WO2015008493A1 - 遷移金属カルベン錯体およびその製造方法 - Google Patents

遷移金属カルベン錯体およびその製造方法 Download PDF

Info

Publication number
WO2015008493A1
WO2015008493A1 PCT/JP2014/003812 JP2014003812W WO2015008493A1 WO 2015008493 A1 WO2015008493 A1 WO 2015008493A1 JP 2014003812 W JP2014003812 W JP 2014003812W WO 2015008493 A1 WO2015008493 A1 WO 2015008493A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
general formula
optionally substituted
transition metal
Prior art date
Application number
PCT/JP2014/003812
Other languages
English (en)
French (fr)
Inventor
重孝 早野
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201480038983.6A priority Critical patent/CN105358564B/zh
Priority to EP14827072.1A priority patent/EP3023430B1/en
Priority to JP2015527184A priority patent/JP6269670B2/ja
Priority to US14/905,479 priority patent/US9701701B2/en
Publication of WO2015008493A1 publication Critical patent/WO2015008493A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/74Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals
    • C08F4/78Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals selected from chromium, molybdenum or tungsten

Definitions

  • the present invention relates to a transition metal carbene complex and a method for producing the same, and more particularly to a transition metal carbene complex that is useful as a metathesis catalyst and has excellent handling properties and a method for producing the same.
  • Transition metal carbene complexes such as ruthenium carbene complex called Grab's catalyst and molybdenum carbene complex and tungsten carbene complex called Schrock catalyst are highly active catalysts for metathesis reaction (hereinafter referred to as “metathesis catalyst”). And is widely used.
  • a molybdenum carbene complex and a tungsten carbene complex have extremely high activity as a metathesis catalyst. Further, as disclosed in Patent Document 1, for example, a substituent or a ligand on a metal is used. The metathesis reaction can proceed in a stereospecific manner by appropriate selection. For this reason, various studies have been made on molybdenum carbene complexes and tungsten carbene complexes.
  • molybdenum carbene complexes and tungsten carbene complexes are less stable in air than ruthenium carbene complexes. Therefore, molybdenum carbene complexes and tungsten carbene complexes (hereinafter sometimes referred to as “molybdenum carbene complexes”) have a problem that they are not easy to handle (poor handling properties).
  • the present invention is a transition metal carbene that is superior in handling property because it is stable in air as compared with conventional molybdenum carbene complexes and the like and can be used as a metathesis catalyst as in the case of conventional molybdenum carbene complexes.
  • the object is to provide a complex.
  • the present inventors have mixed a conventional molybdenum carbene complex or the like with an onium salt in a solvent, and the onium salt is incorporated into the carbene complex structure to form a new complex.
  • the formed complex is superior in stability to the air in comparison with the original complex and maintains the activity as a metathesis catalyst.
  • the present invention has been completed based on this finding.
  • a transition metal carbene complex represented by the following general formula (1) is provided.
  • M represents a molybdenum atom or a tungsten atom
  • R 1 may have an alkyl group having 1 to 20 carbon atoms or a substituent which may have a substituent.
  • L 1 , L 2 and L 3 are selected from a halogen group, an optionally substituted alkoxy group and an optionally substituted aryloxy group The same or different from each other, or at least two of them are bonded to each other to form a ring structure with M, and R 2 and R 3 may have a hydrogen atom or a substituent.
  • a ring structure is formed together with A.
  • transition metal carbene complex Comprising: The transition metal carbene complex represented by following General formula (2), and the onium represented by following General formula (3) Provided is a process for producing a transition metal carbene complex, which comprises mixing a salt with a solvent.
  • M represents a molybdenum atom or a tungsten atom
  • R 1 may have an alkyl group having 1 to 20 carbon atoms or a substituent which may have a substituent.
  • L 1 and L 2 are a group selected from a halogen group, an optionally substituted alkoxy group and an optionally substituted aryloxy group.
  • A represents a nitrogen atom or a phosphorus atom
  • R 4 , R 5 , R 6, and R 7 are optionally substituted alkyl having 1 to 20 carbon atoms.
  • X ⁇ is An anion selected from a halide ion, an alkoxide anion which may have a substituent, and an aryloxide anion which may have a substituent.
  • the transition metal carbene is superior in handling property because it is stable in the air as compared with a conventional molybdenum carbene complex and the like, and can be used as a metathesis catalyst in the same manner as a conventional molybdenum carbene complex. Complexes can be provided.
  • the transition metal carbene complex of the present invention is a transition metal carbene complex represented by the following general formula (1).
  • M represents a molybdenum atom or a tungsten atom
  • R 1 may have a substituent (in other words, a substituted or unsubstituted alkyl having 1 to 20 carbon atoms).
  • R 1 represents an aryl group having 6 to 20 carbon atoms which may have a group or a substituent
  • L 1 , L 2 and L 3 represent a halogen group, an alkoxy group which may have a substituent and a substituent
  • R 2 and R 3 each represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, or a substituent.
  • A represents a nitrogen atom or a phosphorus atom
  • R 4 , R 5 , R 6 and R 7 each represents an optionally substituted carbon number.
  • 6 to 2 carbon atoms which may have 1 to 20 alkyl groups or substituents It represents an aryl group.
  • M represents a molybdenum atom or a tungsten atom which is a central metal of the complex.
  • the central metal of the transition metal carbene complex of the present invention may be either a molybdenum atom or a tungsten atom.
  • the group represented by R 1 that is, the group on the nitrogen atom bonded to the central metal atom M of the complex is an alkyl group having 1 to 20 carbon atoms which may have a substituent. Alternatively, it is an aryl group having 6 to 20 carbon atoms which may have a substituent. Specific examples of the alkyl group having 1 to 20 carbon atoms include, but are not limited to, methyl group, ethyl group, isopropyl group, t-butyl group, and n-butyl group.
  • aryl group having 6 to 20 carbon atoms include, but are not limited to, a phenyl group, a 4-methylphenyl group, a 2,6-dimethylphenyl group, a 2,6-diisopropylphenyl group, and a mesityl group. Is mentioned.
  • the group represented by R 2 and R 3 that is, the group on the carbene carbon atom is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent or a substituent.
  • Specific examples of the alkyl group having 1 to 20 carbon atoms include, but are not limited to, methyl group, ethyl group, isopropyl group, t-butyl group, and n-butyl group.
  • specific examples of the alkyl group having 1 to 20 carbon atoms having a substituent include, but are not particularly limited to, a 2-methyl-2-phenylethyl group.
  • aryl group having 6 to 20 carbon atoms include, but are not limited to, a phenyl group, a 4-methylphenyl group, a 2,6-dimethylphenyl group, a 2,6-diisopropylphenyl group, a mesityl group. Is mentioned.
  • the groups represented by R 2 and R 3 may be the same group or different from each other.
  • the ligand represented by L 1 , L 2 and L 3 is a halogen group, an alkoxy group which may have a substituent and an aryloxy group which may have a substituent.
  • a halogen group a chloro group, a bromo group, and an iodo group are mentioned, without being specifically limited.
  • alkoxy group examples include, but are not limited to, a methoxy group, an ethoxy group, an isopropoxy group, a t-butoxy group, and an n-butoxy group.
  • specific examples of the alkoxy group having a substituent are not particularly limited, and include a trifluoromethoxy group, a pentafluoroethoxy group, 1,1,1,3,3,3-hexafluoro-2-methyl- A 2-propoxy group may be mentioned.
  • Specific examples of the aryloxy group are not particularly limited, and examples thereof include a phenoxy group, a 4-methylphenoxy group, a 2,6-dimethylphenoxy group, and a 2,6-diisopropylphenoxy group.
  • the aryloxy group having a substituent is not particularly limited, and examples thereof include a pentafluorophenoxy group.
  • the ligands represented by L 1 , L 2 and L 3 may be the same or different from each other, or L 1 , L 2 and At least two of L 3 may be bonded to each other to form a ring structure together with the central metal atom M.
  • Examples of the ligand formed by bonding two of L 1 , L 2 and L 3 to each other are not particularly limited, and include a 2,2′-biphenoxy group and 3,3′-di- Examples thereof include t-butyl-5,5 ′, 6,6′-tetramethyl-2,2′-biphenoxy group.
  • A represents a nitrogen atom or a phosphorus atom.
  • the atom represented by A is coordinated to a molybdenum atom or a tungsten atom that is a central metal of the complex to form a part of the complex.
  • the atom represented by A may be either a nitrogen atom or a phosphorus atom.
  • R 4 , R 5 , R 6 and R 7 are optionally substituted alkyl groups having 1 to 20 carbon atoms or optionally substituted carbon atoms.
  • Specific examples of the alkyl group having 1 to 20 carbon atoms include, but are not limited to, methyl group, ethyl group, isopropyl group, t-butyl group, and n-butyl group.
  • aryl group having 6 to 20 carbon atoms include, but are not limited to, a phenyl group, a 4-methylphenyl group, a 2,6-dimethylphenyl group, a 2,6-diisopropylphenyl group, and a mesityl group. Is mentioned.
  • the groups represented by R 4 , R 5 , R 6 and R 7 may be the same group or different from each other, or R 4 , R 5 , R 6 and R 7. At least two of them may be bonded to each other to form a ring structure together with the nitrogen atom or phosphorus atom represented by A.
  • the atom represented by A is a nitrogen atom
  • at least two of R 4 , R 5 , R 6 and R 7 are bonded to each other to form a ring together with the nitrogen atom.
  • the structure include an imidazolium cation structure and a pyrrolidinium cation structure.
  • the method for obtaining the transition metal carbene complex of the present invention represented by the general formula (1) is not particularly limited, but according to the method for producing the transition metal carbene complex of the present invention described below, the transition metal of the present invention is preferably used.
  • a carbene complex can be obtained. That is, in the method for producing a transition metal carbene complex of the present invention, a transition metal carbene complex represented by the following general formula (2) and an onium salt represented by the following general formula (3) are mixed in a solvent. Thus, the transition metal carbene complex of the present invention represented by the general formula (1) is produced.
  • M, R 1 , R 2 , R 3 , L 1 and L 2 each represent M, R 1 , R 2 , R 3 , L 1 in the general formula (1).
  • L 2 are the same.
  • the groups represented by R 2 and R 3 may be the same group or different groups.
  • the ligands represented by L 1 and L 2 may be the same ligand or different from each other, or L 1 and L 2 are bonded to each other, A ring structure may be formed together with the central metal atom M.
  • the groups represented by R 4 , R 5 , R 6 and R 7 may be the same group or different from each other, or R 4 , R 5 , R At least two of 6 and R 7 may be bonded to each other to form a ring structure together with the nitrogen atom or phosphorus atom represented by A.
  • X ⁇ represents an anion selected from a halide ion, an alkoxide anion which may have a substituent, and an aryloxide anion which may have a substituent.
  • the anion represented by X ⁇ is a ligand for the central metal (ligand represented by L 3 in the general formula (1)) in the target transition metal carbene complex of the present invention. Specific examples thereof include an anion corresponding to the group exemplified as the ligand represented by L 3 .
  • Specific examples of the onium salt represented by the general formula (3) are not particularly limited and include tetramethylammonium chloride, tetra-n-butylammonium chloride, tetramethylammonium (1,1,1,3,3).
  • the transition metal carbene complex represented by the above general formula (2) and conventionally used as a metathesis catalyst and the above general formula (3) are used.
  • an onium salt ammonium salt or phosphonium salt
  • the transition metal carbene complex of the present invention which is the target product, can be obtained.
  • the mechanism by which the transition metal carbene complex of the present invention can be obtained by mixing the conventional transition metal carbene complex represented by the general formula (2) and the onium salt represented by the general formula (3).
  • the central metal atom M is a tungsten atom
  • the anion X ⁇ of the onium salt forms an ionic bond having a high covalent bond with tungsten having high Lewis acidity, and the negative charge of the anion X ⁇
  • the transition metal carbene complex of the present invention is obtained.
  • the central metal atom M is a molybdenum atom
  • the Lewis acidity of molybdenum is not too low, and the onium salt is stable, so that an art-type onium salt complex can be formed in the same manner as tungsten. It is guessed.
  • the onium salt and the central metal atom M are not a concerted reaction, but a reaction between the anion of the onium salt and the central metal atom M. Therefore, the types of R 4 , R 5 , R 6 and R 7 in the onium salt affect the solubility of the onium salt in the solvent, but have little effect on the reaction of the conventional transition metal carbene complex with the central metal atom M. It is assumed that there is.
  • the solvent used for obtaining the transition metal carbene complex of the present invention is not particularly limited as long as it can dissolve or disperse the transition metal carbene complex and the onium salt and does not affect the reaction.
  • organic solvents include aromatic hydrocarbons such as benzene, toluene, and xylene; halogenated aliphatic hydrocarbons such as dichloromethane, chloroform, and 1,2-dichloroethane; halogen-based aromatics such as chlorobenzene and dichlorobenzene.
  • Nitrogen-containing hydrocarbons such as nitromethane, nitrobenzene and acetonitrile; ethers such as diethyl ether and tetrahydrofuran; aliphatic hydrocarbons such as pentane, hexane and heptane; cyclohexane, methylcyclohexane, decahydronaphthalene, bicycloheptane and tricyclo Examples include alicyclic hydrocarbons such as decane and cyclooctane. Among these, halogenated aliphatic hydrocarbons are preferably used.
  • concentration in the organic solvent of each component is not specifically limited, The mixing order is also arbitrary. In addition, when mixing the transition metal carbene complex and the onium salt, it is preferable not to add other components involved in the reaction between the transition metal carbene complex and the onium salt in the solvent.
  • Ratio of onium salt represented by general formula (3) to transition metal carbene complex represented by 2) (onium salt represented by general formula (3) / transition metal carbene complex represented by general formula (2) ) Is preferably 1 to 100 times, and more preferably 1 to 10 times in terms of molar ratio. If this ratio is too small, the generation efficiency of the transition metal carbene complex represented by the general formula (1) may be insufficient. If this ratio is too large, the target transition metal carbene complex may be represented by the general formula (3 It may be difficult to separate from the onium salt (unreacted onium salt).
  • the temperature at which the transition metal carbene complex represented by the general formula (2) and the onium salt represented by the general formula (3) are mixed in a solvent is not particularly limited, but is usually in the range of ⁇ 100 ° C. to 150 ° C. Preferably, it is selected in the range of ⁇ 80 ° C. to 80 ° C.
  • the mixing time is not particularly limited, but is usually selected from 10 seconds to 24 hours.
  • Transition metal carbene complex represented by general formula (1) obtained by mixing transition metal carbene complex represented by general formula (2) and onium salt represented by general formula (3) in a solvent Can be recovered, for example, by distilling off the solvent used for mixing.
  • transition metal carbene complex of the present invention obtained as described above, a molybdenum carbene complex or a tungsten carbene complex (transition metal carbene complex represented by the general formula (2)) conventionally used as a metathesis catalyst is used.
  • the stability in air is greatly improved.
  • the transition metal carbene complex of the present invention can be used as a metathesis catalyst in the same manner as the molybdenum carbene complex and tungsten carbene complex that have been conventionally used as a metathesis catalyst, and is also highly specific to a molybdenum carbene complex and a tungsten carbene complex. It can show the catalytic activity and stereospecificity of the metathesis reaction.
  • the transition metal carbene complex of the present invention has improved handling properties, which are weak points of conventional molybdenum carbene complexes and tungsten carbene complexes, and also has asymmetric olefin metathesis reactions and cyclic olefins which are difficult with ruthenium carbene complexes. It can be said that the catalyst is useful as a metathesis catalyst capable of performing a stereoselective metathesis reaction such as stereoregularity controlled ring-opening polymerization.
  • NMR measurement It measured using the nuclear magnetic resonance apparatus ("JNM-EX400WB spectrometer" by JEOL). The solvent used is shown in each example. 1 H-NMR was measured at a frequency of 399.65 MHz, and 13 C-NMR was measured at a frequency of 100.40 MHz.
  • Cis / trans ratio of ring-opened polymer 1 H-NMR measurement was performed on the ring-opened polymer using chloroform-d or orthodichlorobenzene-d 4 as a solvent, and the cis / trans ratio was determined based on the signal intensity ratio of allyl hydrogen atoms. The cis / trans ratio of the ring polymer was determined.
  • Ratio of meso dyad / rasemo dyad of ring-opening polymer hydride 13 C-NMR measurement of ring-opening polymer hydride was performed at 150 ° C. using orthodichlorobenzene-d 4 as a solvent. Then, the ratio of meso dyad / rasemo dyad was determined based on the intensity ratio of the 43.35 ppm signal derived from meso dyad and the 43.43 ppm signal derived from racemo dyad.
  • Example 1 ((tetra-n-butylammonium) [(2,6-diisopropylphenylimide) ⁇ 3,3′-di (t-butyl) -5,5 ′, 6,6′-tetramethyl-2) , 2'-Bifenoxy ⁇ Neophylidenemolybdenum (VI) Chloride] and Stability Evaluation)
  • (2,6-diisopropylphenylimide) ⁇ 3,3′-di (t-butyl) -5,5 ′, 6,6′-tetramethyl-2,2′-biphenoxy ⁇ neo 0.257 g of Philidenmolybdenum (VI) and 10 mL of dichloromethane were added and dissolved by stirring to obtain a solution.
  • the obtained solid was mixed with tetra-n-butylammonium chloride and (2,6-diisopropylphenylimide) ⁇ 3,3′-di (t-butyl) -5,5 ′, 6,6′-tetramethyl-
  • an organic solvent that was a poor solvent for one of the 2,2′-biphenoxy ⁇ neophylidenemolybdenum and a good solvent for the other, either component was not separated. Therefore, the completion of the reaction or interaction between the two was suggested.
  • 1 H-NMR solvent: CDCl 3
  • the obtained pale red solid was (tetra-n-butylammonium) [(2,6-diisopropylphenylimide ⁇ 3,3′-di (t-butyl) -5,5 ′, 6,6 ′ -Tetramethyl-2,2'-biphenoxy ⁇ neophylidene molybdenum (VI) chloride]
  • the stability of the complex was evaluated for the obtained light red solid, but in 60 minutes, No change was observed and the complex was relatively stable.
  • Example 2 ((tetra-n-butylammonium) [(2,6-diisopropylphenylimide) ⁇ bis (1,1,1,3,3,3-hexafluoro-2-methyl-2-propoxy) ⁇ Synthesis and stability evaluation of neophylidene molybdenum (VI) chloride]
  • the obtained solid was mixed with tetra n-butylammonium chloride and 2,6-diisopropylphenylimide ⁇ bis (1,1,1,3,3,3-hexafluoro-2-methyl-2-propoxy) ⁇ neo.
  • tetra n-butylammonium chloride and 2,6-diisopropylphenylimide ⁇ bis (1,1,1,3,3,3-hexafluoro-2-methyl-2-propoxy) ⁇ neo When added to an organic solvent that was a poor solvent for one of the Phyridenmolybdenum (VI) and a good solvent for the other, neither component was separated. Therefore, the completion of the reaction or interaction between the two was suggested. Further, when 1 H-NMR (solvent: CDCl 3 ) of the obtained solid was measured, an ⁇ -proton peak of alkylidene was observed at 14.1 ppm.
  • Example 3 (Tetra-n-butylammonium) [(2,6-diisopropylphenylimide) ⁇ Tris (1,1,1,3,3,3-hexafluoro-2-methyl-2-propoxy) ⁇ Neophylidenemolybdenum (VI)] and stability evaluation)
  • (2,6-diisopropylphenylimide ⁇ bis (1,1,1,3,3,3-hexafluoro-2-methyl-2-propoxy) ⁇ neophylidene molybdenum (VI) 0.351 g and 10 mL of dichloromethane were added and dissolved by stirring to obtain a solution, and tetra n-butylammonium (1,1,1,3,3,3-hexafluoro-2-methyl-2-propoxy was further added.
  • Example 5 In a glass reactor equipped with a stirrer, (tetra-n-butylammonium) [(2,6-diisopropylphenylimide) ⁇ 3,3′-di (t-butyl) -5,5 ′, 6 obtained in Example 1 was added. , 6′-Tetramethyl-2,2′-biphenoxy ⁇ neophylidenemolybdenum (VI) chloride] 0.0586 g and 3 mL of toluene were added and dissolved.
  • (tetra-n-butylammonium) [(2,6-diisopropylphenylimide) ⁇ 3,3′-di (t-butyl) -5,5 ′, 6 obtained in Example 1 was added.
  • the yield of the obtained ring-opening polymer was 7.4 g, the cis / trans ratio was 90/10 (cis regularity), and the number average molecular weight was 6,000. Further, the melting point of the ring-opened polymer measured using the ring-opened polymer dried under reduced pressure as a sample as it was was 260 ° C. Next, 3.0 g of the obtained ring-opening polymer and 47 g of cyclohexane were added to an autoclave equipped with a stirrer.
  • the melting point of the ring-opened polymer hydride measured using the ring-opened polymer hydride dried under reduced pressure as a sample as it was was 290 ° C. Then, the ring-opened polymer hydride dried under reduced pressure was heated at 320 ° C. for 10 minutes and sufficiently melted, then cooled down to 10 ° C./minute and cooled to room temperature, and sufficiently crystallized. The melting point of the ring-opened polymer hydride measured as a sample was 289 ° C.
  • the ring-opening polymerization reaction was carried out using the reactor as an open system. After the polymerization reaction started, some white precipitate was deposited, and the formation of the precipitate was stopped. After reacting for 2 hours, a large amount of acetone was poured into the polymerization reaction solution to aggregate the precipitate, washed by filtration, and dried under reduced pressure at 40 ° C. for 24 hours. The yield of the obtained ring-opening polymer was 0.01 g, which was a very small amount.
  • the ring-opening polymerization reaction was carried out using the reactor as an open system. After the polymerization reaction started, the viscosity of the reaction solution gradually increased. After reacting for 2 hours, a large amount of acetone was poured into the polymerization reaction solution to aggregate the precipitate, washed by filtration, and dried under reduced pressure at 40 ° C. for 24 hours. The yield of the obtained ring-opening polymer was 7.5 g, and the ring-opening polymer was quantitatively obtained. The cis / trans ratio of the ring-opening polymer was 43/57, and almost no cis / trans selectivity was observed. The number average molecular weight of the ring-opening polymer was 3,900.
  • the glass transition point measured using the ring-opened polymer dried under reduced pressure as a sample as it was was 130 ° C., and no melting point was observed.
  • 0.3 g of the obtained ring-opening polymer and 4.7 g of cyclohexane were added to an autoclave equipped with a stirrer.
  • 1 mL of cyclohexane was further added with RuHCl (CO) (PPh 3 ) 2 0.000157 g dispersed as a hydrogenation catalyst, and a hydrogenation reaction was performed at 160 ° C. for 8 hours at a hydrogen pressure of 4.0 MPa.
  • This hydrogenation reaction solution was poured into a large amount of acetone to completely precipitate the produced ring-opening polymer hydride, filtered and washed, and then dried under reduced pressure at 40 ° C. for 24 hours.
  • the hydrogenation rate of the obtained ring-opened polymer hydride was 99% or more, and the ratio of meso dyad / racemo dyad was 67/33.
  • the glass transition point measured using the ring-opened polymer hydride dried under reduced pressure as a sample as it was was 98 ° C., and no melting point was observed.
  • the transition metal carbene complex represented by the general formula (2) is represented by the general formula (2). It can be said that it is stable in the air as compared with the conventional transition metal carbene complex represented. Further, from the results of Example 4, the transition metal carbene complex represented by the general formula (1) is capable of ring-opening polymerization of dicyclopentadiene in the open system in the air, and has stereoregularity.
  • the ring-opening polymerization can be controlled.
  • the transition metal carbene complex represented by the general formula (2) is inferior in stability in that it cannot be polymerized in the open system in the air.
  • the ruthenium carbene complex is capable of ring-opening polymerization of dicyclopentadiene in the open system in the air, but the control of stereoregularity is hardly performed. It can be said.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymerization Catalysts (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 本発明によれば、下記の一般式(1)で表される遷移金属カルベン錯体[但し、一般式(1)中、Mはモリブデン原子等を表し、R1は置換基を有していてもよい炭素数1~20のアルキル基等を表し、L1~L3は、ハロゲン基等から選択される配位子を表し、R2およびR3は、水素原子、置換基を有していてもよい炭素数1~20のアルキル基等を表し、Aは窒素原子等を表し、R4~R7は、置換基を有していてもよい炭素数1~20のアルキル基等を表す。]およびその製造方法が提供される。

Description

遷移金属カルベン錯体およびその製造方法
 本発明は、遷移金属カルベン錯体およびその製造方法に関し、さらに詳しくは、メタセシス触媒などとして有用で、且つ、ハンドリング性に優れる遷移金属カルベン錯体とその製造方法に関する。
 グラブス触媒と称されるルテニウムカルベン錯体や、シュロック触媒と称されるモリブデンカルベン錯体およびタングステンカルベン錯体などの遷移金属カルベン錯体は、メタセシス反応のための高活性の触媒(以下、「メタセシス触媒」と称することがある。)として知られており、広く用いられている。
 遷移金属カルベン錯体のなかでも、モリブデンカルベン錯体やタングステンカルベン錯体は、メタセシス触媒としての活性が極めて高く、また、例えば特許文献1に開示されているように、金属上の置換基や配位子を適切に選択することにより立体特異的にメタセシス反応を進行させうる。そのため、モリブデンカルベン錯体やタングステンカルベン錯体について、種々の検討が行われている。
 しかしながら、モリブデンカルベン錯体やタングステンカルベン錯体は、ルテニウムカルベン錯体などに比して、空気中での安定性に劣る。そのため、モリブデンカルベン錯体やタングステンカルベン錯体(以下、「モリブデンカルベン錯体など」と称することがある。)には、その取扱いが容易でない(ハンドリング性が悪い)という問題があった。
特表2002-504487号公報
 そこで、本発明は、従来のモリブデンカルベン錯体などに比して空気中で安定であるためにハンドリング性に優れ、かつ、従来のモリブデンカルベン錯体などと同様にメタセシス触媒などとして利用可能な遷移金属カルベン錯体を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意研究した結果、従来のモリブデンカルベン錯体などとオニウム塩とを溶媒中で混合すると、オニウム塩がカルベン錯体構造に取り込まれて新たな錯体が形成されること、並びに、形成された錯体は、元の錯体よりも空気中での安定性に優れるものとなり、しかも、メタセシス触媒としての活性を維持することを見出した。本発明は、この知見に基づいて完成するに至ったものである。
 かくして、本発明によれば、下記の一般式(1)で表される遷移金属カルベン錯体が提供される。
Figure JPOXMLDOC01-appb-C000001
 ここで、上記一般式(1)中、Mはモリブデン原子またはタングステン原子を表し、R1は置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、L1、L2およびL3は、ハロゲン基、置換基を有していてもよいアルコキシ基および置換基を有していてもよいアリーロキシ基から選択される配位子を表し、互いに同一もしくは異なり、或いは、少なくとも2つが互いに結合してMと共に環構造を形成しており、R2およびR3は、水素原子、置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、互いに同一もしくは異なり、Aは窒素原子またはリン原子を表し、R4、R5、R6およびR7は、置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、互いに同一もしくは異なり、或いは、少なくとも2つが互いに結合してAと共に環構造を形成している。
 また、本発明によれば、上記の遷移金属カルベン錯体を製造する方法であって、下記の一般式(2)で表される遷移金属カルベン錯体と下記の一般式(3)で表されるオニウム塩とを溶媒中で混合することを特徴とする遷移金属カルベン錯体の製造方法が提供される。
Figure JPOXMLDOC01-appb-C000002
 ここで、上記一般式(2)中、Mはモリブデン原子またはタングステン原子を表し、R1は置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、L1およびL2は、ハロゲン基、置換基を有していてもよいアルコキシ基および置換基を有していてもよいアリーロキシ基から選択される配位子を表し、互いに同一もしくは異なり、或いは、互いに結合してMと共に環構造を形成しており、R2およびR3は、水素原子、置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、互いに同一もしくは異なる。
Figure JPOXMLDOC01-appb-C000003
 ここで、上記一般式(3)中、Aは窒素原子またはリン原子を表し、R4、R5、R6およびR7は、置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、互いに同一もしくは異なり、或いは、少なくとも2つが互いに結合してAと共に環構造を形成しており、X-は、ハロゲン化物イオン、置換基を有していてもよいアルコキシドアニオンおよび置換基を有していてもよいアリールオキシドアニオンから選択されるアニオンを表す。
 本発明によれば、従来のモリブデンカルベン錯体などに比して空気中で安定であるためにハンドリング性に優れ、かつ、従来のモリブデンカルベン錯体などと同様にメタセシス触媒などとして利用可能な遷移金属カルベン錯体を提供することができる。
 本発明の遷移金属カルベン錯体は、下記の一般式(1)で表される遷移金属カルベン錯体である。
Figure JPOXMLDOC01-appb-C000004
 ここで、一般式(1)中、Mはモリブデン原子またはタングステン原子を表し、R1は置換基を有していてもよい(換言すれば、置換もしくは非置換の)炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、L1、L2およびL3は、ハロゲン基、置換基を有していてもよいアルコキシ基および置換基を有していてもよいアリーロキシ基から選択される配位子を表し、R2およびR3は、水素原子、置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、Aは窒素原子またはリン原子を表し、R4、R5、R6およびR7は、置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表す。
 一般式(1)において、Mは、錯体の中心金属であるモリブデン原子またはタングステン原子を表す。本発明の遷移金属カルベン錯体の中心金属は、モリブデン原子およびタングステン原子のいずれでもよい。
 一般式(1)において、R1で表される基、すなわち、錯体の中心金属原子Mに結合した窒素原子上の基は、置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基である。炭素数1~20のアルキル基の具体例としては、特に限定されることなく、メチル基、エチル基、イソプロピル基、t-ブチル基、n-ブチル基が挙げられる。また、炭素数6~20のアリール基の具体例としては、特に限定されることなく、フェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、2,6-ジイソプロピルフェニル基、メシチル基が挙げられる。
 一般式(1)において、R2およびR3で表される基、すなわち、カルベン炭素原子上の基は、水素原子、置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基である。この炭素数1~20のアルキル基の具体例としては、特に限定されることなく、メチル基、エチル基、イソプロピル基、t-ブチル基、n-ブチル基が挙げられる。また、置換基を有する炭素数1~20のアルキル基の具体例としては、特に限定されることなく、2-メチル-2-フェニルエチル基が挙げられる。更に、炭素数6~20のアリール基の具体例としては、特に限定されることなく、フェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、2,6-ジイソプロピルフェニル基、メシチル基が挙げられる。なお、R2およびR3で表される基は、同一の基であっても、互いに異なる基であってもよい。
 一般式(1)において、L1、L2およびL3で表される配位子は、ハロゲン基、置換基を有していてもよいアルコキシ基および置換基を有していてもよいアリーロキシ基から選択される配位子である。ここで、置換基を有していてもよいアルコキシ基の炭素数は、好ましくは1~30であり、また、置換基を有していてもよいアリーロキシ基の炭素数は、好ましくは6~30である。そして、ハロゲン基の具体例としては、特に限定されることなく、クロロ基、ブロモ基、ヨード基が挙げられる。また、アルコキシ基の具体例としては、特に限定されることなく、メトキシ基、エトキシ基、イソプロポキシ基、t-ブトキシ基、n-ブトキシ基が挙げられる。更に、置換基を有するアルコキシ基の具体例としては、特に限定されることなく、トリフルオロメトキシ基、ペンタフルオロエトキシ基、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシ基が挙げられる。また、アリーロキシ基の具体例としては、特に限定されることなく、フェノキシ基、4-メチルフェノキシ基、2,6-ジメチルフェノキシ基、2,6-ジイソプロピルフェノキシ基が挙げられる。更に、置換基を有するアリーロキシ基としては、特に限定されることなく、ペンタフルオロフェノキシ基が挙げられる。なお、L1、L2およびL3で表される配位子は、それぞれ、同一の配位子であっても、互いに異なる配位子であってもよく、或いは、L1、L2およびL3のうちの少なくとも2つが互いに結合して、中心金属原子Mと共に環構造を形成していてもよい。L1、L2およびL3のうちの2つが互いに結合して形成される配位子の例としては、特に限定されることなく、2,2’-ビフェノキシ基や3,3’-ジ-t-ブチル-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ基を挙げることができる。
 一般式(1)において、Aは、窒素原子またはリン原子を表す。このAで表される原子は、錯体の中心金属であるモリブデン原子またはタングステン原子に配位して、錯体の一部を形成する。Aで表される原子は、窒素原子およびリン原子のいずれでもよい。
 一般式(1)において、R4、R5、R6およびR7は、置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表す。この炭素数1~20のアルキル基の具体例としては、特に限定されることなく、メチル基、エチル基、イソプロピル基、t-ブチル基、n-ブチル基が挙げられる。また、炭素数6~20のアリール基の具体例としては、特に限定されることなく、フェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、2,6-ジイソプロピルフェニル基、メシチル基が挙げられる。なお、R4、R5、R6およびR7で表される基は、同一の基であっても、互いに異なる基であってもよく、或いは、R4、R5、R6およびR7のうちの少なくとも2つが互いに結合して、Aで表される窒素原子またはリン原子と共に環構造を形成していてもよい。ここで、特に限定されることなく、Aで表される原子が窒素原子の場合、R4、R5、R6およびR7のうちの少なくとも2つが互いに結合して窒素原子と共に環を形成した構造としては、イミダゾリウムカチオン構造や、ピロリジニウムカチオン構造を挙げることができる。
 一般式(1)で表される本発明の遷移金属カルベン錯体を得る方法は、特に限定されないが、次に述べる本発明の遷移金属カルベン錯体の製造方法によれば、好適に本発明の遷移金属カルベン錯体を得ることができる。すなわち、本発明の遷移金属カルベン錯体の製造方法は、下記の一般式(2)で表される遷移金属カルベン錯体と下記の一般式(3)で表されるオニウム塩とを溶媒中で混合することにより、上記一般式(1)で表される本発明の遷移金属カルベン錯体を製造するものである。
Figure JPOXMLDOC01-appb-C000005
 一般式(2)中、M、R1、R2、R3、L1およびL2が表すものは、それぞれ、一般式(1)中のM、R1、R2、R3、L1およびL2が表すものと同じである。そして、上述した通り、R2およびR3で表される基は、同一の基であっても、互いに異なる基であってもよい。また、L1およびL2で表される配位子は、同一の配位子であっても、互いに異なる配位子であってもよく、或いは、L1およびL2が互いに結合して、中心金属原子Mと共に環構造を形成していてもよい。
Figure JPOXMLDOC01-appb-C000006
 一般式(3)中、A、R4、R5、R6およびR7が表すものは、それぞれ、一般式(1)中のA、R4、R5、R6およびR7が表すものと同じである。そして、上述した通り、R4、R5、R6およびR7で表される基は、同一の基であっても、互いに異なる基であってもよく、或いは、R4、R5、R6およびR7のうちの少なくとも2つが互いに結合して、Aで表される窒素原子またはリン原子と共に環構造を形成していてもよい。
 また、一般式(3)中のX-は、ハロゲン化物イオン、置換基を有していてもよいアルコキシドアニオンおよび置換基を有していてもよいアリールオキシドアニオンから選択されるアニオンを表す。なお、X-で表されるアニオンは、目的とする本発明の遷移金属カルベン錯体において、中心金属に対する配位子(一般式(1)においてL3で表される配位子)となるものであり、その具体例としては、L3で表される配位子の例として挙げた基に対応するアニオンを挙げることができる。
 そして、一般式(3)で表されるオニウム塩の具体例としては、特に限定されることなく、テトラメチルアンモニウムクロリド、テトラn-ブチルアンモニウムクロリド、テトラメチルアンモニウム(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシド)、テトラn-ブチルアンモニウム(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシド)、テトラメチルアンモニウム(2,6-ジメチルフェノキシド)、テトラn-ブチルアンモニウム(2,6-ジメチルフェノキシド)、イミダゾリウムクロリド、イミダゾリウム(2,6-ジメチルフェノキシド)、イミダゾリウム(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシド)、ピロリジニウムクロリド、ピロリジニウム(2,6-ジメチルフェノキシド)、テトラメチルホスホニウムクロリド、テトラn-ブチルホスホニウムクロリドが挙げられる。
 本発明の遷移金属カルベン錯体の製造方法では、上記の一般式(2)で表される、従来、メタセシス触媒として用いられてきた遷移金属カルベン錯体と、上記の一般式(3)で表されるオニウム塩(アンモニウム塩またはホスホニウム塩)とを溶媒中で混合することにより、目的物である本発明の遷移金属カルベン錯体を得ることができる。
 ここで、一般式(2)で表される従来の遷移金属カルベン錯体と、一般式(3)で表されるオニウム塩とを混合することにより本発明の遷移金属カルベン錯体を得ることができるメカニズムは、明らかではないが、以下の通りであると推察される。即ち、中心金属原子Mがタングステン原子である場合、オニウム塩のアニオンX-がルイス酸性の高いタングステンに対して共有結合性の高いイオン結合を形成すると共に、アニオンX-のマイナスの電荷が分子全体に非局在化することにより、アート型のオニウム塩錯体を形成し、本発明の遷移金属カルベン錯体が得られると推察される。また、中心金属原子Mがモリブデン原子の場合においても、モリブデンのルイス酸性が低すぎず、また、オニウム塩が安定であることから、タングステンと同様にアート型のオニウム塩錯体を形成することができると推察される。なお、オニウム塩と中心金属原子Mとは協奏的な反応でなく、オニウム塩のアニオンと中心金属原子Mとの反応である。そのためオニウム塩におけるR4、R5、R6およびR7の種類は、溶媒に対するオニウム塩の溶解性に影響するものの、従来の遷移金属カルベン錯体の中心金属原子Mとの反応に対する影響はわずかであることが推察される。
 本発明の遷移金属カルベン錯体を得るために用いる溶媒は、遷移金属カルベン錯体およびオニウム塩を溶解または分散させることが可能であって、反応に影響しないものであれば、特に限定されないが、溶媒としては有機溶媒が好ましく用いられる。用いられうる有機溶媒の具体例としては、ベンゼン、トルエン、キシレンなどの芳香族炭化水素;ジクロロメタン、クロロホルム、1,2-ジクロロエタンなどのハロゲン系脂肪族炭化水素;クロロベンゼン、ジクロロベンゼンなどのハロゲン系芳香族炭化水素;ニトロメタン、ニトロベンゼン、アセトニトリルなどの含窒素炭化水素;ジエチルエーテル、テトラヒドロフランなどのエーテル;ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、シクロオクタンなどの脂環族炭化水素などを挙げることができる。これらのなかでも、ハロゲン系脂肪族炭化水素が好ましく用いられる。なお、それぞれの成分の有機溶媒中の濃度は、特に限定されず、その混合順序も任意である。また、遷移金属カルベン錯体とオニウム塩とを混合する際には、溶媒中に、遷移金属カルベン錯体とオニウム塩との反応に関与する他の成分を添加しないことが好ましい。
 一般式(2)で表される遷移金属カルベン錯体と、一般式(3)で表されるオニウム塩とを溶媒中で混合する際の、それぞれの成分の比率は特に限定されないが、一般式(2)で表される遷移金属カルベン錯体に対する一般式(3)で表されるオニウム塩の割合(一般式(3)で表されるオニウム塩/一般式(2)で表される遷移金属カルベン錯体)は、モル比で、1~100倍が好ましく、1~10倍がより好ましい。この割合が小さすぎると、一般式(1)で表される遷移金属カルベン錯体の生成効率が不十分となるおそれがあり、この割合が大きすぎると、目的の遷移金属カルベン錯体を一般式(3)で表されるオニウム塩(未反応のオニウム塩)から分離することが困難となるおそれがある。
 一般式(2)で表される遷移金属カルベン錯体と、一般式(3)で表されるオニウム塩とを溶媒中で混合する温度も、特に限定されないが、通常-100℃~150℃の範囲で選択され、好ましくは-80℃~80℃の範囲で選択される。混合時間も、特に限定されないが、通常10秒間~24時間の間で選択される。
 一般式(2)で表される遷移金属カルベン錯体と、一般式(3)で表されるオニウム塩とを溶媒中で混合することによって得られる一般式(1)で表される遷移金属カルベン錯体は、例えば、混合に用いた溶媒を留去することなどにより回収することができる。
 例えば、以上のようにして得られる本発明の遷移金属カルベン錯体では、従来、メタセシス触媒として用いられてきたモリブデンカルベン錯体やタングステンカルベン錯体(一般式(2)で表される遷移金属カルベン錯体)に比して、空気中における安定性が大幅に改良される。また、本発明の遷移金属カルベン錯体は、従来、メタセシス触媒として用いられてきたモリブデンカルベン錯体やタングステンカルベン錯体と同様にメタセシス触媒として利用可能であり、しかも、モリブデンカルベン錯体やタングステンカルベン錯体特有の高い触媒活性やメタセシス反応の立体特異性を示すことができるものである。したがって、本発明の遷移金属カルベン錯体は、従来のモリブデンカルベン錯体やタングステンカルベン錯体の弱点であったハンドリング性が改良されている上に、ルテニウムカルベン錯体では困難な不斉オレフィンメタセシス反応や環状オレフィンの立体規則性制御開環重合などの立体選択的メタセシス反応を行うことができるメタセシス触媒として有用なものであるといえる。
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の%は、特に断りのない限り、重量基準である。
 各種の測定および評価については、以下の方法に従って行った。
(1)NMR測定
 核磁気共鳴装置(JEOL社製「JNM-EX400WB spectrometer」)を用いて測定した。用いた溶媒は各例において示す。なお、1H-NMRは、399.65MHzの周波数で測定し、13C-NMRは、100.40MHzの周波数で測定した。
(2)錯体の安定性評価
 試料となる錯体0.4gをクロロホルム10gに添加して、攪拌することにより、均一な溶液とした後、気温22℃、湿度50%に調整した恒温恒湿ボックス内で、その溶液を大気に曝露し、溶液の色の変化を60分間観察することにより、錯体の安定性を評価した。
(3)開環重合体のシス/トランス比
 クロロホルム-dまたはオルトジクロロベンゼン-d4を溶媒として、開環重合体の1H-NMR測定を行い、アリル水素原子のシグナル強度比に基づいて開環重合体のシス/トランス比を決定した。
(4)開環重合体の数平均分子量
 クロロホルム-dまたはオルトジクロロベンゼン-d4を溶媒として、開環重合体の1H-NMR測定を行い、重合体鎖末端に存在する水素原子の数と重合体鎖末端以外に存在する水素原子の数の比を求めた。そして、その比に基づいて開環重合体の数平均分子量を算出した。
(5)開環重合体の水素化反応における水素化率
 オルトジクロロベンゼン-d4を溶媒として、150℃で開環重合体水素化物の1H-NMR測定を行い、その結果に基づいて開環重合体の水素化率を求めた。
(6)開環重合体水素化物の融点
 示差走査熱量計を用いて、10℃/分で昇温して測定した。
(7)開環重合体水素化物のメソ・ダイアッド/ラセモ・ダイアッドの比
 オルトジクロロベンゼン-d4を溶媒として、150℃で開環重合体水素化物の13C-NMR測定を行った。そして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルとの強度比に基づいてメソ・ダイアッド/ラセモ・ダイアッドの比を決定した。
〔実施例1〕((テトラn-ブチルアンモニウム)[(2,6-ジイソプロピルフェニルイミド){3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}ネオフィリデンモリブデナム(VI)クロリド]の合成と安定性評価)
 攪拌機付きガラス反応器に、(2,6-ジイソプロピルフェニルイミド){3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}ネオフィリデンモリブデナム(VI)0.257gおよびジクロロメタン10mLを添加し、攪拌して溶解させ溶液とした。そして、さらにテトラn-ブチルアンモニウムクロリド0.477g(5eq)をジクロロメタン10mLに溶解したものを添加した。この添加の後、赤色であった溶液は薄い赤色の溶液へと変化した。その後、20℃を保ちながら、反応器中の溶液を18時間にわたって撹拌した。18時間撹拌した後、溶液からジクロロメタンを留去すると、薄い赤色の固体が95%の収率で得られた。得られた固体は、クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン、トルエンに易溶であり、ヘキサンに難溶であった。また、得られた固体を、テトラn-ブチルアンモニウムクロリドおよび(2,6-ジイソプロピルフェニルイミド){3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}ネオフィリデンモリブデナムの一方についての貧溶媒であり他方についての良溶媒となる有機溶媒に対して添加したところ、どちらかの成分が分離されてくることは無かった。したがって、両者の反応もしくは相互作用の完結が示唆された。また、得られた固体について、1H-NMR(溶媒:CDCl3)を測定したところ、13.3ppmにアルキリデンのα-プロトンのピークが観測された。これは、10.6ppmに観測される、(2,6-ジイソプロピルフェニルイミド){3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}ネオフィリデンモルブデナム(VI)のアルキリデンのα-プロトンのピークが低磁場側にシフトしたものと考えられる。以上より、得られた薄い赤色の固体は、(テトラn-ブチルアンモニウム)[(2,6-ジイソプロピルフェニルイミド{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}ネオフィリデンモリブデナム(VI)クロリド]であるといえる。次いで、得られた薄い赤色の固体について、錯体の安定性評価を行ったが、60分間で変化は認められず、錯体は比較的に安定なものであった。
〔実施例2〕((テトラn-ブチルアンモニウム)[(2,6-ジイソプロピルフェニルイミド){ビス(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシ)}ネオフィリデンモリブデナム(VI)クロリド]の合成と安定性評価)
 攪拌機付きガラス反応器に、(2,6-ジイソプロピルフェニルイミド){ビス(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシ)}ネオフィリデンモリブデナム(VI)0.230gおよびジクロロメタン10mLを添加し、攪拌して溶解させ溶液とした。そして、さらにテトラn-ブチルアンモニウムクロリド0.0835g(1eq)をジクロロメタン10mLに溶解したものを添加した。この添加の後、濃い黄色であった溶液は薄い黄色の溶液へと変化した。その後、20℃を保ちながら、反応器中の溶液を18時間にわたって撹拌した。18時間撹拌した後、溶液から溶媒を留去すると、薄い黄色の固体が90%の収率で得られた。得られた固体は、クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン、トルエンに易溶であり、ヘキサンに微溶であった。また、得られた固体を、テトラn-ブチルアンモニウムクロリドおよび2,6-ジイソプロピルフェニルイミド{ビス(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシ)}ネオフィリデンモリブデナム(VI)の一方についての貧溶媒であり他方についての良溶媒となる有機溶媒に対して添加したところ、どちらかの成分が分離されてくることは無かった。したがって、両者の反応もしくは相互作用の完結が示唆された。また、得られた固体について、1H-NMR(溶媒:CDCl3)を測定したところ、14.1ppmにアルキリデンのα-プロトンのピークが観測された。これは、12.1ppmに観測される、(2,6-ジイソプロピルフェニルイミド{ビス(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシ)}ネオフィリデンモリブデナム(VI)のアルキリデンのα-プロトンのピークが低磁場側にシフトしたものと考えられる。以上より、得られた薄い黄色の固体は、(テトラn-ブチルアンモニウム)[(2,6-ジイソプロピルフェニルイミド{ビス(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシ)}ネオフィリデンモリブデナム(VI)クロリド]であるといえる。次いで、得られた薄い黄色の固体について、錯体の安定性評価を行ったが、60分間で変化は認められず、錯体は比較的に安定なものであった。
〔実施例3〕
((テトラn-ブチルアンモニウム)[(2,6-ジイソプロピルフェニルイミド){トリス(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシ)}ネオフィリデンモリブデナム(VI)]の合成と安定性評価)
 攪拌機付きガラス反応器に、(2,6-ジイソプロピルフェニルイミド{ビス(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシ)}ネオフィリデンモリブデナム(VI)0.351gおよびジクロロメタン10mLを添加し、攪拌して溶解させ溶液とした。そして、さらにテトラn-ブチルアンモニウム(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシド)0.195g(1eq)をジクロロメタン/ジエチルエーテル混合溶媒(体積比1:1)10mLに分散したものを添加した。この添加の後、濃い黄色であった溶液は薄い黄色の溶液へと変化した。その後、20℃を保ちながら、反応器中の溶液を18時間にわたって撹拌した。18時間撹拌した後、溶液から溶媒を留去すると、薄い黄色の固体が90%の収率で得られた。得られた固体は、クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン、トルエンに易溶であり、ヘキサンに可溶であった。また、得られた固体を、テトラn-ブチルアンモニウム(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシド)と(2,6-ジイソプロピルフェニルイミド{ビス(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシ)}ネオフィリデンモリブデナム(VI)の一方についての貧溶媒であり他方についての良溶媒となる有機溶媒に対して添加したところ、どちらかの成分が分離されてくることは無かった。したがって、両者の反応もしくは相互作用の完結が示唆された。また、得られた固体について、1H-NMR(溶媒:C66)を測定したところ、13.8ppmにアルキリデンのα-プロトンのピークが観測された。これは、12.2ppmに観測される、(2,6-ジイソプロピルフェニルイミド{ビス(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシ)}ネオフィリデンモリブデナム(VI)のアルキリデンのα-プロトンのピークが低磁場側にシフトしたものと考えられる。以上より、得られた薄い黄色の固体は、(テトラn-ブチルアンモニウム)[(2,6-ジイソプロピルフェニルイミド){トリス(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシ)}ネオフィリデンモリブデナム(VI)]であるといえる。次いで、得られた薄い黄色の固体について、錯体の安定性評価を行ったが、60分間で変化は認められず、錯体は比較的に安定なものであった。なお、得られた(テトラn-ブチルアンモニウム)[(2,6-ジイソプロピルフェニルイミド){トリス(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシ)}ネオフィリデンモリブデナム(VI)]の1H-NMRスペクトルデータは以下の通りである。1H-NMR(C66) δ13.8(s,1H,Mo=CH),7.78(d,2H,Haryl),7.26(t,2H,Haryl),7.12(t,1H,Haryl),7.09(t,1H,Haryl),6.96(d,2H,Haryl),3.26(sep、2H、CH),2.43(brs、8H、CH2),1.55(brs、8H、CH2),2.26(s,6H,CH3),2.06(s,6H,CH3),1.20(d,6H,CH3),0.95(m,8H,CH2),0.78(t,12H,CH3
〔比較例1〕
 (2,6-ジイソプロピルフェニルイミド){3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}ネオフィリデンモリブデナム(VI)について、安定性評価を行ったところ、30分間で溶液が黒色に変色した。この変色は、錯体が大気中の水分により分解したことを示唆するものであり、錯体は比較的に不安定なものであったといえる。
〔比較例2〕
 (2,6-ジイソプロピルフェニルイミド){ビス(1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロポキシ)}ネオフィリデンモリブデナム(VI)について、安定性評価を行ったところ、30分間で溶液が黒色に変色した。この変色は、錯体が大気中の水分により分解したことを示唆するものであり、錯体は比較的に不安定なものであったといえる。
〔実施例5〕
 攪拌機付きガラス反応器に、実施例1で得られた(テトラn-ブチルアンモニウム)[(2,6-ジイソプロピルフェニルイミド){3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}ネオフィリデンモリブデナム(VI)クロリド]0.0586gおよびトルエン3mLを添加し溶解した。次いで、気温22℃、湿度50%に調整した恒温恒湿ボックス内で、得られたトルエン溶液に、ジシクロペンタジエン7.5g、シクロヘキサン27gおよび1-ヘキセン0.32gを添加し、50℃の油浴中で、反応器を開放系として開環重合反応を行った。重合反応開始後、速やかに白色の沈殿物が析出した。2時間反応させた後、重合反応液に大量のアセトンを注いで沈殿物を凝集させ、濾別洗浄後、40℃で24時間減圧乾燥した。得られた開環重合体の収量は7.4gであり、シス/トランス比は90/10(シス規則性)であり、数平均分子量は6,000であった。また、減圧乾燥した開環重合体をそのまま試料として用いて測定した開環重合体の融点は260℃であった。次に、攪拌機付きオートクレーブに、得られた開環重合体3.0gおよびシクロヘキサン47gを加えた。そして、シクロヘキサン10mLに水素添加触媒としてRuHCl(CO)(PPh320.00157gを分散させたものをさらに添加し、水素圧4.0MPa、160℃で8時間水素化反応を行った。この水素化反応液を多量のアセトンに注ぎ、生成した開環重合体水素化物を完全に析出させ、濾別洗浄後、40℃で24時間減圧乾燥した。得られた開環重合体水素化物の水素化率は99%以上であり、メソ・ダイアッド/ラセモ・ダイアッドの比は95/5であった。また、減圧乾燥した開環重合体水素化物をそのまま試料として用いて測定した開環重合体水素化物の融点は290℃であった。そして、減圧乾燥した開環重合体水素化物を320℃で10分間加熱して十分に溶融させた後に、それを10℃/分で降温して室温まで冷却させ、十分に結晶化させたものを試料として用いて測定した開環重合体水素化物の融点は289℃であった。
〔比較例3〕
 攪拌機付きガラス反応器に、(2,6-ジイソプロピルフェニルイミド){3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}ネオフィリデンモリブデナム(VI)0.0429gおよびトルエン3mLを添加し溶解した。次いで、気温22℃、湿度50%に調整した恒温恒湿ボックス内で、得られたトルエン溶液に、ジシクロペンタジエン7.5g、シクロヘキサン27gおよび1-ヘキセン0.32gを添加し、50℃の油浴中で、反応器を開放系として開環重合反応を行った。重合反応開始後、若干の白色の沈殿物が析出し、やがて沈殿物の生成は停止した。2時間反応させた後、重合反応液に大量のアセトンを注いで沈殿物を凝集させ、濾別洗浄後、40℃で24時間減圧乾燥した。得られた開環重合体の収量は0.01gであり、極めて少量であった。
〔比較例4〕
 攪拌機付きガラス反応器に、(1,3-ビス(2,4,6-トリメチルフェニル)-2-イミダゾリジニリデン)ジクロロ(フェニルメチレン)(トリシクロヘキシルホスフィン)ルテニウム0.0482gおよびトルエン3mLを添加し溶解した。次いで、気温22℃、湿度50%に調整した恒温恒湿ボックス内で、得られたトルエン溶液に、ジシクロペンタジエン7.5g、シクロヘキサン27gおよび1-ヘキセン0.32gを添加し、50℃の油浴中で、反応器を開放系として開環重合反応を行った。重合反応開始後、徐々に反応溶液の粘度が上昇した。2時間反応させた後、重合反応液に大量のアセトンを注いで沈殿物を凝集させ、濾別洗浄後、40℃で24時間減圧乾燥した。得られた開環重合体の収量は7.5gであり、定量的に開環重合体が得られた。開環重合体のシス/トランス比は43/57であり、シス/トランス選択性はほとんど見られなかった。開環重合体の数平均分子量は3,900であった。また、減圧乾燥した開環重合体をそのまま試料として用いて測定したガラス転移点は130℃であり、融点は観測されなかった。次に、攪拌機付きオートクレーブに、得られた開環重合体0.3gおよびシクロヘキサン4.7gを加えた。そして、シクロヘキサン1mLに水素添加触媒としてRuHCl(CO)(PPh320.000157gを分散させたものをさらに添加し、水素圧4.0MPa、160℃で8時間水素化反応を行った。この水素化反応液を多量のアセトンに注ぎ、生成した開環重合体水素化物を完全に析出させ、濾別洗浄後、40℃で24時間減圧乾燥した。得られた開環重合体水素化物の水素化率は99%以上であり、メソ・ダイアッド/ラセモ・ダイアッドの比は67/33であった。また、減圧乾燥した開環重合体水素化物をそのまま試料として用いて測定したガラス転移点は98℃であり、融点は観測されなかった。
 実施例1~3の結果から、一般式(2)で表される遷移金属カルベン錯体と一般式(3)で表されるオニウム塩とを溶媒中で混合することにより、一般式(1)で表される遷移金属カルベン錯体が得られることが判る。また、実施例1~3と比較例1および2との錯体の安定性評価の結果を比較すると判るように、一般式(1)で表される遷移金属カルベン錯体は、一般式(2)で表される従来の遷移金属カルベン錯体に比して、空気中で安定なものあるといえる。さらに、実施例4の結果から、一般式(1)で表される遷移金属カルベン錯体は、空気中、開放系で、ジシクロペンタジエンを開環重合可能なものであり、しかも、立体規則性を制御して開環重合を行うことができるものであることが判る。一方、比較例3の結果から判るように、一般式(2)で表される遷移金属カルベン錯体は、空気中、開放系では、殆ど重合を行えない安定性に劣るものであるといえる。また、比較例4の結果から判るように、ルテニウムカルベン錯体は、空気中、開放系で、ジシクロペンタジエンを開環重合可能なものであるが、立体規則性の制御は殆ど行えないものであるといえる。

Claims (2)

  1.  下記の一般式(1)で表される遷移金属カルベン錯体。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(1)中、Mはモリブデン原子またはタングステン原子を表し、R1は置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、L1、L2およびL3は、ハロゲン基、置換基を有していてもよいアルコキシ基および置換基を有していてもよいアリーロキシ基から選択される配位子を表し、互いに同一もしくは異なり、或いは、少なくとも2つが互いに結合してMと共に環構造を形成しており、R2およびR3は、水素原子、置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、互いに同一もしくは異なり、Aは窒素原子またはリン原子を表し、R4、R5、R6およびR7は、置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、互いに同一もしくは異なり、或いは、少なくとも2つが互いに結合してAと共に環構造を形成している。)
  2.  請求項1に記載の遷移金属カルベン錯体を製造する方法であって、下記の一般式(2)で表される遷移金属カルベン錯体と下記の一般式(3)で表されるオニウム塩とを溶媒中で混合することを特徴とする遷移金属カルベン錯体の製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(2)中、Mはモリブデン原子またはタングステン原子を表し、R1は置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、L1およびL2は、ハロゲン基、置換基を有していてもよいアルコキシ基および置換基を有していてもよいアリーロキシ基から選択される配位子を表し、互いに同一もしくは異なり、或いは、互いに結合してMと共に環構造を形成しており、R2およびR3は、水素原子、置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、互いに同一もしくは異なる。)
    Figure JPOXMLDOC01-appb-C000009
    (一般式(3)中、Aは窒素原子またはリン原子を表し、R4、R5、R6およびR7は、置換基を有していてもよい炭素数1~20のアルキル基または置換基を有していてもよい炭素数6~20のアリール基を表し、互いに同一もしくは異なり、或いは、少なくとも2つが互いに結合してAと共に環構造を形成しており、X-は、ハロゲン化物イオン、置換基を有していてもよいアルコキシドアニオンおよび置換基を有していてもよいアリールオキシドアニオンから選択されるアニオンを表す。)
PCT/JP2014/003812 2013-07-17 2014-07-17 遷移金属カルベン錯体およびその製造方法 WO2015008493A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480038983.6A CN105358564B (zh) 2013-07-17 2014-07-17 过渡金属卡宾络合物及其制造方法
EP14827072.1A EP3023430B1 (en) 2013-07-17 2014-07-17 Transition metal/carbene complex and process for producing same
JP2015527184A JP6269670B2 (ja) 2013-07-17 2014-07-17 遷移金属カルベン錯体およびその製造方法
US14/905,479 US9701701B2 (en) 2013-07-17 2014-07-17 Transition metal carbene complex and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-148881 2013-07-17
JP2013148881 2013-07-17

Publications (1)

Publication Number Publication Date
WO2015008493A1 true WO2015008493A1 (ja) 2015-01-22

Family

ID=52345969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003812 WO2015008493A1 (ja) 2013-07-17 2014-07-17 遷移金属カルベン錯体およびその製造方法

Country Status (5)

Country Link
US (1) US9701701B2 (ja)
EP (1) EP3023430B1 (ja)
JP (1) JP6269670B2 (ja)
CN (1) CN105358564B (ja)
WO (1) WO2015008493A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133075A1 (ja) * 2014-03-07 2015-09-11 日本ゼオン株式会社 遷移金属錯体、その製造方法およびメタセシス反応用触媒
WO2016129600A1 (ja) * 2015-02-09 2016-08-18 旭硝子株式会社 含フッ素重合体の製造方法
WO2019188720A1 (ja) * 2018-03-28 2019-10-03 日本ゼオン株式会社 ノルボルネン開環重合体水素化物およびその製造方法
JP2019527686A (ja) * 2016-07-15 2019-10-03 マサチューセッツ インスティテュート オブ テクノロジー ハロゲンコーティングメタセシス触媒及びその方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216102A (zh) * 2022-07-29 2022-10-21 上海化工研究院有限公司 一种环状烯烃树脂组合物及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504487A (ja) 1998-02-19 2002-02-12 マサチューセッツ・インスティチュート・オブ・テクノロジー 不斉閉環メタセシス反応
JP2008501731A (ja) * 2004-06-09 2008-01-24 ユニバーシティ テクノロジーズ インターナショナル インコーポレイテッド オレフィン複分解反応の触媒としてのカチオン性置換基を含む遷移金属カルベン錯体
US20110098497A1 (en) * 2009-10-27 2011-04-28 IFP Energies Nouvelles Novel complexes and method for synthesis of group 6 organometallics grafted on anions, and use thereof in an olefin metathesis method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008689A (ja) 2006-06-27 2008-01-17 National Institute Of Advanced Industrial & Technology 表面検査装置および表面検査方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504487A (ja) 1998-02-19 2002-02-12 マサチューセッツ・インスティチュート・オブ・テクノロジー 不斉閉環メタセシス反応
JP2008501731A (ja) * 2004-06-09 2008-01-24 ユニバーシティ テクノロジーズ インターナショナル インコーポレイテッド オレフィン複分解反応の触媒としてのカチオン性置換基を含む遷移金属カルベン錯体
US20110098497A1 (en) * 2009-10-27 2011-04-28 IFP Energies Nouvelles Novel complexes and method for synthesis of group 6 organometallics grafted on anions, and use thereof in an olefin metathesis method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANNIE J. JIANG ET AL.: "Cationic Molybdenum Imido Alkylidene Complexes", ORGANOMETALLICS, vol. 27, no. 17, 2008, pages 4428 - 4438, XP002580451 *
ZACHARY J. TONZETICH ET AL.: "Reaction of Phosphoranes with Mo(N-2,6-i-Pr2C6H3) (CHCMe3) [OCMe(CF3)2]2: Synthesis and Reactivity of an Anionic Imido Alkylidyne Complex", ORGANOMETALLICS, vol. 25, no. 18, 2006, pages 4301 - 4306, XP002497555 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133075A1 (ja) * 2014-03-07 2015-09-11 日本ゼオン株式会社 遷移金属錯体、その製造方法およびメタセシス反応用触媒
WO2016129600A1 (ja) * 2015-02-09 2016-08-18 旭硝子株式会社 含フッ素重合体の製造方法
JPWO2016129600A1 (ja) * 2015-02-09 2017-12-07 旭硝子株式会社 含フッ素重合体の製造方法
JP2019527686A (ja) * 2016-07-15 2019-10-03 マサチューセッツ インスティテュート オブ テクノロジー ハロゲンコーティングメタセシス触媒及びその方法
JP7011242B2 (ja) 2016-07-15 2022-02-10 マサチューセッツ インスティテュート オブ テクノロジー ハロゲンコーティングメタセシス触媒及びその方法
WO2019188720A1 (ja) * 2018-03-28 2019-10-03 日本ゼオン株式会社 ノルボルネン開環重合体水素化物およびその製造方法
JPWO2019188720A1 (ja) * 2018-03-28 2021-03-11 日本ゼオン株式会社 ノルボルネン開環重合体水素化物およびその製造方法
JP7207403B2 (ja) 2018-03-28 2023-01-18 日本ゼオン株式会社 ノルボルネン開環重合体水素化物およびその製造方法

Also Published As

Publication number Publication date
JP6269670B2 (ja) 2018-01-31
JPWO2015008493A1 (ja) 2017-03-02
EP3023430A1 (en) 2016-05-25
EP3023430B1 (en) 2018-01-31
US9701701B2 (en) 2017-07-11
CN105358564B (zh) 2018-12-07
EP3023430A4 (en) 2017-02-15
CN105358564A (zh) 2016-02-24
US20160152645A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP6269670B2 (ja) 遷移金属カルベン錯体およびその製造方法
JP4410422B2 (ja) イミダゾリジンに基づく金属カルベンメタセシス触媒
JP5535217B2 (ja) ルテニウム−インデニリデンカルベン触媒の製造方法
KR102456014B1 (ko) 금속 이미도 알킬리덴 및 금속 옥소 알킬리덴의 n-헤테로시클릭 카르벤 착물, 및 그의 용도
D'Auria et al. New homoleptic bis (pyrrolylpyridiylimino) Mg (II) and Zn (II) complexes as catalysts for the ring opening polymerization of cyclic esters via an “activated monomer” mechanism
Elser et al. Latent and Air‐Stable Pre‐Catalysts for the Polymerization of Dicyclopentadiene: From Penta‐to Hexacoordination in Molybdenum Imido Alkylidene N‐Heterocyclic Carbene Complexes
JP5180254B2 (ja) 6配位ルテニウムまたはオスミウム金属カルベンメタセシス触媒
Rosar et al. Palladium complexes with simple iminopyridines as catalysts for polyketone synthesis
Gansäuer et al. Modular synthesis of functional Titanocenes
JP6421814B2 (ja) 遷移金属錯体、その製造方法およびメタセシス反応用触媒
Albertin et al. Pentamethylcyclopentadienyl osmium complexes that contain diazoalkane, dioxygen and allenylidene ligands: preparation and reactivity
Wirth et al. 1, 4-Bis (4-nitrosophenyl) piperazine: novel bridging ligand in dinuclear complexes of rhodium (III) and iridium (III)
Busetto et al. Nitrile ligands activation in dinuclear aminocarbyne complexes
JP2002284789A (ja) 新規な高メタセシス活性の有機金属錯体化合物、これを含有してなるメタセシス反応触媒、この触媒を用いた重合方法およびこの重合方法により得られた重合体
KR20070038420A (ko) 고리형 올레핀 중합체 제조용 촉매
JP5585916B2 (ja) ポリチオフェン類の製造方法、及び新規なチオフェンモノマー
JP6045938B2 (ja) 置換アセチレン重合開始剤及び置換ポリアセチレンの製造方法
JP2005254048A (ja) デンドリマー型ホスフィン−ロジウム錯体からなるヒドロホルミル化用触媒、それを用いたヒドロホルミル化法
WO2016129606A1 (ja) 含フッ素重合体の製造方法
Jiménez et al. C− C Formation and C− O Cleavage Reactions on Hemilabile Arene− Phosphine Ligands in Route to η5-Cyclohexadienyl Iridium Compounds §
KR101621251B1 (ko) 신규한 비스아미딘 구조의 전이금속 착물 및 이를 이용한 올레핀 중합 방법
Sadeh A Flexible Approach to [1] Ferrocenophanes: Metallopolymers through a New Family of Chiral Sandwich Compounds
Turki et al. Synthesis and structure of new cationic methallyl molybdenum (II) complexes supported by α-diimine ligands
Esteban Flores Strained Ferrocenophanes Bridged by Silicon for New Metallopolymers
JP2015030789A (ja) ポリ(3−置換チオフェン)化合物並びにその合成中間体及びそれらの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038983.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14827072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527184

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14905479

Country of ref document: US

Ref document number: 2014827072

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE