WO2013153749A1 - アパタイト結晶 - Google Patents

アパタイト結晶 Download PDF

Info

Publication number
WO2013153749A1
WO2013153749A1 PCT/JP2013/001928 JP2013001928W WO2013153749A1 WO 2013153749 A1 WO2013153749 A1 WO 2013153749A1 JP 2013001928 W JP2013001928 W JP 2013001928W WO 2013153749 A1 WO2013153749 A1 WO 2013153749A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal
apatite
tube
apatite crystal
Prior art date
Application number
PCT/JP2013/001928
Other languages
English (en)
French (fr)
Inventor
公典 榎本
大長 久芳
四ノ宮 裕
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to EP13775876.9A priority Critical patent/EP2837715B1/en
Priority to CN201380017666.1A priority patent/CN104220649B/zh
Priority to KR1020147030708A priority patent/KR101639504B1/ko
Priority to JP2014510037A priority patent/JP6200415B2/ja
Publication of WO2013153749A1 publication Critical patent/WO2013153749A1/ja
Priority to US14/497,553 priority patent/US9371231B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • C01B25/321Methods for converting an alkaline earth metal ortho-phosphate into another ortho-phosphate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/14Phosphates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular

Definitions

  • the present invention relates to a crystalline apatite applicable to a wide range of fields as a functional material.
  • Non-Patent Document 1 a solid hexagonal columnar apatite single crystal is known.
  • Apatite-based materials can be applied to various applications, and there is room for further improvement in shapes and components suitable for the applications.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a new apatite crystal.
  • an apatite crystal of an embodiment of the present invention has a general formula of M 2 5 (PO 4 ) 3 X (M 2 is at least selected from the group consisting of a divalent alkaline earth metal and Eu) One element, X represents at least one element or molecule selected from the group consisting of a halogen element and OH.)
  • the single crystal is tube-shaped.
  • the outer shape may be a hexagonal column, and the shape of the opening of the hole formed in the upper surface or the lower surface of the hexagonal column may be a hexagon. Thereby, an apatite crystal with a uniform tube thickness is obtained.
  • the inner diameter of the hole may be 10 nm to 60 ⁇ m.
  • the diameter may be 20 nm to 100 ⁇ m.
  • the length in the longitudinal direction may be 50 nm to 4 mm.
  • the transmittance for visible light may be 65% or more.
  • a new apatite crystal can be formed.
  • the apatite crystal according to the present embodiment is a tube-shaped single crystal.
  • the apatite crystal has a general formula of M 2 5 (PO 4 ) 3 X (M 2 is at least one element selected from the group consisting of a divalent alkaline earth metal and Eu, and X is a halogen element and OH. Represents at least one element or molecule selected from the group).
  • Alkaline earth metals are, for example, Ca, Sr, Ba, Ra, Mg, Be.
  • the halogen element is, for example, F, Cl, Br, or I.
  • Example 7 are methods for synthesizing chlorapatite single crystals.
  • Examples 8 to 10 are methods for synthesizing a hydroxyapatite single crystal. Examples of the synthesis method include a flux method, a coprecipitation method, and a sol-gel method.
  • Example 1 Flux method
  • CaHPO 4 , CaCO 3 , and CaCl 2 are weighed so that the molar ratio of Ca: P: Cl is 5: 3: 1 and mixed uniformly.
  • NaCl was added so that the chlorapatite concentration was 0.15 mol%, and the mixture was heated in a platinum crucible to 800 to 1100 ° C. at a heating rate of 100 to 500 ° C./h, and a synthesis temperature of 800 to 1100 ° C.
  • the temperature is lowered from 800 to 1100 ° C. to 500 ° C. at a temperature drop rate of 5 to 300 ° C./h, and then cooled to room temperature by natural cooling.
  • it is carefully washed with warm pure water (about 80 ° C.) to take out the chlorapatite single crystal.
  • Example 2 Flux method
  • CaHPO 4 , CaCO 3 , and CaCl 2 are weighed so that the molar ratio of Ca: P: Cl is 5: 3: 1 and mixed uniformly. Thereafter, a large amount of CaCl 2 was added, and the mixture was heated in a platinum crucible to 800 to 1100 ° C. at a heating rate of 100 to 500 ° C./h, synthesized at a synthesis temperature of 800 to 1100 ° C. for 48 hours, and then cooled down. The temperature is lowered from 800 to 1100 ° C. to 500 ° C. at 5 to 300 ° C./h, and then cooled to room temperature by natural cooling. After firing, it is carefully washed with warm pure water (about 80 ° C.) to take out the chlorapatite single crystal.
  • Example 3 Flux method
  • CaHPO 4 , CaCO 3 , SrCO 3 , CaCl 2 , SrCl 2 are weighed so that the molar ratio of Ca + Sr: P: Cl is 5: 3: 1 and uniformly mixed.
  • SrCl 2 was added so that the chlorapatite concentration was 0.15 mol%, and the mixture was heated in a platinum crucible to 800 to 1100 ° C. at a heating rate of 100 to 500 ° C./h, and the synthesis temperature was 800 to 1100.
  • the temperature is decreased from 800 to 1100 ° C. to 500 ° C. at a temperature decrease rate of 5 to 300 ° C./h, and then cooled to room temperature by natural cooling.
  • it is carefully washed with warm pure water (about 80 ° C.) to take out the chlorapatite single crystal.
  • Example 4 Flux method
  • CaHPO 4 , CaCO 3 , MgCO 3 , CaCl 2 , and MgCl 2 are weighed so that the molar ratio of Ca + Mg: P: Cl is 5: 3: 1 and uniformly mixed.
  • MgCl 2 was added so that the chlorapatite concentration was 0.15 mol%, and the mixture was heated in a platinum crucible to 800 to 1100 ° C. at a heating rate of 100 to 500 ° C./h, and a synthesis temperature of 800 to 1100 ° C. After being synthesized for 48 hours, the temperature is lowered from 800 to 1100 ° C. to 500 ° C. at a temperature drop rate of 5 to 300 ° C./h, and then cooled to room temperature by natural cooling. After firing, it is carefully washed with warm pure water (about 80 ° C.) to take out the chlorapatite single crystal.
  • Example 5 Coprecipitation method
  • calcium nitrate and calcium chloride are dissolved in pure water, phosphoric acid is dropped into the solution, and the pH is adjusted to 5 to 9 to form a precipitate (seed crystal).
  • the seed crystal prepared by the coprecipitation method is grown as a seed crystal by the Czochralski method.
  • a Ca 2 ClPO 4 concentration of 15 mol% is heated to 1200 ° C., the seed crystal is immersed in a high temperature solution, and gradually cooled from 1200 ° C. to 1050 ° C. While pulling up the crystal, a chloroapatite single crystal was obtained.
  • Example 6 Sol-gel method
  • phosphoric acid ethoxide total molar concentration of calcium and phosphorus; 0.05 mol / liter
  • concentrated hydrochloric acid chlorine is 1 mol per 1 mol of calcium. 1 mol
  • This solution was dried at 60 ° C. for 2 hours to remove distilled water to obtain seed crystals.
  • the seed crystal prepared by the sol-gel method is grown as a seed crystal by the Czochralski method.
  • a Ca 2 ClPO 4 concentration of 15 mol% is heated to 1200 ° C., the seed crystal is immersed in a high temperature solution, and gradually cooled from 1200 ° C. to 1050 ° C. While pulling up the crystal, a chloroapatite single crystal was obtained.
  • Example 7 Sol-gel method
  • phosphoric acid was further added (total molar concentration of calcium and phosphorus; 0.05 mol / liter) and stirred, and then concentrated hydrochloric acid was added.
  • This solution was dried at 60 ° C. for 2 hours to remove distilled water to obtain seed crystals.
  • the seed crystal prepared by the sol-gel method is grown as a seed crystal by the Czochralski method.
  • a Ca 2 ClPO 4 concentration of 15 mol% is heated to 1200 ° C., the seed crystal is immersed in a high temperature solution, and gradually cooled from 1200 ° C. to 1050 ° C. While pulling up the crystal, a chloroapatite single crystal was obtained.
  • Example 8 Coprecipitation method
  • Single crystal precipitation by adding 0.5 mol / L phosphoric acid aqueous solution dropwise to 0.3 mol / L calcium hydroxide suspension and adjusting the pH to 5-9, taking care to form single crystals.
  • a product seed crystal
  • the seed crystal prepared by the coprecipitation method is grown as a seed crystal by the Czochralski method. Calcium hydroxide was heated to 1650 ° C., the seed crystal was immersed in a high-temperature solution, and the crystal was pulled up while gradually cooling from 1650 ° C. to 1000 ° C. to obtain a needle-like hydroxyapatite single crystal.
  • Example 9 Hydrothermal synthesis method
  • lactic acid is dissolved in 1 liter of water, then 22.11 g of calcium hydroxide is added, and 6.92 g of phosphoric acid is mixed and dissolved.
  • the slurry thus prepared is filled in an autoclave and subjected to hydrothermal treatment at 165 ° C. for 5 hours.
  • the treated slurry was filtered and dried to obtain a hydroxyapatite single crystal.
  • Example 10 Sol-gel method
  • 1.0 ⁇ 10 ⁇ 2 moles of calcium diethoxide is dissolved in 6.5 ml of ethylene glycol.
  • a mixed solution of calcium diethoxide in ethylene glycol and triethyl phosphite is stirred for 2 hours to form a precipitate. It was heated at 200 ° C. for 2 hours to obtain a seed crystal.
  • the seed crystal prepared by the sol-gel method is grown as a seed crystal by the Czochralski method.
  • Calcium hydroxide was heated to 1650 ° C., the seed crystal was immersed in a high-temperature solution, and the crystal was pulled up while gradually cooling from 1650 ° C. to 1000 ° C. to obtain a needle-like hydroxyapatite single crystal.
  • Example 11 Chlorine apatite single crystal (20 mg) is put in a platinum capsule (2.6 mm ⁇ , length 3.3 mm) together with 6.25 (mol / L) aqueous potassium hydroxide (KOH) (40 ⁇ l) and sealed.
  • the hydrothermal treatment is performed under conditions of 100 MPa using water as a pressure medium in a test tube type autoclave. The heating rate is 20 ° C. per minute, the processing temperature is 400 ° C., and the processing time is constant for 48 hours. Thereby, a hydroxyapatite single crystal was obtained.
  • Example 12 Chloroapatite single crystal (20 mg) is heated to 1300 ° C. and reacted in steam through steam for 2 weeks to convert it into a hydroxyapatite single crystal.
  • FIG. 1 is an example of an X-ray diffraction pattern of a crystal prepared by the method of the example. As shown in FIG. 1, the crystal was a single layer of chlorapatite crystal Ca 5 (PO 4 ) 3 Cl.
  • FIG. 2 is a photograph showing an example of a chloroapatite tube single crystal observed by SEM.
  • the apatite single crystal according to the present embodiment has a tube shape, and the outer shape is a hexagonal column.
  • the shape of the opening part of the hole formed in the upper surface or lower surface of a hexagonal column is a hexagon. Therefore, the thickness of the outer wall of the tube is almost uniform.
  • the inner diameter of the hole in the opening of the tubular single crystal is about 10 nm to 60 ⁇ m.
  • the diameter of the tubular single crystal is about 20 nm to 100 ⁇ m.
  • the tube-shaped single crystal has a length in the longitudinal direction of about 50 nm to 4 mm.
  • the tube-shaped single crystal has a transmittance of 65% or more with respect to visible light.
  • the tube-like apatite single crystal can accommodate other substances inside, it can be applied to new applications. For example, (1) By filling the inside of the apatite single crystal with the Mg—Ni alloy, it can be used for a fuel cell as a hydrogen storage material. (2) By confining the gas molecule adsorbent inside the apatite single crystal, it can be used as a nanopore material. (3) By filling the inside of an apatite single crystal with an amino acid, it can be used as a biocolumn for separating and purifying DNA from cells.
  • apatite single crystal By filling the inside of the apatite single crystal with a catalyst or enzyme, it can be used as a reaction field for a gas or solvent decomposition column or a bioreactor.
  • a carbon nanotube or an organic material can be inserted into an apatite single crystal and used as a column for aligning the arrangement of the inserts.
  • the tube-shaped apatite single crystal can be applied to the following uses depending on the shape and size. (6) By filling the inside of a tube-like apatite single crystal with a drug, it can be used as a drug delivery system. (7) Since the tubular apatite single crystal has a high aspect ratio, it can be used as a reinforcing material (reinforcing material) in a composite material. (8) It can be used as an atmospheric culture field utilizing the shape of a tube-like apatite single crystal. (9) It can be used as a terahertz light emitting device. (10) Application to applications using volume expansion / contraction inside the tube is possible.
  • the apatite single crystal of the present invention can be used as various functional materials including phosphors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 アパタイト結晶は、一般式がM (POX(Mは2価のアルカリ土類金属及びEuからなる群より選ばれる少なくとも1種の元素、Xはハロゲン元素及びOHからなる群より選ばれる少なくとも一種の元素または分子を示す。)で表される単結晶であって、単結晶がチューブ状である。また、この結晶は、外形が六角柱であってもよい。また、六角柱の上面または下面に形成されている穴の開口部の形状が六角形であってもよい。

Description

アパタイト結晶
 本発明は、機能性材料として広範囲な分野に適用可能な結晶性のアパタイトに関する。
 近年、蛍光体や生体機能材料としてアパタイト系の材料の開発が進められている。このようなアパタイト系の結晶として、中実の六角柱状のアパタイト単結晶が知られている(非特許文献1)。
Katsuya Teshima et al.、「Direct growth of highly crystalline, idiomorphic fluorapatite crystals on a polymer substrate」、Crystal Growth & Design、2009、Vol.9、No.9、p.3832-3834
 アパタイト系の材料は、様々な用途に適用可能であり、その用途に適した形状や成分については更に改善の余地がある。
 本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、新たなアパタイト結晶を提供することにある。
 上記課題を解決するために、本発明のある態様のアパタイト結晶は、一般式がM (POX(Mは2価のアルカリ土類金属及びEuからなる群より選ばれる少なくとも1種の元素、Xはハロゲン元素及びOHからなる群より選ばれる少なくとも一種の元素または分子を示す。)で表される単結晶であって、単結晶がチューブ状である。
 この態様によると、内部に他の物質を収容できるため、新たな用途への適用が可能となる。
 外形が六角柱であり、六角柱の上面または下面に形成されている穴の開口部の形状が六角形であってもよい。これにより、チューブの厚みが一様なアパタイト結晶が得られる。
 穴の内径が10nm~60μmであってもよい。
 直径が20nm~100μmであってもよい。
 長手方向の長さが50nm~4mmであってもよい。
 可視光に対して透過率が65%以上であってもよい。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、などの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、新たなアパタイト結晶をすることができる。
実施例の方法で作成された結晶のX線回折パターンの一例である。 SEMで観察した塩素アパタイトチューブ単結晶の一例を示す写真である。
 以下、本発明を実施するための形態について詳細に説明する。
 本実施の形態に係るアパタイト結晶は、その形態がチューブ状の単結晶である。このアパタイト結晶は、一般式がM (POX(Mは2価のアルカリ土類金属及びEuからなる群より選ばれる少なくとも1種の元素、Xはハロゲン元素及びOHからなる群より選ばれる少なくとも一種の元素または分子を示す。)で表される。アルカリ土類金属は、例えば、Ca、Sr、Ba、Ra、Mg、Beである。また、ハロゲン元素は、例えば、F、Cl、Br、Iである。
 以下に、アパタイトのチューブ状の単結晶の製造方法について各実施例を参照して説明する。以下に本実施の形態を実施例によって更に具体的に説明する。実施例~実施例7は、塩素アパタイト単結晶の合成方法である。実施例8~実施例10は、水酸アパタイト単結晶の合成方法である。合成方法としては、例えば、フラックス法、共沈法、ゾル-ゲル法が挙げられる。
 [塩素アパタイト単結晶]
 (実施例1:フラックス法)
 はじめに、CaHPO、CaCO、CaClを、Ca:P:Clのモル比が5:3:1となるように計量し、均一混合する。その後、塩素アパタイト濃度が0.15mol%となるようにNaClを追加し、混合物を白金るつぼ中で800~1100℃まで昇温速度100~500℃/hで昇温させ、合成温度800~1100℃で48時間合成した後、降温速度5~300℃/hで800~1100℃から500℃まで降温させ、その後は自然冷却で常温まで冷却する。焼成後、温純水(約80℃)で丹念に洗浄し、塩素アパタイト単結晶を取り出す。
 (実施例2:フラックス法)
 はじめに、CaHPO、CaCO、CaClを、Ca:P:Clのモル比が5:3:1となるように計量し、均一混合する。その後、多量のCaClを追加し、混合物を白金るつぼ中で800~1100℃まで昇温速度100~500℃/hで昇温させ、合成温度800~1100℃で48時間合成した後、降温速度5~300℃/hで800~1100℃から500℃まで降温させ、その後は自然冷却で常温まで冷却する。焼成後、温純水(約80℃)で丹念に洗浄し、塩素アパタイト単結晶を取り出す。
 (実施例3:フラックス法)
 はじめに、CaHPO、CaCO、SrCO,CaCl,SrClを、Ca+Sr:P:Clのモル比が5:3:1となるように計量し、均一混合する。その後、塩素アパタイト濃度が0.15mol%となるようにSrClを追加し、混合物を白金るつぼ中で800~1100℃まで昇温速度100~500℃/hで昇温させ、合成温度800~1100℃で48時間合成した後、降温速度5~300℃/hで800~1100℃から500℃まで降温させ、その後は自然冷却で常温まで冷却する。焼成後、温純水(約80℃)で丹念に洗浄し、塩素アパタイト単結晶を取り出す。
 (実施例4:フラックス法)
 はじめに、CaHPO、CaCO、MgCO、CaCl、MgClを、Ca+Mg:P:Clのモル比が5:3:1となるように計量し、均一混合する。その後、塩素アパタイト濃度が0.15mol%となるようMgClを追加し、混合物を白金るつぼ中で800~1100℃まで昇温速度100~500℃/hで昇温させ、合成温度800~1100℃で48時間合成した後、降温速度5~300℃/hで800~1100℃から500℃まで降温させ、その後は自然冷却で常温まで冷却する。焼成後、温純水(約80℃)で丹念に洗浄し、塩素アパタイト単結晶を取り出す。
 (実施例5:共沈法)
 はじめに、純水に硝酸カルシウム、塩化カルシウムを溶解させ、その溶液中にリン酸を滴下し、pHを5~9に調整することにより沈殿(種結晶)を生じさせる。この共沈法により調整した種結晶を、チョクラルスキー法により種結晶成長させる。CaCl-CaClPO系相図において、CaClPO濃度が15mol%のものを1200℃まで加熱し、高温溶液となった中に種結晶を浸し、1200℃から1050℃まで徐冷しながら結晶を引き上げることにより、塩素アパタイト単結晶を得た。
 (実施例6:ゾル-ゲル法)
 はじめに、蒸留水に硝酸カルシウムを溶解させ、更にリン酸エトキシドを添加して(カルシウムとリンの合計モル濃度;0.05モル/リットル)撹拌した後、濃塩酸(カルシウム1モルに対して塩素は1モル)を加えた。この溶液を60℃で2時間乾燥して蒸留水を除去し、種結晶を得た。このゾル-ゲル法により調整した種結晶を、チョクラルスキー法により種結晶成長させる。CaCl-CaClPO系相図において、CaClPO濃度が15mol%のものを1200℃まで加熱し、高温溶液となった中に種結晶を浸し、1200℃から1050℃まで徐冷しながら結晶を引き上げることにより、塩素アパタイト単結晶を得た。
 (実施例7:ゾル-ゲル法)
 はじめに、蒸留水にカルシウムエトキシドを溶解させ、更にリン酸を添加して(カルシウムとリンの合計モル濃度;0.05モル/リットル)撹拌した後、濃塩酸を加えた。この溶液を60℃で2時間乾燥して蒸留水を除去し、種結晶を得た。このゾル-ゲル法により調整した種結晶を、チョクラルスキー法により種結晶成長させる。CaCl-CaClPO系相図において、CaClPO濃度が15mol%のものを1200℃まで加熱し、高温溶液となった中に種結晶を浸し、1200℃から1050℃まで徐冷しながら結晶を引き上げることにより、塩素アパタイト単結晶を得た。
 [水酸アパタイト単結晶]
 (実施例8:共沈法)
 0.3mol/Lの水酸化カルシウム懸濁液に、0.5mol/Lのリン酸水溶液を滴下し、単結晶が生成するよう留意してpHを5~9に調整することにより、単結晶沈殿物(種結晶)を得た。この共沈法により調整した種結晶を、チョクラルスキー法により種結晶成長させる。水酸化カルシウムを1650℃まで加熱し、高温溶液となった中に種結晶を浸し、1650℃から1000℃まで徐冷しながら結晶を引き上げることにより、針状の水酸アパタイト単結晶を得た。
 (実施例9:水熱合成法)
 はじめに、水1リットルに乳酸63.37gを溶解し、次に水酸化カルシウム22.11gを加え、更にリン酸6.92gを混合溶解させる。こうして調製したスラリーをオートクレーブに充填し、165℃で5時間、水熱処理を施す。そして、処理後のスラリーを濾過乾燥し、水酸アパタイト単結晶を得た。
 (実施例10:ゾル-ゲル法)
 カルシウムジエトキシド1.0×10-2モル分を6.5mlのエチレングリコールに溶解させる。次に、亜リン酸トリエチルを、水酸アパタイトの組成比がCa/P=5/3となるように、6.0×10-3モル採取し、所定量のエタノールに溶かして使用する。その後、カルシウムジエトキシドのエチレングリコール溶液と亜リン酸トリエチルとの混合溶液を2時間撹拌し、沈殿物を生じさせる。それを200℃で2時間加熱し、種結晶を得た。このゾル-ゲル法により調整した種結晶を、チョクラルスキー法により種結晶成長させる。水酸化カルシウムを1650℃まで加熱し、高温溶液となった中に種結晶を浸し、1650℃から1000℃まで徐冷しながら結晶を引き上げることにより、針状の水酸アパタイト単結晶を得た。
 [塩素アパタイトから水酸アパタイトへの変換]
 (実施例11)
 塩素アパタイト単結晶(20mg)を6.25(mol/L)の水酸化カリウム(KOH)水溶液(40μl)とともに、白金カプセル(2.6mmφ、長さ3.3mm)中に入れ溶封する。水熱処理は、テストチューブ型オートクレーブで圧力媒体として水を用い、100MPaの条件下で行う。昇温速度は毎分20℃とし、処理温度は400℃で行い、処理時間は48時間一定とする。これにより水酸アパタイト単結晶を得た。
 (実施例12)
 塩素アパタイト単結晶(20mg)を1300℃に加熱し、炉内に水蒸気を通じて2週間かけて反応させて、水酸アパタイト単結晶に変換する。
 [組成]
 次に、実施例の方法で作成した塩素アパタイト結晶の組成について検討した。図1は、実施例の方法で作成された結晶のX線回折パターンの一例である。図1に示すように、結晶は、塩素アパタイト結晶Ca(POClの単一層であった。
 [成分]
 次に、塩素アパタイトチューブ単結晶の元素分析を行った。その結果、この結晶は、Ca=39.10mass%、P=18.00mass%、Cl=5.30mass%であった。
 [形状]
 次に、塩素アパタイトチューブ単結晶の形状を走査型電子顕微鏡(SEM)にて観察した。図2は、SEMで観察した塩素アパタイトチューブ単結晶の一例を示す写真である。図2に示すように、本実施の形態に係るアパタイト単結晶は、チューブ状であり、外形が六角柱である。また、六角柱の上面または下面に形成されている穴の開口部の形状が六角形である。そのため、チューブの外壁の厚みがほぼ一様になっている。
 このようなチューブ状単結晶は、SEM観察により、様々な大きさや形態が存在していることがわかった。例えば、チューブ状単結晶の開口部の穴の内径は、10nm~60μm程度である。また、チューブ状単結晶の直径は、20nm~100μm程度である。また、チューブ状単結晶は、長手方向の長さが50nm~4mm程度である。また、チューブ状単結晶は、可視光に対して透過率が65%以上である。
 [用途]
 次に、アパタイトのチューブ状単結晶の用途について説明する。
 (内部空間の利用)
 チューブ状のアパタイト単結晶は、内部に他の物質を収容できるため、新たな用途への適用が可能となる。例えば、
(1)Mg-Ni合金をアパタイト単結晶の内部に充填することにより、水素吸蔵材料として燃料電池に利用することが可能となる。
(2)ガス分子吸着材をアパタイト単結晶の内部に閉じ込めることにより、ナノ細孔材料として利用することが可能となる。
(3)アミノ酸をアパタイト単結晶の内部に充填することにより、細胞からDNAを分離精製するバイオカラムとして利用することが可能となる。
(4)触媒や酵素をアパタイト単結晶の内部に充填することにより、ガス、溶剤の分解カラム、バイオリアクタの反応場として利用することが可能となる。
(5)カーボンナノチューブや有機材料をアパタイト単結晶の内部に挿入し、挿入物の配列を揃えるカラムとして利用することが可能となる。
 (形状による機能)
 チューブ状のアパタイト単結晶は、その形状や大きさによって、以下の用途への適用が可能となる。
(6)チューブ状のアパタイト単結晶の内部に薬を充填することにより、ドラッグデリバリーシステムとしての利用が可能となる。
(7)チューブ状のアパタイト単結晶が高アスペクト比であるため、複合材での強化材(補強材)としての利用が可能となる。
(8)チューブ状のアパタイト単結晶の形状を利用した雰囲気培養場としての利用が可能となる。
(9)テラヘルツ発光デバイスとしての利用が可能となる。
(10)チューブ内部での体積膨張・収縮を利用した用途への適用が可能となる。
 (材質による機能)
 蛍光体、電子放出材料、光触媒アパタイト、人工骨の補強材などへの利用が可能となる。また、透明である光学特性を利用した応用も可能である。
 以上、本発明を実施の形態や各実施例をもとに説明した。この実施の形態や各実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 本発明のアパタイト単結晶は、蛍光体を始め様々な機能性材料として利用することが可能である。

Claims (6)

  1.  一般式がM (POX(Mは2価のアルカリ土類金属及びEuからなる群より選ばれる少なくとも1種の元素、Xはハロゲン元素及びOHからなる群より選ばれる少なくとも一種の元素または分子を示す。)で表される単結晶であって、
     前記単結晶がチューブ状であるアパタイト結晶。
  2.  外形が六角柱であり、六角柱の上面または下面に形成されている穴の開口部の形状が六角形であることを特徴とする請求項1に記載のアパタイト結晶。
  3.  前記穴の内径が10nm~60μmであることを特徴とする請求項2に記載のアパタイト結晶。
  4.  直径が20nm~100μmであることを特徴とする請求項1乃至3のいずれか1項に記載のアパタイト結晶。
  5.  長手方向の長さが50nm~4mmであることを特徴とする請求項1乃至4のいずれか1項に記載のアパタイト結晶。
  6.  可視光に対して透過率が65%以上であることを特徴とする請求項1乃至5のいずれか1項に記載のアパタイト結晶。
PCT/JP2013/001928 2012-04-09 2013-03-21 アパタイト結晶 WO2013153749A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13775876.9A EP2837715B1 (en) 2012-04-09 2013-03-21 Apatite crystal
CN201380017666.1A CN104220649B (zh) 2012-04-09 2013-03-21 磷灰石结晶
KR1020147030708A KR101639504B1 (ko) 2012-04-09 2013-03-21 아파타이트 결정
JP2014510037A JP6200415B2 (ja) 2012-04-09 2013-03-21 アパタイト結晶
US14/497,553 US9371231B2 (en) 2012-04-09 2014-09-26 Apatite crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012088133 2012-04-09
JP2012-088133 2012-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/497,553 Continuation US9371231B2 (en) 2012-04-09 2014-09-26 Apatite crystal

Publications (1)

Publication Number Publication Date
WO2013153749A1 true WO2013153749A1 (ja) 2013-10-17

Family

ID=49327339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001928 WO2013153749A1 (ja) 2012-04-09 2013-03-21 アパタイト結晶

Country Status (6)

Country Link
US (1) US9371231B2 (ja)
EP (1) EP2837715B1 (ja)
JP (1) JP6200415B2 (ja)
KR (1) KR101639504B1 (ja)
CN (1) CN104220649B (ja)
WO (1) WO2013153749A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001734A1 (ja) * 2013-07-03 2015-01-08 株式会社小糸製作所 複合材料および複合材料の製造方法
JPWO2014045534A1 (ja) * 2012-09-18 2016-08-18 株式会社小糸製作所 吸着方法、吸着分離方法およびドラッグデリバリー用担持体
JP2017222539A (ja) * 2016-06-15 2017-12-21 株式会社小糸製作所 アパタイト結晶の製造方法およびアパタイト結晶

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879395B1 (ko) * 2016-11-08 2018-07-18 경상대학교산학협력단 수산화인회석-전이금속 복합체, 이의 제조방법 및 이를 포함하는 자외선 및 가시광선 차단 재료
CN106841096B (zh) * 2017-01-19 2019-06-21 中国石油大学(北京) 利用太赫兹时域光谱分析磷灰石裂变径迹退火程度的方法
CN106769999B (zh) * 2017-01-19 2019-06-21 中国石油大学(北京) 快速获得磷灰石裂变径迹退火率和自发径迹密度的方法
CN108689394B (zh) * 2017-09-15 2021-06-18 天水师范学院 一种纳米磷酸氢钙的制备方法
CN114075076A (zh) * 2020-08-17 2022-02-22 厦门稀土材料研究所 一种氯磷灰石陶瓷及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011971A (ja) * 2009-06-02 2011-01-20 Nittetsu Mining Co Ltd チューブ状リン酸カルシウム及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170686A (ja) * 1984-02-16 1985-09-04 Toshiba Corp カラ−投写型映像装置用青色発光ブラウン管
EP0239970A3 (en) * 1986-03-31 1988-04-20 Toa Nenryo Kogyo Kabushiki Kaisha Assemblage of hydroxyl apatite particles and liquid chromatography column using the same
CN1078452A (zh) * 1992-09-21 1993-11-17 同济医科大学附属同济医院 植入式多孔陶瓷抗痨抗癌抗炎缓释体
JP4768262B2 (ja) * 2002-06-28 2011-09-07 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ アパタイト系セラミック顔料
CN1194772C (zh) * 2002-12-30 2005-03-30 湖南大学 纳米管状磷灰石/Al2O3-Ti生物复合材料及其制备方法
WO2011053598A1 (en) * 2009-10-26 2011-05-05 Rutgers, The State University Of New Jersey Hydroxyapatite with controllable size and morphology
WO2007003969A2 (en) * 2005-07-06 2007-01-11 Cambridge University Technical Services Limited Divalent metal ion phosphates and uses thereof
CN101172592B (zh) * 2007-10-22 2012-06-27 中国科学院上海硅酸盐研究所 羟基磷灰石微米管及其制备方法
CN101428779A (zh) * 2008-12-05 2009-05-13 江苏大学 空心纳米结构羟基磷灰石及其制备方法
CN101786615B (zh) * 2010-03-12 2011-11-16 南京大学 一种羟基磷灰石纳米管及其制法和在骨修复方面的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011971A (ja) * 2009-06-02 2011-01-20 Nittetsu Mining Co Ltd チューブ状リン酸カルシウム及びその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JUNFENG HUI ET AL.: "Monodisperse F-substituted hydroxyapatite single-crystal nanotubes with amphiphilic surface properties", INORGANIC CHEMISTRY, vol. 48, no. 13, 2009, pages 5614 - 5616, XP055162962 *
KATSUYA TESHIMA ET AL.: "Direct growth of highly crystalline, idiomorphic fluorapatite crystals on a polymer substrate", CRYSTAL GROWTH & DESIGN, vol. 9, no. 9, 2009, pages 3832 - 3834, XP008177788, DOI: doi:10.1021/cg900418w
MING-GUO MA ET AL.: "Solvothermal preparation of hydroxyapatite microtubes in water/N,N- dimethylformamide mixed solvents", MATERIALS LETTERS, vol. 62, 2008, pages 1642 - 1645, XP022678859 *
See also references of EP2837715A4
YAN ZHOU ET AL.: "Single-crystal microtubes of a novel apatite-type compound, (Na2.5Bi2.5) (P04) 3 (F,OH), with well-faceted hexagonal cross sections", CRYSTENGCOMM, vol. 11, 2009, pages 1863 - 1867, XP055162967 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014045534A1 (ja) * 2012-09-18 2016-08-18 株式会社小糸製作所 吸着方法、吸着分離方法およびドラッグデリバリー用担持体
WO2015001734A1 (ja) * 2013-07-03 2015-01-08 株式会社小糸製作所 複合材料および複合材料の製造方法
JPWO2015001734A1 (ja) * 2013-07-03 2017-02-23 株式会社小糸製作所 複合材料および複合材料の製造方法
US10208302B2 (en) 2013-07-03 2019-02-19 Koito Manufacturing Co., Ltd. Composite material and method of manufacturing composite material
JP2017222539A (ja) * 2016-06-15 2017-12-21 株式会社小糸製作所 アパタイト結晶の製造方法およびアパタイト結晶
DE102017112937A1 (de) 2016-06-15 2017-12-21 Kochi University Verfahren zum Herstellen von Apatitkristallen und Apatitkristalle
US10851472B2 (en) 2016-06-15 2020-12-01 Koito Manufacturing Co., Ltd. Method of producing apatite crystal, and apatite crystal
DE102017112937B4 (de) 2016-06-15 2022-06-30 Kochi University Verfahren zum Herstellen von Apatitkristallen

Also Published As

Publication number Publication date
US20150017442A1 (en) 2015-01-15
EP2837715A4 (en) 2015-11-18
KR101639504B1 (ko) 2016-07-13
JPWO2013153749A1 (ja) 2015-12-17
CN104220649A (zh) 2014-12-17
US9371231B2 (en) 2016-06-21
KR20140146161A (ko) 2014-12-24
EP2837715B1 (en) 2019-10-16
EP2837715A1 (en) 2015-02-18
JP6200415B2 (ja) 2017-09-20
CN104220649B (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
JP6200415B2 (ja) アパタイト結晶
Bayraktar et al. Chemical preparation of carbonated calcium hydroxyapatite powders at 37 C in urea-containing synthetic body fluids
Jang et al. Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite
Zhang et al. A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent
Dhand et al. The facile and low temperature synthesis of nanophase hydroxyapatite crystals using wet chemistry
He et al. Effects of strontium substitution on the phase transformation and crystal structure of calcium phosphate derived by chemical precipitation
JP6609016B2 (ja) 複合材料および複合材料の製造方法
CN104961114B (zh) 钙镁磷酸盐纳米结构材料及其制备方法
Hao et al. Controlled growth of hydroxyapatite fibers precipitated by propionamide through hydrothermal synthesis
CN112830464B (zh) 一种锶掺杂羟基磷灰石微米管及其制备方法
TW201014792A (en) Process for preparing >-calcium sulfate hemihydrate
Sundaram et al. Crystallisation of hydroxyapatite nanocrystals under magnetic field
CN107522185B (zh) 磷灰石晶体的制造方法以及磷灰石晶体
Jiang et al. Calcium phosphate with well controlled nanostructure for tissue engineering
Shen et al. Solid-phase steam-assisted synthesis of hydroxyapatite nanorods and nanoparticles
Nabiyouni et al. Microwave assisted solution combustion synthesis (MASCS) of europium (Eu) doped chlorapatite nanowhiskers
JP5360791B2 (ja) リン酸カルシウム系球晶
Cho et al. Advanced yolk–shell hydroxyapatite for bone graft materials: kilogram-scale production and structure-in vitro bioactivity relationship
Li Structural characterisation of apatite-like materials
Kumar et al. Growth and characterization of nano‐crystalline hydroxyapatite at physiological conditions
CN111115599A (zh) 离子液体诱导的羟基磷灰石多级纳米棒的制备方法
JPH06122510A (ja) リン酸八カルシウムの製造方法
Mahmud et al. The threonine effect on calcium phosphate preparation from a solution containing Ca/P= 1.33 molar ratio
Nor et al. Synthesis and Characterization of β-Tricalcium Phosphate Ceramic via sol-gel Method
Saisa-ard et al. Crystallization of lead phosphate in gel systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014510037

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013775876

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147030708

Country of ref document: KR

Kind code of ref document: A