WO2015008689A1 - 耐応力腐食性に優れるCu-Al-Mn系合金材料からなる展伸材とその用途 - Google Patents
耐応力腐食性に優れるCu-Al-Mn系合金材料からなる展伸材とその用途 Download PDFInfo
- Publication number
- WO2015008689A1 WO2015008689A1 PCT/JP2014/068400 JP2014068400W WO2015008689A1 WO 2015008689 A1 WO2015008689 A1 WO 2015008689A1 JP 2014068400 W JP2014068400 W JP 2014068400W WO 2015008689 A1 WO2015008689 A1 WO 2015008689A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy material
- wrought
- alloy
- less
- grain boundary
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/01—Alloys based on copper with aluminium as the next major constituent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C7/00—Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
- A61C7/12—Brackets; Arch wires; Combinations thereof; Accessories therefor
- A61C7/20—Arch wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F5/00—Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
- A61F5/01—Orthopaedic devices, e.g. splints, casts or braces
- A61F5/019—Toe correcting or spreading devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F5/00—Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
- A61F5/01—Orthopaedic devices, e.g. splints, casts or braces
- A61F5/11—Devices for correcting deformities of the nails
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/022—Metals or alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/05—Alloys based on copper with manganese as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C5/00—Constructions of non-optical parts
- G02C5/008—Spectacles frames characterized by their material, material structure and material properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C2201/00—Material properties
- A61C2201/007—Material properties using shape memory effect
Definitions
- the present invention relates to a wrought material of a Cu—Al—Mn alloy material with controlled grain boundaries, and further to a wrought material made of a Cu—Al—Mn alloy material having excellent stress corrosion resistance.
- Shape memory alloys and superelastic alloys exhibit remarkable shape memory effects and superelastic properties associated with the reverse transformation of thermoelastic martensitic transformation, and have excellent functions near the living environment temperature. In practical use.
- Typical materials for shape memory alloys and superelastic alloys include TiNi alloys and copper (Cu) alloys. Copper-based shape memory alloys / superelastic alloys (hereinafter collectively referred to simply as copper-based alloys) are inferior to TiNi alloys in terms of repeatability, corrosion resistance, and the like. However, since copper-based alloys are low in cost, there is a movement to expand their application range.
- Patent Document 1 An ingrown nail (so-called curled nail) correction tool that is excellent in durability against the above has been proposed (Patent Document 1).
- the ingrown nail corrector described in Patent Document 1 provides an ingrown nail corrector that is excellent in durability of a mounting portion (nail holding portion) in consideration of use in an environment in which repeated deformation stress is applied. It is for the purpose.
- stress corrosion stress corrosion using artificial sweat is taken into consideration that the user lives daily life with the ingrown nail corrector mounted on the ingrown nail. Testing and evaluating the prevention of stress corrosion cracking in the test.
- Patent Document 1 The ingrown nail corrector described in Patent Document 1 has been able to improve the prevention of stress corrosion cracking. However, further improvement and improvement are required for the stress corrosion resistance including prevention of the occurrence of stress corrosion cracking in the ingrown nail corrector.
- Patent Document 1 after melting and casting each material for forming an alloy composition of Cu, Al, and Mn, the ingot is subjected to external cutting, hot forging, hot rolling, Cold rolling and intermediate annealing at a processing rate of 40% and intermediate annealing (600 ° C. ⁇ 10 minutes) are repeated, and then a solution treatment (900 ° C.
- Patent Document 1 describes that as a condition for obtaining a superelastic effect, a ⁇ -phase single phase is formed on the high temperature side of the phase diagram of the Cu—Al—Mn alloy ( ⁇ + ⁇ phase two-phase structure on the low temperature side). .
- Patent Document 1 does not mention anything about the metal structure control of the Cu—Al—Mn superelastic alloy material, particularly the grain structure engineering metal structure control. Therefore, Patent Document 1 describes how to control the corresponding grain boundary, the method therefor, and how the control of the corresponding grain boundary affects the stress corrosion resistance of the copper-based alloy material. No attention has been paid.
- Patent Document 2 describes that intergranular corrosion resistance and IGSCC resistance (SCC progressing along grain boundaries, intergranular stress corrosion) by controlling the corresponding grain boundaries in austenitic stainless steel It is to try to improve (cracking).
- austenitic stainless steel is cold-rolled at a low rolling rate of 2 to 5%, and then subjected to short-time heat treatment at a heat treatment temperature of 1200 to 1500 K for 1 to 60 minutes, thereby reducing the low ⁇ CSL grain boundary.
- An austenitic stainless steel having an existing frequency (corresponding grain boundary with a sigma value of 29 or less) of 75% or more is obtained.
- Patent Document 2 does not describe any copper-based alloy material, in particular, a copper-based shape memory alloy material / superelastic alloy material.
- An object of the present invention is to provide a Cu—Al—Mn alloy material having a controlled grain boundary and to provide a wrought material made of a Cu—Al—Mn alloy material having excellent stress corrosion resistance. It is another object of the present invention to provide an ingrown nail correction tool, a hallux valgus correction device, a structural member, a spectacle frame, an actuator, and a connector made of these materials.
- the present inventors have appropriately controlled the corresponding grain boundary of the wrought material of the Cu—Al—Mn alloy material, thereby enabling stress corrosion resistance. It has been found that a wrought material made of a Cu—Al—Mn alloy material having excellent properties can be obtained. The present invention has been completed based on this finding.
- the existence frequency of the corresponding grain boundary having a ⁇ value of 3 or less is in the range of 35 to 75%, and the existence frequency of the corresponding grain boundary having a ⁇ value of 29 or less is in the range of 45 to 90%.
- a wrought material comprising a Cu—Al—Mn alloy material having a recrystallized structure comprising phases.
- a wrought material comprising the Cu—Al—Mn alloy material according to item (1) or (2), which has excellent stress corrosion resistance.
- the wrought material is a plate material or a wire material, and the abundance ratio in the longitudinal section of the crystal grains whose grain size is not less than (1/2) of the thickness of the wrought material or the diameter of the wire is the cross-sectional area. 80% or more, and the average crystal grain size of the crystal grains is in the range of 0.8 to 2.5 times the thickness of the wrought material or the diameter of the wire.
- a wrought material comprising the Cu-Al-Mn alloy material described in 1.
- a wrought material comprising the Cu—Al—Mn alloy material according to any one of (1) to (4), which is excellent in superelastic properties.
- the wrought material contains 5 to 10% by mass of Al, 5 to 20% by mass of Mn, and optionally contains 2% by mass or less of Ni, and further, if necessary, Co Fe, Ti, V, Cr, Si, Nb, Mo, W, Sn, Mg, P, Be, Sb, Cd, As, Zr, Zn, and one or more selected from the group consisting of Ag and Ag
- the total amount of 0.001 to 10% by mass and the alloy composition composed of the balance Cu and inevitable impurities and comprising the Cu—Al—Mn alloy material according to any one of (1) to (5) Stretched material.
- An ingrown nail correction tool comprising a stretched material of the Cu—Al—Mn alloy material according to any one of (1) to (6).
- a hallux valgus correction device comprising a stretched material of the Cu—Al—Mn alloy material according to any one of (1) to (6).
- a structural member comprising a stretched material of the Cu—Al—Mn alloy material according to any one of (1) to (6).
- a spectacle frame made of a stretched material of the Cu—Al—Mn alloy material according to any one of (1) to (6).
- An actuator comprising a stretched material of the Cu—Al—Mn alloy material according to any one of (1) to (6).
- a connector comprising a stretched material of the Cu—Al—Mn alloy material described in any one of (1) to (6).
- the wrought material of the Cu—Al—Mn alloy material of the present invention preferably has a residual strain of less than 1.0% after 6% strain loading as a superelastic property.
- excellent superelastic characteristics means that after applying a predetermined load strain or load stress, the strain remaining after unloading the load is called residual strain, but this is small, and the smaller this residual strain is, the smaller the residual strain is. desirable.
- the residual strain after 6% deformation is less than 1.0%, preferably less than 0.5%.
- having a recrystallized structure consisting essentially of a ⁇ single phase means that the proportion of the ⁇ phase in the recrystallized structure is 98% or more.
- the wrought material of the Cu—Al—Mn alloy material of the present invention can be used for various applications that require superelastic characteristics and stress corrosion resistance. It can be suitably applied to. As other medical products, for example, application to orthodontic wires, guide wires, stents, hallux valgus correction devices, and the like is also expected. Further, the wrought material of the Cu—Al—Mn alloy material of the present invention is expected to be suitable as a material for cellular phone antennas in addition to structural members, eyeglass frames, actuators, connectors and the like.
- FIG. 1 is a schematic diagram for explaining a method for evaluating a crystal grain size.
- FIG. 2 shows a typical example of a preferable thermomechanical process chart.
- FIG. 2A is a chart showing an example of a thermomechanical process that rapidly quenches after holding the ⁇ phase, and
- FIG. It is a chart which shows another example of the thermomechanical process which cools to the (beta) single phase temperature range again after it cools to (alpha + (beta)) phase temperature range, and quenches after holding
- FIG. 3 is a schematic diagram illustrating a stress corrosion test method performed in the example. 3 (a) shows the shape of the test piece, FIG. 3 (b) shows a state in which the test piece is subjected to bending strain, and FIG.
- FIG. 4 is a SEM photograph showing a state in which the fracture surface is observed with the SEM after the stress corrosion test explained in FIG.
- FIG. 4A is an SEM photograph of Example 1 of the present invention in which the fracture surface was 100% ductile fracture
- FIG. 4B was an SEM of Comparative Example 2 in which 68.6% of the fracture surface was brittle fracture
- FIG. 4C is a SEM photograph of Comparative Example 1 in which the fracture surface was 100% brittle fracture.
- FIG. 4D shows a case where a mesh is put on the fracture surface of the photograph shown in FIG. FIG.
- FIG. 5 is a diagram showing the measurement result of the corresponding grain boundary performed in the example.
- a grain boundary map is shown to FIG. 5 (a1)
- a CSL chart is shown to FIG. 5 (a2).
- a grain boundary map is shown in FIG.5 (b1)
- a CSL chart is shown in FIG.5 (b2).
- FIG. 6 is a diagram showing the measurement result of the residual strain performed in the example as a stress-strain curve (SS curve).
- FIG. 6A shows a wrought material (plate material, Invention Example 13) obtained by repeating the intermediate annealing-cold working process four times at an intermediate annealing temperature of 600 ° C. and a cumulative cold working rate of 90%.
- B shows a wrought material (plate material, comparative example 1) obtained by repeating the process of intermediate annealing and cold working three times at an intermediate annealing temperature of 500 ° C. and a cumulative cold working rate of 80%.
- the wrought material of the Cu—Al—Mn alloy material of the present invention is stable by controlling the crystallinity (grain boundary character) so that the corresponding grain boundary frequency with a ⁇ value of 3 or less is 35% or more. It exhibits excellent superelasticity and excellent stress corrosion resistance.
- the Cu—Al—Mn alloy material of the present invention refers to a material obtained by plastic processing of a Cu—Al—Mn alloy.
- the expanded material of the Cu—Al—Mn alloy material is a plate material that has been processed such that the cross-sectional shape of the product obtained by processing such as rolling, extruding, drawing, and heat treatment has a constant cross-sectional shape.
- Bar material, wire material, tube material, and the like and does not include three-dimensional processing such as forging in the cold processing stage, which is the final processing stage of the product.
- the ⁇ value is 3 or less, that is, the frequency of existence of the corresponding grain boundaries of ⁇ 1 to ⁇ 3 is 35% or more and 75% or less. It is preferably 40% or more and 75% or less.
- the ⁇ value is 29 or less, that is, the existence frequency of the corresponding grain boundary of ⁇ 1 to ⁇ 29 is 45% or more and 90% or less. 50% to 90% is more preferable, and the existence frequency is more preferably 55% to 90%.
- the corresponding grain boundary (also referred to as the corresponding lattice grain boundary, also referred to as CSL grain boundary) means that when one of two adjacent crystals sandwiching the crystal grain boundary is rotated around the crystal axis, A grain boundary in which a part of the lattice point of the crystal grain is also located at the lattice point of the other adjacent crystal grain to form a sub-lattice common to both crystals.
- the corresponding grain boundary means a grain boundary having a ⁇ value described below of 29 or less.
- a grain boundary having a ⁇ value exceeding 29 is called a random grain boundary.
- the existence frequency of the corresponding grain boundary having a low ⁇ value having a ⁇ value of 3 or less is high. The ⁇ value will be described in detail later.
- the properties of crystal grain boundaries are roughly classified into the corresponding grain boundaries and random grain boundaries.
- the corresponding grain boundary has a low ⁇ value representing the crystal character, a high density of the corresponding lattice (periodically overlapping lattice points), and a low grain boundary energy.
- random grain boundaries have a high grain boundary energy because the corresponding lattice point density is low.
- Crystal grain having an inclination angle of less than 15 ° is defined as ⁇ value 1.
- the state of the corresponding grain boundary is obtained by measuring and analyzing the crystal character of the copper alloy material, that is, the crystal orientation distribution (grain boundary map) with an EBSD (Electron Back-scattering Diffraction Pattern) measurement device. .
- the principle of the EBSD method will be outlined.
- a sample tilted by about 60 to 70 ° is irradiated with an electron beam, a diffracted electron beam is produced on each crystal plane in a region of about 50 nm or less from the sample surface.
- information on the orientation analysis of the crystalline sample can be obtained.
- the misalignment angle between two adjacent crystal grains is 2 ° or more, it is determined that it is a grain boundary, that is, has a different crystal orientation.
- whether or not it is a corresponding grain boundary is measured by SEM-EBSD.
- the example of the specific measuring method is as describing in the below-mentioned Example.
- the corresponding grain boundary is measured by embedding a test piece for measuring a corresponding grain boundary, which will be described later, in a conductive resin and performing vibration buffing (polishing).
- EBSD vibration buffing
- measurement is performed in a measurement region of about 400 ⁇ m ⁇ 250 ⁇ m under the condition that the scan step is 6 ⁇ m.
- OIM software trade name, manufactured by TSL
- the crystal character and crystal orientation obtained from all measurement results are obtained as a grain boundary map (for example, see FIG. 5).
- the ⁇ value is obtained for each crystal grain, and the existence frequency is obtained for the corresponding grain boundary having a ⁇ value of 3 or less and the corresponding grain boundary having a ⁇ value of 29 or less as predetermined corresponding grain boundaries.
- the corresponding grain boundary existence frequency (also referred to as the corresponding grain boundary frequency) refers to a ratio (percentage) of a predetermined corresponding grain interface area focused on the total grain interface area.
- the existence frequency 1 is 100% (see the CSL chart in FIG. 5).
- a small number of crystal grains having a small crystal grain size may be present, but most are crystal grains having a large crystal grain size.
- a crystal grain having a large crystal grain size refers to a crystal grain having a crystal grain size equal to or greater than (1/2) of the plate thickness or wire diameter of the stretched plate or wire.
- the abundance ratio of crystal grains that are equal to or greater than (1/2) of the thickness of the wrought material or the diameter of the wire in the longitudinal section is the sectional area of the section. It is preferable that it is 80% or more.
- the longitudinal section for measuring the crystal grain size refers to a longitudinal section passing through the center of the plate thickness or the center of the circular section of the wire.
- the average grain size of the crystal grains whose grain size in the longitudinal section of the wrought material passing through the center of the wrought material section is equal to or greater than (1/2) the plate thickness or the wire diameter of the wrought material is The thickness is preferably in the range of 0.8 to 2.5 times the sheet thickness or the wire diameter of the wrought material. More preferably, it is greater than the plate thickness or the diameter of the wire.
- the thickness of the tube wall is regarded as the plate thickness of the plate material, and the average crystal grain size is the same as that of the plate material.
- the structural characteristics are defined.
- the shape of the plate is not a circular cross section and low symmetry, so the crystal grain size is based on the plate thickness, not the plate width. The reason is that when the crystal grains penetrate the plate thickness or width, the driving force for the growth of the interface by the crystal grains is reduced thereafter, and not only the plate thickness but also the plate thickness is penetrated. This is due to the fact that it is difficult.
- the average crystal grain size of the base material is set to the appropriate size described above. This is because, in the Cu—Al—Mn alloy material, if the average crystal grain size is too small, the deformation is affected by the surrounding crystal grains during deformation, the resistance to deformation is increased, and the superelasticity is deteriorated.
- the upper limit value of the average crystal grain size is not particularly limited.
- the superelastic characteristics can be stabilized by controlling the average crystal grain size in such a stretched material such as a wire (bar) material or a plate material.
- the crystal grains having a predetermined size or more have an average crystal grain size of a predetermined size or more.
- the reason for prescribing the crystal grain size of crystal grains of a predetermined size or larger is that crystal grains of less than a predetermined size are remarkably smaller than crystal grains of a predetermined size or more, and have less influence on superelastic properties. This is because the influence of crystal grains smaller than a predetermined size can be ignored.
- the wrought material made of the Cu—Al—Mn alloy material of the present invention is a material having a recrystallized structure. Further, the wrought material made of the Cu—Al—Mn alloy material of the present invention substantially consists of a ⁇ single phase.
- being substantially composed of a ⁇ single phase means that the abundance ratio of, for example, an ⁇ phase other than the ⁇ phase is less than 2%.
- a Cu-8.1 mass% Al-11.1 mass% Mn alloy has a ⁇ (BCC) single phase at 900 ° C., but has two phases of ⁇ (FCC) phase and ⁇ phase at 700 ° C. or less.
- the wrought material comprising the Cu—Al—Mn alloy material of the present invention comprises a copper alloy having a ⁇ -phase single phase at a high temperature and a ⁇ + ⁇ two-phase structure at a low temperature, and contains at least Al and Mn. It is a base alloy.
- the Cu—Al—Mn alloy material constituting the wrought material of the present invention contains 5 to 10% by mass of Al and 5 to 20% by mass of Mn, and has a composition composed of the balance Cu and inevitable impurities. . If the content of Al element is too small, a ⁇ single phase cannot be formed, and if it is too much, it becomes extremely brittle.
- the content of Al element varies depending on the content of Mn element, but the preferable content of Al element is 7 to 9% by mass. By containing the Mn element, the existence range of the ⁇ phase is expanded to the low Al side, and the cold workability is remarkably improved, so that the forming process is facilitated.
- the preferred Mn content is 8 to 13% by mass.
- the Cu—Al—Mn alloy material having the above composition is rich in hot workability and cold workability, and it is possible to achieve a working rate of 20% to 90% or more by appropriately combining cold and intermediate annealing. Become. For this reason, the wrought material of the present invention can be easily formed into ultrafine wires, foils, pipes, and the like, which have been difficult in the past, in addition to plates (strips) and bars (wires).
- the Cu—Al—Mn alloy material constituting the wrought material of the present invention further includes Co, Fe, Ti, V, Cr, Si, Nb, One or more selected from the group consisting of Mo, W, Sn, Mg, P, Be, Sb, Cd, As, Zr, Zn, and Ag can be contained.
- These elements exhibit the effect of improving the strength of the Cu—Al—Mn alloy material while maintaining cold workability.
- the total content of these additive elements is preferably 0.001 to 10% by mass, and more preferably 0.001 to 5% by mass. If the content of these elements is too large, the martensitic transformation temperature decreases and the ⁇ single phase structure becomes unstable.
- the above-mentioned various elements that are usually contained in a copper base alloy material for the purpose of increasing the strength of the copper alloy material can be used.
- Co, Fe, and Sn are effective elements for strengthening the base structure. Co coarsens crystal grains due to the formation of CoAl, but if excessive, it lowers the toughness of the alloy material.
- a preferable content of Co is 0.001 to 2% by mass.
- a preferable content of Fe is 0.001 to 3 mass%.
- a preferable content of Sn is 0.001 to 1% by mass.
- Ti combines with inhibitory elements N and O to form oxynitrides.
- a preferable content of Ti is 0.001 to 2% by mass.
- V, Nb, Mo, and Zr have the effect of increasing the hardness and improve the wear resistance. Moreover, since these elements hardly dissolve in the matrix, they are precipitated as a ⁇ phase (bcc crystal) to improve the strength.
- the preferred contents of V, Nb, Mo, and Zr are each 0.001 to 1 mass%.
- Cr is an element effective for maintaining wear resistance and corrosion resistance.
- a preferable content of Cr is 0.001 to 2% by mass.
- Si has the effect of improving the corrosion resistance.
- a preferable content of Si is 0.001 to 2% by mass. Since W hardly dissolves in the base, there is an effect of precipitation strengthening.
- a preferable content of W is 0.001 to 1% by mass.
- Mg removes the inhibitory elements N and O and fixes the inhibitory element S as a sulfide, which is effective in improving hot workability and toughness. Addition of a large amount causes segregation of grain boundaries and causes embrittlement.
- a preferable content of Mg is 0.001 to 0.5% by mass.
- P acts as a deoxidizer and has the effect of improving toughness.
- a preferable content of P is 0.01 to 0.5% by mass.
- Be, Sb, Cd, and As have the effect of strengthening the base organization. The preferred contents of Be, Sb, Cd, and As are each 0.001 to 1% by mass.
- Zn has the effect of increasing the shape memory processing temperature.
- a preferable content of Zn is 0.001 to 5% by mass.
- Ag has the effect of improving cold workability.
- a preferable content of Ag is 0.001 to 2% by mass.
- the composition of the Cu—Al—Mn alloy material constituting the wrought material of the present invention may contain Ni in a content of 2% by mass or less.
- the Ni content is more preferably 0.15% by mass or less, and it is particularly preferable that no Ni is contained. This is because if a large amount of Ni is contained, the hardenability decreases.
- hardenability refers to the relationship between the cooling rate during quenching and the stability of the structure immediately before quenching during the quenching process. Specifically, if the cooling rate after quenching is slow, ⁇ It is said that the hardenability is sensitive when the phase precipitates and the superelastic properties are inferior. In the Ni-containing copper alloy, since the ⁇ phase starts to precipitate at higher temperatures, even if the cooling time is somewhat longer due to the wire diameter becoming thicker, the hardenability is inferior and good superelastic characteristics cannot be obtained.
- ⁇ Method for producing wrought material made of Cu-Al-Mn alloy material> A preferred production method and production conditions for obtaining a wrought material of a copper base alloy material made of the Cu—Al—Mn alloy material of the present invention will be described. For example, the following manufacturing processes can be mentioned. Moreover, the example of the preferable manufacturing process was shown to Fig.2 (a) and FIG.2 (b).
- the following manufacturing process shown in FIG. After melting and casting [Step 1], hot working by hot rolling or hot forging [Step 2], intermediate annealing at 400 to 600 ° C. for 1 minute to 120 minutes [Step 3], and then processing rate 30% or more of cold rolling or cold working by cold drawing [Step 4] is performed.
- the intermediate annealing [Step 3] and the cold working [Step 4] may be performed once in this order, or may be repeated twice or more in this order.
- an aging treatment [Step 6] is performed. Further, depending on the degree of cold work, the intermediate annealing [Step 3] can be omitted.
- the shape memory heat treatment [Step 5] includes heat treatment [Step 5-1] in which the temperature is raised by heating from room temperature to the ( ⁇ + ⁇ ) phase temperature range, holding in the ( ⁇ + ⁇ ) phase temperature range [Step 5-2], ( ⁇ + ⁇ ) Heat treatment (step 5-3) for heating (slow temperature increase) from the phase temperature range to the ⁇ single phase temperature range (step 5-3), holding in the ⁇ single phase temperature range (step 5-4) (this is a solution treatment) And quenching from the ⁇ single-phase temperature range [Step 5-9].
- [Step 5-2] is held, whereby the presence of the corresponding grain boundary is achieved by heating from the ( ⁇ + ⁇ ) phase temperature range to the ⁇ single phase temperature range at a predetermined slow heating rate.
- the frequency can be increased.
- the rate of temperature increase (the above-mentioned gradual temperature increase) for heating from the ( ⁇ + ⁇ ) phase temperature range to the ⁇ single phase temperature range is 20 ° C./min or less, preferably 10 ° C./min or less. More preferably, it is 5 ° C./min or less. Although there is no restriction
- the ( ⁇ + ⁇ ) phase temperature range varies depending on the composition of the alloy material, but is 400 ° C. to 700 ° C.
- the ⁇ single-phase temperature range varies depending on the composition of the alloy material, but is 700 ° C.
- Step 5-9 so-called quenching is performed.
- This rapid cooling can be performed, for example, by water cooling in which a wrought material of Cu—Al—Mn alloy material subjected to the shape memory heat treatment is introduced into cooling water.
- an aging heat treatment [Step 6] is preferably performed at 80 to 250 ° C. for 5 to 60 minutes. If the aging temperature is too low, the ⁇ phase is unstable, and if left at room temperature, the martensitic transformation temperature may change. On the other hand, if the aging temperature is too high, precipitation of the ⁇ phase occurs, and the shape memory characteristics and superelastic characteristics tend to be remarkably deteriorated.
- the working rate in the cold working [Step 4] is a processing rate throughout the whole processing (hereinafter also referred to as cumulative machining rate). It is desirable that the processing rate is 30% or more.
- the intermediate annealing [Step 3] is performed at 400 to 600 ° C. for 1 minute to 120 minutes.
- the intermediate annealing temperature is preferably set to a lower temperature within this range.
- the temperature is preferably 450 to 550 ° C, particularly preferably 450 to 500 ° C.
- the annealing time is preferably 1 minute to 120 minutes, and 120 minutes is sufficient for a ⁇ 20 mm round bar even when the influence of the sample size is taken into consideration.
- intermediate annealing [process 3] can be abbreviate
- the cold working [Step 4] is preferably 30% or more.
- the processing rate is preferably 40% or more, more preferably 50% to 95%, and particularly preferably 60% to 90%.
- a 1 is a cross-sectional area before cold working such as cold rolling or cold drawing (mm 2 )
- a 2 is a cross-sectional area after cold working such as cold rolling or cold drawing (mm 2).
- the cumulative working rate through all the cold workings [Step 4] only needs to be within the above range.
- the holding time in the ( ⁇ + ⁇ ) phase temperature range is preferably 20 minutes to 120 minutes, more preferably 30 minutes to 120 minutes.
- the heating rate when heating at a gradual temperature in the heat treatment [Step 5-3] is 20 ° C./min or less, preferably 10 ° C./min or less, more preferably 5 ° C./min or less. Although there is no restriction
- the temperature increase rate to a predetermined slow rate (gradual temperature increase)
- the holding time in the ⁇ single-phase temperature range is preferably 2 minutes to 120 minutes, more preferably 10 minutes to 120 minutes.
- the cooling rate during the rapid cooling [Step 5-9] is usually 30 ° C./second or more, preferably 100 ° C./second or more, more preferably 1000 ° C./second or more.
- the aging treatment [Step 6] is usually performed at a temperature lower than 300 ° C., preferably 80 to 250 ° C. for 5 to 60 minutes. After the aging treatment [Step 6], it may be cooled by normal air cooling.
- FIG. 2B Another preferable example is the following manufacturing process shown in FIG. 2B, the shape memory heat treatment [Step 5] is different from the manufacturing step shown in FIG. 2A in the points described below, except for melting and casting [Step 1], Hot working [Step 2], intermediate annealing [Step 3] and cold working [Step 4] (once in this order or repeated twice or more in this order), and the last aging treatment [Step 6]
- This is the same as the manufacturing process shown in FIG. 2 (a), and the preferred processing heat treatment conditions are also the same.
- the shape memory heat treatment [Step 5] in the manufacturing process shown in FIG. 2B is a heat treatment [Step 5-1] in which the temperature is raised by heating from room temperature to the ( ⁇ + ⁇ ) phase temperature range, and in the ( ⁇ + ⁇ ) phase temperature range.
- Holding [Step 5-2] heat treatment (step 5-3) for heating (gradual heating) from the ( ⁇ + ⁇ ) phase temperature range to the ⁇ single phase temperature range at a predetermined slow rate of temperature increase (Step 5-3), holding in the ⁇ single phase temperature range [ Step 5-4] and rapid cooling from the last ⁇ single-phase temperature range [Step 5-9] are the same as the manufacturing step shown in FIG. .
- steps from holding [step 5-4] to rapid cooling [step 5-9] are different from the manufacturing steps shown in FIG. That is, after the holding [Step 5-4], a cooling process for lowering the temperature by cooling from the ⁇ single-phase temperature range to the ( ⁇ + ⁇ ) phase temperature range [Step 5-5], holding in the ( ⁇ + ⁇ ) phase temperature range [Step 5-6], heat treatment (step 5-7) for heating (slow temperature increase) from the ( ⁇ + ⁇ ) phase temperature range to the ⁇ single phase temperature range at a predetermined slow rate of temperature increase (step 5-7), holding in the ⁇ single phase temperature range [step 5- 8], the above rapid cooling [Step 5-9] is performed.
- the cooling rate for cooling from the ⁇ single-phase temperature range to the ( ⁇ + ⁇ ) phase temperature range is 20 ° C./min.
- it is preferably 10 ° C./min or less, more preferably 5 ° C./min or less.
- the heating rate for heating from the ( ⁇ + ⁇ ) phase temperature range to the ⁇ single phase temperature range is preferably the same gradual temperature increase as described above, and the preferable conditions are also the same.
- the crystal grains are coarsened by the slow cooling in the cooling treatment [Step 5-5] and the gradual temperature increase in the heat treatment [Step 5-7]. For this reason, it is considered that the corresponding grain boundary and superelasticity can be preferably controlled.
- Preferred conditions for each step of [Step 5-5] to [Step 5-8] are as follows.
- the slow cooling rate during cooling [Step 5-5] is 20 ° C./min or less, preferably 10 ° C./min or less, more preferably 5 ° C./min or less.
- the holding time in the ( ⁇ + ⁇ ) phase temperature range is preferably 5 minutes to 120 minutes, more preferably 30 minutes to 120 minutes.
- the heating rate in the heat treatment [Step 5-7] is 20 ° C./min or less, preferably 10 ° C./min or less, more preferably 5 ° C./min or less. Although there is no restriction
- the holding time in the ⁇ single-phase temperature range is preferably 1 minute to 120 minutes, more preferably 30 minutes to 120 minutes.
- processing temperature and processing time (holding time) in each heat treatment shown in the figure are representative values respectively used in the examples, and preferable manufacturing processes applicable to the present invention are shown in these figures. It is not limited.
- the wrought material of the Cu—Al—Mn alloy material of the present invention has the following physical properties.
- the residual strain after 6% deformation is usually less than 1.0%, preferably less than 0.5%.
- the shape of the wrought material of the Cu—Al—Mn alloy material of the present invention is not particularly limited, and may be various shapes such as a plate and a wire (bar). These sizes are not particularly limited.
- the thickness may be 0.1 mm to 15 mm.
- the wire (bar) material may have a diameter of 0.1 mm to 50 mm, and may have a diameter of 8 mm to 16 mm depending on the application.
- the wrought material of the present invention may be in the form of a hollow tube having a tube wall.
- the wrought material of the Cu—Al—Mn alloy material of the present invention is excellent in stress corrosion resistance, and is therefore suitably used as an ingrown nail correction tool, hallux valgus correction device, structural member, eyeglass frame, actuator, connector, etc.
- an ingrown nail correction tool, a hallux valgus correction device, a structural member, a spectacle frame, an actuator, and a connector made of the spread material of the Cu—Al—Mn alloy material of the present invention can be obtained.
- Example 1 Each sample (test material) of a board
- copper alloy materials having the compositions shown in Table 1-1 and Table 1-2, pure copper, pure Al, pure Mn, and other additive elements were dissolved in a high frequency induction furnace.
- the molten copper alloy was cooled and the ingot (ingot) of diameter 80mm x length 300mm was obtained.
- the obtained ingot was hot forged at 800 ° C., and a thick plate material having a cross section of about 18 mm was obtained.
- This was finished into a plate material with a plate pressure of 2 mm by hot rolling in a pass schedule of 5 passes with a plate thickness of 18 mm ⁇ 14 mm ⁇ 10 mm ⁇ 6 mm ⁇ 4 mm ⁇ 2 mm (Fig. 2 (a) [Step 2]).
- intermediate annealing and cold rolling are repeated at least once under various conditions shown in Table 2-1 by the thermomechanical processes shown in [Step 3] and [Step 4] in FIG.
- a thin plate material having a thickness of 0.2 mm to 1.6 mm was produced.
- the reduction (cumulative processing rate) when rolling a plate material having a plate thickness of 2 mm to a predetermined plate thickness of 0.2 mm to 1.6 mm is 20% to 90%.
- Rolling reduction was determined.
- Table 2-1 in Example 3 of the present invention, the intermediate annealing [Step 3] was omitted and not performed.
- the heat treatment process of [Step 3] and [Step 4] before the shape memory processing of the plate material is performed at an annealing temperature of 500 ° C. and a cumulative cold rolling processing rate of 80 ° C. Samples with manufacturing conditions in which the annealing process temperature was changed from 350 ° C. to 700 ° C. and the cold rolling cumulative processing rate was changed within a predetermined range of 20% to 90% were also prepared.
- the molten copper alloy was cooled to obtain an ingot having a diameter of 80 mm and a length of 300 mm.
- This ingot was hot forged to obtain a round bar with a diameter of 20 mm. If necessary, this round bar may be further (1) hot forged to a diameter of 18 mm, or (2) a tandem bar mill with a diameter of 18 mm ⁇ 14 mm ⁇ 10 mm ⁇ 7 mm ⁇ 5 mm ⁇ 4 mm ⁇ 3 mm ⁇ 2 mm
- a wire rod having a wire diameter of 2.0 mm ( ⁇ 2.0 mm) was obtained by hot rolling according to the schedule (FIG. 2A [step 2]).
- FIG. 2A is a chart showing a process of a representative example, in the temperature and time of intermediate annealing, the processing rate of cold working (cumulative working rate if performed a plurality of times), and ( ⁇ + ⁇ ) phase temperature range.
- the retention time of ( ⁇ + ⁇ ) phase temperature range to the ⁇ single phase temperature range and the retention time in the ⁇ single phase temperature range were changed as shown in Table 2-1 and Table 2-3. Carried out.
- the cold rolling and wire drawing are performed at the processing rates shown in Table 2-1 and Table 2-3 (unless otherwise specified, the cumulative processing rates under the standard conditions shown in each table) Drawing was performed.
- intermediate annealing is performed at the intermediate annealing temperatures shown in Table 2-1 and Table 2-3 (unless otherwise specified, the annealing temperatures under the standard conditions shown in each table). Heat treatment was performed.
- FIG. 1 An example of a processing process when a plurality of intermediate annealing and cold rolling are performed to form a thin plate material is shown together with a plate thickness and a processing rate.
- the intermediate annealing conditions were the same annealing temperature and annealing time each time, and were as described above.
- the plate thickness 1.6 mm, 1.4 mm, 0.8 mm, 0.4 mm, 0.2 mm ⁇ width 20 mm which is the material subjected to the above aging treatment X
- a test piece having a length of 150 mm was used as it was.
- Example of processing of wire specimen In the tensile test, the stress corrosion cracking test, and the corresponding grain boundary analysis by EBSD, the plate material adjusted to a predetermined length was subjected to aging treatment as shown in FIG. 2 (a) [Step 6]. Thereafter, five types of wire rods having a wire diameter of 1.79 mm, 1.68 mm, 1.26 mm, 0.88 mm, and 0.63 mm were centerless polished, and then aligned to a diameter of 0.60 mm by buffing, and a wire diameter of 0.005 mm was obtained. The test piece was 6 mm ⁇ length 150 mm.
- the evaluation of the superelastic property was performed by performing stress loading-unloading by a tensile test, obtaining a stress-strain curve (SS curve), and obtaining a residual strain.
- SS curve stress-strain curve
- residual strain is an average value of five.
- the comparative example (plate material) shown in Table 2-2 was made in the same manner as the present invention example of the plate material except that the alloy materials shown in Table 1-1 and Table 1-2 were used as the alloy materials. 2 and according to the process chart shown in FIG. 2 (a), except that the temperature and time of intermediate annealing, the processing rate of cold working (cumulative working rate if performed multiple times), ( ⁇ + ⁇ ) The holding time in the phase temperature range, the rate of temperature rise from the ( ⁇ + ⁇ ) phase temperature range to the ⁇ single phase temperature range, and the holding time in the ⁇ single phase temperature range are changed as shown in Table 2-2. Obtained by carrying out.
- the cold rolling was performed at the processing rates shown in Table 2-2 (unless otherwise specified, the cumulative processing rates under the standard conditions shown in each table). Further, before each cold rolling, an intermediate annealing heat treatment was performed at an intermediate annealing temperature shown in Table 2-2 (unless otherwise specified, an annealing temperature under standard conditions shown in each table).
- the comparative examples (wires) shown in Table 2-4 were also the same as the examples of the present invention of the wire, except that the alloy materials shown in Table 1-1 and Table 1-2 were used as the alloy materials. 2 and according to the process chart shown in FIG.
- Tables 2-1 to 2-4 collectively show the results of tests and evaluations of the examples of the present invention and comparative examples (plates and wires), along with the types of alloy materials and process conditions.
- a ⁇ value is obtained, and for a corresponding grain boundary having a ⁇ value of 3 or less and a corresponding grain boundary having a ⁇ value of 29 or less, a ratio of a predetermined corresponding grain interface area to a total grain interface area is calculated and obtained.
- the ratio (%) obtained was defined as the existence frequency.
- Tables 2-1 to 2-4 show the results of evaluation of the existence frequency of the corresponding grain boundaries in the examples of the present invention and comparative examples (plate materials and wire materials).
- FIG. 1a A schematic diagram of the test piece 1a is shown in FIG.
- the test piece of plate material was cut out of a test piece having a thickness (T) of 0.2 mm ⁇ width (W) of 1.5 mm ⁇ length (L) of 150 mm, and the test piece of wire was also used as described above.
- a test piece having a diameter ( ⁇ ) of 0.6 mm ⁇ length (L) of 150 mm was used.
- the plate and wire test pieces were appropriately adjusted to have a bending strain (load strain) of 2%, with a radius R (R) at one end, and a plastic plate 2a having a thickness of 2R.
- FIG. 3 (b) 1b is a test piece bent into a U-shape.
- the test piece in this state was held under artificial sweat (lactic acid 5% + sodium chloride 10% + water) as a moist environment defined by JIS B7285.
- the holding temperature was 55 ° C. and the holding time was 72 hours.
- 1c is a test piece extended from a U-shape.
- Stress corrosion resistance was evaluated according to the following three-stage criteria based on the results of fracture surface observation. Stress corrosion resistance “excellent” (A in the table): Area ratio of brittle fracture is 3% or less. Stress corrosion resistance “good” (B in the table): The area ratio of brittle fracture is more than 3% and less than 10%. Stress corrosion resistance “poor” (C in the table): area ratio of brittle fracture is 10% or more. Tables 2-1 to 2-4 show the results of evaluations relating to stress corrosion resistance of the examples of the present invention and comparative examples (sheets and wires) according to the evaluation criteria.
- FIG. 4 shows the results of observing three types of fracture surfaces with different area ratios of the brittle fracture surface.
- FIG. 4 (a) shows an SEM photograph (A evaluation in the table) of a fracture surface with a brittle fracture area ratio of 0% obtained from Example 1 of the present invention
- FIG. A SEM photograph of a fracture surface of 6% (C evaluation in the table) and FIG. 4C show an SEM photograph (C evaluation in the table) of a fracture surface obtained from Comparative Example 1 and having a brittle fracture area ratio of 100%.
- a 0.02 mm mesh is added vertically and horizontally to a fracture surface photograph obtained by observing and photographing the fracture surface subjected to the stress corrosion resistance test with a test scanning electron microscope (SEM).
- SEM test scanning electron microscope
- a mesh having both a fracture surface and a background is counted as one mesh regardless of brittleness and ductility, and is added to the number of meshes c.
- FIG. 4D shows a case where a mesh is put on the fracture surface of the photograph shown in FIG.
- the number of meshes a for brittle fracture was 214, the number of meshes b for ductile fracture was 86, and the number of meshes c having both brittle fracture surfaces and ductile fracture surfaces was 45.
- the area ratio of brittle fracture of all 50 fracture fracture surfaces after the stress corrosion test was calculated, and the value obtained by dividing the sum of the brittle fracture area ratios by the number of test specimens was 50.
- the area ratio of brittle fracture was taken.
- Area ratio of brittle fracture (d1 + d2 +... + D50) / 50
- each plate material is cut at a longitudinal section of the plate material passing through the center of the plate thickness of the cold rolled up plate material having a thickness of 0.2 mm to 1.6 mm at an arbitrary position in the longitudinal direction and divided into halves. Create a sample.
- the cutting length a (mm) is not particularly defined, but is 5 times or more the plate width.
- the surface of the sample was polished, etched with a ferric chloride aqueous solution, and a structure photograph was taken.
- the abundance ratio in the longitudinal section of crystal grains having a crystal grain size of (1/2) or more of the plate thickness is 80% (0.8 times) or more of the cross-sectional area, and the crystal grain size is half of the plate thickness. Assuming that the average value of the grain size of each crystal grain of the plate material (average grain size for grains satisfying this size) is not less than the plate thickness is “A”, the abundance ratio is 80% of the cross-sectional area.
- each wire is cut at an arbitrary position in the longitudinal direction at the longitudinal section of the wire passing through the center of the wire section of the cold drawn wire having a wire diameter of 0.63 mm to 1.79 mm and divided into halves. Create a sample.
- the cutting length a (mm) is not particularly defined, but is 5 times or more of the diameter.
- the cross section of the sample was polished, etched with a ferric chloride aqueous solution, and a structure photograph was taken. Similar to the plate material, the schematic diagram is shown in FIG. 1, and the method for obtaining the crystal grain size d (mm) is the same.
- the abundance ratio in the longitudinal section of crystal grains whose crystal grain size is (1/2) or more of the line diameter is 80% (0.8 times) or more of the cross-sectional area, and the crystal grain size is the radius of the line
- the average value of the grain size of each crystal grain of the wire rod as described above is not less than the diameter of the wire is “A”
- the abundance ratio is 80 of the cross-sectional area. %
- the average crystal grain size is 80% or more of the diameter of the line and less than the diameter as "B”
- the abundance ratio is less than 80% of the cross-sectional area
- Each of the average crystal grain sizes was less than 80% of the diameter of the line was judged to be inferior, and was judged as “C”.
- Tables 2-3 to 2-4 show the evaluation results regarding the crystal grain size of the examples of the present invention and the comparative examples (wires) according to the evaluation criteria.
- test conditions were a gauge distance of 25 mm, and while increasing the amount of distortion from 1% to 6% in increments of 1% for a while, the load of strain that repeatedly applied a predetermined strain at different levels and the unloading were repeated alternately.
- a tensile test was performed at a test speed of 2% / min.
- the strain load cycle here is 0 MPa ⁇ 1% ⁇ 0 MPa ⁇ 2% ⁇ 0 MPa ⁇ 3% ⁇ 0 MPa ⁇ 4% ⁇ 0 MPa ⁇ 5% ⁇ 0 MPa ⁇ 6% ⁇ Repeatedly loading and unloading the strain 6 times until the load strain of 6% is applied while increasing the strain at the time of loading by 1% each from 0% by alternately repeating the loading and unloading of 0 MPa and the load. It was. If the residual strain is 0.5% or less, the superelastic property is particularly excellent as "A”, and if the residual strain is 1.0% or less, the superelastic property is good as "B”, the residual Distortion is 1.
- Tables 2-1 to 2-4 show the evaluation results regarding the superelastic characteristics of the examples of the present invention and the comparative examples (sheets and wires) according to the evaluation criteria.
- FIG. 6 shows a stress-strain curve (SS curve).
- FIG. 6A shows an example of the present invention, in which the intermediate annealing temperature is 600 ° C., the cumulative cold working rate is 90%, and the rate of temperature increase from the ( ⁇ + ⁇ ) phase temperature range to the ⁇ single phase temperature range is 1.0 ° C. /
- the wrought material (plate material, Example 13 of this invention) which performed the annealing process of min is shown.
- FIG. 6B is a comparative example, in which the intermediate annealing temperature is 500 ° C., the cumulative cold working rate is 80%, and the rate of temperature increase from the ( ⁇ + ⁇ ) phase temperature range to the ⁇ single phase temperature range is 30 ° C./min.
- the wrought material (plate material, comparative example 1) which performed the annealing process of this is shown.
- Inventive Examples 1 to 30 are test results in the case of a plate material.
- Invention Examples 1 to 21 Invention Examples 1 to 16 are the test results when the manufacturing process of the plate material is changed with the representative composition, and Invention Examples 17 to 21 are composed of only the essential additive elements. It is a test result about the case where the composition of the alloy material which changed various quantity (composition ratio) is changed.
- Invention Examples 22 to 30 are invention examples of compositions of various alloy materials when an optional additive element (a trace additive element) is added to the essential additive element.
- Inventive Examples 31 to 53 are test results in the case of wire. Inventive Examples 31 to 34 and Inventive Examples 49 to 53 except for Inventive Examples 35 to 48 and Inventive Examples 49 to 53 change the manufacturing process in the representative composition.
- Examples 35 to 39 of the present invention are test results when the composition of the alloy material which is composed of only the essential additive elements and whose contents (composition ratio) are variously changed is changed.
- invention Examples 40 to 48 are invention examples of the composition of various alloy materials when an optional additive element (a trace additive element) is added to the essential additive element.
- the preferred production conditions of the present invention are set, and the composition of the material is also within the preferred range of the present invention.
- a material satisfying the predetermined corresponding grain boundary defined in the present invention is obtained, and it exhibits excellent stress corrosion resistance and excellent superelastic characteristics.
- the crystal grain sizes of the examples of the present invention are all 80% of the cross-sectional area of the cross section in which the abundance ratio of crystal grains that are equal to or greater than (1/2) the plate thickness or diameter of the wrought material in the cross section in the longitudinal direction. As described above, the average grain size also satisfies the scope of the present invention.
- Comparative Examples 1 to 2, 4 to 5, 8, 9 to 10, and 12 to 13 are inferior in stress corrosion resistance and superelastic characteristics because the frequency of the existence of a predetermined corresponding grain boundary does not satisfy the scope of the present invention. It was. Since Comparative Example 6 had too much Al content, Comparative Example 7 could not be hot-worked because Mn content was too low, and Comparative Examples 3 and 11 had processing cracks because the intermediate annealing temperature was too low. It was not possible to cold-work the required processing rate.
- Comparative Examples 1 and 9 since the rate of temperature increase from the ( ⁇ + ⁇ ) phase to the ⁇ phase in the shape memory heat treatment step was fast, the corresponding grain boundary was not sufficiently developed.
- Comparative Examples 2 and 10 the corresponding grain boundary did not develop because the annealing temperature in the intermediate annealing was high. Further, Comparative Examples 4 and 12 having a low cumulative processing rate in the thermomechanical process were the same, and the corresponding grain boundary did not develop, and the frequency of the corresponding grain boundary was low. Further, in Comparative Examples 5 and 13, since the Al content was as low as 2% with respect to the material composition, in Comparative Example 8, the corresponding grain boundary was not developed because the Mn content was as high as 24%. As for the crystal grain size of these comparative examples, there are materials that fall within the preferred range of the present invention due to the effects of temperature rise rate in the shape memory heat treatment process, annealing temperature in the heat treatment process, cumulative work rate, material composition, etc. I didn't.
- the present invention example is also applied to the wrought material of the present invention example having a preferred alloy composition of the present invention other than those described in Table 1-1 and Table 1-2. Similar results were obtained.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Surgery (AREA)
- Nursing (AREA)
- Biomedical Technology (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Ophthalmology & Optometry (AREA)
- Optics & Photonics (AREA)
- Conductive Materials (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
(1)Σ値3以下の対応粒界の存在頻度が35~75%の範囲にある実質的にβ単相からなる再結晶組織を有するCu-Al-Mn系合金材料からなる展伸材。
(2)Σ値3以下の対応粒界の存在頻度が35~75%の範囲にあり、さらにΣ値29以下の対応粒界の存在頻度が45~90%の範囲にある実質的にβ単相からなる再結晶組織を有するCu-Al-Mn系合金材料からなる展伸材。
(3)耐応力腐食性に優れる(1)又は(2)項に記載のCu-Al-Mn系合金材料からなる展伸材。
(4)前記展伸材が板材又は線材であって、粒径が展伸材の板厚又は線の直径の(1/2)以上である結晶粒の長手方向断面における存在比率が断面積の80%以上で、前記結晶粒の平均結晶粒径が展伸材の板厚又は線の直径の0.8~2.5倍の範囲内である(1)から(3)のいずれか1項に記載のCu-Al-Mn系合金材料からなる展伸材。
(5)超弾性特性に優れる(1)~(4)のいずれか1項に記載のCu-Al-Mn系合金材料からなる展伸材。
(6)前記展伸材が、5~10質量%のAl、5~20質量%のMnを含有し、必要に応じて、2質量%以下のNiを含有し、さらに必要に応じて、Co、Fe、Ti、V、Cr、Si、Nb、Mo、W、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn及びAgからなる群より選ばれた1種又は2種以上を合計で0.001~10質量%含有し、残部Cuと不可避的不純物からなる合金組成を有する(1)から(5)のいずれか1項に記載のCu-Al-Mn系合金材料からなる展伸材。
(7)(1)~(6)のいずれか1項に記載のCu-Al-Mn系合金材料の展伸材からなる陥入爪矯正具。
(8)(1)~(6)のいずれか1項に記載のCu-Al-Mn系合金材料の展伸材からなる外反母趾補正装具。
(9)(1)~(6)のいずれか1項に記載のCu-Al-Mn系合金材料の展伸材からなる構造部材。
(10)(1)~(6)のいずれか1項に記載のCu-Al-Mn系合金材料の展伸材からなるメガネフレーム。
(11)(1)~(6)のいずれか1項に記載のCu-Al-Mn系合金材料の展伸材からなるアクチュエータ。
(12)(1)~(6)のいずれか1項に記載のCu-Al-Mn系合金材料の展伸材からなるコネクター。
ここで、超弾性特性に優れるとは、所定の負荷歪又は負荷応力を与えた後、荷重を除荷した後に残留する歪みを残留歪みと言うがこれが小さいことを言い、この残留歪が小さいほど望ましい。本発明においては、6%変形後の残留ひずみが1.0%未満、好ましくは0.5%未満であることをいう。
また、実質的にβ単相からなる再結晶組織を有するとは、再結晶組織中でβ相の占める割合が98%以上であることをいう。
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
本発明のCu-Al-Mn系合金材料とは、Cu-Al-Mn系合金を塑性加工した材料を言う。本発明において、Cu-Al-Mn系合金材料の展伸材とは、圧延、押出、引抜などの加工と熱処理により得られる加工後の製品の断面形状が一定断面形状を有する加工を行った板材、棒材、線材、管材などをいい、製品の最終加工段階である冷間加工段階における鍛造などの3次元加工を含まないものである。
本発明のCu-Al-Mn系合金材料の展伸材においては、Σ値が3以下、すなわちΣ1~Σ3、の対応粒界の存在頻度が35%以上75%以下であり、この存在頻度が40%以上75%以下であることが好ましい。
また、本発明のCu-Al-Mn系合金材料の展伸材においては、Σ値が29以下、すなわちΣ1~Σ29、の対応粒界の存在頻度が45%以上90%以下であることが好ましく、50%以上90%以下であることがより好ましく、この存在頻度が55%以上90%以下であることがさらに好ましい。
対応粒界(coincidence site lattice grain boundary、対応格子粒界、CSL粒界ともいう)とは、結晶粒界を挟んで隣接した2つの結晶同士の片方を結晶軸の周りに回転したときに、一方の結晶粒の格子点の一部が隣接するもう一方の結晶粒の格子点にも位置して、両方の結晶に共通する副格子を構成するような粒界をいう。本発明において対応粒界とは、以下に説明するΣ値が29以下である粒界をいう。これに対して、Σ値が29を超える粒界をランダム粒界という。本発明における対応粒界としては、Σ値が3以下である低Σ値の対応粒界の存在頻度が高いことが好ましい。Σ値については、後で詳述する。
2つの結晶格子を仮想的に重ねると、特定の方位関係にある結晶では全体の格子の何割かが一致し、それ自体が超格子をつくる。この一致点格子の数と結晶格子点の数の比の逆数をΣ値という。なお、傾角が15°未満の結晶粒をΣ値1とする。
EBSD(Electron Back-scattering Diffraction Pattern:後方散乱電子回折像)測定装置によって、銅合金材料の結晶性格、すなわち結晶方位分布(粒界マップ)を測定、解析することで、対応粒界の状態を求める。
約60~70°傾斜した試料に電子線を照射すると、試料表面から約50nm以下の領域の各結晶面で回折電子線が作られる。この後方散乱電子線回折を解析することで結晶性試料の方位解析の情報が得られる。
隣接する2つの結晶粒同士の方位のずれ角度が2°以上である場合に、粒界である、すなわち異なる結晶方位を有すると判断する。
本発明においては、対応粒界であるかどうかを、SEM-EBSDで測定する。その具体的な測定方法の例は、後述の実施例で述べるとおりである。
対応粒界の測定は、後述する対応粒界測定用試験片を、導電性樹脂に埋め込み、振動式バフ仕上げ(研磨)する。EBSD法により、約400μm×250μmの測定領域で、スキャンステップが6μmの条件で測定を行う。OIMソフトウェア(商品名、TSL社製)を用い、全測定結果から得られた結晶性格、結晶配向を粒界マップ(例えば、図5参照)として得る。以下に説明するとおり、各々の結晶粒についてΣ値を求め、所定の対応粒界として、Σ値が3以下の対応粒界と、Σ値が29以下の対応粒界について、存在頻度を求める。
原点OとしたR方向に回転し、P点が対応格子とした場合、対応格子の現れる方位つまり回転軸(h k l)は、R2=(h2+k2+l2)である。対応格子点Pの座標を(x y z)、回転角をθ(°)とすると、回転角は、
θ=2tan-1(Ry/x)
と表わされる。対応粒界は「結晶の単位胞に対する対応格子の単位胞の体積の割合の逆数」で定義されるΣ値で表わすので、
Σ=x2+R2y2
と表わすことができる。
(参考文献)「セラミック材料の物理」 日刊工業新聞社 幾原雄一[編著] P83-86
本発明において、対応粒界存在頻度(対応粒界頻度ともいう)とは、全粒界面積に対する着目した所定の対応粒界面積の比(百分率)をいう。存在頻度1が100%である(図5のCSLチャート参照)。
本発明の展伸材を構成するCu-Al-Mn系銅合金材料中には、結晶粒径が小さい結晶粒がわずかに存在してもよいが、大半は結晶粒径が大きい結晶粒である。
ここで、結晶粒径が大きい結晶粒とは、その結晶粒径が展伸材の板材又は線材における板厚又は線の直径の(1/2)以上である結晶粒をいう。本発明における展伸材では、いずれの材料においても、長手方向断面における展伸材の板厚または線の直径の(1/2)以上である結晶粒の存在比率がいずれも前記断面の断面積の80%以上であることが好ましい。ここで、結晶粒径の測定を行う長手方向断面とは、板材の板厚中心又は線材の円断面の中心を通る長手方向断面をいう。さらに、前記展伸材断面の中心を通過する展伸材の長手方向断面における粒径が展伸材の板厚又は線の直径の(1/2)以上である結晶粒の平均結晶粒径が展伸材の板厚又は線の直径の0.8~2.5倍の範囲内であることが好ましい。さらに好ましくは、板厚又は線の直径以上である。
ここで、所定サイズ以上の結晶粒の平均粒径を規定することにより、組織的な特徴を規定する。
本発明においては、線(棒)材や板材などの展伸材において平均結晶粒径をこのように制御することで、超弾性特性を安定させることができる。
本発明のCu-Al-Mn系合金材料からなる展伸材は、再結晶組織を有する材料である。
さらに、本発明のCu-Al-Mn系合金材料からなる展伸材は、実質的にβ単相からなる。ここで、実質的にβ単相からなるとは、β相以外の例えばα相などの存在割合が2%未満であることをいう。例えば、Cu-8.1質量%Al-11.1質量%Mn合金は、900℃ではβ(BCC)単相であるが、700℃以下ではα(FCC)相+β相の2相である。
本発明のCu-Al-Mn系合金材料からなる展伸材は、高温でβ相単相に、低温でβ+αの2相組織になる銅合金からなり、少なくともAl及びMnを含有している銅基合金である。
本発明のCu-Al-Mn系合金材料からなる銅基合金材料の展伸材を得るための好ましい製造方法とその製造条件について説明する。例えば、下記のような製造工程を挙げることができる。また、好ましい製造プロセスの例を図2(a)及び図2(b)に示した。
製造工程全体の中で、特に、形状記憶熱処理の最初に(α+β)相温度域まで加熱して一旦(α+β)相温度域に保持することと、これに加えて、形状記憶熱処理における(α+β)相温度域からβ単相温度域までの昇温速度を所定の遅い範囲に制御する(本特許では、これを徐昇温ともいう)ことにより、安定的に良好な超弾性特性を奏し、かつ、耐応力腐食性が良好なCu-Al-Mn系合金材料の展伸材が得られる。
溶解・鋳造[工程1]、熱間圧延又は熱間鍛造による熱間加工[工程2]の後、400~600℃で1分~120分の中間焼鈍[工程3]と、その後に、加工率30%以上の冷間圧延又は冷間伸線による冷間加工[工程4]とを行う。ここで、中間焼鈍[工程3]と冷間加工[工程4]とはこの順で1回ずつ行ってもよく、この順で2回以上繰り返して行ってもよい。その後、形状記憶熱処理[工程5]を行った後に、時効処理[工程6]を行う。また、冷間加工度によっては、中間焼鈍[工程3]を省略することもできる。
また、前記急冷[工程5-9]では、いわゆる焼き入れを行う。この急冷は、例えば、前記形状記憶熱処理に付したCu-Al-Mn系合金材料の展伸材を冷却水中に投入する水冷によって行うことができる。
中間焼鈍[工程3]と冷間加工[工程4]を繰り返して行う場合、冷間加工[工程4]での加工率は、全加工を通じての加工率(以下、累積加工率ともいう)が所定の30%以上の加工率となっていることが望ましい。
中間焼鈍[工程3]は、400~600℃で1分~120分とする。この中間焼鈍温度はこの範囲内でより低い温度とすることが好ましい。好ましくは450~550℃、特に好ましくは450~500℃とする。焼鈍時間は1分~120分が好ましく、試料サイズの影響を考慮してもφ20mmの丸棒ならば120分で十分である。なお、中間焼鈍[工程3]を省略することができることは上記のとおりである。
冷間加工[工程4]は加工率30%以上とすることが好ましい。好ましくは40%以上、さらに好ましくは50%以上~95%以下、特に好ましくは60%以上~90%以下の加工率である。ここで、加工率は次の式で定義される値である。
加工率(%) = (A1-A2)/A1 × 100
A1は冷間圧延もしくは冷間伸線などの冷間加工前の断面積(mm2)であり、A2は冷間圧延もしくは冷間伸線などの冷間加工後の断面積(mm2)である。
前記熱処理[工程5-1]で加熱する際には、[工程5-2]の(α+β)相温度域に保持する温度域に昇温により到達すれば良いので、この際の昇温速度には、特に制限はない。前記保持[工程5-2]においては、(α+β)相温度域での保持時間は好ましくは20分~120分、さらに好ましくは30分~120分である。このように、(α+β)相温度域での保持を行い、この保持時間を十分長くすることが必要で、保持時間を長くすることで、結果として対応粒界の形成を促進することができる。
前記保持[工程5-4]においては、β単相温度域での保持時間は好ましくは2分~120分、さらに好ましくは10分~120分である。
急冷[工程5-9]時の冷却速度は、通常30℃/秒以上、好ましくは100℃/秒以上、さらに好ましくは1000℃/秒以上とする。
図2(b)に示した製造工程は、形状記憶熱処理[工程5]が、以下に述べる点で図2(a)に示した製造工程とは異なる以外は、溶解・鋳造[工程1]、熱間加工[工程2]、中間焼鈍[工程3]と冷間加工[工程4](この順で1回ずつ又はこの順で2回以上繰り返し)、及び最後の時効処理[工程6]は、前記図2(a)に示した製造工程と同様であり、その好ましい加工熱処理条件も同様である。なお、中間焼鈍[工程3]を省略することができることは上記と同様である。
すなわち、前記保持[工程5-4]の後、β単相温度域から(α+β)相温度域まで冷却により降温する冷却処理[工程5-5]、(α+β)相温度域での保持[工程5-6]、(α+β)相温度域からβ単相温度域まで所定の遅い昇温速度で加熱(徐昇温)する熱処理[工程5-7]、β単相温度域での保持[工程5-8]を施した後に、前記急冷[工程5-9]を行う。
熱処理[工程5-7]においては、(α+β)相温度域からβ単相温度域まで加熱する昇温速度を前記と同様の徐昇温とすることが好ましく、その好ましい条件も同様である。
この製造プロセスの例においては、前記冷却処理[工程5-5]における徐冷と熱処理[工程5-7]における徐昇温とにより、結晶粒が粗大化する。この為、対応粒界と超弾性を好ましく制御することができると考えられる。
冷却[工程5-5]時の徐冷速度は、20℃/分以下、好ましくは10℃/分以下、さらに好ましくは5℃/分以下である。この下限値には特に制限はないが、通常1℃/分以上とする。
前記保持[工程5-6]においては、(α+β)相温度域での保持時間は好ましくは5分~120分、さらに好ましくは30分~120分である。
熱処理[工程5-7]における昇温速度は、20℃/分以下、好ましくは10℃/分以下、さらに好ましくは5℃/分以下である。この下限値には特に制限はないが、通常1℃/分以上とする。
前記保持[工程5-8]においては、β単相温度域での保持時間は好ましくは1分~120分、さらに好ましくは30分~120分である。
本発明のCu-Al-Mn系合金材料の展伸材は、以下の物性を有する。超弾性特性として、6%変形後の残留歪は、通常1.0%未満、好ましくは0.5%未満である。
本発明のCu-Al-Mn系合金材料の展伸材の形状には特に制限はなく、例えば板、線(棒)など種々の形状とすることができる。これらのサイズにも特に制限はない。例えば、板材であれば厚さ0.1mm~15mmのサイズであってもよい。また、線(棒)材であれば直径0.1mm~50mmであってもよく、用途によっては直径8mm~16mmのサイズとしてもよい。また、本発明の展伸材は、中空状で管壁を有する管などの形状であってもよい。
本発明のCu-Al-Mn系合金材料の展伸材は、耐応力腐食性に優れることから、陥入爪矯正具、外反母趾補正装具、構造部材、めがねフレーム、アクチュエータ、コネクターなどとして好適に用いることができ、本発明のCu-Al-Mn系合金材料の展伸材からなる陥入爪矯正具、外反母趾補正装具、構造部材、めがねフレーム、アクチュエータ、コネクターが得られる。
板材及び線材(棒材)の各サンプル(供試材)は以下の条件で作製した。
表1-1及び表1-2に示す組成を与える銅合金材料を得るために、純銅、純Al、純Mn、及び他の添加元素の原料を高周波誘導炉で溶解した。
ここで、板厚2mmの板材を、板厚0.2mm~1.6mmの所定板厚まで圧延する際のリダクション(累積加工率)は、20%~90%であり、この範囲で、冷間圧延のリダクションを決定した。表2-1に記載したとおり、本発明例3では、中間焼鈍[工程3]は省略して行わなかった。
なお板材の形状記憶処理前の[工程3]、[工程4]の加工熱処理工程は、表2-1、表2-2に示すように、焼鈍温度500℃、冷間圧延の累積加工率80%を標準工程とし、焼鈍温度を350℃から700℃、冷間圧延の累積加工率を20%~90%の所定範囲で変更した製造条件のサンプルも作製した。
なお線材の形状記憶処理前の[工程3]、[工程4]の加工熱処理工程は、表2-3、表2-4に示すように、焼鈍温度500℃、冷間圧延の累積加工率80%を標準工程とし、焼鈍温度を350℃から700℃、冷間圧延の累積加工率を20%~90%の所定範囲で変更した製造条件のサンプルも作製した。
引張試験、応力腐食割れ性の試験、EBSDによる対応粒界解析は、図2(a)[工程6]に示すように所定長さに調整した板材に時効処理を施した。その後、板厚1.6mm、1.4mm、0.8mm、0.4mm、0.2mmの5種の板材を、機械加工と研磨により板厚0.2mmの一定板厚に揃えて、板厚0.2mm×幅20mm×長さ150mmの試験片とした。なお応力腐食割れ性の試験には上記試験片を幅1.5mmに切断した試験片を用いた。
結晶粒径の測定は、冷間加工度の影響を受けるため、上記時効処理を施した材料である板厚1.6mm、1.4mm、0.8mm、0.4mm、0.2mm×幅20mm×長さ150mmの試験片をそのまま用いた。
引張試験、応力腐食割れ性の試験、EBSDによる対応粒界解析は、図2(a)[工程6]に示すように所定長さに調整した板材に時効処理を施した。その後、線径1.79mm、1.68mm、1.26mm、0.88mm、0.63mmの5種の線材を、センタレス研磨後、バフ研磨にて直径0.60mmに揃えて、線径0.6mm×長さ150mmの試験片とした。
結晶粒径の測定は、冷間加工度の影響を受けるため、上記時効処理を施した材料である線径1.79mm、1.68mm、1.26mm、0.88mm、0.63mm×長さ150mmの試験片をそのまま用いた。
超弾性特性の評価は、引張試験による応力負荷-除荷を行って、応力-歪曲線(S-Sカーブ)を求め、残留歪を求めて評価した。引張試験は、1つの供試材から5本(N=5)の試験片を切り出して試験した。以下の試験結果で、残留ひずみは5本の平均値である。
表2-4に記載の比較例(線材)についても、前記線材の本発明例と同様にして、但し、合金材料としては表1-1と表1-2に示す合金材料を表2-4のとおり用いて、かつ、図2(a)に示したプロセス・チャートに従って、但し、中間焼鈍の温度と時間、冷間加工の加工率(複数回行っていれば累積加工率)、(α+β)相温度域での保持時間、(α+β)相温度域からβ単相温度域への昇温速度、β単相温度域での保持時間は、表2-4に示したように変更して実施して得た。ここで、冷間圧延は、表2-4に記載の加工率(特に明記のないものは、各表に示した標準条件の累積加工率)で冷間圧延を行った。また、各冷間圧延の前に、表2-4に記載の中間焼鈍温度(特に明記のないものは、各表に示した標準条件の焼鈍温度)で中間焼鈍熱処理を行った。
以下に各試験及び評価の方法について詳述する。
また、表2-1~表2-4に、本発明の実施例、比較例(板材、線材)の試験及び評価の結果を、合金材料の種類とプロセス条件と並べてまとめて示す。
試験片中心部を25mm切断して導電性樹脂に埋め込み、バフ研磨した後に化学研磨で仕上げた。EBSD法により、約400μm×250μmの測定領域で、スキャンステップが6μmの条件で測定を行った。OIMソフトウェア(商品名、TSL社製)を用い、全測定結果から得られた結晶性格、結晶配向を粒界マップ(例えば、図5参照)として得た。
各々の結晶粒についてΣ値を求め、Σ値が3以下の対応粒界と、Σ値が29以下の対応粒界について、全粒界面積に対する所定の対応粒界面積の比を計算し、得られた比率(%)を存在頻度とした。本発明の実施例、比較例(板材、線材)の対応粒界の存在頻度評価の結果を、表2-1~表2-4に示す。
耐応力腐食性は、以下の試験によって評価した。
試験片1aの模式図を図3(a)示す。板材の試験片は、前記のように、厚さ(T)0.2mm×幅(W)1.5mm×長さ(L)150mmの試験片を切り出し、線材の試験片も、前記のように、線径(φ)0.6mm×長さ(L)150mmの試験片を用いた。
この板材および線材の試験片に、曲げ歪(負荷歪)が2%になるように適宜調整した、片端に半径R(アール)が付いて、板厚が2Rのプラスチック製の板2aを這わせ、プラスチックバンド2bで縛りU字に曲げた(図3(b))。図中、1bは、U字に曲げられた試験片である。
この状態の試験片を、JIS B7285で規定する湿潤環境下として人工汗(乳酸5%+塩化ナトリウム10%+水)下で保持した。保持温度は55℃、保持時間は72hrとした。耐応力腐食性試験は各供試材について50本(N=50)行った。湿潤環境保持が終了した後、試験片の両端を把持具3、3で把持し、破断まで試験片を引っ張った(図3(c))。図中、1cは、U字状から伸ばされた試験片である。破断後の試験片の破断面を、走査型電子顕微鏡(SEM)下で、60倍の倍率(×60)で観察した。耐応力腐食性は破面観察の結果により、次の3段階の基準によって評価した。
耐応力腐食性「優」(表中、A):脆性破壊の面積率3%以下。
耐応力腐食性「良」(表中、B):脆性破壊の面積率3%を超え10%未満。
耐応力腐食性「劣」(表中、C):脆性破壊の面積率10%以上。
この評価基準に従って、本発明の実施例、比較例(板材、線材)についての耐応力腐食性に関する評価の結果を、表2-1~表2-4に示す。
なお、粒界破壊(脆性破壊)と延性破壊は、SEM観察により粒界の形態とディンプルの存在等により区別した。
破断面の例として、延性破面から脆性破面への遷移の状態を示すために、図4に脆性破面の面積率が異なる3種の破面を観察した結果を示す。
図4(a)に本発明例1から得た脆性破壊面積率0%の破断面のSEM写真(表中A評価)、図4(b)に比較例2から得た脆性破壊面積率68.6%の破断面のSEM写真(表中C評価)、図4(c)に比較例1から得た脆性破壊面積率100%の破断面のSEM写真(表中C評価)を示す。
比較例2を用いて、具体的な脆性破壊の面積率の測定方法を説明する。先ず、耐応力腐食性試験を行った破壊面を試験走査型電子顕微鏡(SEM)で観察・撮影した破壊面写真に縦横に0.02mmのメッシュを入れる。脆性破壊面のメッシュ数(aとする)、延性破壊面のメッシュ数(bとする)、脆性破壊面と延性破壊面が両方存在するメッシュ数(cとする)を数える。なお破壊面と背景の両方が存在するメッシュについては脆性、延性問わず1メッシュとして数えて前記cのメッシュ数に合算する。数えた各々のメッシュ数から脆性破壊面積率(dとする)は以下の計算式で算出することにした。
d =(a+c×0.5)/(a+b+c)
図4(d)は図4(b)の写真の破壊面にメッシュを入れたものである。
脆性破壊のメッシュ数aは214、延性破壊のメッシュ数bは86、脆性破壊面と延性破壊面が両方存在するメッシュ数cは45であった。
従って、この試験片の脆性破壊面積率は
(214+45×0.5)/(214+86+45)=68.6(%)となる。
各本発明例と比較例の条件毎に耐応力腐食試験後の引張破壊面50本全ての脆性破壊の面積率を算出し、各脆性破壊面積率の総和を試験片数50で割った値を脆性破壊の面積率とした。
脆性破壊の面積率=(d1+d2+・・・・+d50)/50
板材や線材の結晶粒径は、板厚や線径の影響を大きく受けるため、最終冷間加工上がり材の板厚または線径を維持した状態で、結晶粒径を測定する必要がある。そこで、各板材を長手方向の任意の位置で板厚0.2mm~1.6mmの冷間圧延上り材の板材断面の板厚中心を通過する板材の長手方向断面にて切断して半割として試料を作成する。切断長さa(mm)は特に定めないが、板幅の5倍以上とした。試料の表面を研磨し、塩化第二鉄水溶液でエッチングして組織写真を撮影した。その模式図を図1に示す。断面の長手方向の端線((1)および(3))と中心線((2))が結晶粒界と交差する点の個数をnとすると、結晶粒径d(mm)は次式から求められる。
d=3×a/n
この評価基準に従って、本発明の実施例、比較例(板材)の結晶粒径に関する評価の結果を、表2-1~表2-2に示す。
板材や線材の結晶粒径は、板厚や線径の影響を大きく受けるため、最終冷間加工上がり材の板厚または線径を維持した状態で、結晶粒径を測定する必要がある。そこで、各線材を長手方向の任意の位置で、線径0.63mm~1.79mmの冷間伸線上り材の線材断面の中心を通過する線材の長手方向断面にて切断して半割として試料を作成する。切断長さa(mm)は特に定めないが、直径の5倍以上とした。試料の断面を研磨し、塩化第二鉄水溶液でエッチングして組織写真を撮影した。前記板材と同様に、その模式図は図1で表わされ、結晶粒径d(mm)の求め方も同様である。
この評価基準に従って、本発明の実施例、比較例(線材)の結晶粒径に関する評価の結果を、表2-3~表2-4に示す。
引張り試験を行って、応力-歪曲線(S-Sカーブ)を求め、残留歪を求めて評価した。各供試材から長さ150mmの5本の試験片を切り出して試験に供した。6%変形後の残留歪を応力-歪曲線(S-Sカーブ)から求めた。評価基準は以下のとおりである。
残留歪が0.5%以下であった場合を超弾性特性が特に優れるとして「A」、残留歪が1.0%以下であった場合を超弾性特性が良好であるとして「B」、残留歪が1.%を超えて大きかった場合を超弾性特性が不合格であったとして「C」と、それぞれ判断した。
この評価基準に従って、本発明の実施例、比較例(板材、線材)の超弾性特性に関する評価の結果を、表2-1~表2-4に示す。
また、本発明例31~53は、線材の場合の試験結果で、本発明例35~48を除いた本発明例31~34ならびに本発明例49~53は、代表組成における製造プロセスを変化させた場合の試験結果である。本発明例35~39は必須添加元素のみからなりその含有量(組成比)を種々変更した合金材料の組成を変化させた場合についての試験結果である。本発明例40~48は、必須添加元素に任意添加元素(微量添加元素)を加えた場合の種々の合金材料の組成についての発明例である。
これら比較例材の結晶粒径についても、形状記憶熱処理工程での昇温速度、加工熱処理工程での焼鈍温度、累積加工率、材料組成などの影響で、本発明の好ましい範囲に入る材料は存在しなかった。
Claims (12)
- Σ値3以下の対応粒界の存在頻度が35~75%の範囲にある実質的にβ単相からなる再結晶組織を有するCu-Al-Mn系合金材料からなる展伸材。
- Σ値3以下の対応粒界の存在頻度が35~75%の範囲にあり、さらにΣ値29以下の対応粒界の存在頻度が45~90%の範囲にある実質的にβ単相からなる再結晶組織を有するCu-Al-Mn系合金材料からなる展伸材。
- 耐応力腐食性に優れる請求項1又は請求項2に記載のCu-Al-Mn系合金材料からなる展伸材。
- 前記展伸材が板材又は線材であって、粒径が展伸材の板厚又は線の直径の(1/2)以上である結晶粒の長手方向断面における存在比率が断面積の80%以上で、前記結晶粒の平均結晶粒径が展伸材の板厚又は線の直径の0.8~2.5倍の範囲内である請求項1から請求項3のいずれか1項に記載のCu-Al-Mn系合金材料からなる展伸材。
- 超弾性特性に優れる請求項1~請求項4のいずれか1項に記載のCu-Al-Mn系合金材料からなる展伸材。
- 前記展伸材が、5~10質量%のAl、5~20質量%のMnを含有し、必要に応じて、2質量%以下のNiを含有し、さらに必要に応じて、Co、Fe、Ti、V、Cr、Si、Nb、Mo、W、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn及びAgからなる群より選ばれた1種又は2種以上を合計で0.001~10質量%含有し、残部Cuと不可避的不純物からなる合金組成を有する請求項1から請求項5のいずれか1項に記載のCu-Al-Mn系合金材料からなる展伸材。
- 請求項1~請求項6のいずれか1項に記載のCu-Al-Mn系合金材料の展伸材からなる陥入爪矯正具。
- 請求項1~請求項6のいずれか1項に記載のCu-Al-Mn系合金材料の展伸材からなる外反母趾補正装具。
- 請求項1~請求項6のいずれか1項に記載のCu-Al-Mn系合金材料の展伸材からなる構造部材。
- 請求項1~請求項6のいずれか1項に記載のCu-Al-Mn系合金材料の展伸材からなるメガネフレーム。
- 請求項1~請求項6のいずれか1項に記載のCu-Al-Mn系合金材料の展伸材からなるアクチュエータ。
- 請求項1~請求項6のいずれか1項に記載のCu-Al-Mn系合金材料の展伸材からなるコネクター。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14825828.8A EP3023508B1 (en) | 2013-07-16 | 2014-07-10 | Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor |
CN201480040263.3A CN105408509B (zh) | 2013-07-16 | 2014-07-10 | 抗应力腐蚀性优异的由Cu-Al-Mn系合金材料构成的伸展材及其用途 |
KR1020167001505A KR102237789B1 (ko) | 2013-07-16 | 2014-07-10 | 내응력부식성이 우수한 Cu-Al-Mn계 합금재료로 이루어지는 전신재와 그 용도 |
US14/997,185 US10400311B2 (en) | 2013-07-16 | 2016-01-15 | Wrought material comprising Cu—Al—Mn-based alloy excellent in stress corrosion resistance and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-148058 | 2013-07-16 | ||
JP2013148058A JP5795030B2 (ja) | 2013-07-16 | 2013-07-16 | 耐応力腐食性に優れるCu−Al−Mn系合金材料からなる展伸材 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/997,185 Continuation US10400311B2 (en) | 2013-07-16 | 2016-01-15 | Wrought material comprising Cu—Al—Mn-based alloy excellent in stress corrosion resistance and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015008689A1 true WO2015008689A1 (ja) | 2015-01-22 |
Family
ID=52346152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/068400 WO2015008689A1 (ja) | 2013-07-16 | 2014-07-10 | 耐応力腐食性に優れるCu-Al-Mn系合金材料からなる展伸材とその用途 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10400311B2 (ja) |
EP (1) | EP3023508B1 (ja) |
JP (1) | JP5795030B2 (ja) |
KR (1) | KR102237789B1 (ja) |
CN (1) | CN105408509B (ja) |
WO (1) | WO2015008689A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015137283A1 (ja) * | 2014-03-14 | 2015-09-17 | 古河電気工業株式会社 | Cu-Al-Mn系合金材とその製造方法、及びそれを用いた棒材または板材 |
CN110788340A (zh) * | 2019-11-13 | 2020-02-14 | 中南大学 | 一种4d打印铜基形状记忆合金的制备方法及4d打印铜基形状记忆合金 |
CN113718130A (zh) * | 2020-05-26 | 2021-11-30 | 沈阳铸造研究所有限公司 | 一种铸态高强度锰铝青铜合金及其制备方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105568019B (zh) * | 2016-02-24 | 2017-05-17 | 河北工业大学 | 一种CuAlMn形状记忆合金晶粒的细化方法 |
CN105690040B (zh) * | 2016-04-06 | 2018-04-03 | 台州市椒江永固船舶螺旋桨厂 | 螺旋桨浇注、打磨工艺及其铜合金配方 |
CN106191512A (zh) * | 2016-08-30 | 2016-12-07 | 芜湖楚江合金铜材有限公司 | 一种稀土抗压紧耐磨的铜合金线材及其制备方法 |
CN106834796A (zh) * | 2017-01-25 | 2017-06-13 | 广东广信科技有限公司 | 一种用于配电柜的高强度铜合金材料及其制备方法 |
CN107123811B (zh) * | 2017-04-11 | 2020-01-10 | 华南理工大学 | 双尺度多孔铜铝锰形状记忆合金复合材料及其制备方法与应用 |
CN109207791B (zh) | 2017-07-03 | 2021-08-10 | 比亚迪股份有限公司 | 一种Cu基微晶合金及其制备方法 |
JP7497007B2 (ja) * | 2019-09-25 | 2024-06-10 | 国立大学法人東北大学 | Cu-Al-Mn系合金 |
CN111139373B (zh) * | 2020-02-10 | 2021-11-05 | 江西理工大学 | 高强亚稳态弹性铜合金及其制备方法 |
DE102020002885A1 (de) * | 2020-05-14 | 2021-11-18 | Wieland-Werke Aktiengesellschaft | Kupfer-Mangan-Aluminium-Eisen-Knetlegierung |
CN113088756B (zh) * | 2021-03-23 | 2022-04-15 | 宁波金田铜业(集团)股份有限公司 | 一种锡磷青铜带材及其制备方法 |
CN113234957B (zh) * | 2021-04-27 | 2022-04-01 | 中机智能装备创新研究院(宁波)有限公司 | 一种铜合金焊丝、制备方法及应用 |
CN113862508B (zh) * | 2021-09-29 | 2022-09-02 | 哈尔滨工程大学 | 一种CuAlMnCoNi形状记忆合金及其制备方法 |
CN114196863B (zh) * | 2021-11-14 | 2022-07-12 | 中国长江三峡集团有限公司 | 合金粉末材料、其制备方法与在耐海水腐蚀的激光熔覆材料中的应用 |
CN116453628A (zh) * | 2023-03-31 | 2023-07-18 | 佛山科学技术学院 | 一种晶体界面的编码方法、系统、终端设备以及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001020026A (ja) * | 1999-07-08 | 2001-01-23 | Kiyohito Ishida | 形状記憶特性及び超弾性を有する銅系合金、それからなる部材ならびにそれらの製造方法 |
JP2009263784A (ja) * | 2008-03-31 | 2009-11-12 | Nippon Mining & Metals Co Ltd | 導電性ばね材に用いられるCu−Ni−Si系合金 |
JP2011168819A (ja) | 2010-02-17 | 2011-09-01 | Hitachi-Ge Nuclear Energy Ltd | オーステナイト系ステンレス鋼、その製造方法 |
JP5144834B2 (ja) | 2010-04-16 | 2013-02-13 | 株式会社古河テクノマテリアル | 爪保持部の繰り返しの応力付加に対する耐久性に優れる陥入爪矯正具、陥入爪矯正具の爪保持部の繰り返しの応力付加に対する耐久性の向上方法 |
WO2013031841A1 (ja) * | 2011-08-29 | 2013-03-07 | 古河電気工業株式会社 | 銅合金材料およびその製造方法 |
JP2013087908A (ja) * | 2011-10-20 | 2013-05-13 | Kozo Gijutsu Kenkyukai | 制振部材 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5144834B2 (ja) | 1971-12-15 | 1976-12-01 | ||
US8137297B2 (en) * | 2006-02-14 | 2012-03-20 | Tohoku University | Corrective device for deformed nails |
JP5367999B2 (ja) * | 2008-03-31 | 2013-12-11 | Jx日鉱日石金属株式会社 | 電子材料用Cu−Ni−Si系合金 |
JP5837487B2 (ja) * | 2010-05-31 | 2015-12-24 | 一般社団法人日本銅センター | 銅系合金及びそれを用いた構造材 |
CN101985729B (zh) * | 2010-11-18 | 2012-11-07 | 重庆大学 | 一种细化镁合金板材晶粒的方法 |
-
2013
- 2013-07-16 JP JP2013148058A patent/JP5795030B2/ja active Active
-
2014
- 2014-07-10 CN CN201480040263.3A patent/CN105408509B/zh active Active
- 2014-07-10 WO PCT/JP2014/068400 patent/WO2015008689A1/ja active Application Filing
- 2014-07-10 KR KR1020167001505A patent/KR102237789B1/ko active IP Right Grant
- 2014-07-10 EP EP14825828.8A patent/EP3023508B1/en active Active
-
2016
- 2016-01-15 US US14/997,185 patent/US10400311B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001020026A (ja) * | 1999-07-08 | 2001-01-23 | Kiyohito Ishida | 形状記憶特性及び超弾性を有する銅系合金、それからなる部材ならびにそれらの製造方法 |
JP2009263784A (ja) * | 2008-03-31 | 2009-11-12 | Nippon Mining & Metals Co Ltd | 導電性ばね材に用いられるCu−Ni−Si系合金 |
JP2011168819A (ja) | 2010-02-17 | 2011-09-01 | Hitachi-Ge Nuclear Energy Ltd | オーステナイト系ステンレス鋼、その製造方法 |
JP5144834B2 (ja) | 2010-04-16 | 2013-02-13 | 株式会社古河テクノマテリアル | 爪保持部の繰り返しの応力付加に対する耐久性に優れる陥入爪矯正具、陥入爪矯正具の爪保持部の繰り返しの応力付加に対する耐久性の向上方法 |
WO2013031841A1 (ja) * | 2011-08-29 | 2013-03-07 | 古河電気工業株式会社 | 銅合金材料およびその製造方法 |
JP2013087908A (ja) * | 2011-10-20 | 2013-05-13 | Kozo Gijutsu Kenkyukai | 制振部材 |
Non-Patent Citations (1)
Title |
---|
YUICHI IKUHARA: "Ceramic-Material Physics", THE NIKKAN KOGYO SHIMBUN, LTD., pages: 83 - 86 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015137283A1 (ja) * | 2014-03-14 | 2015-09-17 | 古河電気工業株式会社 | Cu-Al-Mn系合金材とその製造方法、及びそれを用いた棒材または板材 |
US11118255B2 (en) | 2014-03-14 | 2021-09-14 | Furukawa Electric Co., Ltd. | Cu-Al-Mn-based alloy material, method of producing the same, and rod material or sheet material using the same |
CN110788340A (zh) * | 2019-11-13 | 2020-02-14 | 中南大学 | 一种4d打印铜基形状记忆合金的制备方法及4d打印铜基形状记忆合金 |
CN110788340B (zh) * | 2019-11-13 | 2021-11-16 | 中南大学 | 一种4d打印铜基形状记忆合金的制备方法及4d打印铜基形状记忆合金 |
CN113718130A (zh) * | 2020-05-26 | 2021-11-30 | 沈阳铸造研究所有限公司 | 一种铸态高强度锰铝青铜合金及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5795030B2 (ja) | 2015-10-14 |
EP3023508A4 (en) | 2017-08-02 |
CN105408509A (zh) | 2016-03-16 |
US10400311B2 (en) | 2019-09-03 |
JP2015021146A (ja) | 2015-02-02 |
CN105408509B (zh) | 2018-09-14 |
KR102237789B1 (ko) | 2021-04-08 |
KR20160030518A (ko) | 2016-03-18 |
US20160130683A1 (en) | 2016-05-12 |
EP3023508B1 (en) | 2019-09-04 |
EP3023508A1 (en) | 2016-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5795030B2 (ja) | 耐応力腐食性に優れるCu−Al−Mn系合金材料からなる展伸材 | |
US11118255B2 (en) | Cu-Al-Mn-based alloy material, method of producing the same, and rod material or sheet material using the same | |
EP2896705B1 (en) | Cu-al-mn based alloy exhibiting stable superelasticity and manufacturing process therefor | |
JP5912094B2 (ja) | 安定した超弾性を示すCu−Al−Mn系棒材及び板材の製造方法 | |
JP6965986B2 (ja) | α+β型チタン合金線材及びα+β型チタン合金線材の製造方法 | |
JP5885169B2 (ja) | Ti−Mo合金とその製造方法 | |
JP2005298931A (ja) | 銅合金及びその製造方法 | |
WO2018193810A1 (ja) | 高強度低熱膨張合金線 | |
CN112639144A (zh) | 铜系合金材料及其制造方法以及由铜系合金材料构成的构件或部件 | |
EP3919640A1 (en) | Cu-al-mn-based shape-memory alloy molded article and method for producing same | |
JP2015054977A (ja) | 破断伸びに優れたCu−Al−Mn系合金材及びそれを用いてなる制震部材 | |
JP2006265680A (ja) | 超弾性材料とその製造方法 | |
WO2022249665A1 (ja) | アルミニウム合金、アルミニウム合金線、及びアルミニウム合金線の製造方法 | |
JP2016153532A (ja) | 安定した超弾性を示すCu−Al−Mn系棒材及び板材、それを用いた制震部材、並びに制震部材を用いた制震構造体 | |
WO2022270045A1 (ja) | Co基超弾性合金材、Co基超弾性合金材からなる板材及び線材、Co基超弾性合金材の製造方法、ステント、ガイドワイヤならびに人工股関節 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480040263.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14825828 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167001505 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014825828 Country of ref document: EP |