EP3018096B1 - Composite material and method for producing composite material - Google Patents
Composite material and method for producing composite material Download PDFInfo
- Publication number
- EP3018096B1 EP3018096B1 EP14820599.0A EP14820599A EP3018096B1 EP 3018096 B1 EP3018096 B1 EP 3018096B1 EP 14820599 A EP14820599 A EP 14820599A EP 3018096 B1 EP3018096 B1 EP 3018096B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- apatite
- apatite crystal
- tube
- composite material
- monocrystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims description 40
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 claims description 111
- 229910052586 apatite Inorganic materials 0.000 claims description 109
- 239000013078 crystal Substances 0.000 claims description 89
- 238000000034 method Methods 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 22
- 239000007769 metal material Substances 0.000 claims description 19
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002367 halogens Chemical class 0.000 claims description 5
- 238000002834 transmittance Methods 0.000 claims description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 230000003100 immobilizing effect Effects 0.000 claims description 4
- 230000000704 physical effect Effects 0.000 claims description 2
- 108090000790 Enzymes Proteins 0.000 description 33
- 102000004190 Enzymes Human genes 0.000 description 33
- 229940088598 enzyme Drugs 0.000 description 32
- 239000000203 mixture Substances 0.000 description 30
- 229910052589 chlorapatite Inorganic materials 0.000 description 29
- PROQIPRRNZUXQM-ZXXIGWHRSA-N estriol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H]([C@H](O)C4)O)[C@@H]4[C@@H]3CCC2=C1 PROQIPRRNZUXQM-ZXXIGWHRSA-N 0.000 description 25
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 23
- 239000000243 solution Substances 0.000 description 23
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 22
- 230000001699 photocatalysis Effects 0.000 description 21
- 239000011575 calcium Substances 0.000 description 19
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 16
- 239000000126 substance Substances 0.000 description 15
- 230000003014 reinforcing effect Effects 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- 210000000988 bone and bone Anatomy 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 9
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 8
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 8
- 229960002685 biotin Drugs 0.000 description 8
- 235000020958 biotin Nutrition 0.000 description 8
- 239000011616 biotin Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 239000008366 buffered solution Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000003980 solgel method Methods 0.000 description 7
- 108090001008 Avidin Proteins 0.000 description 6
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- 239000001110 calcium chloride Substances 0.000 description 6
- 229910001628 calcium chloride Inorganic materials 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 5
- 239000000920 calcium hydroxide Substances 0.000 description 5
- 235000011116 calcium hydroxide Nutrition 0.000 description 5
- 238000000975 co-precipitation Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000007716 flux method Methods 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000012620 biological material Substances 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 4
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 4
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000004382 Amylase Substances 0.000 description 3
- 102000013142 Amylases Human genes 0.000 description 3
- 108010065511 Amylases Proteins 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 3
- 102100022624 Glucoamylase Human genes 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 235000019418 amylase Nutrition 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- JHLCADGWXYCDQA-UHFFFAOYSA-N calcium;ethanolate Chemical compound [Ca+2].CC[O-].CC[O-] JHLCADGWXYCDQA-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- -1 SrCo3 Chemical compound 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001631 strontium chloride Inorganic materials 0.000 description 2
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 2
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108010093096 Immobilized Enzymes Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 102000004879 Racemases and epimerases Human genes 0.000 description 1
- 108090001066 Racemases and epimerases Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011942 biocatalyst Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052587 fluorapatite Inorganic materials 0.000 description 1
- 238000007656 fracture toughness test Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/14—Enzymes or microbial cells immobilised on or in an inorganic carrier
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/42—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
- A61L27/425—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of phosphorus containing material, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/46—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/185—Phosphorus; Compounds thereof with iron group metals or platinum group metals
- B01J27/1856—Phosphorus; Compounds thereof with iron group metals or platinum group metals with platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/32—Phosphates of magnesium, calcium, strontium, or barium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/455—Phosphates containing halogen
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/14—Phosphates
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/602—Nanotubes
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/66—Crystals of complex geometrical shape, e.g. tubes, cylinders
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B7/00—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
- C30B7/10—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
- C30B7/105—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes using ammonia as solvent, i.e. ammonothermal processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/16—Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
- B01J27/18—Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
- B01J27/1802—Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
- B01J27/1806—Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/13—Nanotubes
Definitions
- the present invention relates to crystalline apatites finding application in broad-ranging fields as functional materials as outlined in the preamble of claim 1.
- Non-Patent Document 1 A known example of apatite-based crystals of this sort is apatite monocrystals in the form of solid hexagonal prisms (Non-Patent Document 1). Also, a method of using needlelike hydroxyapatite whiskers to isolate proteins has been proposed (reference is made to Patent Document 1).
- Patent Document 1 refers to the document JP9-169794 .
- Non-Patent Document 1 refers to the article " Direct growth of highly crystalline, idiomorphic fluoroapatite crystals on a polymer substrate", Crystal Growth & Design, 2009, Vol. 9, No. 9, pp. 3832-3834 from Katsuya Teshima et al.
- Patent Document JP-H07-196314 discloses a composite material according to the preamble of claim 1; YAN ZHOU ET AL: "Single-crystal microtubes of a novel apatite-type compound ......", CRYSTENGCOMM, vol. 11, no.
- Patent Document JP H09 95787 describes a composite material of apatite and metal sintered to be use as a bone reinforcing material.
- apatite-based materials In finding application in a variety of uses, apatite-based materials have room for improvement in terms of their form and constituents suited to those uses.
- the present invention addresses this situation and a purpose thereof is to afford a novel composite material having tubular apatite crystals.
- a composite material according to an embodiment of the present invention comprises the characterizing features of claim 1.
- This embodiment yields novel functionality that cannot be obtained from tubular apatite crystal alone.
- the apatite crystal may be a monocrystal given by the general formula M 2 5 (PO 4 ) 3 X , where M 2 denotes at least one element selected from the group consisting of divalent alkali earth metals and Eu, and X denotes at least one element or molecule selected from the group consisting of halogen elements and OH.
- M 2 denotes at least one element selected from the group consisting of divalent alkali earth metals and Eu
- X denotes at least one element or molecule selected from the group consisting of halogen elements and OH.
- the transmittance of the apatite crystal to visible light may be 65% or higher.
- the functional component is in the context of the claimed invention constituted by a material more rigid than the apatite crystal. This realizes strength that is difficult to obtain from apatite crystal alone.
- the functional part may be constituted by a photocatalytic substance. Placing the photocatalytic substance inside the tubular apatite crystal realizes a photocatalytic material of improved performance.
- the functional part may be constituted by an enzyme. This allows the composite material to be used as, for example, a bioreactor.
- the apatite crystal may be a hexagonal prism in outer form, and a hole-opening formed in either of top or bottom surfaces of the hexagonal prism may be of hexagonal form.
- the apatite crystal has, in the context of the claimed invention, a tube-hole inner diameter of at least 0.5 ⁇ m, for example of 0.5 ⁇ m to 800 ⁇ m.
- the apatite crystal may be 1 ⁇ m - 1 mm in diameter.
- the apatite crystal may measure 2 ⁇ m - 4 mm lengthwise.
- Another embodiment of the present invention relates to a method of manufacturing a composite material.
- the method comprises: placing, tube-internally in an apatite crystal in the form of a tube, a metallic material of rigidity higher than that of the apatite crystal; and fusing and immobilizing the metallic material with a laser beam transmitted through the apatite crystal.
- the metallic material can be easily immobilized inside the apatite crystal tube.
- the metallic material may be a single kind of metal or an alloy. Still alternatively, the metallic material may contain a substance other than metal. The fusing point of the metal material is lower than that of the apatite crystal.
- An alternative method not forming part of the claimed invention relates to a method of manufacturing a composite material.
- the method comprises: adsorbing avidin molecules tube-internally into an apatite crystal in the form of a tube; and infusing the tube interior with a solution containing a biotin-labeled enzyme to immobilize the enzyme inside the tube.
- an enzyme can be easily immobilized in the apatite crystal tube.
- a novel composite material containing a tubular apatite is provided.
- the apatite crystal according to an embodiment is a tubular apatite monocrystal.
- the apatite crystal is given by a general formula M 2 5 (PO 4 ) 3 X (M 2 denotes at least one element selected from the group consisting of a divalent alkali earth metal and Eu, and X denotes at least one element or molecule selected from the group consisting of a halogen element and OH).
- M 2 denotes at least one element selected from the group consisting of a divalent alkali earth metal and Eu
- X denotes at least one element or molecule selected from the group consisting of a halogen element and OH.
- the alkali earth metal may be Ca, Sr, Ba, Ra, Mg, or Be.
- the halogen element may be, for example, F, CI, Br, or I.
- Examples 1-7 are directed to a method of synthesizing a chlorapatite monocrystal.
- Examples 8-10 are directed to a method of synthesizing a hydroxyapatite monocrystal. Synthesizing methods include the flux method, coprecipitation method, sol-gel method, etc.
- the mixture is heated to 800-1100°C in a platinum crucible at a temperature increase rate 100-500°C/h. Synthesis is allowed to proceed for 48 hours at a synthesis temperature of 800-1100°C and then the temperature is lowered from 800-1100°C to 500°C at a temperature decrease rate 5-300°C/h. Thereafter, the synthesized product is cooled naturally to a normal temperature. After calcination, the product is cleaned carefully using pure hot water (about 80°C) to extract a chlorapatite monocrystal.
- the mixture is heated to 800-1100°C in a platinum crucible at a temperature increase rate 100-500°C/h. Synthesis is allowed to proceed for 48 hours at a synthesis temperature of 800-1100°C and then the temperature is lowered from 800-1100°C to 500°C at a temperature decrease rate 5-300°C/h. Thereafter, the synthesized product is cooled naturally to a normal temperature. After calcination, the product is cleaned carefully using pure hot water (about 80°C) to extract a chlorapatite monocrystal.
- SrCl 2 is added so that the chlorapatite concentration is 0.15 mol%.
- the mixture is heated to 800-1100°C in a platinum crucible at a temperature increase rate 100-500°C/h. Synthesis is allowed to proceed for 48 hours at a synthesis temperature of 800-1100°C and then the temperature is lowered from 800-1100°C to 500°C at a temperature decrease rate 5-300°C/h. Thereafter, the synthesized product is cooled naturally to a normal temperature. After calcination, the product is cleaned carefully using pure hot water (about 80°C) to extract a chlorapatite monocrystal.
- MgCl 2 is added so that the chlorapatite concentration is 0.15 mol%.
- the mixture is heated to 800-1100°C in a platinum crucible at a temperature increase rate 100-500°C/h. Synthesis is allowed to proceed for 48 hours at a synthesis temperature of 800-1100°C and then the temperature is lowered from 800-1100°C to 500°C at a temperature decrease rate 5-300°C/h. Thereafter, the synthesized product is cooled naturally to a normal temperature. After calcination, the product is cleaned carefully using pure hot water (about 80°C) to extract a chlorapatite monocrystal.
- a 0.5 mol/L aqueous solution of phosphoric acid is dropped in a 0.3 mol/L suspended calcium hydrate liquid.
- a monocrystal precipitate (seed crystal) is obtained by adjusting pH to 5-9 to promote formation of a monocrystal.
- the seed crystal prepared by the coprecipitation method is allowed to grow by the Czochralski method.
- Calcium hydrate is heated to 1650°C.
- the seed crystal is immersed in the resultant high-temperature solution. By pulling up the crystal while cooling the solution gradually from 1650°C to 1000°C, a needle-shaped hydroxyapatite monocrystal is obtained.
- lactic acid is dissolved in 1 liter of water. 22.11 g of calcium hydrate is then added. Further, 6.92 g of phosphoric acid is dissolved into the mixture.
- An autoclave is filled with the slurry prepared in this way. The slurry is subject to a hydrothermal process for 5 hours at 165°C. The slurry thus processed is filtered and dried so as to obtain a hydroxyapatite monocrystal.
- the hydrothermal process is performed in an autoclave of test tube type by using water as a pressure medium under the condition of 100 MPa.
- the temperature increase rate is 20°C per minute.
- the processing temperature is constantly 400°C and the processing time is 48 hours. In this way, a hydroxyapatite monocrystal is obtained.
- the chlorapatite monocrystal (20 mg) is heated 1300°C. Water vapor is introduced in the kiln to induce a reaction over a period of 2 weeks, thereby transforming the chlorapatite monocrystal into a hydroxyapatite monocrystal.
- Fig. 1 is an exemplary X-ray analysis pattern of the crystal formed by the methods in Examples. As shown in Fig. 1 , the crystal comprises a single layer of chlorapatite monocrystal Ca 5 (PO 4 ) 3 Cl.
- the chlorapatite tube monocrystal was then subject to element analysis.
- Fig. 2 is a photograph of an exemplary chlorapatite tube monocrystal observed by the SEM.
- the apatite monocrystal according to the embodiment is tubular and the outer form of the crystal is a hexagonal prism. Further, the aperture of the hole formed on the top surface or bottom surface of the hexagonal prism is hexagonal in shape. For this reason, the thickness of the tube outer wall is substantially uniform.
- the tubular monocrystals are in various sizes and forms.
- the inner diameter of the hole of the opening of the tubular monocrystal is about 3 nm - 800 ⁇ m, and, preferably, about 10 nm - 60 ⁇ m.
- the diameter of the tubular monocrystal is about 20 nm - 1 ⁇ m.
- the length of the tubular monocrystal in the longitudinal direction is about 50 nm - 4 mm.
- the transmittance of the tubular monocrystal to visible light is 65% or higher.
- a tubular apatite monocrystal to a reinforcing material for an artificial bone. More specifically, we devised a composite material in which a tubular monocrystal of apatite as a biomaterial is used, as a reinforcing member for improving the strength of an artificial bone. Unlike the related-art solid needle-shaped apatite crystal, a tubular apatite crystal can receive a strong metal such as titanium inserted into the tube. Therefore, higher strength than the related-art reinforcing member can be obtained.
- aspects of the performance required of a reinforcing member for use in an artificial bone are (i) high biocompatibility and (ii) high strength.
- a high aspect ratio needle-shaped apatite as a biomaterial when used as a reinforcing member, has low strength and so is insufficient as a reinforcing member for an artificial bone used in a movable region.
- a reinforcing member having high biocompatibility and having a higher strength than the related-art biomaterial apatite has been called for.
- the diameter of the apatite monocrystal of a hollow (tubular) hexagonal prism shape in an application like this is about 1 ⁇ m - 1 mm.
- the inner diameter of the hole of the opening of the tubular monocrystal is at least 0.5 ⁇ m, for example, about 0.5 ⁇ m - 800 ⁇ m.
- the length of the tubular monocrystal in the longitudinal direction is, for example, about 2 ⁇ m - 4 mm.
- a tubular hydroxyapatite monocrystal having a length of 200 ⁇ m, a diameter of 40 ⁇ m, and an inner diameter of 20 ⁇ m of the hole of the opening was obtained according to the method described in Example 1 or Example 12.
- the apatite monocrystal is a substance that transmits visible light.
- An aluminum wire was inserted into the hollow portion of the tubular hydroxyapatite monocrystal thus obtained.
- the aluminum wire was immobilized inside the tube by heating wire locally from outside for 1 hour at about 700°C, using a YAG laser, thereby producing a reinforcing member.
- the visible light transmittance of the tubular apatite monocrystal is 65% or higher. Since the tubular apatite monocrystal is transparent, laser light is transmitted through the crystal to heat the aluminum wire selectively. Accordingly, the damage exerted by the heat of the laser on the apatite monocrystal is reduced.
- the method of manufacturing a composite material (reinforcing member) places, tube-internally in tubular apatite crystal, a metal material (titanium, aluminum, magnesium, an alloy thereof, etc.) more rigid than the apatite crystal, and fuses and immobilizes the metal material by laser light transmitted through the apatite crystal.
- the metal material can be easily immobilized in the apatite crystal tube.
- the metal material may be a single kind of metal (titanium, aluminum, magnesium, etc.) or an alloy thereof.
- the metal material may contain a substance other than metal.
- the fusing point of the metal material is lower than that of the apatite crystal. In this case, the metal material may be fused selectively without fusing the apatite monocrystal.
- a tubular apatite monocrystal is used in the composite material describes above.
- a needle-shaped apatite monocrystal is used. More specifically, a 0.5 mol/L aqueous solution of phosphoric acid was dropped in a 0.3 mol/L suspended calcium hydrate liquid. A monocrystal precipitate was obtained by adjusting pH to 5-9 to promote formation of a monocrystal. A needle-shaped hydroxyapatite monocrystal having a length of 200 ⁇ m and an outer diameter of 40 ⁇ m was obtained by allowing the precipitate to grow at 1200°C for 48 hours.
- a pulsed current sintering device was used to sinter CaO as an air cell control material at 700°C for 10 minutes.
- the CaO sintered compact was coarsely ground and classified to isolate powders of about 100 - 200 ⁇ m.
- the spherical hydroxyapatite powders having an average particle diameter of 10 ⁇ m and the classified air cell control material were mixed uniformly.
- the blend ratio of the air cell control material is 50 vol%. Stoichometrically, the Ca/P ratio in hydroxyapatite is 1.67.
- the break strength [MPa] in Table 1 represents a breaking stress (load per unit area) in a phenomenon where a solid-state material is broken into two or more parts under an external force.
- the break strength represents a measurement of J toughness value determined by measuring the three-point strength in accordance with Japanese Industrial Standard (JIS).
- KIC Fracture toughness [MPa*m 1/2 ] is a stress intensity factor required for a crack to develop.
- a test piece of the same size as the test piece for break strength measurement was used.
- a diamond cutter was used to form a U groove having a width of 0.1 mm and a depth of 0.75 mm at the center of the test piece. Measurements were made at room temperature at a span of 30 mm and at a cross head speed of 0.75 mm/min, and KIC was determined according to the following equation.
- KIC Y ⁇ a 1 / 2 where Y: form factor, a: bending strength, a: crack length.
- Breaking energy is defined as a total energy exerted on the material before breakage.
- a material with a large breaking energy is referred to as "rigid”. Breaking energy was calculated from the area formed by the stress-distortion curve obtained in a fracture toughness test and the cross sectional area of fractured surface of the test piece.
- the break strength, breaking energy, and fracture toughness value of an artificial bone reinforced by the composite material (inventive example) produced by filling a tubular apatite monocrystal by a metal material are all higher than those of an artificial bone in which a needle-shaped apatite monocrystal (comparative example) is added.
- the strength that can hardly be obtained with an apatite crystal alone is realized by forming the functional part by a material more rigid than the apatite crystal.
- the composite material according to the first embodiment is suitable as a reinforcing member.
- Hydroxyapatite coated with titanium oxide or the like does not contain metal atoms that are harmful to the environment.
- the hydroxyapatite carrier itself has the capability to adsorb organic substance or the like, and the titanium oxide coating absorbs light ranging from visible light to ultraviolet light. Therefore, excellent photocatalytic activity is exhibited.
- the apatite coated with a photocatalytic substance in itself is often in powder form for ease of use, etc. If this is used to fill a column, the column is easily clogged so that liquid permeability cannot be secured. Another problem is that the interior of the column cannot be sufficiently irradiated with light.
- One approach to prevent clogging is to use hydroxyapatite having a large particle diameter. Disadvantageously, however, an increase in particle diameter results in a smaller specific surface area and lower photocatalytic performance.
- the composite material according to the embodiment can realize excellent photocatalytic applications because the tube-shape of the apatite crystal enlarges the surface area and the formation of a titanium oxide coating on the transparent apatite monocrystal surface activates the photocatalytic reaction induced by the light transmitted through the apatite monocrystal.
- a description will be given below of a method of manufacturing a composite material according to the embodiment having a photocatalytic function with reference to Example 13 and Example 14.
- a tubular hydroxyapatite monocrystal having a composition Ca 5 (PO 4 ) 3 (OH), and having a length of 0.3 - 2 mm and an inner diameter of 80 - 300 nm of the hole of the opening was obtained according to the method described in Examples 1-12 above.
- the monocrystal was immersed in a room-temperature glass coating agent containing 0.1 - 5 wt% of Ti-modified apatite for 1 hour, cleaned in pure water, and dried at 80°C for 12 hours.
- the monocrystal was annealed for 1 hour at 700°C. A portion of the apatite tube surface is replaced by titanium so as to impart the crystal with photocatalytic function.
- a tubular chlorapatite monocrystal having a composition Ca 5 (PO 4 ) 3 Cl, and having a length of 0.3 - 2 mm and an inner diameter of 50 - 200 nm of the hole of the opening was obtained according to the method described in Examples 1-12 above.
- the monocrystal was immersed in a room-temperature glass coating agent containing 0.1 - 5 wt% of Ti-modified apatite for 1 hour, cleaned in pure water, and dried at 80°C for 12 hours.
- the monocrystal was annealed for 1 hour at 700°C. A portion of the apatite tube surface is replaced by titanium so as to impart the crystal with photocatalytic function.
- the photocatalytic activity was evaluated, using the composite material obtained according to Example 13 and Example 14 and having photocatalytic function.
- sample powders of composite materials according to the respective Examples were weighed so as to have a surface area based on specific surface area measurements.
- the sample thus weighed is used to fill the bottom of a glass container topped by a quartz glass in uniform thickness.
- the interior of the container is replaced by synthetic air (20 volume % of oxygen, 80 volume % of nitrogen).
- acetaldehyde is injected into the container so that the acetaldehyde gas concentration is 1 volume %.
- the mixture is left at rest in a dark place until the acetaldehyde gas reaches adsorption equilibrium with the sample powders.
- the mixture is started to be irradiated with light from a light source of a xenon lamp (3 hours after the mixture is left at rest in a dark place).
- the gas is extracted by a cylinder 1 hour after the adsorption equilibrium is reached (2 hours after the mixture is left at rest in a dark place), 2 hours later (3 hours after the mixture is left at rest in a dark place), and 3 hours later (4 hours after the mixture is left at rest in a dark place).
- the CO 2 gas concentration was measured by using gas chromatography. 2 hours after the mixture was irradiate by light from the light source, a CO 2 gas concentration of 5 g/L (liter) or higher was observed and high photocatalytic activity was exhibited in every sample.
- a composite material comprised of a tubular apatite crystal as a carrier and a photocatalytic substance as a functional part accommodated in the tube allows the interior of a column closely filled with the composite material to be irradiated with light.
- gas or liquid can pass through the tube.
- the tubular apatite crystal has 1.5 - 4 times the specific surface area [cm 2 /g] as compared to the needle-shaped apatite crystal so that the photocatalytic performance is 1.5 - 4 times higher. Since the photocatalytic substance can be placed inside the tubular apatite crystal, the composite material according to the embodiment can exhibit improved photocatalytic performance.
- enzymes are biocatalysts and functions primarily in vivo. Specificity and selectivity of enzymes are utilized to adsorb or decompose organic substances such as sugar or protein. Enzyme reaction proceeds relatively quickly in an aqueous solution at normal temperature and normal pressure and contributes to chemical industry and instrumental analysis by simplifying reaction routes to synthesize organic substances. Due to its low impact on environment, enzyme reaction could help realize low-carbon society.
- enzymes used in liquid are basically disposed after use and increase the cost accordingly.
- One approach to utilize valuable enzymes fruitfully is to create a bioreactor built to immobilize an enzyme in an insoluble carrier, allow the carrier to contact an organic source material, and cause the enzyme to work and function as a catalyst.
- a tubular apatite monocrystal useful as a biomaterial is used as a carrier to immobilize an enzyme.
- the adsorption action of apatite is exploited to immobilize the enzyme to form a bioreactor column.
- the functional part according to this embodiment is formed by an immobilized enzyme.
- an enzyme and a biotin labeling agent are suspended in a buffered solution (pH8.5) so that the molar ratio of the mixture is 1:2 - 1:10.
- the mixture, infused with the suspended liquid is then incubated in a constant temperature bath (25°C) for 2-4 hours.
- the resultant solution is analyzed by chromatography so as to isolate the labeled enzyme.
- a tubular hydroxyapatite monocrystal having a composition Ca 5 (PO 4 ) 3 (OH), and having a length of 0.3 - 2 mm and an inner diameter of 80 - 600 nm of the hole of the opening was obtained according to the method described in Examples 1-12 above.
- the apatite tube is then infused with a solution produced by suspending amylase in a buffered solution of pH5-6.5.
- the composite is incubated in a hot bath of 20-35°C for 8 hours so as to immobilize the amylase in the apatite tube.
- a tubular chlorapatite monocrystal having a composition Ca 5 (PO 4 ) 3 Cl, and having a length of 0.3 - 2 mm and an inner diameter of 3 - 40 nm of the hole of the opening was obtained according to the method described in Examples 1-12 above.
- the apatite tube is then infused with a solution produced by suspending glucoamylase in a buffered solution of pH7-9.
- the composite is incubated in a hot bath of 20-35°C for 8 hours so as to immobilize the glucoamylase in the apatite tube.
- a tubular chlorapatite monocrystal having a composition Ca 5 (PO 4 ) 3 Cl, and having a length of 0.5 - 4 mm and an inner diameter of 3 - 40 nm of the hole of the opening was obtained according to the method described in Examples 1-12 above.
- the apatite tube is then infused with a solution produced by dispersing avidin molecules in a buffered solution of pH6-8.
- the composite is incubated in a hot bath of 20-35°C for 4 hours so as to immobilize the avidin molecules in the apatite tube electrostatically.
- An enzyme labeled by biotin is then suspended in a buffered solution of pH6-8 and the suspended solution is used to infuse the apatite tube at 20-25°C for 30 minutes, thereby immobilizing the enzyme in the apatite tube by a biotin-avidin reaction.
- enzymes such as amylase, cellulase, xylase, racemase, etc. that differ in molar weight and isoelectric point can be easily immobilized.
- FIG. 3 schematically shows a device in which the bioreactor column according to this embodiment is used.
- a column having an inner diameter of 10 mm and a length of 100 mm was filled with a tubular apatite monocrystal in which glucoamylase is immobilized according to the biotin-avidin method, so as to prepare a bioreactor column 10.
- a buffered solution containing oligosaccharide and adjusted to pH7-8 was supplied from a source material container 12 to the bioreactor column 10 by using a tube pump 14.
- the buffered solution was supplied in a continuous steady-state operation at a liquid temperature of 30°C and a liquid measure of 0.3 ml/minute.
- the solution discharged from the bioreactor column 10 was collected in a sample container 16 at 1 hour intervals.
- the content of the sample was isolated and identified by thin-layer chromatography. It was revealed that most of the oligosaccharide is decomposed into glucose in the sample solution at all points of time that the sample was collected and that the bioreactor column 10 was functioning sufficiently.
- the apatite crystal according to the embodiment can be used as a variety of functional materials including fluorescent bodies.
- bioreactor column 10 bioreactor column, 12 source material container, 14 tube pump, 16 sample container.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Composite Materials (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Transplantation (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Materials For Medical Uses (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Catalysts (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013140067 | 2013-07-03 | ||
PCT/JP2014/003203 WO2015001734A1 (ja) | 2013-07-03 | 2014-06-16 | 複合材料および複合材料の製造方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3018096A1 EP3018096A1 (en) | 2016-05-11 |
EP3018096A4 EP3018096A4 (en) | 2017-05-10 |
EP3018096B1 true EP3018096B1 (en) | 2018-06-13 |
Family
ID=52143337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14820599.0A Active EP3018096B1 (en) | 2013-07-03 | 2014-06-16 | Composite material and method for producing composite material |
Country Status (5)
Country | Link |
---|---|
US (1) | US10208302B2 (ja) |
EP (1) | EP3018096B1 (ja) |
JP (2) | JP6466839B2 (ja) |
CN (1) | CN105358479B (ja) |
WO (1) | WO2015001734A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150058388A (ko) * | 2012-09-18 | 2015-05-28 | 가부시키가이샤 고이토 세이사꾸쇼 | 흡착 방법, 흡착 분리 방법 및 드러그 딜리버리용 담지체 |
JP6746117B2 (ja) * | 2016-06-15 | 2020-08-26 | 株式会社小糸製作所 | アパタイト結晶の製造方法 |
CN114075076A (zh) * | 2020-08-17 | 2022-02-22 | 厦门稀土材料研究所 | 一种氯磷灰石陶瓷及其制备方法和应用 |
WO2023234424A1 (ja) * | 2022-06-02 | 2023-12-07 | 株式会社小糸製作所 | DDS(Drug Delivery System)用担持体およびDDS用担持体の製造方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01238869A (ja) * | 1988-03-18 | 1989-09-25 | Nikon Corp | アパタイト系骨内インプラント |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2810138B2 (ja) * | 1989-08-23 | 1998-10-15 | 昭和電工株式会社 | 酵素活性測定用充填剤、その使用方法および装置 |
JPH07196314A (ja) * | 1993-12-28 | 1995-08-01 | Maruo Calcium Co Ltd | チューブ状合成無機微粒子 |
JP2975290B2 (ja) * | 1995-09-20 | 1999-11-10 | 新田ゼラチン株式会社 | アパタイト−チタン系複合材料、その製造方法およびその複合材料用組成物 |
JPH09138234A (ja) * | 1995-11-13 | 1997-05-27 | Toagosei Co Ltd | 標識化プローブの製造方法 |
JPH09169794A (ja) | 1995-12-22 | 1997-06-30 | Mitsubishi Materials Corp | 蛋白質類の分離方法 |
JP3959564B2 (ja) * | 1997-12-24 | 2007-08-15 | 村樫石灰工業株式会社 | 表層から芯部まで多孔質アパタイトに転換された固体物質の製造方法 |
JP2000095577A (ja) * | 1998-09-24 | 2000-04-04 | Asahi Optical Co Ltd | ハイドロキシアパタイト−金属複合体の製造方法およびハイドロキシアパタイト−金属複合体 |
JP2000271488A (ja) * | 1999-03-25 | 2000-10-03 | Maruo Calcium Co Ltd | 光触媒性ウィスカー及び光触媒性組成物 |
JP3806061B2 (ja) * | 2002-05-21 | 2006-08-09 | 富士通株式会社 | 金属修飾アパタイト含有膜の形成方法、これに用いられるコーティング液、および金属修飾アパタイト含有膜で被覆された部位を有する電子機器 |
JP2011011971A (ja) * | 2009-06-02 | 2011-01-20 | Nittetsu Mining Co Ltd | チューブ状リン酸カルシウム及びその製造方法 |
EP2837715B1 (en) * | 2012-04-09 | 2019-10-16 | Koito Manufacturing Co., Ltd. | Apatite crystal |
KR20150058388A (ko) * | 2012-09-18 | 2015-05-28 | 가부시키가이샤 고이토 세이사꾸쇼 | 흡착 방법, 흡착 분리 방법 및 드러그 딜리버리용 담지체 |
-
2014
- 2014-06-16 WO PCT/JP2014/003203 patent/WO2015001734A1/ja active Application Filing
- 2014-06-16 EP EP14820599.0A patent/EP3018096B1/en active Active
- 2014-06-16 JP JP2015525029A patent/JP6466839B2/ja active Active
- 2014-06-16 CN CN201480037344.8A patent/CN105358479B/zh active Active
-
2015
- 2015-12-21 US US14/977,324 patent/US10208302B2/en active Active
-
2018
- 2018-09-28 JP JP2018183104A patent/JP6609016B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01238869A (ja) * | 1988-03-18 | 1989-09-25 | Nikon Corp | アパタイト系骨内インプラント |
Also Published As
Publication number | Publication date |
---|---|
EP3018096A4 (en) | 2017-05-10 |
US20160102302A1 (en) | 2016-04-14 |
JP6609016B2 (ja) | 2019-11-20 |
US10208302B2 (en) | 2019-02-19 |
JPWO2015001734A1 (ja) | 2017-02-23 |
CN105358479B (zh) | 2018-10-09 |
JP2019026554A (ja) | 2019-02-21 |
WO2015001734A1 (ja) | 2015-01-08 |
JP6466839B2 (ja) | 2019-02-06 |
EP3018096A1 (en) | 2016-05-11 |
CN105358479A (zh) | 2016-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6609016B2 (ja) | 複合材料および複合材料の製造方法 | |
Lin et al. | Biomimetic hydroxyapatite porous microspheres with co-substituted essential trace elements: surfactant-free hydrothermal synthesis, enhanced degradation and drug release | |
KR101639504B1 (ko) | 아파타이트 결정 | |
US8153255B2 (en) | Ceramic particle group comprising sintered particles of hydroxyapatite | |
KR101212433B1 (ko) | 다공질 세라믹스 재료의 제조 방법 | |
EP3798185A1 (en) | Aluminum phosphate compound | |
Chen et al. | Hydrothermal synthesis of hydroxyapatite coatings with oriented nanorod arrays | |
EP2898944B1 (en) | Adsorption separation method by using an apatite crystal | |
Martínez et al. | Production and study of in vitro behaviour of monolithic α-Tricalcium Phosphate based ceramics in the system Ca3 (PO4) 2–Ca2SiO4 | |
Masmoudi et al. | Elaboration and properties of new ceramic microfiltration membranes from natural and synthesised apatite | |
Mokhtari et al. | In situ high-temperature X-ray diffraction, FT-IR and thermal analysis studies of the reaction between natural hydroxyapatite and aluminum powder | |
WO1999038542A1 (en) | A synthetic biomaterial compound | |
Jiang et al. | Calcium phosphate with well controlled nanostructure for tissue engineering | |
Adams et al. | Bioactivity of quaternary glass prepared from bentonite clay | |
Koroglu et al. | A novel approach for synthesis of monticellite based bioactive ceramic powders from boron derivative waste | |
CN101214382A (zh) | 一种铕标记羟基磷灰石纳米粒子的制备方法 | |
Nabiyouni et al. | Microwave assisted solution combustion synthesis (MASCS) of europium (Eu) doped chlorapatite nanowhiskers | |
CN111115599A (zh) | 离子液体诱导的羟基磷灰石多级纳米棒的制备方法 | |
JP7554424B2 (ja) | ユーロピウム化合物の結晶体及びユーロピウム化合物の結晶体の製造方法 | |
Charczuk et al. | Multifunctional platform for future applications in cell and tissue engineering based on silicate phosphate hydroxyapatite co-doped with Li+, Eu3+ and Gd3+ ions | |
WO2020261298A1 (en) | Nanodiamond embedded biomolecular glass from egg and method of production of the same | |
Sugiura et al. | Revision 2 | |
Ue et al. | The effect of sodium dopants on calcium polyphosphate biomaterials | |
Van Tran | Investigation into the thermal dehydroxylation and decomposition of hydroxylapatite during atmospheric plasma spraying |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160118 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C01B 25/455 20060101ALI20170224BHEP Ipc: B01J 27/185 20060101ALI20170224BHEP Ipc: B01J 27/18 20060101ALN20170224BHEP Ipc: C30B 29/60 20060101ALI20170224BHEP Ipc: A61L 27/46 20060101ALI20170224BHEP Ipc: C30B 29/14 20060101ALI20170224BHEP Ipc: B01J 35/00 20060101ALI20170224BHEP Ipc: C01B 25/32 20060101AFI20170224BHEP Ipc: B01J 35/02 20060101ALI20170224BHEP Ipc: C30B 7/10 20060101ALI20170224BHEP Ipc: A61L 27/42 20060101ALI20170224BHEP Ipc: C30B 29/12 20060101ALI20170224BHEP Ipc: C12N 11/14 20060101ALI20170224BHEP |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20170406 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B01J 35/00 20060101ALI20170401BHEP Ipc: C12N 11/14 20060101ALI20170401BHEP Ipc: B01J 35/02 20060101ALI20170401BHEP Ipc: A61L 27/46 20060101ALI20170401BHEP Ipc: C30B 29/12 20060101ALI20170401BHEP Ipc: C30B 29/14 20060101ALI20170401BHEP Ipc: C01B 25/455 20060101ALI20170401BHEP Ipc: C01B 25/32 20060101AFI20170401BHEP Ipc: A61L 27/42 20060101ALI20170401BHEP Ipc: B01J 27/185 20060101ALI20170401BHEP Ipc: C30B 29/60 20060101ALI20170401BHEP Ipc: B01J 27/18 20060101ALN20170401BHEP Ipc: C30B 7/10 20060101ALI20170401BHEP |
|
17Q | First examination report despatched |
Effective date: 20171123 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B01J 27/185 20060101ALI20180112BHEP Ipc: B01J 35/00 20060101ALI20180112BHEP Ipc: B01J 35/02 20060101ALI20180112BHEP Ipc: C01B 25/455 20060101ALI20180112BHEP Ipc: C12N 11/14 20060101ALI20180112BHEP Ipc: A61L 27/46 20060101ALI20180112BHEP Ipc: C30B 29/12 20060101ALI20180112BHEP Ipc: A61L 27/42 20060101ALI20180112BHEP Ipc: C30B 7/10 20060101ALI20180112BHEP Ipc: C01B 25/32 20060101AFI20180112BHEP Ipc: C30B 29/60 20060101ALI20180112BHEP Ipc: C30B 29/14 20060101ALI20180112BHEP Ipc: B01J 27/18 20060101ALN20180112BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180129 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1008325 Country of ref document: AT Kind code of ref document: T Effective date: 20180615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014027100 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180613 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180913 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180913 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180914 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1008325 Country of ref document: AT Kind code of ref document: T Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181013 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180630 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014027100 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180616 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180616 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 |
|
26N | No opposition filed |
Effective date: 20190314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180613 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140616 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200603 Year of fee payment: 7 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210616 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230502 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240509 Year of fee payment: 11 |