rotation speed).
  • the rotation sensor 55 can measure the rotation speed of the turning motor 23 during a power running operation (turning acceleration) or a regenerative operation (turning deceleration).
  • a signal indicating the rotation speed measured by the rotation sensor 55 is input to the hybrid controller C2.
  • a resolver can be used as the rotation sensor 55.
  • the generator motor 19 supplies (charges) the generated power to the capacitor 25 and supplies power to the turning motor 23 according to the situation.
  • an SR (switched reluctance) motor is used as the generator motor 19.
  • the SR motor is effective in terms of cost because it does not use a magnet containing an expensive rare metal.
  • the generator motor 19 has a rotor shaft mechanically coupled to the drive shaft 20 of the engine 17.
  • the generator motor 19 generates electric power by rotating the rotor shaft of the generator motor 19 by driving the engine 17.
  • a rotation sensor 54 is attached to the rotor shaft of the generator motor 19.
  • the rotation sensor 54 measures the rotation speed (generator motor rotation speed) of the generator motor 19, and a signal indicating the generator motor rotation speed measured by the rotation sensor 54 is input to the hybrid controller C2.
  • a resolver can be used as the rotation sensor 54.
  • the transformer 26 is provided between the generator motor 19 and the turning motor 23 and the capacitor 25.
  • the transformer 26 arbitrarily boosts the voltage of electric power (charge stored in the capacitor 25) supplied to the generator motor 19 or the swing motor 23 via the first inverter 21 and the second inverter 22. The boosting will be described later.
  • the boosted voltage is applied to the turning motor 23 when the turning motor 23 performs a power running operation (turning acceleration), and is applied to the generator motor 19 when assisting the output of the engine 17.
  • the transformer 26 also has a role of dropping (decreasing) the voltage to 1 ⁇ 2 when charging the capacitor 25 with the electric power generated by the generator motor 19 or the swing motor 23.
  • a transformer temperature sensor 50 that detects the temperature of the transformer 26 is attached to the transformer 26.
  • a signal indicating the transformer temperature measured by the transformer temperature sensor 50 is input to the hybrid controller C2. Further, in the wiring harness between the transformer 26 and the first inverter 21 and the second inverter 22, the magnitude of the voltage boosted by the transformer 26 or the magnitude of the voltage of the electric power generated by the regeneration of the swing motor 23. A voltage detection sensor 53 for measuring the above is attached. A signal indicating the voltage measured by the voltage detection sensor 53 is input to the hybrid controller C2.
  • the transformer 26 has a function of boosting or stepping down the input DC power and outputting it as DC power. If it has such a function, the kind of the transformer 26 will not be specifically limited. In the present embodiment, for example, a transformer called a transformer-coupled transformer in which a transformer and two inverters are combined is used for the transformer 26. In addition, the transformer 26 may use a DC-DC converter. Next, a transformer coupled transformer will be briefly described.
  • FIG. 3 is a diagram showing a transformer-coupled transformer as a transformer.
  • the first inverter 21 and the second inverter 22 are connected via a positive line 60 and a negative line 61.
  • the transformer 26 is connected between the positive electrode line 60 and the negative electrode line 61.
  • the transformer 26 has an AC (Alternating Current) link between a low voltage side inverter 62 as a primary side inverter as two inverters and a high voltage side inverter 63 as a secondary side inverter by a transformer 64.
  • the transformer 26 is a transformer coupling type transformer.
  • the winding ratio between the low voltage side coil 65 and the high voltage side coil 66 of the transformer 64 is set to 1: 1.
  • the low-voltage side inverter 62 and the high-voltage side inverter 63 are electrically connected in series so that the positive electrode of the low-voltage side inverter 62 and the negative electrode of the high-voltage side inverter 63 have a positive polarity. That is, the transformer 26 is connected in parallel so as to have the same polarity as the first inverter 21.
  • the low voltage side inverter 62 is connected in parallel to four IGBTs (Isolated Gate Bipolar Transistors) 71, 72, 73, 74 bridged to the low voltage side coil 65 of the transformer 64, and IGBTs 71, 72, 73, 74, respectively. And diodes 75, 76, 77, and 78 connected in opposite directions.
  • the bridge connection here refers to a configuration in which one end of the low voltage side coil 65 is connected to the emitter of the IGBT 71 and the collector of the IGBT 72 and the other end is connected to the emitter of the IGBT 73 and the collector of the IGBT 74.
  • the IGBTs 71, 72, 73 and 74 are turned on when a switching signal is applied to their gates, and current flows from the collector to the emitter.
  • the positive terminal 25 a of the capacitor 25 is electrically connected to the collector of the IGBT 71 through the positive line 91.
  • the emitter of the IGBT 71 is electrically connected to the collector of the IGBT 72.
  • the emitter of the IGBT 72 is electrically connected to the negative terminal 25 b of the capacitor 25 through the negative line 92.
  • the negative electrode line 92 is connected to the negative electrode line 61.
  • the positive terminal 25 a of the capacitor 25 is electrically connected to the collector of the IGBT 73 through the positive line 91.
  • the emitter of the IGBT 73 is electrically connected to the collector of the IGBT 74.
  • the emitter of the IGBT 74 is electrically connected to the capacitor 25 negative terminal 25 b through the negative line 92.
  • the emitter of the IGBT 71 (the anode of the diode 75) and the collector of the IGBT 72 (the cathode of the diode 76) are connected to one terminal of the low voltage side coil 65 of the transformer 64, and the emitter of the IGBT 73 (the anode of the diode 77) and the IGBT 74.
  • the collector (the cathode of the diode 78) is connected to the other terminal of the low voltage side coil 65 of the transformer 64.
  • the high-voltage side inverter 63 is connected in parallel to the four IGBTs 81, 82, 83, and 84 that are bridge-connected to the high-voltage side coil 66 of the transformer 64, and the IGBTs 81, 82, 83, and 84 are connected in reverse polarity. Diodes 85, 86, 87 and 88.
  • the bridge connection here refers to a configuration in which one end of the high voltage side coil 66 is connected to the emitter of the IGBT 81 and the collector of the IGBT 82 and the other end is connected to the emitter of the IGBT 83 and the collector of the IGBT 84.
  • the IGBTs 81, 82, 83, and 84 are turned on when a switching signal is applied to their gates, and current flows from the collector to the emitter.
  • the collectors of the IGBTs 81 and 83 are electrically connected to the positive electrode line 60 of the first inverter 21 via the positive electrode line 93.
  • the emitter of the IGBT 81 is electrically connected to the collector of the IGBT 82.
  • the emitter of the IGBT 83 is electrically connected to the collector of the IGBT 84.
  • the emitters of the IGBTs 82 and 84 are electrically connected to the positive line 91, that is, the collectors of the IGBTs 71 and 73 of the low voltage side inverter 62.
  • the emitter of IGBT 81 (the anode of diode 85) and the collector of IGBT 82 (the cathode of diode 86) are electrically connected to one terminal of high voltage side coil 66 of transformer 64, and the emitter of IGBT 83 (the collector of diode 87). ) And the collector of the IGBT 84 (the cathode of the diode 88) are electrically connected to the other terminal of the high voltage side coil 66 of the transformer 64.
  • a capacitor 67 is electrically connected between the positive electrode line 93 to which the collectors of the IGBTs 81 and 83 are connected and the positive electrode line 91 to which the emitters of the IGBTs 82 and 84 are connected.
  • the capacitor 67 is for absorbing ripple current.
  • the ripple current absorbing capacitor 67 may be connected to the collector side of the IGBT 71 and the emitter side of the IGBT 72.
  • the transformer 64 has a leakage inductance of a constant value L.
  • the leakage inductance can be obtained by adjusting the gap between the low voltage side coil 65 and the high voltage side coil 66 of the transformer 64.
  • the L / 2 leakage inductance is divided on the low voltage side coil 65 side and the L / 2 leakage inductance is divided on the high voltage side coil 66 side.
  • the transformer temperature sensor 50 described above includes the low voltage side coil 65 and the high voltage side coil 66 included in the transformer 64, the IGBTs 71, 72, 73, 74 of the low voltage side inverter 62, and the IGBTs 81, 82, 83, 84 of the high voltage side inverter 63, respectively. Is attached.
  • the transformer 26 is input from the capacitor 25 to the low voltage side coil 65 with electric power as an input side.
  • a state in which the output from the low voltage side coil 65 and the output from the high voltage side 66 are polarized is defined as the output side after boosting.
  • the output from the output side after boosting is supplied to the first inverter 21 and the second inverter 22 side. As a result, boosting is performed between input and output.
  • the number of turns of the low-voltage side coil which is the number of turns of the coil on the input side
  • the number of turns of the coil on the output side are the number of turns obtained by adding the number of turns of the low-voltage side coil and the number of turns of the high-voltage side coil.
  • the generator motor 19 and the turning motor 23 are current-controlled by the first inverter 21 and the second inverter 22, respectively, under the control of the hybrid controller C2.
  • an ammeter 52 is provided in the second inverter 22.
  • the current value flowing through the second inverter 22 may be calculated based on the rotational speed of the swing motor 23 and the command torque value and the estimated conversion efficiency of the inverter without using an ammeter.
  • a signal indicating the current detected by the ammeter 52 is input to the hybrid controller C2.
  • the amount of electric power (charge amount or electric capacity) stored in the capacitor 25 can be managed using the magnitude of the voltage as an index.
  • a voltage sensor 28 is provided at a predetermined output terminal of the capacitor 25.
  • a signal indicating the capacitor voltage detected by the voltage sensor 28 is input to the hybrid controller C2.
  • the hybrid controller C2 monitors the charge amount of the capacitor 25 (the amount of electric power (charge amount or electric capacity)) and supplies (charges) the electric power generated by the generator motor 19 to the capacitor 25, or to the turning motor 23. Execute energy management, such as whether to supply (power supply for power running).
  • the capacitor 25 is, for example, an electric double layer capacitor.
  • a capacitor that functions as another secondary battery such as a lithium ion battery or a nickel metal hydride battery may be used.
  • the turning motor 23 for example, a permanent magnet type synchronous motor is used, but is not limited thereto.
  • a capacitor temperature sensor 51 that detects the temperature of the capacitor 25 as a capacitor is attached to the capacitor 25.
  • a signal indicating the capacitor temperature measured by the capacitor temperature sensor 51 is input to the hybrid controller C2.
  • the hydraulic drive system and the electric drive system are driven according to the operation of operation levers 32L and 32R such as a work machine lever and a turning lever provided in the cab 6 provided in the vehicle main body 2.
  • operation levers 32L and 32R such as a work machine lever and a turning lever provided in the cab 6 provided in the vehicle main body 2.
  • the raising / lowering operation of the boom and the excavation / dumping operation of the bucket are performed according to the operation of the operation lever 32R in the front / rear / left / right direction.
  • the left / right turning operation and the arm excavation / dumping operation are performed according to the operation of the operation lever 32L In addition to this, it has left and right traveling levers (not shown).
  • the operation lever 32L swing lever
  • the operation direction and operation amount of the swing lever are a potentiometer, a pilot pressure sensor, or the like.
  • the detected operation amount is transmitted as an electric signal to the other controller C1 and further to the hybrid controller C2.
  • control of power transfer such as electrical energy management (control for charging or discharging), electrical energy management of generator motor 19 (power generation or engine output assist, power running action on turning motor 23) (energy management) In order to do so, control of the second inverter 22, the transformer 26 and the first inverter 21 is executed.
  • the monitor device 30 includes a liquid crystal panel, operation buttons, and the like.
  • the monitor device 30 may be a touch panel in which a display function of the liquid crystal panel and various information input functions of operation buttons are integrated.
  • the monitor device 30 has a function of notifying an operator or a service person of information indicating the operation state of the hybrid excavator 1 (the state of the engine water temperature, the presence / absence of a failure of the hydraulic device, the state of the remaining amount of fuel, etc.).
  • Is an information input / output device having a function of performing desired setting or instruction (engine output level setting, traveling speed speed level setting, etc. or capacitor charge removal instruction described later) to the hybrid excavator 1.
  • the throttle dial 56 is a switch for setting the amount of fuel supplied to the engine 17, and the set value of the throttle dial 56 is converted into an electrical signal and output to another controller C1.
  • the key switch 31 has a key cylinder as a main component.
  • the key switch 31 inserts the key into the key cylinder and rotates the key to start a starter (engine starting motor) attached to the engine 17 to drive the engine (engine start). Further, the key switch 31 issues a command to stop the engine (engine stop) by rotating the key in the direction opposite to the engine start while the engine is being driven.
  • the so-called key switch 31 is command output means for outputting commands to various electric devices of the engine 17 and the hybrid excavator 1.
  • the key When the key is rotated in order to stop the engine 17 (specifically, it is operated to an OFF position described later), fuel is supplied to the engine 17 and electricity is supplied (energized) from a battery (not shown) to various electric devices. It is shut off and the engine stops.
  • the key switch 31 is not shown when the position when the key is rotated is off (OFF), and the power supply from the battery (not shown) to various electric devices is cut off.
  • the key switch 31 is not shown.
  • the starter By energizing various electric devices from the battery, and further rotating the key from that position to start (ST) the key position, the starter (not shown) can be started to start the engine. After the engine 17 is started, the key rotation position is in the on (ON) position while the engine 17 is being driven.
  • a push button type key switch may be used instead of the key switch 31 having the key cylinder as a main component as described above. That is, when the engine 17 is stopped, pressing the button once turns it on (ON), and further pushing the button starts it (ST), and pressing the button while the engine 17 is running turns it off (OFF). ) May function.
  • the engine 17 can be started from the off (OFF) to the start (ST) on condition that the engine 17 is stopped and the button is continuously pressed for a predetermined time. There may be.
  • the other controller C1 includes an instruction signal output from the monitor device 30, an instruction signal output according to the key position of the key switch 31, and an instruction signal output according to the operation of the operation levers 32L and 32R (the above operation).
  • the engine 17 and the hydraulic pump 18 are controlled based on a signal indicating the amount and the operation direction.
  • the engine 17 is mainly controlled by an engine controller C12 in another controller C1.
  • the hydraulic pump 18 is controlled mainly by a pump controller C11 in another controller C1.
  • the engine 17 is an engine that can be electronically controlled by the common rail fuel injection device 40.
  • the engine 17 can obtain the target engine output by appropriately controlling the fuel injection amount by the other controller C1, and the engine speed and output can be made according to the load state of the hybrid excavator 1. Torque can be set and driven.
  • the hybrid controller C2 controls the first inverter 21, the second inverter 22, and the transformer 26 as described above under the cooperative control with the other controller C1, and the generator motor 19, the swing motor 23, and the capacitor 25 are controlled. Controls the transfer of power. Further, the hybrid controller C2 acquires detection values from various sensors such as the voltage sensor 28, the transformer temperature sensor 50, and the capacitor temperature sensor 51, and executes control of the work machine according to the present embodiment based on the detection values. .
  • the hybrid controller C2 includes a power generation control unit C21 and an assist control unit C22.
  • the power generation control unit C ⁇ b> 21 performs power generation control by the generator motor 19.
  • the assist controller C22 performs engine assist control by the generator motor 19.
  • the pump controller C11 in the other controller C1 has a low-speed matching control unit C13.
  • the first target engine speed calculation unit 101 is operated by the operation levers 32L and 32R, the operation turning lever value, the boom lever value, the arm lever value, the bucket lever value, the traveling right lever value, and the traveling left
  • the first target engine speed D1 is calculated based on the lever value signal D11 that is the sum of the lever values and the throttle value D12 by the throttle dial 56.
  • the first target engine speed D1 corresponds to the operator's intention.
  • the second target engine speed calculation unit 102 calculates the second target engine speed D2 based on the pump pressure D13, the engine load D14, the generator output D15, and the turning output D22.
  • the second target engine speed D2 is determined in accordance with the output of the engine 17, the generator motor 19, the load of the hydraulic pump 18, and the turning output.
  • the engine load D14 is calculated and output based on the engine torque predicted based on the fuel injection amount, the engine speed, the atmospheric temperature, and the like, and the engine speed.
  • the engine torque may be measured by a torque sensor.
  • the first target engine speed calculator 101 and the second target engine speed calculator 102 may be a single target engine speed calculator.
  • the load of the hydraulic pump 13 is estimated from the pump pressure, or the torque is obtained by multiplying the pump pressure and the swash plate angle of the variable displacement pump as necessary.
  • the target engine speed calculation unit 102 may calculate and output the second target engine speed D2 based only on the engine load D14 and the generator output D15 that are at least internal loads. In this case, it is preferable that the second target engine speed calculation unit 102 further calculates and outputs the second target engine speed D2 based on the pump pressure D13 and the turning output D22 that are external loads. Further, as shown in FIG. 4, a first target engine speed calculation unit 101 is provided, and the first target engine speed calculation unit 101 further outputs a lever value signal D11 and a throttle value D12 corresponding to the operator's intention. It is preferable to calculate and output the first target engine speed D1.
  • the first maximum value selection unit 103 is the maximum engine speed among the first target engine speed D1, the second target engine speed D2, and the generator required minimum engine speed D3 output from the power generation control unit C21. Is selected as the engine control target engine speed D4, and the engine control target engine speed D4 is output to the engine controller C12.
  • the engine controller C12 controls the fuel injection amount so that the engine control engine speed D4 is input.
  • the second maximum value selection unit 104 uses the maximum engine speed of the first target engine speed D1 and the second target engine speed D2 as the generator control target engine speed D5 to assist the hybrid controller C2. Output to part C22.
  • the assist control unit C22 performs engine assist when the deviation between the generator motor rotation speed D25 measured by the rotation sensor 54 and the generator control target engine rotation speed D5 input from the pump controller C11 is equal to or greater than a predetermined value ⁇ . Control to be performed.
  • the power generation control unit C21 detects the turning voltage D21 obtained from the capacitor voltage D21 detected by the voltage sensor 28, the current detected by the ammeter 52 and the voltage detected by the voltage detection sensor 53, and the transformer temperature sensor 50. Based on the transformer temperature D23, the capacitor temperature D24 detected by the capacitor temperature sensor 51, and the generator motor rotational speed D25, the generator required minimum engine speed which is the minimum engine rotational speed for securing the generated power of the capacitor 25.
  • the number D3 is obtained and output to the first maximum value selection unit 103.
  • the engine control target engine speed D4 output from the first maximum value selection unit 103 is output to the assist control unit C22 as the generator control target engine speed D4, so that the capacitor voltage of the capacitor 25 decreases.
  • the target engine speed for generator control was high.
  • the assist control unit C22 performs engine assist that causes the generator motor 19 to act as a motor because the deviation between the generator motor rotation speed D25 and the generator control target engine rotation speed is equal to or greater than a predetermined value ⁇ .
  • this engine assist further reduces the capacitor voltage.
  • This further decrease in the capacitor voltage increases the input / output current to / from the transformer 26 and also deviates from the optimum voltage conversion set value set in the transformer 26 in advance, resulting in an increase in conversion loss.
  • the heat balance of the transformer 26 was deteriorated.
  • the capacitor voltage since the capacitor voltage is low, the charging / discharging efficiency of the capacitor during charging / discharging also decreases, and the heat balance associated with charging loss has deteriorated.
  • the generator required minimum engine speed D3 is added to the engine control target engine speed D4, and the generator required minimum engine speed D5 is added to the generator control target engine speed D5.
  • Control is performed without taking D3 into consideration.
  • the generator control target engine speed D5 does not increase even if the generator required minimum engine speed D3 is output to ensure the necessary generated power.
  • the assist control unit C22 does not perform engine assist because the deviation between the generator motor rotational speed D25 and the generator control target engine rotational speed does not exceed the predetermined value ⁇ .
  • the engine assist control which suppressed the deterioration of the heat balance of the transformer 26 can be performed. In other words, useless engine assist control that deteriorates the heat balance of the transformer 26 is not performed.
  • FIG. 5 is a time chart showing specific assist control.
  • curves L1 to L5 indicate changes in the capacitor voltage D21, the generator required minimum engine speed D3, the generator control target engine speed D5, the actual engine speed, and the generator output D15, respectively.
  • a curved line L11 indicated by a broken line indicates a change in the capacitor voltage D21 in the present embodiment.
  • a curved line L41 indicated by a broken line indicates a change in the actual engine speed in the present embodiment.
  • a curve L51 shows a change in the generator output D15 in the present embodiment. When the generator output D15 is negative, the generator motor 19 is generating power, and when the generator output D15 is positive, the generator motor 19 is performing engine assist.
  • the generator required minimum engine speed D3 that is higher than the first target engine speed D1 and the second target engine speed D2 in the generator control target engine speed D5 in FIG. Is not included.
  • the generator required minimum engine speed L2 in FIG. 5 is not larger than the actual engine speed L4 (generator motor speed D25) by a predetermined value ⁇ or more, and even immediately after time t1, the engine assist is not performed. Not performed (see curve L51), the actual engine speed L4 does not increase abruptly (see curve L41), and the capacitor voltage L1 does not decrease (see curve L11).
  • the generator required minimum engine speed D3 is not always used when the generator control target engine speed D5 input to the assist control unit C22 is output.
  • the generator required minimum engine speed D3 is the first A generator control target engine that does not use the generator required minimum engine speed D3 when either of the prohibition conditions when the target engine speed D1 and the second target engine speed are greater than the maximum engine speed is satisfied.
  • the rotational speed D5 is output.
  • the generator required minimum engine speed D3 can be input to the second maximum value selecting unit 104 via the switch SW1, and the generator required minimum engine speed D3 is set via the switch SW1. 2
  • the second selection unit 104 displays the largest engine speed among the generator required minimum engine speed D3, the first target engine speed D1, and the second target engine speed D2. The number is output to the assist controller C22 as the target engine speed D5 for generator control.
  • the switch SW1 is off and the generator required minimum engine speed D3 is not input to the second maximum value selection unit 104
  • the second selection unit 104 selects the first target engine speed D1 and the second target engine speed D2. Is output to the assist controller C22 as the generator control target engine speed D5.
  • the output processing unit 106 includes a switch SW1, a prohibition condition determination processing unit 106, and a second maximum value selection unit 104.
  • the on / off state of the switch SW1 is controlled by the prohibition condition determination processing unit 105.
  • the prohibition condition determination processing procedure by the prohibition condition determination processing unit 105 will be described with reference to the flowchart shown in FIG. This process is performed every predetermined sampling time.
  • the prohibition condition determination processing unit 105 determines whether or not the capacitor voltage D21 exceeds a predetermined voltage D21th (step S101). When the capacitor voltage D21 exceeds the predetermined voltage D21th (step S101, Yes), the switch SW1 is turned off and the process is terminated (step S106).
  • step S101 If the capacitor voltage D21 does not exceed the predetermined voltage D21th (step S101, No), it is further determined whether or not the transformer temperature D23 exceeds the predetermined transformer temperature D23th (step S102). When the transformer temperature D23 exceeds the predetermined transformer temperature D23th (step S102, Yes), the switch SW1 is turned off and the process is terminated (step S106).
  • step S102 If the transformer temperature D23 does not exceed the predetermined transformer temperature D23th (step S102, No), it is further determined whether or not the capacitor temperature D24 exceeds the predetermined capacitor temperature D24th (step S103). When the capacitor temperature D24 exceeds the predetermined capacitor temperature D24th (step S103, Yes), the switch SW1 is turned off and the process is terminated (step S106).
  • the generator required minimum engine speed D3 is further set between the first target engine speed D1 and the second target engine speed. It is determined whether or not the larger engine speed has been exceeded (step S104).
  • the switch SW1 is turned off. This process is then terminated (step S106).
  • the switch SW1 is set. This is turned on and the present process is terminated (step S105).
  • the capacitor voltage D21 exceeds the predetermined voltage D21th
  • the transformer temperature D23 exceeds the predetermined transformer temperature D23th
  • the capacitor temperature D24 exceeds the predetermined capacitor temperature D24th
  • the low speed matching control unit C13 in the pump controller C11 defines a matching route ML that presets a target matching point that passes through a region with good fuel efficiency when the engine speed is increased as the engine output increases.
  • the matching route ML takes into account the load of the hydraulic pump 18, the load of auxiliary equipment, and the output of the generator motor 23.
  • PL1 and PL2 are set so that the pump absorption torque line when considering only the load of the hydraulic pump 13 is shifted to the high rotation side.
  • the low speed matching control unit C13 calculates the target engine speed np and the target engine output for engine control based on the lever operation amount, the engine load and the hydraulic pump load, and the generator motor output and the turning motor output. And the target matching point MP on the matching route ML.
  • the low speed matching control unit C13 may be provided in the hybrid controller C2.
  • the low speed matching control unit C13 shifts the pump absorption torque line PL1 to the pump absorption torque line PL2, and sets the engine speed.
  • the engine speed is increased along an equal horsepower line EL that keeps the engine output constant with respect to the increase.
  • matching is made at the intersection MP2 between the pump absorption torque line PL2 and the equal horsepower curve EL, and the engine speed np2 lower than the engine speed np1 can be obtained. That is, the target engine speed np at the target matching point MP, which is the intersection with the equal horsepower curve EL, is shifted to the low engine speed side.
  • the target engine output may be obtained from the intersection of the droop curve DL1 and the pump absorption torque line PL1 in addition to the equal horsepower curve (target engine output setting line) EL.
  • the broken line shown in FIG. 8 shows an equal fuel consumption curve.
  • the fuel consumption improves as the torque increases, and the fuel consumption deteriorates as the torque decreases.
  • the equi-horsepower curve (target engine output setting line) EL becomes more fuel efficient across the iso-fuel consumption curve as the engine speed decreases. That is, with equal horsepower, the lower the engine speed, the better the fuel economy. That is, in the low-speed matching control described above, the target engine speed np is set low with equal horsepower. Therefore, if the matching route ML is set to the low engine speed side, the fuel efficiency is improved.
  • the target engine speed becomes lower than the engine speed control using the droop curve, and accordingly, the power generation amount of the generator motor 19 decreases and the capacitor voltage D21.
  • the voltage drop is likely to occur.
  • useless engine assist accompanying the decrease in the capacitor voltage D21 is performed, and the heat balance is deteriorated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Operation Control Of Excavators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 変圧器及びキャパシタのヒートバランスの悪化を抑えるため、レバー操作量、負荷、及び出力の状態をもとに目標エンジン回転数D1,D2を演算する第1及び第2目標エンジン回転数演算部101,102と、キャパシタの畜電状態及び発電機モータ回転数D25に応じて該キャパシタの発電電力を確保するための最低エンジン回転数である発電機要求最低エンジン回転数D3を出力する発電制御部C21と、目標エンジン回転数D1,D2及び発電機要求最低エンジン回転数D3をもとにエンジン制御用目標エンジン回転数D4を算出する第1最大値選択部103と、目標エンジン回転数D1,D2をもとに発電機制御用目標エンジン回転数D5を算出する第2最大値選択部104と、第2最大値選択部104が出力する発電機制御用目標エンジン回転数D5及び発電機モータ回転数D25をもとにエンジンアシストを制御するアシスト制御部C22と、を備える。

Description

ハイブリッド作業機械
 この発明は、変圧器及びキャパシタのヒートバランスの悪化を抑えたエンジンアシスト制御を行うことができるハイブリッド作業機械に関する。
 エンジンによって発電機モータを駆動し、その発電機モータが発電した電力でモータを駆動して作業機等を動作させるハイブリッド作業機械がある。例えば、特許文献1には、油圧ポンプと発電機モータとをエンジンによって駆動し、発電機モータの発電作用によってバッテリの充電を行うとともに、バッテリ電力により発電機モータを駆動してエンジンをアシストするものが記載されている。そして、この特許文献1には、エンジンの加速時に、エンジン回転速度が設定速度に達するまでの間、発電機出力を制限し、エンジン負荷を軽減して加速を助けるようにするものが記載されている。
 また、特許文献2には、発電機モータをエンジントルクアシスト作用させるか、あるいはエンジントルクアシスト作用させないかを判定し、発電機モータをエンジントルクアシスト作用させると判定した場合には、発電機モータをエンジントルクアシスト作用させ、発電機モータをエンジントルクアシスト作用させないと判定した場合には、発電機モータを要求発電量に応じて発電作用させるものが記載されている。
特開2008-121659号公報 特開2007-218111号公報
 ところで、ハイブリッド作業機械では、エンジンアシスト制御と発電制御とを行うハイブリッドコントローラと、油圧ポンプの流量制御を行うポンプコントローラと、エンジンのエンジン回転数を制御するエンジンコントローラとを有する。ハイブリッドコントローラは、発電出力を確保するための最低エンジン回転数である発電機要求最低エンジン回転数を算出する。ポンプコントローラは、操作レバーの操作量や負荷出力などから要求される目標エンジン回転数と、ハイブリッドコントローラから出力される発電機要求最低エンジン回転数との大きい回転数を選択し最終目標エンジン回転数としてエンジンコントローラおよびハイブリッドコントローラに出力する。そして、エンジンコントローラは、この最終目標エンジン回転数を制御する。この時、ハイブリッドコントローラは、この最終目標エンジン回転数が実エンジン回転数より一定の回転数以上に大きくなる偏差が発生した場合に、発電機モータによるエンジン回転数の増速を行うエンジンアシスト制御を行う。
 ここで、ハイブリッドコントローラは、例えばキャパシタのキャパシタ電圧が低下した場合、必要な発電電力を確保するために発電機制御用目標エンジン回転数を高く算出し、この結果、エンジンアシストを行うが、このエンジンアシストによってさらにキャパシタ電圧が低下してしまう。
 このキャパシタ電圧のさらなる低下状態は、キャパシタやキャパシタに対する電圧変換器である変圧器への入出力電流を増大させるとともに、予め変圧器に設定された低損失となる最適な電圧値から外れた時、電圧値の差が大きくなる程、変換ロスが増大することになり、変圧器及びキャパシタのヒートバランスが悪化してしまうという問題があった。
 この発明は、上記に鑑みてなされたものであって、変圧器及びキャパシタのヒートバランスの悪化を抑えたエンジンアシスト制御を行うことができるハイブリッド作業機械を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、この発明にかかるハイブリッド作業機械は、エンジンと、前記エンジンの駆動軸に接続された発電機モータと、前記発電機モータが発電した電力を蓄電し、あるいは前記発電機モータに電力を供給する蓄電器と、前記発電機モータが発電した電力と前記蓄電器が蓄えている電力とのすくなくとも一方で駆動されるモータと、前記発電機モータ及び前記モータと前記蓄電器との間に設けられた変圧器と、少なくともエンジン負荷及び発電機モータ出力の状態をもとに目標エンジン回転数を演算する目標エンジン回転数演算部と、前記蓄電器の畜電状態及び発電機モータ回転数に応じて該蓄電器の発電電力を確保するための最低エンジン回転数である発電機要求最低エンジン回転数を出力する発電制御部と、前記目標エンジン回転数及び前記発電機要求最低エンジン回転数をもとにエンジン制御用目標エンジン回転数を算出して出力するエンジン制御用目標エンジン回転数演算部と、前記エンジン制御用目標エンジン回転数をもとにエンジン回転数を制御するエンジン制御部と、前記目標エンジン回転数を発電機制御用目標エンジン回転数とし、該発電機制御用目標エンジン回転数及び発電機モータ回転数をもとにエンジンアシストを制御するアシスト制御部と、を備えたことを特徴とする。
 また、この発明にかかるハイブリッド作業機械は、エンジンと、前記エンジンの駆動軸に接続された発電機モータと、前記発電機モータが発電した電力を蓄電し、あるいは前記発電機モータに電力を供給する蓄電器と、前記発電機モータが発電した電力と前記蓄電器が蓄えている電力とのすくなくとも一方で駆動されるモータと、前記発電機モータ及び前記モータと前記蓄電器との間に設けられた変圧器と、少なくともエンジン負荷及び発電機モータ出力の状態をもとに目標エンジン回転数を演算する目標エンジン回転数演算部と、前記蓄電器の畜電状態及び発電機モータ回転数に応じて該蓄電器の発電電力を確保するための最低エンジン回転数である発電機要求最低エンジン回転数を出力する発電制御部と、前記目標エンジン回転数及び前記発電機要求最低エンジン回転数をもとにエンジン制御用目標エンジン回転数を算出して出力するエンジン制御用目標エンジン回転数演算部と、前記エンジン制御用目標エンジン回転数をもとにエンジン回転数を制御するエンジン制御部と、前記発電機要求最低エンジン回転数が前記目標エンジン回転数を超えた場合、前記目標エンジン回転数を発電機制御用目標エンジン回転数として出力する出力処理部と、前記出力処理部が出力した発電機制御用目標エンジン回転数及び発電機モータ回転数をもとにエンジンアシストを制御するアシスト制御部と、を備えたことを特徴とする。
 また、この発明にかかるハイブリッド作業機械は、上記の発明において、前記出力処理部は、前記発電機要求最低エンジン回転数が前記目標エンジン回転数を超えた場合、蓄電器電圧が所定電圧を超えた場合、変圧器温度が所定変圧器温度を超えた場合、蓄電器温度が所定蓄電器温度を超えた場合のいずれかである場合に、前記目標エンジン回転数を発電機制御用目標エンジン回転数として出力することを特徴とする。
 また、この発明にかかるハイブリッド作業機械は、上記の発明において、前記目標エンジン回転数制御部は、エンジン回転数に対するトルク線図上において、目標エンジン出力を規定する目標エンジン出力設定線とマッチングルートとの交点におけるエンジン回転数を目標エンジン回転数として演算することを特徴とする。
 また、この発明にかかるハイブリッド作業機械は、上記の発明において、前記変圧器の電圧変換比は、入力側となるコイルの巻き数と出力側となるコイルの巻き数との巻き数比に一致することを特徴とする。
 この発明によれば、目標エンジン回転数演算部が、少なくともエンジン負荷及び発電機モータ出力の状態をもとに目標エンジン回転数を演算し、アシスト制御部が、前記目標エンジン回転数を発電機制御用目標エンジン回転数とし、該発電機制御用目標エンジン回転数及び発電機モータ回転数をもとにエンジンアシストを制御するようにしているので、発電機要求最低エンジン回転数の増大に伴う無駄なエンジンアシストをなくし、変圧器及びキャパシタのヒートバランスの悪化を抑えることができる。
図1は、ハイブリッド作業機械としての一例であるハイブリッド油圧ショベルを示す斜視図である。 図2は、図1に示したハイブリッド油圧ショベルの装置構成を示すブロック図である。 図3は、変圧器の詳細構成を示す回路図である。 図4は、エンジンアシスト制御に関するハイブリッドコントローラ、ポンプコントローラ、及びエンジンコントローラの構成を示すブロック図である。 図5は、エンジンアシスト制御の一例を示すタイムチャートである。 図6は、エンジンアシスト制御の変形例に関するハイブリッドコントローラ、ポンプコントローラ、及びエンジンコントローラの構成を示すブロック図である。 図7は、禁止条件判定処理部による禁止条件判定処理手順を示すフローチャートである。 図8は、低速マッチング制御の概要を示すエンジン回転数に対するトルク線図である。
 以下、添付図面を参照してこの発明を実施するための形態について説明する。
 図1は、ハイブリッド作業機械としての一例であるハイブリッド油圧ショベル1を示す斜視図である。図2は、図1に示すハイブリッド油圧ショベル1の装置構成を示すブロック図である。なお、ハイブリッドではない、単なる作業機械の概念には、油圧ショベル、ブルドーザ、ダンプトラック、ホイールローダ等の建設機械を含み、これら建設機械にエンジンからの駆動力と、それ以外の電力供給要素との間で電力のやり取りを行って駆動する電動モータを有するハイブリッド特有の構成を備えたものをハイブリッド作業機械とする。
(ハイブリッド油圧ショベル)
 ハイブリッド油圧ショベル1は、車両本体2と作業機3とを備えている。車両本体2は、下部走行体4と上部旋回体5とを有する。下部走行体4は、一対の走行装置4aを有する。各走行装置4aは、履帯4bを有する。各走行装置4aは、図2に示す右走行用油圧モータ34と左走行用油圧モータ35の回転駆動によって履帯4bを駆動させハイブリッド油圧ショベル1を走行させるものである。
 上部旋回体5は、下部走行体4の上部に旋回可能に設けられる。上部旋回体5は、自身を旋回させるため、旋回モータ23を備えている。旋回モータ23は、スイングマシナリ24(減速機)の駆動軸に連結されている。旋回モータ23の回転力は、スイングマシナリ24を介して伝達され、伝達された回転力が、図示しない旋回ピニオン及びスイングサークル等を介して上部旋回体5に伝わり上部旋回体5を旋回させる。旋回モータ23は発電機モータ19もしくはキャパシタ25から供給される電気で駆動する電動モータであるが油圧で駆動する油圧モータとしてもよい。また、本実施形態では、モータの一例として旋回モータ23を駆動して上部旋回体5を旋回させるようにしているが、モータは、作業機3を駆動するための油圧ポンプもしくは下部走行体4を駆動するものであってもよい。
 上部旋回体5には、運転室6が設けられる。また、上部旋回体5は、燃料タンク7と作動油タンク8とエンジン室9とカウンタウェイト10とを有する。燃料タンク7は、内燃機関としてのエンジン17を駆動するための燃料を蓄えている。作動油タンク8は、ブーム用油圧シリンダ14、アーム用油圧シリンダ15及びバケット用油圧シリンダ16等の油圧シリンダ並びに右走行用油圧モータ34及び左走行用油圧モータ35等の油圧モータ(油圧アクチュエータ)といった油圧機器に対して、油圧ポンプ18から吐出される作動油を蓄えている。エンジン室9には、エンジン17、油圧ポンプ18、発電機モータ19及び蓄電器としてのキャパシタ25等の各種機器が収納されている。カウンタウェイト10は、エンジン室9の後方に配置される。
 作業機3は、上部旋回体5の前部中央位置に取り付けられ、ブーム11、アーム12、バケット13、ブーム用油圧シリンダ14、アーム用油圧シリンダ15及びバケット用油圧シリンダ16を有する。ブーム11の基端部は、上部旋回体5に揺動可能に連結される。また、ブーム11の基端部の反対側となる先端部は、アーム12の基端部に回転可能に連結される。アーム12の基端部の反対側となる先端部には、バケット13が回転可能に連結される。また、バケット13は、バケット用油圧シリンダ16とリンクを介して連結している。ブーム用油圧シリンダ14、アーム用油圧シリンダ15及びバケット用油圧シリンダ16は、油圧ポンプ18から吐出された作動油によって伸縮動作する油圧シリンダ(油圧アクチュエータ)である。ブーム用油圧シリンダ14は、ブーム11を揺動させる。アーム用油圧シリンダ15は、アーム12を揺動動作させる。バケット用油圧シリンダ16は、バケット13を揺動させる。
 図2において、ハイブリッド油圧ショベル1は、駆動源としてのエンジン17、油圧ポンプ18及び発電機モータ19を有する。エンジン17としてディーゼルエンジンが用いられ、油圧ポンプ18として可変容量型油圧ポンプが用いられる。油圧ポンプ18は、例えば、斜板18aの傾転角を変化させることによってポンプ容量を変化させる斜板式油圧ポンプであるが、これに限定されるものではない。エンジン17には、エンジン17の回転速度(単位時間あたりの回転数)を検出するための回転センサ41が備えてある。回転センサ41が検出したエンジン17の回転速度(エンジン回転数)を示す信号は、エンジンコントローラC12が取得し、エンジンコントローラC12より車内ネットワークでハイブリッドコントローラC2に入力される。回転センサ41は、エンジン17のエンジン回転数を検出する。
 エンジン17の駆動軸20には、油圧ポンプ18及び発電機モータ19が直接的もしくは間接的に接続されており、エンジン17が駆動することで、油圧ポンプ18及び発電機モータ19が駆動する。油圧駆動系としては、操作弁33、ブーム用油圧シリンダ14、アーム用油圧シリンダ15、バケット用油圧シリンダ16、右走行用油圧モータ34及び左走行用油圧モータ35等を有し、油圧ポンプ18が油圧駆動系への作動油供給源となってこれらの油圧機器を駆動する。なお、操作弁33は、流量方向制御弁であり、操作レバー32L,32Rの操作方向に応じて図示しないスプールを移動させ、各油圧アクチュエータへの作動油の流れ方向を規制し、操作レバー32L,32Rおよび図示しない走行用レバーの操作量に応じた作動油を、ブーム用油圧シリンダ14、アーム用油圧シリンダ15、バケット用油圧シリンダ16、右走行用油圧モータ34又は左走行用油圧モータ35等の油圧アクチュエータに供給するものである。また、エンジン17の出力は、PTO(Power Take Off:パワーテイクオフ)軸を介して油圧ポンプ18若しくは発電機モータ19へ伝達されるものであってもよい。なお、油圧ポンプ18から吐出される作動油のポンプ圧は、圧力センサ61によって検出され、他のコントローラC1に入力される。なお、他のコントローラC1は、ハイブリッドコントローラC2以外のポンプコントローラC11,エンジンコントローラC12などのコントローラを含む。
 電気駆動系は、発電機モータ19にパワーケーブルを介して接続される第1インバータ21と、第1インバータ21にワイヤリングハーネスを介して接続される第2インバータ22と、第1インバータ21と第2インバータ22との間に、ワイヤリングハーネスを介して設けられる変圧器としての変圧器26と、変圧器26にコンタクタ27(電磁接触器)を介して接続されるキャパシタ25と、第2インバータ22にパワーケーブルを介して接続される旋回モータ23等とを含む。なお、コンタクタ27は、通常はキャパシタ25と変圧器26との電気回路を閉じて通電可能状態としている。一方、ハイブリッドコントローラC2は、漏電検出等により電気回路を開く必要があると判断するようになっており、その判断がされた際、コンタクタ27に通電可能状態を遮断状態へ切り替えるための指示信号を出力する。そして、ハイブリッドコントローラC2から指示信号を受けたコンタクタ27は電気回路を開く。
 旋回モータ23は、上述のように機械的にスイングマシナリ24に連結している。発電機モータ19が発電する電力及びキャパシタ25に蓄えられた電力の少なくとも一方が旋回モータ23の電力源となり、スイングマシナリ24を介して上部旋回体5を旋回させる。すなわち、旋回モータ23は、発電機モータ19及びキャパシタ25の少なくとも一方から供給される電力で力行動作することで上部旋回体5を旋回加速する。また、旋回モータ23は、上部旋回体5が旋回減速する際に回生動作し、その回生動作により発電された電力(回生エネルギー)をキャパシタ25に供給(充電)または発電機モータ19を介しエンジン17へ軸出力を戻す。なお、旋回モータ23には、旋回モータ23の回転速度(旋回モータ回転速度)を検出する回転センサ55が備えてある。回転センサ55は、力行動作(旋回加速)又は回生動作(旋回減速)の際における旋回モータ23の回転速度を計測することができる。回転センサ55により計測された回転速度を示す信号は、ハイブリッドコントローラC2に入力される。回転センサ55は、例えば、レゾルバを用いることができる。
 発電機モータ19は、発電した電力をキャパシタ25に供給(充電)するとともに、状況に応じて旋回モータ23に電力を供給する。発電機モータ19としては、例えば、SR(スイッチドリラクタンス)モータが用いられる。なお、SRモータではなく、永久磁石を用いた同期モータを用いてもキャパシタ25又は旋回モータ23へ電気エネルギーを供給する役割を果たすことができる。発電機モータ19にSRモータを用いた場合、SRモータは高価な希少金属を含む磁石を用いないため、コストの面で有効である。発電機モータ19は、ロータ軸がエンジン17の駆動軸20に機械的に結合されている。このような構造により、発電機モータ19は、エンジン17の駆動によって発電機モータ19のロータ軸が回転し、発電することになる。また、発電機モータ19のロータ軸には回転センサ54が取り付けられている。回転センサ54は、発電機モータ19の回転速度(発電機モータ回転数)を計測し、回転センサ54により計測された発電機モータ回転数を示す信号は、ハイブリッドコントローラC2に入力される。回転センサ54は、例えば、レゾルバを用いることができる。
 変圧器26は、発電機モータ19及び旋回モータ23とキャパシタ25との間に設けられる。変圧器26は、第1インバータ21と第2インバータ22とを介して発電機モータ19又は旋回モータ23に供給される電力(キャパシタ25に蓄えられた電荷)の電圧を任意に昇圧する。昇圧については後述する。昇圧された電圧は、旋回モータ23を力行動作(旋回加速)させる際には旋回モータ23に印加され、エンジン17の出力をアシストする際には発電機モータ19へ印加される。なお、変圧器26は、発電機モータ19又は旋回モータ23で発電された電力をキャパシタ25に充電する際には、電圧を1/2に降下(降圧)させる役割も有する。変圧器26には、変圧器26の温度を検出する変圧器温度センサ50が取り付けられている。変圧器温度センサ50により計測された変圧器温度を示す信号は、ハイブリッドコントローラC2に入力される。さらに、変圧器26と第1インバータ21及び第2インバータ22との間のワイヤリングハーネスに、変圧器26により昇圧された電圧の大きさあるいは旋回モータ23の回生により生成された電力の電圧の大きさを計測するための電圧検出センサ53が取り付けられている。電圧検出センサ53により計測された電圧を示す信号は、ハイブリッドコントローラC2に入力される。
 本実施形態において、変圧器26は、入力された直流電力を昇圧又は降圧させ、直流電力として出力する機能を有している。このような機能を有していれば、変圧器26の種類は特に限定されるものではない。本実施形態においては、例えば、変圧器26に、トランスと2個のインバータとを組み合わせたトランス結合型変圧器と呼ばれる変圧器を用いている。この他、変圧器26は、DC-DCコンバータを用いてもよい。次に、トランス結合型変圧器について簡単に説明する。
 図3は、変圧器としてのトランス結合型変圧器を示す図である。図3に示すように、第1インバータ21と第2インバータ22とが正極ライン60と負極ライン61とを介して接続される。変圧器26は、正極ライン60と負極ライン61との間に接続されている。変圧器26は、2個のインバータとしての1次側インバータである低圧側インバータ62と2次側インバータである高圧側インバータ63とを、トランス64でAC(Alternating Current)リンクさせている。このように、変圧器26は、トランス結合型変圧器である。次の説明では、トランス64の低圧側コイル65と高圧側コイル66との巻線比は1対1としておく。
 低圧側インバータ62と高圧側インバータ63とは、低圧側インバータ62の正極と高圧側インバータ63の負極とが加極性となるように電気的に直列接続されている。すなわち、変圧器26は、第1インバータ21と同極性になるように並列に接続されている。
 低圧側インバータ62は、トランス64の低圧側コイル65にブリッジ接続された4個のIGBT(Isolated Gate Bipolar Transistor)71,72,73,74と、IGBT71,72,73,74それぞれに並列に、かつ極性が逆向きに接続されたダイオード75,76,77,78とを含んでいる。ここでいうブリッジ接続とは、低圧側コイル65の一端がIGBT71のエミッタとIGBT72のコレクタと接続され、他端がIGBT73のエミッタとIGBT74のコレクタとに接続される構成をいう。IGBT71,72,73,74は、ゲートにスイッチング信号が印加されることによりオンされ、コレクタからエミッタに電流が流れる。
 キャパシタ25の正極端子25aは、正極ライン91を介してIGBT71のコレクタに電気的に接続されている。IGBT71のエミッタはIGBT72のコレクタと電気的に接続されている。IGBT72のエミッタは、負極ライン92を介してキャパシタ25の負極端子25bに電気的に接続されている。負極ライン92は負極ライン61に接続されている。
 同様に、キャパシタ25の正極端子25aは、正極ライン91を介してIGBT73のコレクタと電気的に接続されている。IGBT73のエミッタはIGBT74のコレクタと電気的に接続されている。IGBT74のエミッタは、負極ライン92を介してキャパシタ25負極端子25bと電気的に接続されている。
 IGBT71のエミッタ(ダイオード75のアノード)及びIGBT72のコレクタ(ダイオード76のカソード)は、トランス64の低圧側コイル65の一方の端子に接続されているとともに、IGBT73のエミッタ(ダイオード77のアノード)及びIGBT74のコレクタ(ダイオード78のカソード)は、トランス64の低圧側コイル65の他方の端子に接続されている。
 高圧側インバータ63は、トランス64の高圧側コイル66にブリッジ接続された4個のIGBT81,82,83,84と、IGBT81,82,83,84それぞれに並列に、かつ極性が逆向きに接続されたダイオード85,86,87,88とを含む。ここでいうブリッジ接続とは、高圧側コイル66の一端がIGBT81のエミッタとIGBT82のコレクタとに接続され、他端がIGBT83のエミッタとIGBT84のコレクタとに接続される構成をいう。IGBT81,82,83,84は、ゲートにスイッチング信号が印加されることによりオンされ、コレクタからエミッタに電流が流れる。
 IGBT81,83のコレクタは、正極ライン93を介して第1インバータ21の正極ライン60と電気的に接続されている。IGBT81のエミッタはIGBT82のコレクタと電気的に接続されている。IGBT83のエミッタはIGBT84のコレクタと電気的に接続されている。IGBT82,84のエミッタは、正極ライン91、つまり低圧側インバータ62のIGBT71,73のコレクタに電気的に接続されている。
 IGBT81のエミッタ(ダイオード85のアノード)及びIGBT82のコレクタ(ダイオード86のカソード)は、トランス64の高圧側コイル66の一方の端子に電気的に接続されているとともに、IGBT83のエミッタ(ダイオード87のコレクタ)及びIGBT84のコレクタ(ダイオード88のカソード)は、トランス64の高圧側コイル66の他方の端子に電気的に接続されている。
 IGBT81,83のコレクタが接続される正極ライン93とIGBT82,84のエミッタが接続される正極ライン91との間にはコンデンサ67が電気的に接続されている。コンデンサ67はリップル電流吸収用である。リップル電流吸収用のコンデンサ67はIGBT71のコレクタ側とIGBT72のエミッタ側に接続されてもよい。
 トランス64は一定値Lの漏れインダクタンスを有している。漏れインダクタンスは、トランス64の低圧側コイル65と高圧側コイル66の間隙を調整して得ることができる。図3では低圧側コイル65側にL/2の漏れインダクタンスを、高圧側コイル66側にL/2の漏れインダクタンスとなるように分割している。
 上述した変圧器温度センサ50は、トランス64が有する低圧側コイル65及び高圧側コイル66並びに低圧側インバータ62のIGBT71,72,73,74及び高圧側インバータ63のIGBT81,82,83,84のそれぞれに取り付けられている。
 IGBT71~74、81~84の選択駆動により変圧器26は、キャパシタ25から電力を入力側として低圧側コイル65へ入力される。低圧側コイル65からの出力と、高圧側66からの出力とを加極された状態を昇圧後の出力側とする。昇圧後の出力側からの出力は第1インバータ21および第2インバータ22側へ供給される。これにより入出力間での昇圧を行う。この時、入力側のコイル巻き数となる低圧側のコイルの巻き数と、出力側のコイルの巻き数を低圧側のコイルの巻き数と高圧側のコイルの巻き数とを加算した巻き数とし、入力側の巻き数と、出力側の巻き数との巻き数比とする。巻き数比が昇圧比と一致する時、変圧時の損失は最も低損失となる。
 発電機モータ19及び旋回モータ23は、ハイブリッドコントローラC2による制御のもと、それぞれ第1インバータ21及び第2インバータ22によって電流制御される。第2インバータ22に入力する直流電流の大きさを計測するため、第2インバータ22には電流計52が設けられる。電流計を用いなくとも旋回モータ23の回転数と指令トルク値および推定されるインバータでの変換効率をもとにして第2インバータ22に流れる電流値を算出してもよい。電流計52が検出した電流を示す信号は、ハイブリッドコントローラC2に入力される。キャパシタ25に蓄えられた電力の量(電荷量又は電気容量)は、電圧の大きさを指標として管理することができる。キャパシタ25に蓄えられた電力の電圧の大きさを検出するために、キャパシタ25の所定の出力端子に電圧センサ28が設けられている。電圧センサ28が検出したキャパシタ電圧を示す信号は、ハイブリッドコントローラC2に入力される。ハイブリッドコントローラC2は、キャパシタ25の充電量(電力の量(電荷量又は電気容量))を監視して、発電機モータ19が発電する電力をキャパシタ25へ供給(充電)するか、旋回モータ23へ供給(力行作用のための電力供給)するかといったエネルギーマネージメントを実行する。
 本実施形態において、キャパシタ25は、例えば、電気二重層キャパシタが用いられる。キャパシタ25の代わりに、リチウムイオン電池やニッケル水素電池等、他の二次電池として機能する蓄電器を用いてもよい。さらに、旋回モータ23としては、例えば、永久磁石式同期モータが用いられるが、これに限定されるものではない。キャパシタ25には、蓄電器としてのキャパシタ25の温度を検出するキャパシタ温度センサ51が取り付けられている。キャパシタ温度センサ51により計測されたキャパシタ温度を示す信号は、ハイブリッドコントローラC2に入力される。
 油圧駆動系及び電気駆動系は、車両本体2に設けられた運転室6の内部に設けられる作業機レバー、旋回レバー等の操作レバー32L,32Rの操作に応じて駆動する。操作レバー32Rの前後左右の操作に応じてブームの昇降動作およびバケットの掘削・ダンプ動作を行い、操作レバー32Lの前後左右の操作に応じて左右の旋回動作とアームの掘削・ダンプ動作を行う。これ以外に図示しない左右の走行レバーを有する。ハイブリッド油圧ショベル1のオペレータが、上部旋回体5を旋回させるための操作手段として機能する操作レバー32L(旋回レバー)を操作した場合、旋回レバーの操作方向及び操作量は、ポテンショメータ又はパイロット圧力センサ等によって検出され、検出された操作量は電気信号として他のコントローラC1、さらにはハイブリッドコントローラC2に送信される。
 他の操作レバーが操作された場合も同様に電気信号が他のコントローラC1及びハイブリッドコントローラC2に送信される。この旋回レバーの操作方向及び操作量あるいは他の操作レバーの操作方向や操作量に応じて、他のコントローラC1及びハイブリッドコントローラC2は、旋回モータ23の回転動作(力行作用あるいは回生作用)やキャパシタ25の電気エネルギーのマネージメント(充電あるいは放電のための制御)、発電機モータ19の電気エネルギーのマネージメント(発電あるいはエンジン出力のアシスト、旋回モータ23への力行作用)といった電力の授受をコントロール(エネルギーマネージメント)するために第2インバータ22、変圧器26及び第1インバータ21の制御を実行する。
 運転室6内には、操作レバー32L,32Rのほかに、モニタ装置30及びキースイッチ31が設けられる。モニタ装置30は、液晶パネルや操作ボタン等で構成される。また、モニタ装置30は、液晶パネルの表示機能と操作ボタンの各種情報入力機能とを統合させたタッチパネルであってもよい。モニタ装置30は、ハイブリッド油圧ショベル1の動作状態(エンジン水温の状態、油圧機器等の故障有無状態又は燃料残量等の状態等)を示す情報をオペレータ又はサービスマンへ知らせる機能を有するとともに、オペレータが所望する設定又は指示(エンジンの出力レベル設定や走行速度の速度レベル設定等又は後述するキャパシタ電荷抜き指示)をハイブリッド油圧ショベル1に対して行う機能を有する、情報入出力装置である。
 スロットルダイヤル56は、エンジン17への燃料供給量を設定するためのスイッチであり、スロットルダイヤル56の設定値は、電気信号に変換されて他のコントローラC1に出力される。
 キースイッチ31は、キーシリンダを主な構成部品としたものである。キースイッチ31は、キーをキーシリンダに挿入し、キーを回転動作させることでエンジン17に付設されたスタータ(エンジン始動用モータ)を始動させてエンジンを駆動(エンジン始動)させる。また、キースイッチ31は、エンジン駆動中にエンジン始動とは逆の方向にキーを回転動作させることでエンジンを停止(エンジン停止)させるといった指令を出すものである。いわゆる、キースイッチ31は、エンジン17及びハイブリッド油圧ショベル1の各種電気機器への指令を出力する指令出力手段である。
 エンジン17を停止させるために、キーを回転動作(具体的には後述のオフの位置に操作)すると、エンジン17への燃料供給及び図示しないバッテリから各種電気機器への電気の供給(通電)が遮断され、エンジンは停止する。キースイッチ31は、キーを回転動作させたときの位置がオフ(OFF)のとき、図示しないバッテリから各種電気機器への通電を遮断し、キーの位置がオン(ON)のときに、図示しないバッテリから各種電気機器への通電を行い、さらにその位置からキーを回転動作させてキー位置がスタート(ST)のときに、図示しないスタータを始動させエンジンを始動させることができるものである。エンジン17が始動した後、エンジン17が駆動している間は、キー回転位置はオン(ON)の位置にある。
 なお、上記のようなキーシリンダを主な構成部品とするキースイッチ31ではなく、他の指令出力手段、例えば、押しボタン式のキースイッチであってもよい。すなわち、エンジン17が停止している状態でボタンを一回押すとオン(ON)となり、さらにボタンを押すとスタート(ST)となり、エンジン17が駆動している間にボタンを押すとオフ(OFF)となるように機能するものでもよい。また、エンジン17が停止している状態で、所定の時間、ボタンを押し続けたことを条件として、オフ(OFF)からスタート(ST)へと移行し、エンジン17を始動させることができるものであってもよい。
 他のコントローラC1は、モニタ装置30から出力される指示信号、キースイッチ31のキー位置に応じて出力される指示信号及び操作レバー32L,32Rの操作に応じて出力される指示信号(上記の操作量や操作方向を示す信号)をもとに、エンジン17及び油圧ポンプ18を制御する。エンジン17は、主として他のコントローラC1内のエンジンコントローラC12によって制御される。また、油圧ポンプ18は、主として他のコントローラC1内のポンプコントローラC11によって制御される。エンジン17は、コモンレール式の燃料噴射装置40による電子制御が可能なエンジンである。エンジン17は、他のコントローラC1によって燃料噴射量を適切にコントロールすることで、目標とするエンジン出力を得ることが可能であり、ハイブリッド油圧ショベル1の負荷状態に応じて、エンジン回転数及び出力可能なトルクが設定され、駆動することが可能である。
 ハイブリッドコントローラC2は、他のコントローラC1との協調制御のもと、上記のように第1インバータ21、第2インバータ22及び変圧器26を制御して、発電機モータ19、旋回モータ23及びキャパシタ25の電力の授受を制御する。また、ハイブリッドコントローラC2は、電圧センサ28、変圧器温度センサ50及びキャパシタ温度センサ51等の各種センサ類による検出値を取得し、これに基づいて、本実施形態に係る作業機械の制御を実行する。
 ハイブリッドコントローラC2は、発電制御部C21とアシスト制御部C22を有する。発電制御部C21は、発電機モータ19による発電制御を行う。また、アシスト制御部C22は、発電機モータ19によるエンジンアシスト制御を行う。
(アシスト制御)
 ここで、図4を参照して、主として発電機モータ19によるエンジンアシスト制御について説明する。図4において、まず他のコントローラC1内のポンプコントローラC11には、低速マッチング制御部C13を有する。低速マッチング制御部C13には、第1目標エンジン回転数演算部101は、操作レバー32L,32Rによる、操作旋回レバー値、ブームレバー値、アームレバー値、バケットレバー値、走行右レバー値、走行左レバー値の総和であるレバー値信号D11、及びスロットルダイヤル56によるスロットル値D12をもとに第1目標エンジン回転数D1を演算する。この第1目標エンジン回転数D1は、オペレータの意思に対応するものである。また、第2目標エンジン回転数演算部102は、ポンプ圧D13、エンジン負荷D14、発電機出力D15、及び旋回出力D22をもとに第2目標エンジン回転数D2を演算する。この第2目標エンジン回転数D2は、エンジン17、発電機モータ19の出力、油圧ポンプ18の負荷、及び旋回出力に対応して決定されるものである。なお、エンジン負荷D14は、燃料噴射量、エンジン回転数、大気温度などにより予測したエンジントルクと、エンジン回転数とをもとに演算出力されるものである。ここで、エンジントルクは、トルクセンサによって実測してもよい。また、第1目標エンジン回転数演算部101及び第2目標エンジン回転数演算部102を1つの目標エンジン回転数演算部としてもよい。油圧ポンプ13の負荷はポンプ圧力より推定するか、必要に応じポンプ圧力と可変容量ポンプの斜板角度との乗算よりトルクを求める。
 なお、第1目標エンジン回転数演算部101及び第2目標エンジン回転数演算部102を1つの目標エンジン回転数演算部とする場合、第2目標エンジン回転数演算部102のみを設け、この第2目標エンジン回転数演算部102が、少なくとも内部負荷であるエンジン負荷D14及び発電機出力D15のみをもとに第2目標エンジン回転数D2を演算出力するようにしてもよい。また、この場合、第2目標エンジン回転数演算部102は、さらに、外部負荷であるポンプ圧D13及び旋回出力D22をもとに第2目標エンジン回転数D2を演算出力することが好ましい。また、図4に示したように、第1目標エンジン回転数演算部101を設け、この第1目標エンジン回転数演算部101が、さらにオペレータの意思に対応するレバー値信号D11及びスロットル値D12をもとに第1目標エンジン回転数D1を演算出力することが好ましい。
 第1最大値選択部103は、第1目標エンジン回転数D1、第2目標エンジン回転数D2、及び発電制御部C21から出力される発電機要求最低エンジン回転数D3のうちの最大のエンジン回転数をエンジン制御用目標エンジン回転数D4として選択し、エンジン制御用目標エンジン回転数D4をエンジンコントローラC12に出力する。エンジンコントローラC12は、入力されたエンジン制御用エンジン回転数D4となるように、燃料噴射量を制御する。
 一方、第2最大値選択部104は、第1目標エンジン回転数D1、第2目標エンジン回転数D2のうちの最大のエンジン回転数を発電機制御用目標エンジン回転数D5としてハイブリッドコントローラC2のアシスト制御部C22に出力する。アシスト制御部C22は、回転センサ54が計測する発電機モータ回転数D25とポンプコントローラC11から入力される発電機制御用目標エンジン回転数D5との偏差が所定値Δω以上である場合に、エンジンアシストを行わせる制御を行う。
 発電制御部C21は、電圧センサ28が検出したキャパシタ電圧D21、電流計52が検出した電流及び電圧検出センサ53が検出した電圧をもとに求めた旋回出力D22、変圧器温度センサ50が検出した変圧器温度D23、キャパシタ温度センサ51が検出したキャパシタ温度D24、及び発電機モータ回転数D25をもとに、キャパシタ25の発電電力を確保するための最低エンジン回転数である発電機要求最低エンジン回転数D3を求めて第1最大値選択部103に出力する。
 従来は、第1最大値選択部103が出力するエンジン制御用目標エンジン回転数D4を、発電機制御用目標エンジン回転数としてアシスト制御部C22に出力していたため、キャパシタ25のキャパシタ電圧が低下した場合、必要な発電電力を確保するために発電機制御用目標エンジン回転数が高く出力されていた。そして、アシスト制御部C22は、発電機モータ回転数D25と発電機制御用目標エンジン回転数との偏差が所定値Δω以上となることから、発電機モータ19をモータとして作用させるエンジンアシストを行う。しかし、このエンジンアシストによってさらにキャパシタ電圧が低下してしまう。このキャパシタ電圧のさらなる低下状態は、変圧器26への入出力電流を増大させるとともに、予め変圧器26に設定された最適電圧変換設定値から外れた状態であるため、変換ロスが増大することになり、変圧器26のヒートバランスが悪化していた。また、キャパシタ電圧が低いため充・放電時におけるキャパシタの充・放電効率も低下し、充電ロスに伴うヒートバランスが悪化していた。
 これに対し、本実施形態では、エンジン制御用目標エンジン回転数D4には、発電機要求最低エンジン回転数D3を加味し、発電機制御用目標エンジン回転数D5には、発電機要求最低エンジン回転数D3を加味させない制御を行っている。この結果、キャパシタ25のキャパシタ電圧が低下した場合、必要な発電電力を確保するために発電機要求最低エンジン回転数D3が高く出力されても、発電機制御用目標エンジン回転数D5は高くならないため、アシスト制御部C22は、発電機モータ回転数D25と発電機制御用目標エンジン回転数との偏差が所定値Δω以上とならず、エンジンアシストを行なわない。このため、変圧器26のヒートバランスの悪化を抑えたエンジンアシスト制御を行うことができる。すなわち、変圧器26のヒートバランスを悪化させるような無駄なエンジンアシスト制御を行わないようにしている。
 図5は、具体的なアシスト制御を示すタイムチャートである。図5において、曲線L1~L5は、それぞれ、キャパシタ電圧D21、発電機要求最低エンジン回転数D3、発電機制御用目標エンジン回転数D5、実エンジン回転数、発電機出力D15の変化を示している。また、破線で示す曲線L11は、本実施形態におけるキャパシタ電圧D21の変化を示している。さらに、破線で示す曲線L41は、本実施形態における実エンジン回転数の変化を示している。また、曲線L51は、本実施形態における発電機出力D15の変化を示している。なお、発電機出力D15が負のとき、発電機モータ19は発電作用をしており、発電機出力D15が正のとき、発電機モータ19がエンジンアシスト作用をしていることを示す。
 図5において、時点t1で、従来、発電機要求最低エンジン回転数L2が発電機制御用目標エンジン回転数L3よりも大きくなって、発電機制御用目標エンジン回転数L3が実エンジン回転数L4(発電機モータ回転数D25)よりも所定値Δω以上大きくなった時点t1直後に、エンジンアシストが行われて発電機出力D15は正になり、実エンジン回転数L4は大きくなる。このエンジンアシストによってキャパシタ電圧L1は低下する。従来の制御では、図4における発電機制御用目標エンジン回転数D5に第1目標エンジン回転数D1及び第2目標エンジン回転数D2よりも高くなった発電機要求最低エンジン回転数D3が発電機制御用目標エンジン回転数D5に含まれる。これにより、エンジンアシストが行われるのである。
 これに対し、本実施形態では、図4における発電機制御用目標エンジン回転数D5に、第1目標エンジン回転数D1及び第2目標エンジン回転数D2よりも高くなった発電機要求最低エンジン回転数D3が含まれていない。このため、図5における発電機要求最低エンジン回転数L2が実エンジン回転数L4(発電機モータ回転数D25)よりも所定値Δω以上大きくならず、時点t1直後、であっても、エンジンアシストは行われず(曲線L51参照)、実エンジン回転数L4も急激には上がらず(曲線L41参照)、さらにキャパシタ電圧L1も低下しない(曲線L11参照)。
 この結果、本実施形態では、発電機要求最低エンジン回転数D3が大きくなっても、変圧器26及びキャパシタ25のヒートバランスを悪化させるような無駄なエンジンアシスト制御が行われない。
(アシスト制御の変形例)
 上述したアシスト制御では、アシスト制御部C22に入力される発電機制御用目標エンジン回転数D5の出力の際に、常に発電機要求最低エンジン回転数D3を用いていなかったが、この変形例では、キャパシタ電圧D21が所定電圧D21thを超えた場合、変圧器温度D23が所定変圧器温度D23thを超えた場合、キャパシタ温度D24が所定キャパシタ温度D24thを超えた場合、発電機要求最低エンジン回転数D3が第1目標エンジン回転数D1と第2目標エンジン回転数との最大エンジン回転数よりも大きい場合のいずれかの禁止条件を満足する場合に、発電機要求最低エンジン回転数D3を用いない発電機制御用目標エンジン回転数D5を出力するようにしている。
 すなわち、図6に示すように、発電機要求最低エンジン回転数D3がスイッチSW1を介して第2最大値選択部104に入力可能にし、スイッチSW1を介して発電機要求最低エンジン回転数D3が第2最大値選択部104に入力された場合、第2選択部104は、発電機要求最低エンジン回転数D3、第1目標エンジン回転数D1、第2目標エンジン回転数D2のうちの最も大きいエンジン回転数を発電機制御用目標エンジン回転数D5としてアシスト制御部C22に出力する。一方、スイッチSW1がオフで発電機要求最低エンジン回転数D3が第2最大値選択部104に入力されない場合、第2選択部104は、第1目標エンジン回転数D1、第2目標エンジン回転数D2のうちの最も大きいエンジン回転数を発電機制御用目標エンジン回転数D5としてアシスト制御部C22に出力する。なお、出力処理部106は、スイッチSW1、禁止条件判定処理部106、及び第2最大値選択部104を有する。
 このスイッチSW1のオンオフは、禁止条件判定処理部105によって制御される。ここで、図7に示したフローチャートをもとに禁止条件判定処理部105による禁止条件判定処理手順について説明する。なお、この処理は、所定のサンプリング時間ごとに行う。
 まず、禁止条件判定処理部105は、キャパシタ電圧D21が所定電圧D21thを超えたか否かを判断する(ステップS101)。キャパシタ電圧D21が所定電圧D21thを超えた場合(ステップS101,Yes)には、スイッチSW1をオフにして本処理を終了する(ステップS106)。
 また、キャパシタ電圧D21が所定電圧D21thを超えない場合(ステップS101,No)には、さらに変圧器温度D23が所定変圧器温度D23thを超えたか否かを判断する(ステップS102)。変圧器温度D23が所定変圧器温度D23thを超えた場合(ステップS102,Yes)には、スイッチSW1をオフにして本処理を終了する(ステップS106)。
 変圧器温度D23が所定変圧器温度D23thを超えない場合(ステップS102,No)には、さらにキャパシタ温度D24が所定キャパシタ温度D24thを超えたか否かを判断する(ステップS103)。キャパシタ温度D24が所定キャパシタ温度D24thを超えた場合(ステップS103,Yes)には、スイッチSW1をオフにして本処理を終了する(ステップS106)。
 また、キャパシタ温度D24が所定キャパシタ温度D24thを超えない場合(ステップS103,No)には、さらに発電機要求最低エンジン回転数D3が、第1目標エンジン回転数D1と第2目標エンジン回転数との大きい方のエンジン回転数を超えたか否かを判断する(ステップS104)。発電機要求最低エンジン回転数D3が、第1目標エンジン回転数D1と第2目標エンジン回転数との大きい方のエンジン回転数を超えた場合(ステップS104,Yes)には、スイッチSW1をオフにして本処理を終了する(ステップS106)。一方、発電機要求最低エンジン回転数D3が、第1目標エンジン回転数D1と第2目標エンジン回転数との大きい方のエンジン回転数を超えない場合(ステップS104,No)には、スイッチSW1をオンにして本処理を終了する(ステップS105)。
 なお、禁止条件判定処理部105は、キャパシタ電圧D21が所定電圧D21thを超えた場合、変圧器温度D23が所定変圧器温度D23thを超えた場合、キャパシタ温度D24が所定キャパシタ温度D24thを超えた場合、発電機要求最低エンジン回転数D3が第1目標エンジン回転数D1と第2目標エンジン回転数との最大エンジン回転数よりも大きい場合の全ての禁止条件を満足する場合、発電機要求最低エンジン回転数D3を用いない発電機制御用目標エンジン回転数D5を出力するようにしてもよい。
(低速マッチング制御)
 ところで、油圧ショベルのエンジン制御では、図8に示したエンジン回転数に対するエンジントルク線図上において、目標エンジン出力を設定する等馬力曲線ELと油圧ポンプ18の負荷に対してエンジン出力を定めたポンプ吸収トルク線PL1との交点を通るドループ曲線DL1上となるように制御することがある。なお、曲線TLは、エンジン17の最大トルクカーブである。
 これに対し、ポンプコントローラC11内にある低速マッチング制御部C13は、エンジン出力の増大とともに、エンジン回転数を増大させたとき燃費効率のよい領域を通る目標マッチング点を予め設定したマッチングルートMLが規定されている。なお、マッチングルートMLには、油圧ポンプ18の負荷、補機類の負荷、発電機モータ23の出力が加味されている。なお、油圧ポンプ13の負荷のみを考えた場合のポンプ吸収トルク線を高回転側にシフトするようにPL1,PL2とする。この低速マッチング制御部C13は、レバー操作量、エンジン負荷及び油圧ポンプ負荷、並びに発電機モータ出力及び旋回モータ出力の状態をもとに、エンジン制御用の目標エンジン回転数npと目標エンジン出力を算出しマッチングルートML上の目標マッチング点MPとする。低速マッチング制御部C13はハイブリッドコントローラC2内に設けてもよい。
 そして、低速マッチング制御部C13は、例えば、油圧ポンプ18の負荷状態に応じて具体的には負荷状態が減少する時、ポンプ吸収トルク線PL1をポンプ吸収トルク線PL2にシフトさせ、エンジン回転数の増加に対しエンジン出力を一定とする等馬力線ELに沿ってエンジン回転数を増加させる。これによりポンプ吸収トルク線PL2と等馬力曲線ELとの交点MP2でマッチングし、エンジン回転数np1よりも低いエンジン回転数np2とすることができる。すなわち、等馬力曲線ELとの交点である目標マッチング点MPにおける目標エンジン回転数npが低エンジン回転数側にシフトする。なお、目標エンジン出力は、等馬力曲線(目標エンジン出力設定線)EL以外に、ドループ曲線DL1とポンプ吸収トルク線PL1との交点から求めてもよい。
 ここで、図8に示す破線は、等燃費曲線を示し、トルクが高くなるにしたがって、燃費が良くなり、トルクが低くなるにしたがって、燃費が悪くなる。そして等馬力曲線(目標エンジン出力設定線)ELは、エンジン回転数が低くなるほど、等燃費曲線を横切って燃費が良くなる。すなわち、等馬力では、エンジン回転数が低いほど燃費が良くなる。すなわち、上述した低速マッチング制御では、等馬力で目標エンジン回転数npを低く設定するようにしているので、よりマッチングルートMLを低エンジン回転数側に設定すれば燃費が良くなる。
 ところで、上述した低速マッチング制御を行うと、ドループ曲線を用いたエンジン回転制御に対して目標エンジン回転数が低くなるため、これに連動して発電機モータ19の発電量が低下し、キャパシタ電圧D21の電圧低下が発生しやすくなる。従来のアシスト制御では、上述したように、このキャパシタ電圧D21の低下に伴う無駄なエンジンアシストが行われ、ヒートバランスが悪化していた。
 しかしながら、このような低速マッチング制御を行う場合であっても、本実施形態では、無駄なエンジンアシストをなくし、ヒートバランスの悪化を抑えることができる。
   1 ハイブリッド油圧ショベル
   2 車両本体
   3 作業機
   4 下部走行体
   4a 走行装置
   4b 履帯
   5 上部旋回体
   6 運転室
   7 燃料タンク
   8 作動油タンク
   9 エンジン室
  10 カウンタウェイト
  11 ブーム
  12 アーム
  13 バケット
  14 ブーム用油圧シリンダ
  15 アーム用油圧シリンダ
  16 バケット用油圧シリンダ
  17 エンジン
  18a 斜板
  18 油圧ポンプ
  19 発電機モータ
  20 駆動軸
  21 第1インバータ
  22 第2インバータ
  23 旋回モータ
  24 スイングマシナリ
  25 キャパシタ
  26 変圧器
  27 コンタクタ
  28 電圧センサ
  30 モニタ装置
  31 キースイッチ
  32L,32R 操作レバー
  33 操作弁
  34 右走行用油圧モータ
  35 左走行用油圧モータ
  40 燃料噴射装置
  41 回転センサ
  50 変圧器温度センサ
  51 キャパシタ温度センサ
  52 電流計
  53 電圧検出センサ
  54,54 回転センサ
  56 スロットルダイヤル
  61 圧力センサ
  101,102 目標エンジン回転数演算部
  103 最大値選択部
  104 最大値選択部
  105 禁止条件判定処理部
  106 出力処理部
 C1 他のコントローラ
 C11 ポンプコントローラ
 C12 エンジンコントローラ
 C13 低速マッチング制御部
 C2 ハイブリッドコントローラ
 C21 発電制御部
 C22 アシスト制御部
 D1,D2 目標エンジン回転数
 D3 発電機要求最低エンジン回転数
 D4 エンジン制御用目標エンジン回転数
 D5 発電機制御用目標エンジン回転数
 D11 レバー値信号
 D12 スロットル値
 D13 ポンプ圧
 D14 エンジン負荷
 D15 発電機出力
 D21 キャパシタ電圧
 D22 旋回出力
 D23 変圧器温度
 D24 キャパシタ温度
 D25 発電機モータ回転数
 SW1 スイッチ

Claims (5)

  1.  エンジンと、
     前記エンジンの駆動軸に接続された発電機モータと、
     前記発電機モータが発電した電力を蓄電し、あるいは前記発電機モータに電力を供給する蓄電器と、
     前記発電機モータが発電した電力と前記蓄電器が蓄えている電力とのすくなくとも一方で駆動されるモータと、
     前記発電機モータ及び前記モータと前記蓄電器との間に設けられた変圧器と、
     少なくともエンジン負荷及び発電機モータ出力の状態をもとに目標エンジン回転数を演算する目標エンジン回転数演算部と、
     前記蓄電器の畜電状態及び発電機モータ回転数に応じて該蓄電器の発電電力を確保するための最低エンジン回転数である発電機要求最低エンジン回転数を出力する発電制御部と、
     前記目標エンジン回転数及び前記発電機要求最低エンジン回転数をもとにエンジン制御用目標エンジン回転数を算出して出力するエンジン制御用目標エンジン回転数演算部と、
     前記エンジン制御用目標エンジン回転数をもとにエンジン回転数を制御するエンジン制御部と、
     前記目標エンジン回転数を発電機制御用目標エンジン回転数とし、該発電機制御用目標エンジン回転数及び発電機モータ回転数をもとにエンジンアシストを制御するアシスト制御部と、
     を備えたことを特徴とするハイブリッド作業機械。
  2.  エンジンと、
     前記エンジンの駆動軸に接続された発電機モータと、
     前記発電機モータが発電した電力を蓄電し、あるいは前記発電機モータに電力を供給する蓄電器と、
     前記発電機モータが発電した電力と前記蓄電器が蓄えている電力とのすくなくとも一方で駆動されるモータと、
     前記発電機モータ及び前記モータと前記蓄電器との間に設けられた変圧器と、
     少なくともエンジン負荷及び発電機モータ出力の状態をもとに目標エンジン回転数を演算する目標エンジン回転数演算部と、
     前記蓄電器の畜電状態及び発電機モータ回転数に応じて該蓄電器の発電電力を確保するための最低エンジン回転数である発電機要求最低エンジン回転数を出力する発電制御部と、
     前記目標エンジン回転数及び前記発電機要求最低エンジン回転数をもとにエンジン制御用目標エンジン回転数を算出して出力するエンジン制御用目標エンジン回転数演算部と、
     前記エンジン制御用目標エンジン回転数をもとにエンジン回転数を制御するエンジン制御部と、
     前記発電機要求最低エンジン回転数が前記目標エンジン回転数を超えた場合、前記目標エンジン回転数を発電機制御用目標エンジン回転数として出力する出力処理部と、
     前記出力処理部が出力した発電機制御用目標エンジン回転数及び発電機モータ回転数をもとにエンジンアシストを制御するアシスト制御部と、
     を備えたことを特徴とするハイブリッド作業機械。
  3.  前記出力処理部は、前記発電機要求最低エンジン回転数が前記目標エンジン回転数を超えた場合、蓄電器電圧が所定電圧を超えた場合、変圧器温度が所定変圧器温度を超えた場合、蓄電器温度が所定蓄電器温度を超えた場合のいずれかである場合に、前記目標エンジン回転数を発電機制御用目標エンジン回転数として出力することを特徴とする請求項2に記載のハイブリッド作業機械。
  4.  前記目標エンジン回転数制御部は、エンジン回転数に対するトルク線図上において、目標エンジン出力を規定する目標エンジン出力設定線とマッチングルートとの交点におけるエンジン回転数を目標エンジン回転数として演算することを特徴とする請求項1~3のいずれか一つに記載のハイブリッド作業機械。
  5.  前記変圧器の電圧変換比は、入力側となるコイルの巻き数と出力側となるコイルの巻き数との巻き数比に一致することを特徴とする請求項1~4のいずれか一つに記載のハイブリッド作業機械。
PCT/JP2013/070112 2013-07-24 2013-07-24 ハイブリッド作業機械 WO2015011809A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380063685.8A CN104837700B (zh) 2013-07-24 2013-07-24 混合动力作业机械
US14/650,417 US9550413B2 (en) 2013-07-24 2013-07-24 Hybrid work machine
PCT/JP2013/070112 WO2015011809A1 (ja) 2013-07-24 2013-07-24 ハイブリッド作業機械
KR1020157013219A KR20150069025A (ko) 2013-07-24 2013-07-24 하이브리드 작업 기계
DE112013005377.2T DE112013005377T5 (de) 2013-07-24 2013-07-24 Hybridarbeitsmaschine
JP2013550428A JP5759019B1 (ja) 2013-07-24 2013-07-24 ハイブリッド作業機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070112 WO2015011809A1 (ja) 2013-07-24 2013-07-24 ハイブリッド作業機械

Publications (1)

Publication Number Publication Date
WO2015011809A1 true WO2015011809A1 (ja) 2015-01-29

Family

ID=52392889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070112 WO2015011809A1 (ja) 2013-07-24 2013-07-24 ハイブリッド作業機械

Country Status (6)

Country Link
US (1) US9550413B2 (ja)
JP (1) JP5759019B1 (ja)
KR (1) KR20150069025A (ja)
CN (1) CN104837700B (ja)
DE (1) DE112013005377T5 (ja)
WO (1) WO2015011809A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106671901A (zh) * 2015-11-06 2017-05-17 福特环球技术公司 用于操作变速器动力输出的系统和方法
CN108884656A (zh) * 2016-07-26 2018-11-23 株式会社小松制作所 作业车辆的控制系统、控制方法及作业车辆
WO2020100615A1 (ja) * 2018-11-16 2020-05-22 株式会社小松製作所 作業車両、及び作業車両の制御方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140101279A (ko) * 2013-02-08 2014-08-19 스미토모 겐키 가부시키가이샤 쇼벨 및 쇼벨의 제어방법
JP6124302B2 (ja) * 2013-11-05 2017-05-10 キャタピラー エス エー アール エル 作業機械
JP6401241B2 (ja) * 2014-03-06 2018-10-10 住友建機株式会社 ショベル
JP6204866B2 (ja) * 2014-03-31 2017-09-27 日立建機株式会社 ハイブリッド建設機械
US9764837B2 (en) 2014-11-14 2017-09-19 Top Flight Technologies, Inc. Micro hybrid generator system drone
US9708950B2 (en) * 2015-02-26 2017-07-18 Cummins Power Generation Ip, Inc. Genset engine using electrical sensing to control components for optimized performance
KR102462668B1 (ko) * 2015-06-10 2022-11-03 현대두산인프라코어(주) 건설기계의 제어장치 및 제어방법
BE1022961B1 (nl) * 2015-07-16 2016-10-24 Cnh Industrial Belgium Nv Werkwijze en toestel voor het regelen van de motorsnelheid van een werkmachine
JP6647963B2 (ja) * 2016-05-18 2020-02-14 日立建機株式会社 建設機械
US10059341B2 (en) 2016-06-17 2018-08-28 Caterpillar Inc. Control strategy for reduced fuel consumption in machine and powertrain system with same
JP2019534665A (ja) * 2016-10-20 2019-11-28 トップ フライト テクノロジーズ, インコーポレイテッド ハイブリッド電力システム特性評価
JP7127412B2 (ja) * 2018-08-02 2022-08-30 株式会社オートネットワーク技術研究所 車載用のバックアップ電源制御装置及び車載用のバックアップ電源装置
EP3620582B1 (en) 2018-09-10 2022-03-09 Artemis Intelligent Power Limited Apparatus comprising a hydraulic circuit
EP4123094A1 (en) 2018-09-10 2023-01-25 Artemis Intelligent Power Limited Industrial machine with hydraulic pump/motor controller
JP7419352B2 (ja) 2018-09-10 2024-01-22 アルテミス インテリジェント パワー リミティド 油圧機械コントローラを有する装置
JP7311319B2 (ja) * 2019-06-19 2023-07-19 ファナック株式会社 時系列データ表示装置
DE102021206421A1 (de) 2021-06-22 2022-12-22 Rolls-Royce Solutions GmbH Regeleinrichtung zur Regelung einer eine Brennkraftmaschine und einen mit der Brennkraftmaschine antriebswirkverbundenen Generator umfassenden Leistungsanordnung, Regelanordnung mit einer solchen Regeleinrichtung, Leistungsanordnung und Verfahren zur Regelung einer Leistungsanordnung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080967A (ja) * 2002-08-21 2004-03-11 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2006125218A (ja) * 2004-10-26 2006-05-18 Daihatsu Motor Co Ltd ハイブリッド車両
JP2012025249A (ja) * 2010-07-22 2012-02-09 Sumitomo Heavy Ind Ltd ハイブリッド型建設機械
JP2012241587A (ja) * 2011-05-18 2012-12-10 Komatsu Ltd 作業機械のエンジン制御装置およびそのエンジン制御方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532128A1 (de) 1995-08-31 1997-03-06 Clouth Gummiwerke Ag Antriebssystem, insbesondere für ein Kraftfahrzeug, und Verfahren zum Betreiben desselben
JP4047110B2 (ja) * 2002-09-11 2008-02-13 株式会社小松製作所 建設機械
JP2006336432A (ja) * 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd 作業機械
JP4740761B2 (ja) 2006-02-14 2011-08-03 株式会社小松製作所 エンジン、油圧ポンプおよび発電電動機の制御装置
JP2008121659A (ja) 2006-10-20 2008-05-29 Kobelco Contstruction Machinery Ltd ハイブリッド作業機械
JP5156312B2 (ja) * 2007-09-19 2013-03-06 株式会社小松製作所 エンジンの制御装置
US8532855B2 (en) * 2008-06-27 2013-09-10 Sumitomo Heavy Industries, Ltd. Hybrid construction machine
EP2447119A4 (en) * 2009-06-25 2018-04-04 Sumitomo Heavy Industries, LTD. Hybrid working machine and method of controlling working machine
JP5354818B2 (ja) 2009-10-13 2013-11-27 本田技研工業株式会社 ハイブリッド車両
JP5136602B2 (ja) 2010-06-28 2013-02-06 トヨタ自動車株式会社 電子制御装置
JP5459131B2 (ja) 2010-07-26 2014-04-02 スズキ株式会社 空冷式燃料電池車両
JP5356436B2 (ja) * 2011-03-01 2013-12-04 日立建機株式会社 建設機械の制御装置
JP5841399B2 (ja) * 2011-10-14 2016-01-13 日立建機株式会社 ハイブリッド式建設機械及びその制御方法
US9068321B2 (en) * 2011-10-19 2015-06-30 Hitachi Construction Machinery Co., Ltd. Hybrid driven hydraulic work machine
JP6324224B2 (ja) * 2014-06-10 2018-05-16 日立建機株式会社 ハイブリッド建設機械
JP6247617B2 (ja) * 2014-09-12 2017-12-13 日立建機株式会社 建設機械
KR101619212B1 (ko) * 2014-09-25 2016-05-10 현대자동차 주식회사 하이브리드 차량의 제어 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080967A (ja) * 2002-08-21 2004-03-11 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2006125218A (ja) * 2004-10-26 2006-05-18 Daihatsu Motor Co Ltd ハイブリッド車両
JP2012025249A (ja) * 2010-07-22 2012-02-09 Sumitomo Heavy Ind Ltd ハイブリッド型建設機械
JP2012241587A (ja) * 2011-05-18 2012-12-10 Komatsu Ltd 作業機械のエンジン制御装置およびそのエンジン制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106671901A (zh) * 2015-11-06 2017-05-17 福特环球技术公司 用于操作变速器动力输出的系统和方法
CN106671901B (zh) * 2015-11-06 2021-09-24 福特环球技术公司 用于操作变速器动力输出的系统和方法
CN108884656A (zh) * 2016-07-26 2018-11-23 株式会社小松制作所 作业车辆的控制系统、控制方法及作业车辆
US10787789B2 (en) 2016-07-26 2020-09-29 Komatsu Ltd. Control system for work vehicle, control method, and work vehicle
WO2020100615A1 (ja) * 2018-11-16 2020-05-22 株式会社小松製作所 作業車両、及び作業車両の制御方法
US11952748B2 (en) 2018-11-16 2024-04-09 Komatsu Ltd. Work vehicle and control method for work vehicle

Also Published As

Publication number Publication date
US20150315766A1 (en) 2015-11-05
CN104837700A (zh) 2015-08-12
JP5759019B1 (ja) 2015-08-05
KR20150069025A (ko) 2015-06-22
JPWO2015011809A1 (ja) 2017-03-02
US9550413B2 (en) 2017-01-24
DE112013005377T5 (de) 2015-08-13
CN104837700B (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
JP5759019B1 (ja) ハイブリッド作業機械
JP5591354B2 (ja) ハイブリッド作業機械及びハイブリッド作業機械の制御方法
JP6133704B2 (ja) ハイブリッド作業機械及びハイブリッド作業機械の制御方法
JP5956466B2 (ja) ハイブリッド作業機械
EP2228492A1 (en) Hybrid construction machine
EP2479058B1 (en) Hybrid-type construction machine
EP2314848A1 (en) Hybrid construction machine
CN103180520B (zh) 动力传动装置
JP5340627B2 (ja) ハイブリッド式建設機械
JP6524019B2 (ja) 建設機械
WO2016088827A1 (ja) 建設機械
KR101942674B1 (ko) 하이브리드 건설 기계
JP5037555B2 (ja) ハイブリッド型建設機械
US10150465B2 (en) Hybrid construction machine
JP2012025249A (ja) ハイブリッド型建設機械
JP5808635B2 (ja) ハイブリッド式ショベルの制御方法
JP6118953B1 (ja) 昇圧器制御装置及び昇圧器制御装置の電圧制御方法
JP5037558B2 (ja) ハイブリッド型建設機械
JP2015232268A (ja) ハイブリッド型建設機械
JP2014231297A (ja) ハイブリッド作業機械

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013550428

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157013219

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14650417

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013005377

Country of ref document: DE

Ref document number: 1120130053772

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889992

Country of ref document: EP

Kind code of ref document: A1