WO2015001734A1 - 複合材料および複合材料の製造方法 - Google Patents

複合材料および複合材料の製造方法 Download PDF

Info

Publication number
WO2015001734A1
WO2015001734A1 PCT/JP2014/003203 JP2014003203W WO2015001734A1 WO 2015001734 A1 WO2015001734 A1 WO 2015001734A1 JP 2014003203 W JP2014003203 W JP 2014003203W WO 2015001734 A1 WO2015001734 A1 WO 2015001734A1
Authority
WO
WIPO (PCT)
Prior art keywords
apatite
tube
composite material
crystal
apatite crystal
Prior art date
Application number
PCT/JP2014/003203
Other languages
English (en)
French (fr)
Inventor
公典 榎本
大長 久芳
四ノ宮 裕
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to EP14820599.0A priority Critical patent/EP3018096B1/en
Priority to CN201480037344.8A priority patent/CN105358479B/zh
Priority to JP2015525029A priority patent/JP6466839B2/ja
Publication of WO2015001734A1 publication Critical patent/WO2015001734A1/ja
Priority to US14/977,324 priority patent/US10208302B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • A61L27/425Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of phosphorus containing material, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1856Phosphorus; Compounds thereof with iron group metals or platinum group metals with platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/14Phosphates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/602Nanotubes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • C30B7/105Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes using ammonia as solvent, i.e. ammonothermal processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1806Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes

Definitions

  • the present invention relates to crystalline apatite applicable to a wide range of fields as a functional material.
  • Non-Patent Document 1 a solid hexagonal columnar apatite single crystal is known.
  • Patent Document 1 a method for separating proteins using needle-shaped hydroxyapatite whiskers has been devised.
  • Apatite-based materials can be applied to various applications, and there is room for further improvement in shapes and components suitable for the applications.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a new composite material having a tube-like apatite crystal.
  • a composite material according to an aspect of the present invention includes a tubular apatite crystal, a functional part that is housed in a tube of the apatite crystal, and is made of a material having a physical property different from that of the apatite crystal.
  • the apatite crystal has a general formula of M 2 5 (PO 4 ) 3 X (M 2 is at least one element selected from the group consisting of a divalent alkaline earth metal and Eu, and X is a group consisting of a halogen element and OH) It may be a single crystal represented by at least one element or molecule selected from. Thereby, a tubular apatite single crystal can be easily obtained.
  • the apatite crystal may have a transmittance of 65% or more with respect to visible light.
  • the functional part may be made of a material having higher rigidity than the apatite crystal. Thereby, the high intensity
  • the functional unit may be composed of a photocatalytic substance.
  • a photocatalytic substance is also arranged inside the tubular apatite crystal, a higher-performance photocatalytic material can be realized.
  • the functional part may be comprised with the enzyme. Thereby, it can be used as, for example, a bioreactor column.
  • the outer shape of the apatite crystal may be a hexagonal column, and the shape of the opening of the hole formed in the upper surface or the lower surface of the hexagonal column may be a hexagon.
  • the apatite crystal may have an inner diameter of the tube hole of 3 nm to 800 ⁇ m.
  • the diameter of the apatite crystal may be 1 ⁇ m to 1 mm.
  • the apatite crystal may have a length in the longitudinal direction of 2 ⁇ m to 4 mm.
  • Another aspect of the present invention is a method for producing a composite material.
  • a metal material having higher rigidity than the apatite crystal is disposed in a tube of a tube-like apatite crystal, and the metal material is melted and fixed by laser light that passes through the apatite crystal.
  • the metal material can be easily fixed in the apatite crystal tube.
  • the metal material may be one kind of metal or an alloy, and may contain other substances other than the metal.
  • the metal material may be lower than the melting point of the apatite crystal.
  • Still another embodiment of the present invention is also a method for producing a composite material.
  • avidin molecules are adsorbed in a tube of a tube-like apatite crystal, and a solution containing an enzyme labeled with biotin is permeated into the tube to immobilize the enzyme in the tube.
  • the enzyme can be easily immobilized in the apatite crystal tube.
  • a new composite material having a tube-like apatite can be provided.
  • the apatite crystal according to the present embodiment is a tube-shaped single crystal.
  • the apatite crystal has a general formula of M 2 5 (PO 4 ) 3 X (M 2 is at least one element selected from the group consisting of a divalent alkaline earth metal and Eu, and X is a halogen element and OH. Represents at least one element or molecule selected from the group).
  • the alkaline earth metal is, for example, Ca, Sr, Ba, Ra, Mg, Be.
  • the halogen element is, for example, F, Cl, Br, or I.
  • Example 7 are methods for synthesizing chlorapatite single crystals.
  • Examples 8 to 10 are methods for synthesizing a hydroxyapatite single crystal. Examples of the synthesis method include a flux method, a coprecipitation method, and a sol-gel method.
  • Example 1 Flux method
  • CaHPO 4 , CaCO 3 , and CaCl 2 are weighed so that the molar ratio of Ca: P: Cl is 5: 3: 1 and mixed uniformly.
  • NaCl was added so that the chlorapatite concentration was 0.15 mol%, and the mixture was heated in a platinum crucible to 800 to 1100 ° C. at a heating rate of 100 to 500 ° C./h, and a synthesis temperature of 800 to 1100 ° C.
  • the temperature is lowered from 800 to 1100 ° C. to 500 ° C. at a temperature drop rate of 5 to 300 ° C./h, and then cooled to room temperature by natural cooling.
  • it is carefully washed with warm pure water (about 80 ° C.) to take out the chlorapatite single crystal.
  • Example 2 Flux method
  • CaHPO 4 , CaCO 3 , and CaCl 2 are weighed so that the molar ratio of Ca: P: Cl is 5: 3: 1 and mixed uniformly. Thereafter, a large amount of CaCl 2 was added, and the mixture was heated in a platinum crucible to 800 to 1100 ° C. at a heating rate of 100 to 500 ° C./h, synthesized at a synthesis temperature of 800 to 1100 ° C. for 48 hours, and then cooled down. The temperature is lowered from 800 to 1100 ° C. to 500 ° C. at 5 to 300 ° C./h, and then cooled to room temperature by natural cooling. After firing, it is carefully washed with warm pure water (about 80 ° C.) to take out the chlorapatite single crystal.
  • Example 3 Flux method
  • CaHPO 4 , CaCO 3 , SrCO 3 , CaCl 2 , SrCl 2 are weighed so that the molar ratio of Ca + Sr: P: Cl is 5: 3: 1 and uniformly mixed.
  • SrCl 2 was added so that the chlorapatite concentration was 0.15 mol%, and the mixture was heated in a platinum crucible to 800 to 1100 ° C. at a heating rate of 100 to 500 ° C./h, and the synthesis temperature was 800 to 1100.
  • the temperature is decreased from 800 to 1100 ° C. to 500 ° C. at a temperature decrease rate of 5 to 300 ° C./h, and then cooled to room temperature by natural cooling.
  • it is carefully washed with warm pure water (about 80 ° C.) to take out the chlorapatite single crystal.
  • Example 4 Flux method
  • CaHPO 4 , CaCO 3 , MgCO 3 , CaCl 2 , and MgCl 2 are weighed so that the molar ratio of Ca + Mg: P: Cl is 5: 3: 1 and uniformly mixed.
  • MgCl 2 was added so that the chlorapatite concentration was 0.15 mol%, and the mixture was heated in a platinum crucible to 800 to 1100 ° C. at a heating rate of 100 to 500 ° C./h, and a synthesis temperature of 800 to 1100 ° C. After being synthesized for 48 hours, the temperature is lowered from 800 to 1100 ° C. to 500 ° C. at a temperature drop rate of 5 to 300 ° C./h, and then cooled to room temperature by natural cooling. After firing, it is carefully washed with warm pure water (about 80 ° C.) to take out the chlorapatite single crystal.
  • Example 5 Coprecipitation method
  • calcium nitrate and calcium chloride are dissolved in pure water, phosphoric acid is dropped into the solution, and the pH is adjusted to 5 to 9 to form a precipitate (seed crystal).
  • the seed crystal prepared by the coprecipitation method is grown as a seed crystal by the Czochralski method.
  • a Ca 2 ClPO 4 concentration of 15 mol% is heated to 1200 ° C., the seed crystal is immersed in a high temperature solution, and gradually cooled from 1200 ° C. to 1050 ° C. While pulling up the crystal, a chloroapatite single crystal was obtained.
  • Example 6 Sol-gel method
  • phosphoric acid ethoxide total molar concentration of calcium and phosphorus; 0.05 mol / liter
  • concentrated hydrochloric acid chlorine is 1 mol per 1 mol of calcium. 1 mol
  • This solution was dried at 60 ° C. for 2 hours to remove distilled water to obtain seed crystals.
  • the seed crystal prepared by the sol-gel method is grown as a seed crystal by the Czochralski method.
  • a Ca 2 ClPO 4 concentration of 15 mol% is heated to 1200 ° C., the seed crystal is immersed in a high temperature solution, and gradually cooled from 1200 ° C. to 1050 ° C. While pulling up the crystal, a chloroapatite single crystal was obtained.
  • Example 7 Sol-gel method
  • phosphoric acid was further added (total molar concentration of calcium and phosphorus; 0.05 mol / L), and stirred, and then concentrated hydrochloric acid was added.
  • This solution was dried at 60 ° C. for 2 hours to remove distilled water to obtain seed crystals.
  • the seed crystal prepared by the sol-gel method is grown as a seed crystal by the Czochralski method.
  • a Ca 2 ClPO 4 concentration of 15 mol% is heated to 1200 ° C., the seed crystal is immersed in a high temperature solution, and gradually cooled from 1200 ° C. to 1050 ° C. While pulling up the crystal, a chloroapatite single crystal was obtained.
  • Example 8 Coprecipitation method
  • Single crystal precipitation by adding 0.5 mol / L phosphoric acid aqueous solution dropwise to 0.3 mol / L calcium hydroxide suspension and adjusting the pH to 5-9, taking care to form single crystals.
  • a product seed crystal
  • the seed crystal prepared by the coprecipitation method is grown as a seed crystal by the Czochralski method. Calcium hydroxide was heated to 1650 ° C., the seed crystal was immersed in a high-temperature solution, and the crystal was pulled up while gradually cooling from 1650 ° C. to 1000 ° C. to obtain a needle-like hydroxyapatite single crystal.
  • Example 9 Hydrothermal synthesis method
  • lactic acid is dissolved in 1 liter of water, then 22.11 g of calcium hydroxide is added, and 6.92 g of phosphoric acid is mixed and dissolved.
  • the slurry thus prepared is filled in an autoclave and subjected to hydrothermal treatment at 165 ° C. for 5 hours.
  • the treated slurry was filtered and dried to obtain a hydroxyapatite single crystal.
  • Example 10 Sol-gel method
  • 1.0 ⁇ 10 ⁇ 2 moles of calcium diethoxide is dissolved in 6.5 ml of ethylene glycol.
  • a mixed solution of calcium diethoxide in ethylene glycol and triethyl phosphite is stirred for 2 hours to form a precipitate. It was heated at 200 ° C. for 2 hours to obtain a seed crystal.
  • the seed crystal prepared by the sol-gel method is grown as a seed crystal by the Czochralski method.
  • Calcium hydroxide was heated to 1650 ° C., the seed crystal was immersed in a high-temperature solution, and the crystal was pulled up while gradually cooling from 1650 ° C. to 1000 ° C. to obtain a needle-like hydroxyapatite single crystal.
  • Example 11 Chlorine apatite single crystal (20 mg) is put in a platinum capsule (2.6 mm ⁇ , length 3.3 mm) together with 6.25 (mol / L) aqueous potassium hydroxide (KOH) (40 ⁇ l) and sealed.
  • the hydrothermal treatment is performed under conditions of 100 MPa using water as a pressure medium in a test tube type autoclave. The heating rate is 20 ° C. per minute, the processing temperature is 400 ° C., and the processing time is constant for 48 hours. Thereby, a hydroxyapatite single crystal was obtained.
  • Example 12 Chloroapatite single crystal (20 mg) is heated to 1300 ° C. and reacted in steam through steam for 2 weeks to convert it into a hydroxyapatite single crystal.
  • FIG. 1 is an example of an X-ray diffraction pattern of a crystal prepared by the method of the example. As shown in FIG. 1, the crystal was a single layer of chlorapatite crystal Ca 5 (PO 4 ) 3 Cl.
  • FIG. 2 is a photograph showing an example of a chloroapatite tube single crystal observed by SEM.
  • the apatite single crystal according to the present embodiment has a tube shape, and the outer shape is a hexagonal column.
  • the shape of the opening part of the hole formed in the upper surface or lower surface of a hexagonal column is a hexagon. Therefore, the thickness of the outer wall of the tube is almost uniform.
  • the inner diameter of the hole in the opening of the tubular single crystal is about 3 nm to 800 ⁇ m, preferably about 10 nm to 60 ⁇ m.
  • the diameter of the tube-shaped single crystal is about 20 nm to 1 mm.
  • the tube-shaped single crystal has a length in the longitudinal direction of about 50 nm to 4 mm.
  • the tube-shaped single crystal has a transmittance of 65% or more with respect to visible light.
  • a tube is formed by a composite material having the above-described tube-like apatite crystal and a functional part that is housed in the tube of the apatite crystal and is composed of a material having a physical property different from that of the apatite crystal.
  • a new function difficult to obtain with a single apatite crystal alone is obtained. Therefore, the use of a new composite material having a tube-like apatite will be described more specifically.
  • the performance required as a reinforcing material used for artificial bones is desired to be (i) high biocompatibility and (ii) high strength.
  • a reinforcing material having high biocompatibility and higher strength than conventional biomaterial apatite has been desired.
  • the biocompatibility is high, Moreover, the inventors have come up with a composite material as a reinforcing material that can provide high strength.
  • the diameter of the hollow (tube-shaped) hexagonal columnar apatite single crystal is, for example, about 1 ⁇ m to 1 mm.
  • the inner diameter of the hole in the opening of the tubular apatite single crystal is, for example, about 0.5 ⁇ m to 800 ⁇ m.
  • the length in the longitudinal direction of the tubular apatite single crystal is, for example, about 2 ⁇ m to 4 mm.
  • a tube-shaped hydroxyapatite single crystal having a length of 200 ⁇ m, a diameter of 40 ⁇ m, and an inner diameter of the opening of 20 ⁇ m was obtained by the method described in Example 1 and Example 12 above.
  • This apatite single crystal is a substance that transmits visible light. Therefore, an aluminum wire was inserted into the hollow portion of the obtained tube-shaped hydroxyapatite single crystal, and the aluminum wire was fixed inside the tube by performing a local heat treatment at about 700 ° for 1 hour from the outside using a YAG laser. Reinforcing material was used.
  • the tubular apatite single crystal preferably has a transmittance of 65% or more with respect to visible light. Since such a tube-like apatite single crystal is transparent, the laser beam can be transmitted and the aluminum wire can be selectively heated. Therefore, damage caused by heating by the laser to the apatite single crystal can be reduced.
  • the method for manufacturing the composite material (reinforcing material) according to the present embodiment includes a metal material (titanium, aluminum, magnesium, or an alloy thereof) having higher rigidity than the apatite crystal in the tube of the tube-like apatite crystal. Etc.), and the metal material is melted and fixed by a laser beam transmitted through the apatite crystal. Thereby, the metal material can be easily fixed in the tube of the apatite crystal.
  • the metal material may be one kind of metal (titanium, aluminum, magnesium, or the like) or an alloy thereof, or may contain a substance other than the metal.
  • the metal material may be lower than the melting point of the apatite crystal. In this case, the metal material can be selectively dissolved without melting the apatite single crystal.
  • the composite material of the comparative example uses a needle-like apatite single crystal. Specifically, a 0.5 mol / L phosphoric acid aqueous solution is dropped into a 0.3 mol / L calcium hydroxide suspension, and the pH is adjusted to 5 to 9 taking care to form single crystals. Gave a single crystal precipitate. This precipitate was grown at 1200 ° C. for 48 hours to obtain a needle-like hydroxyapatite single crystal having a length of 200 ⁇ m and an outer diameter of 40 ⁇ m.
  • the reinforcing material of the example (tube shape) or the comparative example (needle shape) is added to the hydroxyapatite / pore control material mixed powder at a rate of 10 vol%, and about 1 g is filled in a carbon die having a diameter of 15 mm.
  • sintering was performed at 1000 ° C. for 10 minutes in a vacuum.
  • the heating rate during sintering was about 100 ° C./min, and the cooling was naturally allowed to cool in the apparatus.
  • the temperature of the die was measured. From the result of powder X-ray diffraction, the sintered body was composed of hydroxyapatite and CaO, and no reaction between the two compounds was observed.
  • the fracture strength [MPa] in Table 1 is also the fracture stress (load per unit area) in a phenomenon in which a solid material separates into two or more parts under the action of external force.
  • the fracture strength shows the measurement result of the J toughness value, and was determined by three-point bending based on the JIS standard.
  • the fracture toughness value (KIC) [MPa ⁇ m 1/2 ] is a stress intensity factor necessary for progressing cracks, and uses a test piece having the same size as the test piece for fracture strength measurement. Then, a U groove having a width of 0.1 mm and a depth of 0.75 mm was formed at the center of the test piece, measured at room temperature under a span of 30 mm and a crosshead speed of 0.75 mm / min, and determined according to the following formula.
  • KIC Y ⁇ a 1/2
  • Y is the shape factor
  • the bending strength
  • a is the crack length.
  • fracture energy refers to the total energy added to a material before it breaks, and a material with a large fracture energy is expressed as “rigid”.
  • the fracture energy was calculated from the area of the stress-strain curve obtained during the fracture toughness test and the cross-sectional area of the specimen fracture surface.
  • needle-shaped apatite single crystal (comparative example) is added to the artificial bone using a composite material (example) filled with a metal material inside a tube-like apatite single crystal as a reinforcing material.
  • the fracture strength, fracture energy, and fracture toughness values are all higher than the artificial bone.
  • the apatite itself coated with a photocatalytic substance is often in a powder state from the viewpoint of handleability.
  • clogging tends to occur and liquid permeability cannot be secured.
  • light does not sufficiently reach the inside of the column.
  • One solution is to use hydroxyapatite with a large particle size in order to solve the clogging, but there is a problem that the specific surface area decreases due to an increase in the particle size and the photocatalytic performance decreases.
  • the surface area of the apatite single crystal is expanded due to the tube shape, and the light transmitted through the apatite single crystal is formed by forming a titanium oxide film on the surface of the transparent apatite single crystal. Also, the activity of the photocatalytic reaction can be increased, so that an excellent use as a photocatalyst can be realized.
  • Example 13 and Example 14 the manufacturing method of the composite material which has a photocatalytic function based on this Embodiment is demonstrated.
  • Example 13 In the method described in Examples 1 to 12 above, a tube-like hydroxy having a composition of Ca 5 (PO 4 ) 3 (OH) and having a length of 0.3 to 2 mm and an inner diameter of the opening of 80 to 300 nm. A single crystal of (hydroxylated) apatite was obtained. This single crystal is immersed in a room temperature glass coating agent containing 0.1 to 5 wt% of Ti-modified apatite for 1 hour, washed with pure water, and then dried at 80 ° C. for 12 hours. This was annealed at 700 ° C. for 1 hour, and a part of the surface of the apatite tube was replaced with titanium to give a photocatalytic function.
  • Example 14 A tube-shaped chloroapatite having a composition of Ca 5 (PO 4 ) 3 Cl and having a length of 0.3 to 2 mm and an inner diameter of an opening of 50 to 200 nm by the method described in Examples 1 to 12 above. A single crystal was obtained. This single crystal is immersed in a room temperature glass coating agent containing 0.1 to 5 wt% of Ti-modified apatite for 1 hour, washed with pure water, and then dried at 80 ° C. for 12 hours. This was annealed at 700 ° C. for 1 hour, and a part of the surface of the apatite tube was replaced with titanium to give a photocatalytic function.
  • the photocatalytic activity was evaluated using the composite materials having the photocatalytic function obtained in Example 13 and Example 14. First, the sample powder of the composite material according to each example was weighed so as to have a surface area based on a specific surface area measurement result. Then, the weighed sample was filled so that the upper lid had a uniform thickness at the bottom of the quartz glass container, and the inside of the container was replaced with synthetic air (oxygen 20 volume%, nitrogen 80 volume%).
  • acetaldehyde was injected into the container so that the acetaldehyde gas concentration was 1% by volume, and left in the dark for 1 hour until the acetaldehyde gas reached adsorption equilibrium with the sample powder. Thereafter, irradiation with light from a xenon lamp as a light source was started (3 hours after standing in the dark), 1 hour later (2 hours after standing in the dark), and 2 hours later (3 hours after standing in the dark). After) and after 3 hours (4 hours after standing in the dark), the gas inside the container was extracted with a cylinder, and the CO 2 gas concentration was measured using gas chromatography. As a result, a CO2 gas concentration of 5 g / L (liter) or more was observed in 2 hours after irradiation with the light source, and high photocatalytic activity was shown in each sample.
  • the tubular apatite crystal has a specific surface area [cm 2 / g] of about 1.5 to 4 times that of the acicular apatite crystal, and the photocatalytic performance is also 1.5 times. About 4 times. That is, the composite material according to the present embodiment can realize a higher photocatalytic performance because the photocatalytic substance can be arranged inside the tube-like apatite crystal.
  • the enzyme used in the liquid is basically disposable, the cost increases. Therefore, in order to effectively use the precious enzyme, it is a proposal to make a bioreactor in which the enzyme is immobilized on an insoluble carrier, the organic raw material is brought into contact with the carrier, and the enzyme acts as a catalyst. .
  • a tubular apatite single crystal useful as a biomaterial is used as a carrier for immobilizing an enzyme, and an apatite adsorption action is used to immobilize the enzyme to constitute a bioreactor column. That is, the functional unit according to the present embodiment is composed of an immobilized enzyme.
  • Apatite has a cation adsorbing part (Ca 2+ etc.) and an anion adsorbing part (HPO 4 2 ⁇ , PO 4 3 ⁇ , OH ⁇ , X ⁇ etc .; X is a halogen element) depending on pH. Therefore, the enzyme is immobilized on the adsorption part by electrostatic adsorption. In addition, what is adsorbed on either the cation adsorbing part or the anion adsorbing part may be appropriately selected depending on the type of enzyme.
  • a basic glycoprotein avidin molecule which is easily bioaffinity-bound with the enzyme, is electrostatically adsorbed to apatite in advance, and the enzyme labeled with biotin, a water-soluble vitamin, is immobilized on the avidin molecule by bioaffinity binding Make a bioreactor column. Since biotin can be added to the enzyme molecule without losing the activity of the enzyme, an enzyme labeled with biotin is obtained. By binding the enzyme labeled with biotin to the avidin molecule adsorbed on the apatite, the enzyme can be immobilized in the apatite tube.
  • various enzymes such as a saccharolytic enzyme and a proteolytic enzyme can be selected as the enzyme to be immobilized.
  • the enzyme and biotin labeling agent are suspended in a buffer solution (pH 8.5) so that the mixing molar ratio is 1: 2 to 1:10. Next, it is incubated for 2 to 4 hours in a thermostatic layer (25 ° C.) while penetrating the suspension. Then, the obtained solution is subjected to gel chromatography to separate the labeled enzyme.
  • Example 15 In the method described in Examples 1 to 12 above, a tube-like hydroxy having a composition of Ca 5 (PO 4 ) 3 (OH) and having a length of 0.3 to 2 mm and an inner diameter of the opening of 80 to 600 nm. A single crystal of (hydroxylated) apatite was obtained. Then, a solution in which amylase is suspended in a pH 5 to 6.5 buffer solution is permeated into the apatite tube, and incubated in a warm bath at 20 to 35 ° C. for 8 hours to immobilize the amylase in the apatite tube. .
  • Example 16 A tube-shaped chloroapatite having a composition of Ca 5 (PO 4 ) 3 Cl and having a length of 0.3 to 2 mm and an inner diameter of a hole of an opening of 3 to 40 nm is obtained by the method described in Examples 1 to 12 above. A single crystal was obtained. Then, a solution in which glucoamylase is suspended in a buffer solution of pH 7 to 9 is permeated into the apatite tube and incubated in a warm bath at 20 to 35 ° C. for 8 hours to immobilize glucoamylase in the apatite tube. .
  • Example 17 In the method described in Examples 1 to 12 above, a tube-shaped chloroapatite having a composition of Ca 5 (PO 4 ) 3 Cl and having a length of 0.5 to 4 mm and an inner diameter of the opening of 3 to 40 nm was formed. A single crystal was obtained. Then, a solution in which avidin molecules are dispersed in a pH 6 to 8 buffer solution is permeated into the apatite tube, and incubated in a warm bath at 20 to 35 ° C. for 4 hours, whereby the avidin molecules are placed in the apatite tube by electrostatic action. Immobilize.
  • the enzyme with biotin label is suspended in a buffer solution of pH 6-8, infiltrated into the apatite tube, and incubated at 20-25 ° C for 30 minutes, so that the enzyme is immobilized in the apatite tube by the biotin-avidin reaction.
  • enzymes having different molecular weights and isoelectric points such as amylase, cellulase, xylase, racemers, etc. can be easily immobilized.
  • FIG. 3 is a schematic diagram of an apparatus using the bioreactor column according to the present embodiment.
  • a bioreactor column 10 was prepared by packing a tube-like apatite single crystal in which glucoamylase was immobilized by a biotin-avidin method into a column having an inner diameter of 10 mm and a length of 100 mm.
  • the buffer solution adjusted to pH 7-8 containing oligosaccharide was supplied from the raw material container 12 to the bioreactor column 10 by the tube pump 14.
  • the buffer solution was supplied by continuous steady operation under conditions of a liquid temperature of 30 ° C. and a liquid volume of 0.3 ml / min.
  • the solution discharged from the bioreactor column 10 was collected in a collection container 16 every hour, and the contents were separated and identified by thin layer chromatography. As a result, it was found that most of the oligosaccharides were decomposed into glucose in the collected sample solutions at all times, and the bioreactor column 10 was functioning sufficiently.
  • the apatite single crystal of the present invention can be used as various functional materials including phosphors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Nanotechnology (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Materials For Medical Uses (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Catalysts (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

 チューブ状のアパタイト結晶と、アパタイト結晶のチューブ内に収容され、該アパタイト結晶と異なる物性の材料で構成された機能部と、を有する。アパタイト結晶は、一般式がM (POX(Mは2価のアルカリ土類金属及びEuからなる群より選ばれる少なくとも1種の元素、Xはハロゲン元素及びOHからなる群より選ばれる少なくとも一種の元素または分子を示す。)で表される単結晶であってもよい。

Description

複合材料および複合材料の製造方法
 本発明は、機能性材料として広範囲な分野に適用可能な結晶性のアパタイトに関する。
 近年、蛍光体や生体機能材料としてアパタイト系の材料の開発が進められている。このようなアパタイト系の結晶として、中実の六角柱状のアパタイト単結晶が知られている(非特許文献1)。また、針状のハイドロキシアパタイトウィスカーを用いてタンパク質を分離する方法も考案されている(特許文献1参照)。
特開平9-169794号公報
Katsuya Teshima et al.、「Direct growth of highly crystalline, idiomorphic fluorapatite crystals on a polymer substrate」、Crystal Growth & Design、2009、Vol.9、No.9、p.3832-3834
 アパタイト系の材料は、様々な用途に適用可能であり、その用途に適した形状や成分については更に改善の余地がある。
 本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、チューブ状のアパタイト結晶を有する新たな複合材料を提供することにある。
 上記課題を解決するために、本発明のある態様の複合材料は、チューブ状のアパタイト結晶と、アパタイト結晶のチューブ内に収容され、該アパタイト結晶と異なる物性の材料で構成された機能部と、を有する。
 この態様によると、チューブ状のアパタイト結晶単独では得にくい新たな機能が得られる。
 アパタイト結晶は、一般式がM (POX(Mは2価のアルカリ土類金属及びEuからなる群より選ばれる少なくとも1種の元素、Xはハロゲン元素及びOHからなる群より選ばれる少なくとも一種の元素または分子を示す。)で表される単結晶であってもよい。これにより、チューブ状のアパタイト単結晶を簡便に得られる。
 アパタイト結晶は、可視光に対して透過率が65%以上であってもよい。
 機能部は、アパタイト結晶よりも剛性が高い材料で構成されていてもよい。これにより、アパタイト結晶単独では得にくい高い強度を実現できる。
 機能部は、光触媒物質で構成されていてもよい。これにより、チューブ状のアパタイト結晶の内部にも光触媒物質が配置されるため、より高性能な光触媒材料が実現できる。また、機能部は、酵素で構成されていてもよい。これにより、例えば、バイオリアクターカラムとして用いることができる。
 アパタイト結晶は、外形が六角柱であり、六角柱の上面または下面に形成されている穴の開口部の形状が六角形であってもよい。
 アパタイト結晶は、チューブの穴の内径が3nm~800μmであってもよい。
 アパタイト結晶は、直径が1μm~1mmであってもよい。
 アパタイト結晶は、長手方向の長さが2μm~4mmであってもよい。
 本発明の別の態様は、複合材料の製造方法である。この方法は、チューブ状のアパタイト結晶のチューブ内に、該アパタイト結晶よりも剛性が高い金属材料を配置し、アパタイト結晶を透過するレーザ光で金属材料を溶融し固定化する。
 この態様によると、金属材料をアパタイト結晶のチューブ内に簡易に固定化できる。ここで、金属材料は、一種類の金属であってもよいし合金であってもよく、金属以外の他の物質が含まれていてもよい。また、金属材料は、アパタイト結晶の融点よりも低くてもよい。
 本発明のさらに別の態様もまた、複合材料の製造方法である。この方法は、チューブ状のアパタイト結晶のチューブ内にアビジン分子を吸着させ、ビオチンで標識化された酵素を含む溶液をチューブ内に浸透させることで酵素をチューブ内に固定化する。
 この態様によると、酵素をアパタイト結晶のチューブ内に簡易に固定化できる。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、などの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、チューブ状のアパタイトを有する新たな複合材料を提供できる。
実施例の方法で作成された結晶のX線回折パターンの一例である。 SEMで観察した塩素アパタイトチューブ単結晶の一例を示す写真である。 本実施の形態に係るバイオリアクターカラムを用いた装置の模式図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述される全ての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。
 本実施の形態に係るアパタイト結晶は、その形態がチューブ状の単結晶である。このアパタイト結晶は、一般式がM (POX(Mは2価のアルカリ土類金属及びEuからなる群より選ばれる少なくとも1種の元素、Xはハロゲン元素及びOHからなる群より選ばれる少なくとも一種の元素または分子を示す。)で表される。これにより、チューブ状のアパタイト単結晶を簡便に得られる。ここで、アルカリ土類金属は、例えば、Ca、Sr、Ba、Ra、Mg、Beである。また、ハロゲン元素は、例えば、F、Cl、Br、Iである。
 以下に、アパタイトのチューブ状の単結晶の製造方法について各実施例を参照して説明する。以下に本実施の形態を実施例によって更に具体的に説明する。実施例~実施例7は、塩素アパタイト単結晶の合成方法である。実施例8~実施例10は、水酸アパタイト単結晶の合成方法である。合成方法としては、例えば、フラックス法、共沈法、ゾル-ゲル法が挙げられる。
 [塩素アパタイト単結晶]
 (実施例1:フラックス法)
 はじめに、CaHPO、CaCO、CaClを、Ca:P:Clのモル比が5:3:1となるように計量し、均一混合する。その後、塩素アパタイト濃度が0.15mol%となるようにNaClを追加し、混合物を白金るつぼ中で800~1100℃まで昇温速度100~500℃/hで昇温させ、合成温度800~1100℃で48時間合成した後、降温速度5~300℃/hで800~1100℃から500℃まで降温させ、その後は自然冷却で常温まで冷却する。焼成後、温純水(約80℃)で丹念に洗浄し、塩素アパタイト単結晶を取り出す。
 (実施例2:フラックス法)
 はじめに、CaHPO、CaCO、CaClを、Ca:P:Clのモル比が5:3:1となるように計量し、均一混合する。その後、多量のCaClを追加し、混合物を白金るつぼ中で800~1100℃まで昇温速度100~500℃/hで昇温させ、合成温度800~1100℃で48時間合成した後、降温速度5~300℃/hで800~1100℃から500℃まで降温させ、その後は自然冷却で常温まで冷却する。焼成後、温純水(約80℃)で丹念に洗浄し、塩素アパタイト単結晶を取り出す。
 (実施例3:フラックス法)
 はじめに、CaHPO、CaCO、SrCO,CaCl,SrClを、Ca+Sr:P:Clのモル比が5:3:1となるように計量し、均一混合する。その後、塩素アパタイト濃度が0.15mol%となるようにSrClを追加し、混合物を白金るつぼ中で800~1100℃まで昇温速度100~500℃/hで昇温させ、合成温度800~1100℃で48時間合成した後、降温速度5~300℃/hで800~1100℃から500℃まで降温させ、その後は自然冷却で常温まで冷却する。焼成後、温純水(約80℃)で丹念に洗浄し、塩素アパタイト単結晶を取り出す。
 (実施例4:フラックス法)
 はじめに、CaHPO、CaCO、MgCO、CaCl、MgClを、Ca+Mg:P:Clのモル比が5:3:1となるように計量し、均一混合する。その後、塩素アパタイト濃度が0.15mol%となるようMgClを追加し、混合物を白金るつぼ中で800~1100℃まで昇温速度100~500℃/hで昇温させ、合成温度800~1100℃で48時間合成した後、降温速度5~300℃/hで800~1100℃から500℃まで降温させ、その後は自然冷却で常温まで冷却する。焼成後、温純水(約80℃)で丹念に洗浄し、塩素アパタイト単結晶を取り出す。
 (実施例5:共沈法)
 はじめに、純水に硝酸カルシウム、塩化カルシウムを溶解させ、その溶液中にリン酸を滴下し、pHを5~9に調整することにより沈殿(種結晶)を生じさせる。この共沈法により調整した種結晶を、チョクラルスキー法により種結晶成長させる。CaCl-CaClPO系相図において、CaClPO濃度が15mol%のものを1200℃まで加熱し、高温溶液となった中に種結晶を浸し、1200℃から1050℃まで徐冷しながら結晶を引き上げることにより、塩素アパタイト単結晶を得た。
 (実施例6:ゾル-ゲル法)
 はじめに、蒸留水に硝酸カルシウムを溶解させ、更にリン酸エトキシドを添加して(カルシウムとリンの合計モル濃度;0.05モル/リットル)撹拌した後、濃塩酸(カルシウム1モルに対して塩素は1モル)を加えた。この溶液を60℃で2時間乾燥して蒸留水を除去し、種結晶を得た。このゾル-ゲル法により調整した種結晶を、チョクラルスキー法により種結晶成長させる。CaCl-CaClPO系相図において、CaClPO濃度が15mol%のものを1200℃まで加熱し、高温溶液となった中に種結晶を浸し、1200℃から1050℃まで徐冷しながら結晶を引き上げることにより、塩素アパタイト単結晶を得た。
 (実施例7:ゾル-ゲル法)
 はじめに、蒸留水にカルシウムエトキシドを溶解させ、更にリン酸を添加して(カルシウムとリンの合計モル濃度;0.05mol/L)撹拌した後、濃塩酸を加えた。この溶液を60℃で2時間乾燥して蒸留水を除去し、種結晶を得た。このゾル-ゲル法により調整した種結晶を、チョクラルスキー法により種結晶成長させる。CaCl-CaClPO系相図において、CaClPO濃度が15mol%のものを1200℃まで加熱し、高温溶液となった中に種結晶を浸し、1200℃から1050℃まで徐冷しながら結晶を引き上げることにより、塩素アパタイト単結晶を得た。
 [水酸アパタイト単結晶]
 (実施例8:共沈法)
 0.3mol/Lの水酸化カルシウム懸濁液に、0.5mol/Lのリン酸水溶液を滴下し、単結晶が生成するよう留意してpHを5~9に調整することにより、単結晶沈殿物(種結晶)を得た。この共沈法により調整した種結晶を、チョクラルスキー法により種結晶成長させる。水酸化カルシウムを1650℃まで加熱し、高温溶液となった中に種結晶を浸し、1650℃から1000℃まで徐冷しながら結晶を引き上げることにより、針状の水酸アパタイト単結晶を得た。
 (実施例9:水熱合成法)
 はじめに、水1リットルに乳酸63.37gを溶解し、次に水酸化カルシウム22.11gを加え、更にリン酸6.92gを混合溶解させる。こうして調製したスラリーをオートクレーブに充填し、165℃で5時間、水熱処理を施す。そして、処理後のスラリーを濾過乾燥し、水酸アパタイト単結晶を得た。
 (実施例10:ゾル-ゲル法)
 カルシウムジエトキシド1.0×10-2モル分を6.5mlのエチレングリコールに溶解させる。次に、亜リン酸トリエチルを、水酸アパタイトの組成比がCa/P=5/3となるように、6.0×10-3モル採取し、所定量のエタノールに溶かして使用する。その後、カルシウムジエトキシドのエチレングリコール溶液と亜リン酸トリエチルとの混合溶液を2時間撹拌し、沈殿物を生じさせる。それを200℃で2時間加熱し、種結晶を得た。このゾル-ゲル法により調整した種結晶を、チョクラルスキー法により種結晶成長させる。水酸化カルシウムを1650℃まで加熱し、高温溶液となった中に種結晶を浸し、1650℃から1000℃まで徐冷しながら結晶を引き上げることにより、針状の水酸アパタイト単結晶を得た。
 [塩素アパタイトから水酸アパタイトへの変換]
 (実施例11)
 塩素アパタイト単結晶(20mg)を6.25(mol/L)の水酸化カリウム(KOH)水溶液(40μl)とともに、白金カプセル(2.6mmφ、長さ3.3mm)中に入れ溶封する。水熱処理は、テストチューブ型オートクレーブで圧力媒体として水を用い、100MPaの条件下で行う。昇温速度は毎分20℃とし、処理温度は400℃で行い、処理時間は48時間一定とする。これにより水酸アパタイト単結晶を得た。
 (実施例12)
 塩素アパタイト単結晶(20mg)を1300℃に加熱し、炉内に水蒸気を通じて2週間かけて反応させて、水酸アパタイト単結晶に変換する。
 [組成]
 次に、実施例の方法で作成した塩素アパタイト結晶の組成について検討した。図1は、実施例の方法で作成された結晶のX線回折パターンの一例である。図1に示すように、結晶は、塩素アパタイト結晶Ca(POClの単一層であった。
 [成分]
 次に、塩素アパタイトチューブ単結晶の元素分析を行った。その結果、この結晶は、Ca=39.10mass%、P=18.00mass%、Cl=5.30mass%であった。
 [形状]
 次に、塩素アパタイトチューブ単結晶の形状を走査型電子顕微鏡(SEM)にて観察した。図2は、SEMで観察した塩素アパタイトチューブ単結晶の一例を示す写真である。図2に示すように、本実施の形態に係るアパタイト単結晶は、チューブ状であり、外形が六角柱である。また、六角柱の上面または下面に形成されている穴の開口部の形状が六角形である。そのため、チューブの外壁の厚みがほぼ一様になっている。
 このようなチューブ状単結晶は、SEM観察により、様々な大きさや形態が存在していることがわかった。例えば、チューブ状単結晶の開口部の穴の内径は、3nm~800μm、好ましくは、10nm~60μm程度である。また、チューブ状単結晶の直径は、20nm~1mm程度である。また、チューブ状単結晶は、長手方向の長さが50nm~4mm程度である。また、チューブ状単結晶は、可視光に対して透過率が65%以上である。
 [用途]
 本願発明者らが鋭意検討したところ、上述のチューブ状のアパタイト結晶と、アパタイト結晶のチューブ内に収容され、アパタイト結晶と異なる物性の材料で構成された機能部と、を有する複合材料によって、チューブ状のアパタイト結晶単独では得にくい新たな機能が得られる。そこで、チューブ状のアパタイトを有する新たな複合材料の用途についてより具体的に説明する。
 <第1の実施の形態>
 本実施の形態では、上述の六角柱のチューブ状アパタイト単結晶の人工骨補強材への応用について説明する。具体的には、人工骨の強度を向上させる補強材として、生体材料アパタイトのチューブ状単結晶を用いた複合材料を考案した。チューブ状のアパタイト結晶は、従来の中実の針状アパタイト結晶とは違い、チューブ内部にチタンなどの強度の高い金属を挿入することができるため、従来の補強材よりも高い強度を得ることができる。
 人工骨に用いる補強材としてとして求められる性能は、(i)生体親和性が高い、(ii)高い強度が得られること、の2点が望まれる。例えば、アスペクト比が高い針状の生体材料アパタイトを補強材として利用する場合、強度が低いため、可動部に用いる人工骨の補強材としては強度的に不十分である。そのため、生体親和性が高く、従来の生体材料アパタイトよりも強度の高い補強材が望まれていた。
 そこで、チューブ形状であることを特徴とする上述のリン酸カルシウムを主成分としたアパタイト単結晶の内部に、チタンやマグネシウム、アルミニウムなどの強度の高い金属材料を挿入することにより、生体親和性が高く、かつ、高い強度が得られる補強材としての複合材料に想到した。このような用途における、中空(チューブ状)の六角柱状アパタイト単結晶の直径は、例えば、1μm~1mm程度である。また、チューブ状アパタイト単結晶の開口部の穴の内径は、例えば、0.5μm~800μm程度である。また、チューブ状アパタイト単結晶の長手方向の長さは、例えば、2μm~4mm程度である。
 そして、補強材自体の強度を向上させるためには、補強材の芯を強くすることが望ましい。それにはチューブ状アパタイト単結晶の内部にアルミニウムなどの金属材料を挿入すると効果的である。
 (補強材の製造方法)
 前述の実施例1や実施例12で説明した方法で、長さ200μm、直径40μm、開口部の穴の内径20μmのチューブ状ハイドロキシアパタイトの単結晶を得た。このアパタイト単結晶は、可視光が透過する物質である。そこで、得られたチューブ状ハイドロキシアパタイト単結晶の中空部にアルミニウムワイヤーを挿入し、外部からYAGレーザを用いて約700°で1時間、局部加熱処理することによりチューブ内部にアルミニウムワイヤーを固定し、補強材とした。なお、チューブ状アパタイト単結晶は、可視光に対して透過率が65%以上のものが好ましい。このようなチューブ状アパタイト単結晶は透明であるため、レーザ光が透過し、アルミニウムワイヤーを選択的に加熱できるため、レーザによる加熱がアパタイト単結晶に与えるダメージを低減できる。
 このように、本実施の形態に係る複合材料(補強材)の製造方法は、チューブ状のアパタイト結晶のチューブ内に、アパタイト結晶よりも剛性が高い金属材料(チタン、アルミニウム、マグネシウム、それらの合金等)を配置し、アパタイト結晶を透過するレーザ光で金属材料を溶融し固定化する。これにより、金属材料をアパタイト結晶のチューブ内に簡易に固定化できる。ここで、金属材料は、一種類の金属(チタン、アルミニウム、マグネシウム等)であってもよいしそれらの合金であってもよく、金属以外の他の物質が含まれていてもよい。また、金属材料は、アパタイト結晶の融点よりも低くてもよい。この場合、アパタイト単結晶が溶けることなく金属材料を選択的に溶かすことができる。
 上述のチューブ状のアパタイト単結晶を用いた複合材料に対して、比較例の複合材料では針状のアパタイト単結晶を用いる。具体的には、0.3mol/Lの水酸化カルシウム懸濁液に、0.5mol/Lのリン酸水溶液を滴下し、単結晶が生成するよう留意してpHを5~9に調製することにより、単結晶沈殿物を得た。この沈殿物を1200℃で48時間成長させることにより、長さ200μm、外径40μmの針状のハイドロキシアパタイト単結晶を得た。
 (人工骨材料作製方法)
 パルス通電焼結装置を用いて、気孔制御材となるCaOを700℃で10分間焼結した。CaO焼結体を粗粉砕し、約100~200μmに分級した。平均粒径が約10μmのハイドロキシアパタイト球状粉末と分級された気孔制御材を均一に混合した。気孔制御材の混合比率は50vol%である。なお、ハイドロキシアパタイトのCa/P比は化学量論である1.67である。
 次に、ハイドロキシアパタイト/気孔制御材混合粉末に、実施例(チューブ状)または比較例(針状)の補強材を10vol%の割合で添加し、直径15mmのカーボンダイスに約1g充填し、パルス通電焼結装置を用いて、1000℃で10分間、真空中で焼結した。焼結時の昇温速度は、約100℃/minであり、冷却は装置内で自然放冷とした。温度測定はダイスの温度を測定した。粉末X線回折の結果から、焼結体は、ハイドロキシアパタイトとCaOから構成されており、両化合物間の反応は見られなかった。
 (強度向上性能の評価)
 人工骨材料に実施例および比較例の補強材を10vol%の割合で添加したサンプルの破壊強度、破壊エネルギー及び破壊靭性値の測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1における破壊強度[MPa]は、固体材料が外力の作用のもとに二つまたはそれ以上の部分に分離する現象における破壊応力(単位面積当たりの荷重)でもある。なお、破壊強度は、J靭性値の測定結果を示しており、JIS規格に基づいて3点曲げにより求めた。
 また、破壊靭性値(KIC)[MPa・m1/2]は、亀裂を進展させるのに必要な応力拡大係数であり、破壊強度測定用の試験片と同一サイズの試験片を用い、ダイヤモンドカッターで試験片中央部に幅0.1mm、深さ0.75mmのU溝を形成し、スパン30mm、クロスヘッドスピード0.75mm/minの条件で常温において測定し、次式に従って求めた。
 KIC=Yσa1/2
ここで、Y:形状因子、σ:曲げ強度、a:亀裂長さである。
 また、破壊エネルギーは、破壊するまでに材料に加えられる総エネルギーをいい、破壊エネルギーの大きい材料は「剛い」と表現される。破壊エネルギーは、破壊靭性試験の際に得られる応力-歪み曲線の面積と試験片破面の断面積から計算した。
 表1に示すように、チューブ状のアパタイト単結晶の内部に金属材料が充填されている複合材料(実施例)を補強材とした人工骨は、針状のアパタイト単結晶(比較例)を添加した人工骨よりも、破壊強度、破壊エネルギーおよび破壊靭性値のいずれの値も高い。このように、機能部を、アパタイト結晶よりも剛性が高い材料で構成することで、アパタイト結晶単独では得にくい高い強度を実現できる。つまり、第1の実施の形態に係る複合材料は、補強材に適していることがわかる。
 <第2の実施の形態>
 本実施の形態では、上述の六角柱のチューブ状アパタイト単結晶の光触媒への応用について説明する。酸化チタン等で被膜されたハイドロキシアパタイトは、環境に対して有害な金属原子を含まず、担体のハイドロキシアパタイト自身が有機物等を吸着する性能を持ち、かつ酸化チタン被膜による可視光から紫外光に対して吸収性を示す、優れた光触媒活性を有する。
 光触媒物質で被膜されたアパタイト自体は、取扱い性の観点などから粉末状態の場合が多いが、これをカラムに充填した場合、目詰まりが起こりやすくなり、通液性を確保できない。また、カラムの内側まで光が十分に当たらないといった問題もある。目詰まりを解決するために粒子径の大きいハイドロキシアパタイトを用いることが一案であるが、粒子径の増大により比表面積が小さくなり、光触媒性能が低下するという問題が生じる。
 本実施の形態に係る複合材料は、アパタイト単結晶がチューブ状であることで表面積が拡大し、また、透明なアパタイト単結晶表面に酸化チタン被膜が形成されることでアパタイト単結晶を透過した光によっても光触媒反応の活性を高めることができるため、優れた光触媒としての用途が実現できる。以下では、実施例13および実施例14を参照して本実施の形態に係る光触媒機能を有する複合材料の製造方法について説明する。
 (実施例13)
 前述の実施例1~12で説明した方法で、Ca(PO(OH)の組成を持つ、長さ0.3~2mm、開口部の穴の内径80~300nmのチューブ状のハイドロキシ(水酸化)アパタイトの単結晶を得た。この単結晶を、Ti修飾アパタイトを0.1~5wt%含有させた常温ガラスコーティング剤に1時間浸漬させ、純水で洗浄後、80℃、12時間乾燥する。これを700℃、1時間アニールし、アパタイトチューブの表面の一部をチタンに置換し、光触媒機能を持たせた。
 (実施例14)
 前述の実施例1~12で説明した方法で、Ca(POClの組成を持つ、長さ0.3~2mm、開口部の穴の内径50~200nmのチューブ状のクロロアパタイトの単結晶を得た。この単結晶を、Ti修飾アパタイトを0.1~5wt%含有させた常温ガラスコーティング剤に1時間浸漬させ、純水で洗浄後、80℃、12時間乾燥する。これを700℃、1時間アニールし、アパタイトチューブの表面の一部をチタンに置換し、光触媒機能を持たせた。
 (光触媒活性の測定:アセトアルデヒドガス分解)
 実施例13および実施例14で得られた光触媒機能を有する複合材料を用いて光触媒活性の評価を行った。はじめに、各実施例に係る複合材料の試料粉末を比表面積測定結果に基づく表面積となるように秤量した。そして、秤量した試料を、上蓋が石英ガラス製の容器の底部に厚さが均一となるように充填し、合成空気(酸素20容量%、窒素80容量%)で容器内部を置換した。
 次に、アセトアルデヒドガス濃度が1体積%となるように容器内部にアセトアルデヒドを注入し、アセトアルデヒドガスが試料粉末と吸着平衡に達するまで暗所に1時間静置した。その後、光源としてキセノンランプの光の照射を開始(暗所静置から3時間後)し、その1時間後(暗所静置から2時間後)、2時間後(暗所静置から3時間後)、及び3時間後(暗所静置から4時間後)に、容器内部のガスをシリンダで抜き取り、ガスクロマトグラフィーを用いて、COガス濃度を測定した。その結果、光源を照射後、2時間で5g/L(リットル)以上のCO2ガス濃度が観測され、各試料において高い光触媒活性が示された。
 このように、チューブ状のアパタイト結晶を担体とし、チューブ内に収容される機能部を光触媒物質で構成した複合材料とすることで、この複合材料をカラムに密に充填しても、カラムの外側だけでなく内側まで光が当たる。また、光触媒物質をチューブ内部全体に充填するのではなく、内壁部分に配置することで、チューブ内部を気体や液体が通過できる。そのため、被分解物質と光触媒物質との接触機会が増え、高い光触媒活性が得られる。具体的には、チューブ状のアパタイト結晶は、針状のアパタイト結晶と比較して、1.5~4倍程度の比表面積[cm/g]を有しており、光触媒性能も1.5~4倍程度となる。つまり、本実施の形態に係る複合材料は、チューブ状のアパタイト結晶の内部にも光触媒物質が配置できるため、より高い光触媒性能を実現できる。
 <第3の実施の形態>
 本実施の形態では、上述の六角柱のチューブ状アパタイト単結晶のバイオリアクターへの応用について説明する。工業的に広く使用されている白金等の無機触媒と異なり、生体触媒である酵素は、主として生体内で作用し、特異性や選択性を利用して糖やタンパク質等の有機物を吸着したり分解したりする。このことから、常温常圧の水溶液中で比較的早い反応をする酵素反応は、化学工業または機器分析における有機物の合成反応ルートの簡略化に寄与し、環境負荷が少ないため、低炭素社会の実現のためにも有用な技術となりうる。
 しかしながら、液体中で使用される酵素は、基本的に使い捨てになるためコストが高くなる。そこで、貴重な酵素を有効に活用するためには、不溶体の担体に酵素を固定化し、担体に有機原料を接触させ、酵素を触媒として働かせ作用させるバイオリアクター化を図ることが一案である。
 本実施の形態では、酵素を固定化する担体として、生体材料として有用なチューブ状アパタイト単結晶を用い、アパタイトの吸着作用を利用し、酵素を固定化することで、バイオリアクターカラムを構成する。つまり、本実施の形態に係る機能部は、固定化された酵素で構成されている。
 前述のチューブ状アパタイト単結晶への酵素(例えば、タンパク質やアミノ酸)の固定化は、主として二つある。
 (1)アパタイトはpHによってカチオン吸着部(Ca2+等)とアニオン吸着部(HPO 2-、PO 3-、OH、X等;Xはハロゲン元素)がある。そこで、静電吸着によって吸着部に酵素を固定化する。なお、カチオン吸着部およびアニオン吸着部のいずれに吸着させるかは、酵素の種類によって適宜選択すればよい。
 (2)酵素と生物親和結合しやすい塩基性糖タンパク質アビジン分子をアパタイトに予め静電吸着させ、水溶性ビタミンであるビオチンで標識化した酵素をアビジン分子に生物親和結合で固定化することで、バイオリアクターカラムを作製する。ビオチンは酵素の活性を失うことなく酵素分子に付加できるため、ビオチンで標識化した酵素が得られる。このビオチンで標識化した酵素を、アパタイトに吸着したアビジン分子に結合させることで、酵素をアパタイトチューブ内に固定化できる。ここで、固定化される酵素としては、糖分解酵素やタンパク質分解酵素等、種々のものが選択されうる。
 次に、酵素のビオチン標識化の方法の一例について説明する。はじめに、酵素とビオチンラベル化剤を混合モル比が1:2~1:10になるように緩衝液(pH8.5)の中に懸濁させる。次に、懸濁液を浸透しながら、恒温層(25℃)中で2~4時間インキュベートする。そして、得られた溶液をゲルクロマトグラフィーにかけ、ラベル化された酵素を分離する。
 以下では、実施例15乃至実施例17を参照して本実施の形態に係る酵素を有する複合材料の製造方法について説明する。
 (実施例15)
 前述の実施例1~12で説明した方法で、Ca(PO(OH)の組成を持つ、長さ0.3~2mm、開口部の穴の内径80~600nmのチューブ状のハイドロキシ(水酸化)アパタイトの単結晶を得た。そして、pH5~6.5の緩衝液にアミラーゼを懸濁させた溶液をアパタイトチューブ内に浸透させ、20~35℃の温浴中で8時間インキュベートすることで、アパタイトチューブ中にアミラーゼを固定化する。
 (実施例16)
 前述の実施例1~12で説明した方法で、Ca(POClの組成を持つ、長さ0.3~2mm、開口部の穴の内径3~40nmのチューブ状のクロロアパタイトの単結晶を得た。そして、pH7~9の緩衝液にグルコアミラーゼを懸濁させた溶液をアパタイトチューブ内に浸透させ、20~35℃の温浴中で8時間インキュベートすることで、アパタイトチューブ中にグルコアミラーゼを固定化する。
 (実施例17)
 前述の実施例1~12で説明した方法で、Ca(POClの組成を持つ、長さ0.5~4mm、開口部の穴の内径3~40nmのチューブ状のクロロアパタイトの単結晶を得た。そして、pH6~8の緩衝液にアビジン分子を分散させた溶液をアパタイトチューブ内に浸透させ、20~35℃の温浴中で4時間インキュベートすることで、静電作用によりアビジン分子をアパタイトチューブ中に固定化する。その後、ビオチン標識を持つ酵素を、pH6~8の緩衝液に懸濁させ、アパタイトチューブに浸透させ、20~25℃で30分間することで、ビオチン・アビジン反応により酵素がアパタイトチューブ内に固定化差される。この方法の場合、アミラーゼ、セルラーゼ、キシラーゼ、ラセマーズ等、分子量や等電点の異なる酵素も簡易に固定化できる。
 次に、酵素が固定化されたチューブ状アパタイト単結晶による効果について説明する。図3は、本実施の形態に係るバイオリアクターカラムを用いた装置の模式図である。はじめに、グルコアミラーゼがビオチンアビジン法で固定化されたチューブ状アパタイト単結晶を、内径10mm、長さ100mmのカラムに詰めてバイオリアクターカラム10を作製した。そして、原料容器12から、オリゴ糖を含むpH7~8に調製した緩衝液を、チューブポンプ14によりバイオリアクターカラム10に供給した。緩衝液の供給は、液温30℃、液量0.3ml/分の条件で、連続定常運転によって行われた。
 バイオリアクターカラム10から排出された溶液を1時間ごとに採取容器16に採取し、薄層クロマトグラフィーで内容物を分離同定した。その結果、採取した全ての時間のサンプル溶液において、オリゴ糖のほとんどがグルコースに分解されており、バイオリアクターカラム10が十分機能していることがわかった。
 以上、本発明を実施の形態や各実施例をもとに説明した。この実施の形態や各実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 本発明のアパタイト単結晶は、蛍光体を始め様々な機能性材料として利用することが可能である。
 10 バイオリアクターカラム、 12 原料容器、 14 チューブポンプ、 16 採取容器。

Claims (12)

  1.  チューブ状のアパタイト結晶と、
     前記アパタイト結晶のチューブ内に収容され、該アパタイト結晶と異なる物性の材料で構成された機能部と、
     を有する複合材料。
  2.  前記アパタイト結晶は、一般式がM (POX(Mは2価のアルカリ土類金属及びEuからなる群より選ばれる少なくとも1種の元素、Xはハロゲン元素及びOHからなる群より選ばれる少なくとも一種の元素または分子を示す。)で表される単結晶であることを特徴とする請求項1に記載の複合材料。
  3.  前記アパタイト結晶は、可視光に対して透過率が65%以上であることを特徴とする請求項1または2に記載の複合材料。
  4.  前記機能部は、前記アパタイト結晶よりも剛性が高い材料で構成されていることを特徴とする請求項1乃至3のいずれか1項に記載の複合材料。
  5.  前記機能部は、光触媒物質で構成されていることを特徴とする請求項1乃至3のいずれか1項に記載の複合材料。
  6.  前記機能部は、酵素で構成されていることを特徴とする請求項1乃至3のいずれか1項に記載の複合材料。
  7.  前記アパタイト結晶は、外形が六角柱であり、六角柱の上面または下面に形成されている穴の開口部の形状が六角形であることを特徴とする請求項1乃至6のいずれか1項に記載の複合材料。
  8.  前記アパタイト結晶は、チューブの穴の内径が3nm~800μmであることを特徴とする請求項1乃至7のいずれか1項に記載の複合材料。
  9.  前記アパタイト結晶は、直径が1μm~1mmであることを特徴とする請求項1乃至8のいずれか1項に記載の複合材料。
  10.  前記アパタイト結晶は、長手方向の長さが2μm~4mmであることを特徴とする請求項1乃至9のいずれか1項に記載の複合材料。
  11.  チューブ状のアパタイト結晶のチューブ内に、該アパタイト結晶よりも剛性が高い金属材料を配置し、前記アパタイト結晶を透過するレーザ光で前記金属材料を溶融し固定化することを特徴とする複合材料の製造方法。
  12.  チューブ状のアパタイト結晶のチューブ内にアビジン分子を吸着させ、ビオチンで標識化された酵素を含む溶液をチューブ内に浸透させることで酵素をチューブ内に固定化することを特徴とする複合材料の製造方法。
PCT/JP2014/003203 2013-07-03 2014-06-16 複合材料および複合材料の製造方法 WO2015001734A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14820599.0A EP3018096B1 (en) 2013-07-03 2014-06-16 Composite material and method for producing composite material
CN201480037344.8A CN105358479B (zh) 2013-07-03 2014-06-16 复合材料以及复合材料的制造方法
JP2015525029A JP6466839B2 (ja) 2013-07-03 2014-06-16 複合材料および複合材料の製造方法
US14/977,324 US10208302B2 (en) 2013-07-03 2015-12-21 Composite material and method of manufacturing composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013140067 2013-07-03
JP2013-140067 2013-07-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/977,324 Continuation US10208302B2 (en) 2013-07-03 2015-12-21 Composite material and method of manufacturing composite material

Publications (1)

Publication Number Publication Date
WO2015001734A1 true WO2015001734A1 (ja) 2015-01-08

Family

ID=52143337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003203 WO2015001734A1 (ja) 2013-07-03 2014-06-16 複合材料および複合材料の製造方法

Country Status (5)

Country Link
US (1) US10208302B2 (ja)
EP (1) EP3018096B1 (ja)
JP (2) JP6466839B2 (ja)
CN (1) CN105358479B (ja)
WO (1) WO2015001734A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014045534A1 (ja) * 2012-09-18 2016-08-18 株式会社小糸製作所 吸着方法、吸着分離方法およびドラッグデリバリー用担持体
WO2023234424A1 (ja) * 2022-06-02 2023-12-07 株式会社小糸製作所 DDS(Drug Delivery System)用担持体およびDDS用担持体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6746117B2 (ja) 2016-06-15 2020-08-26 株式会社小糸製作所 アパタイト結晶の製造方法
CN114075076A (zh) * 2020-08-17 2022-02-22 厦门稀土材料研究所 一种氯磷灰石陶瓷及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380098A (ja) * 1989-08-23 1991-04-04 Showa Denko Kk 酵素活性測定用充填剤、その使用方法および装置
JPH07196314A (ja) * 1993-12-28 1995-08-01 Maruo Calcium Co Ltd チューブ状合成無機微粒子
JPH09169794A (ja) 1995-12-22 1997-06-30 Mitsubishi Materials Corp 蛋白質類の分離方法
JPH11180705A (ja) * 1997-12-24 1999-07-06 Murakashi Sekkai Kogyo Kk 多孔質アパタイトを少なくとも表層に有する固体物質の製造方法
JP2000271488A (ja) * 1999-03-25 2000-10-03 Maruo Calcium Co Ltd 光触媒性ウィスカー及び光触媒性組成物
JP2011011971A (ja) * 2009-06-02 2011-01-20 Nittetsu Mining Co Ltd チューブ状リン酸カルシウム及びその製造方法
WO2013153749A1 (ja) * 2012-04-09 2013-10-17 株式会社小糸製作所 アパタイト結晶
WO2014045534A1 (ja) * 2012-09-18 2014-03-27 株式会社小糸製作所 吸着方法、吸着分離方法およびドラッグデリバリー用担持体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238869A (ja) * 1988-03-18 1989-09-25 Nikon Corp アパタイト系骨内インプラント
JP2975290B2 (ja) * 1995-09-20 1999-11-10 新田ゼラチン株式会社 アパタイト−チタン系複合材料、その製造方法およびその複合材料用組成物
JPH09138234A (ja) * 1995-11-13 1997-05-27 Toagosei Co Ltd 標識化プローブの製造方法
JP2000095577A (ja) * 1998-09-24 2000-04-04 Asahi Optical Co Ltd ハイドロキシアパタイト−金属複合体の製造方法およびハイドロキシアパタイト−金属複合体
JP3806061B2 (ja) * 2002-05-21 2006-08-09 富士通株式会社 金属修飾アパタイト含有膜の形成方法、これに用いられるコーティング液、および金属修飾アパタイト含有膜で被覆された部位を有する電子機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380098A (ja) * 1989-08-23 1991-04-04 Showa Denko Kk 酵素活性測定用充填剤、その使用方法および装置
JPH07196314A (ja) * 1993-12-28 1995-08-01 Maruo Calcium Co Ltd チューブ状合成無機微粒子
JPH09169794A (ja) 1995-12-22 1997-06-30 Mitsubishi Materials Corp 蛋白質類の分離方法
JPH11180705A (ja) * 1997-12-24 1999-07-06 Murakashi Sekkai Kogyo Kk 多孔質アパタイトを少なくとも表層に有する固体物質の製造方法
JP2000271488A (ja) * 1999-03-25 2000-10-03 Maruo Calcium Co Ltd 光触媒性ウィスカー及び光触媒性組成物
JP2011011971A (ja) * 2009-06-02 2011-01-20 Nittetsu Mining Co Ltd チューブ状リン酸カルシウム及びその製造方法
WO2013153749A1 (ja) * 2012-04-09 2013-10-17 株式会社小糸製作所 アパタイト結晶
WO2014045534A1 (ja) * 2012-09-18 2014-03-27 株式会社小糸製作所 吸着方法、吸着分離方法およびドラッグデリバリー用担持体

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JUNFENG HUI ET AL.: "Monodisperse F-substituted hydroxyapatite single-crystal nanotubes with amphiphilic surface properties", INORGANIC CHEMISTRY, vol. 48, no. 13, 2009, pages 5614 - 5616, XP055162962 *
KATSUYA TESHIMA ET AL.: "Direct growth of highly crystalline, idiomorphic fluorapatite crystals on a polymer substrate", CRYSTAL GROWTH & DESIGN, vol. 9, no. 9, 2009, pages 3832 - 3834
MING-GUO MA ET AL.: "Solvothermal preparation of hydroxyapatite microtubes in water/N,N- dimethylformamide mixed solvents", MATERIALS LETTERS, vol. 62, 2008, pages 1642 - 1645, XP022678859 *
See also references of EP3018096A4
YAN ZHOU ET AL.: "Single-crystal microtubes of a novel apatite-type compound, (Na2.5Bi2.5) (PO4)3 (F,OH), with well-faceted hexagonal cross sections", CRYSTENGCOMM, vol. 11, 2009, pages 1863 - 1867, XP055162967 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014045534A1 (ja) * 2012-09-18 2016-08-18 株式会社小糸製作所 吸着方法、吸着分離方法およびドラッグデリバリー用担持体
WO2023234424A1 (ja) * 2022-06-02 2023-12-07 株式会社小糸製作所 DDS(Drug Delivery System)用担持体およびDDS用担持体の製造方法

Also Published As

Publication number Publication date
JPWO2015001734A1 (ja) 2017-02-23
EP3018096A4 (en) 2017-05-10
US10208302B2 (en) 2019-02-19
EP3018096A1 (en) 2016-05-11
CN105358479B (zh) 2018-10-09
JP2019026554A (ja) 2019-02-21
JP6609016B2 (ja) 2019-11-20
EP3018096B1 (en) 2018-06-13
CN105358479A (zh) 2016-02-24
JP6466839B2 (ja) 2019-02-06
US20160102302A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
JP6609016B2 (ja) 複合材料および複合材料の製造方法
Zhang et al. A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent
JP6200415B2 (ja) アパタイト結晶
Boudemagh et al. Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status
Lett et al. Tailoring the morphological features of sol–gel synthesized mesoporous hydroxyapatite using fatty acids as an organic modifier
JP5524485B2 (ja) 多置換されたヒドロキシアパタイトと、天然および/または合成ポリマーとの複合体と、それらの生成および使用
EP1808411A1 (en) Ceramic particle group and method for production thereof and use thereof
Chen et al. Hydrothermal synthesis of hydroxyapatite coatings with oriented nanorod arrays
Adams et al. Bioactive glass 45S5 from diatom biosilica
KR100807108B1 (ko) 다공성의 β-인산삼칼슘 과립의 제조 방법
Zhang et al. Ultralong hydroxyapatite microtubes: solvothermal synthesis and application in drug loading and sustained drug release
Qi et al. Magnesium whitlockite hollow microspheres: a comparison of microwave-hydrothermal and conventional hydrothermal syntheses using fructose 1, 6-bisphosphate, and application in protein adsorption
Azzaoui et al. Synthesis of nanostructured hydroxyapatite in presence of polyethylene glycol 1000
Tas X-ray-amorphous calcium phosphate (ACP) synthesis in a simple biomineralization medium
CN110494098A (zh) 在等离子电解氧化工序中含有金属和硅的电解质组合物及利用其组合物来涂敷有含有金属离子和硅离子的羟基磷灰石的牙科用植牙的制造方法
Jiang et al. Calcium phosphate with well controlled nanostructure for tissue engineering
Adams et al. Bioactivity of quaternary glass prepared from bentonite clay
CN101214382A (zh) 一种铕标记羟基磷灰石纳米粒子的制备方法
CN106512086B (zh) 一种钇掺杂磷酸钙骨水泥及其制备方法
KR20040051381A (ko) 수산화아파타이트 나노분말의 제조방법
CN111115599A (zh) 离子液体诱导的羟基磷灰石多级纳米棒的制备方法
Jaswal et al. Synthesis of nanocrystalline hydroxyapatite biomaterial from waste eggshells by precipitation method
Charczuk et al. Multifunctional platform for future applications in cell and tissue engineering based on silicate phosphate hydroxyapatite co-doped with Li+, Eu3+ and Gd3+ ions
WO2020261298A1 (en) Nanodiamond embedded biomolecular glass from egg and method of production of the same
Elrayah et al. Calcium Phosphate Coatings with Controlled Micro/Nano-Structures for Endothelial Cells Viability

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480037344.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525029

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014820599

Country of ref document: EP