CN107522185B - 磷灰石晶体的制造方法以及磷灰石晶体 - Google Patents

磷灰石晶体的制造方法以及磷灰石晶体 Download PDF

Info

Publication number
CN107522185B
CN107522185B CN201710451939.3A CN201710451939A CN107522185B CN 107522185 B CN107522185 B CN 107522185B CN 201710451939 A CN201710451939 A CN 201710451939A CN 107522185 B CN107522185 B CN 107522185B
Authority
CN
China
Prior art keywords
apatite
single crystal
space
crystal
element selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710451939.3A
Other languages
English (en)
Other versions
CN107522185A (zh
Inventor
四宫裕
柳泽和道
M.萨卡基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Kochi University NUC
Original Assignee
Koito Manufacturing Co Ltd
Kochi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd, Kochi University NUC filed Critical Koito Manufacturing Co Ltd
Publication of CN107522185A publication Critical patent/CN107522185A/zh
Application granted granted Critical
Publication of CN107522185B publication Critical patent/CN107522185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • C01B25/327After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • C01B25/328Defluorination during or after the preparation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/14Phosphates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B5/00Single-crystal growth from gels
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/06Single-crystal growth from melt solutions using molten solvents by cooling of the solution using as solvent a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/11Particle morphology extending in one dimension, e.g. needle-like with a prismatic shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Geometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials For Medical Uses (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种关于新的磷灰石晶体的制造方法的技术。本发明的磷灰石晶体的制造方法具备:准备由通式M2 5(PO4)3X(M2表示2价的选自由碱土金属及Eu组成的组中的至少1种元素,X表示选自卤素中的至少一种元素。)所表示的磷灰石单晶的工序(S10)、将磷灰石单晶放入可控制为预定气氛的空间的工序(S12)、向空间供给水蒸气的工序(S14)、以及进行加热以使空间的气氛为1000~1400℃的范围的工序(S16)。

Description

磷灰石晶体的制造方法以及磷灰石晶体
技术领域
本发明涉及作为功能性材料而能够适用于广泛领域的晶体性磷灰石。
背景技术
近年来,作为荧光体、生物学功能材料,正在开展磷灰石系材料的开发。作为这样的磷灰石系的晶体,研究出外形为六边形的管状的磷灰石单晶(专利文献1)。
现有技术文献
专利文献
专利文献1:国际公开第13/153749号小册子
发明内容
发明所要解决的课题
磷灰石系的材料可适用于各种用途,对于适合于其用途的形状、成分、制造方法尚有进一步改善的余地。
本发明是鉴于这样的情况而完成的,其目的在于提供一种关于新的磷灰石晶体的制造方法的技术。
解决课题的方法
为了解决上述课题,本发明的一个形态的磷灰石晶体的制造方法具备:准备由通式M2 5(PO4)3X(M2表示2价的选自由碱土金属及Eu组成的组中的至少1种元素,X表示选自卤素中的至少一种元素。)所表示的磷灰石单晶的工序、将磷灰石单晶放入可控制为预定气氛的空间的工序、向空间供给水蒸气的工序、以及进行加热以使空间的气氛为1000~1400℃的范围的工序。
在将M2 5(PO4)3X的卤素X替换为羟基而生成羟基磷灰石时,有时会析出M2 3(PO4)2这样的副产物。这样的副产物根据磷灰石的用途而可能成为损害目的的物质。因此,根据上述的形态,能够抑制副产物的生成而能够制造所希望的磷灰石晶体。
此外,本发明的另一形态也为制造方法。该方法具备:准备由通式M2 5(PO4)3X(M2表示2价的选自由碱土金属及Eu组成的组中的至少1种元素,X表示选自卤素中的至少一种元素。)所表示的管状的磷灰石单晶的工序、将磷灰石单晶放入可控制为预定气氛的空间的工序、向空间供给水蒸气的工序、以及进行加热以使空间的气氛为磷灰石单晶所含的一部分卤素能够被羟基取代的温度的工序。
根据该形态,能够抑制副产物的生成而能够制造所希望的管状的磷灰石晶体。
加热的工序可以以使空间的气氛为1000~1400℃的范围的方式进行加热。据此,能够在抑制副产物的生成的同时高效地制造羟基磷灰石。
加热的工序可以在2~360小时的范围进行。据此,能够在抑制副产物的生成的同时高效地制造羟基磷灰石。
加热的工序可以在常压下进行。据此,能够使用简便的装置,能够降低制造成本。
本发明的再一个形态为磷灰石晶体。该磷灰石晶体具有由通式M2 5(PO4)3X(M2表示2价的选自由碱土金属及Eu组成的组中的至少1种元素,X表示选自卤素中的至少一种元素。)所表示的卤化磷灰石的单晶、以及形成于单晶上的羟基磷灰石。
根据该形态,由于磷灰石晶体的表面由羟基磷灰石构成,因此能够用作例如细胞的培养基。
羟基磷灰石可以为卤化磷灰石的卤素被羟基取代而成的物质。
单晶为管状,该单晶的外形可以为六棱柱。
需说明的是,以上构成要素的任意组合、在方法、装置、系统等之间更换本发明的表现的情况作为本发明的形态也是有效的。
发明的效果
根据本发明,能够提供关于新的磷灰石晶体的制造方法的技术。
附图说明
图1为表示使用卤化磷灰石制造羟基磷灰石的制造方法的概略的流程图。
图2为用实施例的方法制成的晶体的X射线衍射图案的一例。
图3为表示用SEM观察的氯磷灰石管单晶的一例的照片。
图4为本实施方式涉及的羟基磷灰石的制造装置的概略构成的示意图。
图5为表示在处理温度1200℃(处理时间2h、6h、12h、24h、48h)进行了处理的磷灰石晶体的红外光谱的图。
图6为表示在处理温度1200℃(处理时间2h、6h、12h、24h、48h)进行了处理的磷灰石晶体的X射线衍射图案的图。
图7(a)为将氯磷灰石管切断并研磨而成的截面的放大图,图7(b)为将进行了羟基化处理的氯磷灰石管切断并研磨而成的截面的放大图。
图8(a)为表示沿着包含图7(a)的氯磷灰石管截面的A点的直线来进行EDX测定的结果的图,图8(b)为表示沿着包含图7(b)的羟基化处理后的氯磷灰石管截面的A点的直线来进行EDX测定的结果的图。
符号说明
10 罐
12 泵
14 加热器
16 管状炉
16a 管
16b 托盘
18 氯磷灰石单晶
100 制造装置
具体实施方式
以下,边参照附图等边对用来实施本发明的实施方式进行详细说明。需说明的是,在附图的说明中,对相同要素附上同一符号,并适当省略重复的说明。
本实施方式的一个形态的磷灰石晶体为由通式M2 5(PO4)3X(M2表示2价的选自由碱土金属及Eu组成的组中的至少1种元素,X表示选自卤素中的至少一种元素。)所表示的卤化磷灰石的单晶。碱土金属例如为Ca、Sr、Ba、Ra、Mg、Be。此外,卤素例如为F、Cl、Br、I。
图1为表示使用卤化磷灰石制造羟基磷灰石的制造方法的概略的流程图。本实施方式涉及的磷灰石晶体的制造方法具备:准备由通式M2 5(PO4)3X(M2表示2价的选自由碱土金属及Eu组成的组中的至少1种元素,X表示选自卤素中的至少一种元素。)所表示的磷灰石单晶的工序(S10)、将磷灰石单晶放入可控制为预定气氛的空间的工序(S12)、向空间供给水蒸气的工序(S14)、以及进行加热以使空间的气氛为预定的范围的工序(S16)。
以下,参照各实施例,对卤化磷灰石的管状单晶的制造方法进行说明。实施例1~实施例7为作为卤化磷灰石之一的氯磷灰石单晶的合成方法。作为合成方法可举出例如熔解法、共沉淀法、溶胶-凝胶法。
[卤化磷灰石单晶的制造方法]
(实施例1:熔解法)
首先,以使Ca:P:Cl的摩尔比为5:3:1的方式计量CaHPO4、CaCO3、CaCl2,混合均匀。然后,追加NaCl以使氯磷灰石浓度为0.15mol%,将混合物在铂金坩埚中以升温速度100~500℃/h升温至800~1100℃,在合成温度800~1100℃合成48小时,然后以降温速度5~300℃/h从800~1100℃降温至500℃,然后通过自然冷却冷却至常温。烧成后,用温纯水(约80℃)仔细地洗涤,取出氯磷灰石单晶。
(实施例2:熔解法)
首先,以使Ca:P:Cl的摩尔比为5:3:1的方式计量CaHPO4、CaCO3、CaCl2,混合均匀。然后,追加大量的CaCl2,将混合物在铂金坩埚中以升温速度100~500℃/h升温至800~1100℃,在合成温度800~1100℃合成48小时,然后以降温速度5~300℃/h从800~1100℃降温至500℃,然后通过自然冷却冷却至常温。烧成后,用温纯水(约80℃)仔细地洗涤,取出氯磷灰石单晶。
(实施例3:熔解法)
首先,以使Ca+Sr:P:Cl的摩尔比为5:3:1的方式计量CaHPO4、CaCO3、SrCO3、CaCl2、SrCl2,混合均匀。然后,追加SrCl2以使氯磷灰石浓度为0.15mol%,将混合物在铂金坩埚中以升温速度100~500℃/h升温至800~1100℃,在合成温度800~1100℃合成48小时,然后以降温速度5~300℃/h从800~1100℃降温至500℃,然后通过自然冷却冷却至常温。烧成后,用温纯水(约80℃)仔细地洗涤,取出氯磷灰石单晶。
(实施例4:熔解法)
首先,以使Ca+Mg:P:Cl的摩尔比为5:3:1的方式计量CaHPO4、CaCO3、MgCO3、CaCl2、MgCl2,混合均匀。然后,追加MgCl2以使氯磷灰石浓度为0.15mol%,将混合物在铂金坩埚中以升温速度100~500℃/h升温至800~1100℃,在合成温度800~1100℃合成48小时,然后以降温速度5~300℃/h从800~1100℃降温至500℃,然后通过自然冷却冷却至常温。烧成后,用温纯水(约80℃)仔细地洗涤,取出氯磷灰石单晶。
(实施例5:共沉淀法)
首先,使硝酸钙、氯化钙溶解于纯水中,向该溶液中滴加磷酸,将pH调整为5~9,从而产生沉淀(种晶)。将利用该共沉淀法调整而成的种晶通过提拉法(Czochraski)使种晶生长。在CaCl2-Ca2ClPO4系相图中,将Ca2ClPO4浓度为15mol%的溶液加热至1200℃,将种晶浸入高温溶液中,一边从1200℃缓慢冷却至1050℃,一边提拉晶体,从而得到氯磷灰石单晶。
(实施例6:溶胶-凝胶法)
首先,使硝酸钙溶解于蒸馏水中,进一步添加磷酸乙醇酯(钙和磷的合计摩尔浓度:0.05摩尔/升),搅拌后,加入浓盐酸(相对于钙1摩尔,氯为1摩尔)。将该溶液在60℃干燥2小时,除去蒸馏水,得到种晶。将通过该溶胶-凝胶法调整而成的种晶通过提拉法使种晶生长。在CaCl2-Ca2ClPO4系相图中,将Ca2ClPO4浓度为15mol%的溶液加热至1200℃,将种晶浸入高温溶液中,一边从1200℃缓慢降温至1050℃,一边提拉晶体,从而得到氯磷灰石单晶。
(实施例7:溶胶-凝胶法)
首先,使乙醇钙溶解于蒸馏水,进一步添加磷酸(钙与磷的合计摩尔浓度:0.05摩尔/升),搅拌后加入浓盐酸。将该溶液在60℃干燥2小时,除去蒸馏水,得到种晶。将通过该溶胶-凝胶法调整而成的种晶通过提拉法使种晶生长。在CaCl2-Ca2ClPO4系相图中,将Ca2ClPO4浓度为15mol%的溶液加热至1200℃,将种晶浸入高温溶液中,一边从1200℃缓慢降温至1050℃,一边提拉晶体,得到氯磷灰石单晶。
[组成]
接着,对用实施例的方法制成的氯磷灰石晶体的组成进行研究。图2为用实施例的方法制成的晶体的X射线衍射图案的一例。如图2所示,晶体为氯磷灰石晶体Ca5(PO4)3Cl的单一层。
[成分]
接着,进行氯磷灰石管单晶的元素分析。其结果为:该晶体中,Ca=39.10质量%、P=18.00质量%、Cl=5.30质量%。
[形状]
接着,用扫描型电子显微镜(SEM)观察氯磷灰石管单晶的形状。图3为表示用SEM观察的氯磷灰石管单晶的一例的照片。如图3所示,本实施方式涉及的磷灰石单晶为管状,外形为六棱柱。此外,在六棱柱的上表面或下表面所形成的孔的开口部的形状为六边形。因此,管的外壁的厚度基本一样。
对于这样的管状单晶,通过SEM观察可知存在各种大小、形态。例如,管状单晶的开口部的孔的内径为10nm~60μm左右。此外,管状单晶的直径为20nm~100μm左右。此外,管状单晶在长度方向上的长度为50nm~4mm左右。此外,管状单晶对于可见光的透过率为65%以上。
以实施例1~7中得到的氯磷灰石单晶作为一例的卤化磷灰石晶体,不断开展适用于以生物材料为代表的各种用途中。进而,本申请发明人经过深入研究,结果想到通过将磷灰石晶体的卤素基团取代为羟基,从而有可能适用于更广泛的用途。
例如,羟基磷灰石与细胞的亲和性高,可考虑用于细胞培养这样的用途。但是,在将磷灰石晶体的卤素基团取代为羟基时,有时TCP(Ca3(PO4)2)作为副产物而析出。该TCP是对骨形成有用的材料,但如果溶于水则会使pH变化而成为酸性,因此,对于细胞来说是不优选的材料。因此,在将羟基磷灰石用于细胞培养等的情况下,从羟基磷灰石除去TCP,或者在制造羟基磷灰石时抑制TCP的生成是非常重要的。
图4为本实施方式涉及的羟基磷灰石的制造装置的概略构成的示意图。如图4所示,制造装置100具备:贮存蒸馏水的罐10、送出水的泵12、对水进行加热而制成水蒸气的加热器14、以及管状炉16,该管状炉16具有用来将卤化磷灰石晶体转变为羟基磷灰石的加热机构。
泵12将贮存在罐10中的蒸馏水以5ml/分钟的比例抽送到加热器14。需说明的是,蒸馏水的送出量可根据所制造的磷灰石晶体的种类和量、后述的管状炉16的形状等而适当选择,例如可以从1~1000ml/分钟的范围进行选择。
加热器14将送出的蒸馏水在300℃左右加热,制成水蒸气。需说明的是,加热温度可根据所制造的磷灰石晶体的种类和量、后述的管状炉16的形状等适当选择,可以从100~500℃的范围进行选择,更优选从200~400℃的范围进行选择。
管状炉16设有将磷灰石晶体载置于管16a中的托盘16b,将用前述的实施例1~7的方法等制造的氯磷灰石单晶18载置于托盘16b上。管16a内的空间为可控制为预定气氛的空间。本实施方式涉及的管状炉16以管16a内的气氛在预定温度范围内稳定的方式构成。并且,在该状态下将加热的水蒸气供给于管16a内,从而制造羟基磷灰石晶体。
本发明人等使用制造装置100并适当变更管状炉16的加热温度和反应时间,测定了有无氯磷灰石的羟基化、以及有无作为副产物的TCP生成。
实验条件如下:使管状炉16中的处理温度变为1000℃、1100℃、1200℃、1300℃、1400℃,使处理时间变为2h、6h、12h、24h、48h、120h、360h。并且,通过红外光谱分析以及X射线衍射分析来鉴定反应产物。
红外光谱分析通过如下方法进行,将在各实验条件下进行了处理的氯磷灰石单晶的试样磨碎,使一定量与KBr混合并片剂化,测定3600cm-1附近的羟基(OH)峰的有无以及大小。
图5是表示在处理温度1200℃(处理时间2h、6h、12h、24h、48h)进行了处理的磷灰石晶体的红外光谱的图。如图5的区域R1所示,在各处理时间均确认有3600cm-1附近的羟基(OH)峰。
图6是表示在处理温度1200℃(处理时间2h、6h、12h、24h、48h)进行了处理的磷灰石晶体的X射线衍射图案的图。如图6的区域R2所示,可知随着处理时间增多,暗示存在氯磷灰石的32.2°的峰向暗示存在羟基磷灰石的32.4°的峰位移。即,可知随着处理时间增多,氯磷灰石的卤素基团被羟基取代,羟基磷灰石的生成增加。
此外,直至处理时间24h为止都基本观察不到暗示TCP生成的30.7°的峰(参照区域R3)。另一方面,在处理时间48h时,可观察到30.7°的峰。
像这样,可知在处理温度1200℃时,如果处理时间为2h以上,则可确认有羟基磷灰石的生成,如果处理时间为24小时以下,则基本没有TCP的生成。
适当变更处理时间,在处理温度1000℃、1100℃、1300℃、1400℃进行与上述同样的实验。表1为表示在各处理温度、各处理时间进行的实验的结果。表中,记号◎为如下条件:确认有羟基磷灰石的生成且基本观察不到TCP的生成,并且从生产率的观点出发,处理时间较短。记号○为如下条件:确认有羟基磷灰石的生成且基本观察不到TCP的生成。记号△为如下条件:确认有羟基磷灰石的生成,但在某种程度上也确认有TCP的生成。记号×为如下条件:未确认有羟基磷灰石的生成。
表1
Figure BDA0001322693920000081
像这样,在将M2 5(PO4)3X的卤素X替换为羟基而生成羟基磷灰石时,有时会析出M2 3(PO4)2(例如TCP)这样的副产物。这样的副产物根据磷灰石的用途而可能成为损害目的的物质。
因此,使用了上述制造装置的制造方法中的加热工序以使空间的气氛为1000~1400℃的范围的方式进行加热。需说明的是,加热工序也可以以使空间的气氛为磷灰石单晶所含的一部分卤素能够被羟基取代的温度的方式进行加热。此外,加热工序在2~360h的范围进行。据此,能够在抑制作为副产物的TCP生成的同时高效地制造管状的羟基磷灰石单晶。
此外,在本实施方式涉及的管状炉16中进行的加热工序在常压下进行。这里,所谓常压下,不仅包含大气压的情况,还包含不积极控制管16a内的压力的情况。据此,不需要压力控制机构这样的复杂机构,能够使用简便的装置,因此能够降低制造成本。
需说明的是,用制造装置100制造的磷灰石晶体可换言为:具有由通式M2 5(PO4)3X(M2表示2价的选自由碱土金属及Eu组成的组中的至少1种元素,X表示选自卤素中的至少一种元素。)所表示的卤化磷灰石的单晶、和形成于单晶上的羟基磷灰石的磷灰石晶体。
即,不是将氯磷灰石的卤素基团全部取代为羟基,而是主要将表面区域的卤素基团取代为羟基,从而得到前述那样的多层的羟基磷灰石晶体。像这样,由于磷灰石晶体的表面侧由羟基磷灰石构成,因此可用作例如细胞的培养基。
接着,详述氯磷灰石管的羟基化处理的实验结果。图7(a)为将氯磷灰石管切断并研磨而成的截面的放大图,图7(b)是将进行了羟基化处理的氯磷灰石管切断并研磨而成的截面的放大图。用EDX测定检验这些氯磷灰石管的试样截面。
EDX(能量分散型X射线分光法)检测通过照射电子束而产生的特征X射线,并以能量进行分光,从而能够半定量分析氯等元素。本次检测,对于将试样切断并研磨而成的截面,沿着包含图7(a)、图7(b)所示的A点的直线来进行氯的分析。
图8(a)为表示沿着包含图7(a)的氯磷灰石管截面的A点的直线来进行EDX测定的结果的图。图8(b)为表示沿着包含图7(b)的羟基化处理后的氯磷灰石管截面的A点的直线来进行EDX测定的结果的图。需说明的是,图8(a)、图8(b)所示的图表示出了表示存在氯元素的信号的变化曲线。
如图8(a)所示可知,未经羟基化处理的氯磷灰石管20直至六边形的孔20a的内周壁20b的A点为止,一样含有氯。另一方面,如图8(b)所示可知,经羟基化处理的氯磷灰石管22,在包含六边形的孔22a的内周壁22b的A点附近的区域中,与图8(a)所示的氯磷灰石管20相比,氯的量减少。
即,可知通过羟基化处理,内周壁22b附近的氯基(Cl)被羟基(OH)取代,因此在处理前后,氯磷灰石管22的氯减少,氯磷灰石晶体的表面侧由羟基磷灰石构成。
以上,以实施方式、各实施例为基础对本发明进行了说明。该实施方式、各实施例为例示,这些各构成要素、各处理工艺的组合可以有各种变形例,此外,这样的变形例也落入本发明的范围,这是本领域技术人员应当理解的。

Claims (6)

1.一种磷灰石晶体的制造方法,其具备:
准备由通式M2 5(PO4)3X所表示的磷灰石单晶的工序,式中,M2表示2价的选自由碱土金属及Eu组成的组中的至少1种元素,X表示选自卤素中的至少一种元素;
将所述磷灰石单晶放入可控制为预定气氛的空间的工序;
向所述空间供给水蒸气的工序;以及
进行加热以使所述空间的气氛为1100~1200℃的范围的工序,
所述加热的工序在6~24小时的范围进行。
2.一种磷灰石晶体的制造方法,其具备:
准备由通式M2 5(PO4)3X所表示的管状的磷灰石单晶的工序,式中,M2表示2价的选自由碱土金属及Eu组成的组中的至少1种元素,X表示选自卤素中的至少一种元素;
将所述磷灰石单晶放入可控制为预定气氛的空间的工序;
向所述空间供给水蒸气的工序;以及
进行加热以使所述空间的气氛为所述磷灰石单晶所含的一部分卤素能够被羟基取代的温度的工序,
所述加热的工序以使所述空间的气氛为1100~1200℃的范围的方式进行加热,
所述加热的工序在6~24小时的范围进行。
3.根据权利要求1或2所述的磷灰石晶体的制造方法,其特征在于,所述加热的工序在常压下进行。
4.一种磷灰石晶体,其具有:
由通式M2 5(PO4)3X所表示的卤化磷灰石的单晶,式中,M2表示2价的选自由碱土金属及Eu组成的组中的至少1种元素,X表示选自卤素中的至少一种元素;以及
形成于所述单晶上的羟基磷灰石。
5.根据权利要求4所述的磷灰石晶体,其特征在于,所述羟基磷灰石是所述卤化磷灰石的卤素被羟基取代而成的羟基磷灰石。
6.根据权利要求4或5所述的磷灰石晶体,其特征在于,所述单晶为管状,该单晶的外形为六棱柱。
CN201710451939.3A 2016-06-15 2017-06-15 磷灰石晶体的制造方法以及磷灰石晶体 Active CN107522185B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-119079 2016-06-15
JP2016119079A JP6746117B2 (ja) 2016-06-15 2016-06-15 アパタイト結晶の製造方法

Publications (2)

Publication Number Publication Date
CN107522185A CN107522185A (zh) 2017-12-29
CN107522185B true CN107522185B (zh) 2021-04-06

Family

ID=60481447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710451939.3A Active CN107522185B (zh) 2016-06-15 2017-06-15 磷灰石晶体的制造方法以及磷灰石晶体

Country Status (5)

Country Link
US (1) US10851472B2 (zh)
JP (1) JP6746117B2 (zh)
CN (1) CN107522185B (zh)
DE (1) DE102017112937B4 (zh)
FR (1) FR3052767B1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108676558B (zh) * 2018-05-15 2021-02-12 湖南师范大学 自激活卤磷灰石荧光粉及其制备方法
CN110818403B (zh) * 2018-08-09 2022-04-29 苏州鼎安科技有限公司 一种气氛保护常压烧结制备透明磷酸钙生物陶瓷的方法
CN114075076A (zh) * 2020-08-17 2022-02-22 厦门稀土材料研究所 一种氯磷灰石陶瓷及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029755B2 (en) * 2003-08-06 2011-10-04 Angstrom Medica Tricalcium phosphates, their composites, implants incorporating them, and method for their production
BRPI0913412A2 (pt) * 2008-06-03 2015-11-24 Sagawa Printing Co Ltd método para produzir um material de reparo ósseo, e , material de reparo ósseo.
EP2837715B1 (en) 2012-04-09 2019-10-16 Koito Manufacturing Co., Ltd. Apatite crystal
KR20150058388A (ko) 2012-09-18 2015-05-28 가부시키가이샤 고이토 세이사꾸쇼 흡착 방법, 흡착 분리 방법 및 드러그 딜리버리용 담지체
WO2015001734A1 (ja) 2013-07-03 2015-01-08 株式会社小糸製作所 複合材料および複合材料の製造方法
JP2016011247A (ja) * 2014-06-03 2016-01-21 株式会社豊田中央研究所 板状リン酸化合物粒子、それを含む板状リン酸化合物粉体、及び、板状リン酸化合物粉体の製造方法、並びに板状リン酸化合物粉体を用いた結晶配向アパタイトの製造方法
CN104787994B (zh) 2015-03-23 2016-09-28 湖南大学 利用改性纳米氯磷灰石稳定底泥中重金属铅的方法
CN104861740B (zh) 2015-03-23 2017-06-16 湖南大学 改性纳米氯磷灰石及其制备方法

Also Published As

Publication number Publication date
JP6746117B2 (ja) 2020-08-26
FR3052767A1 (fr) 2017-12-22
DE102017112937B4 (de) 2022-06-30
FR3052767B1 (fr) 2022-10-21
DE102017112937A1 (de) 2017-12-21
JP2017222539A (ja) 2017-12-21
US20170362737A1 (en) 2017-12-21
US10851472B2 (en) 2020-12-01
CN107522185A (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
CN107522185B (zh) 磷灰石晶体的制造方法以及磷灰石晶体
Delgado-López et al. Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content
He et al. Effects of strontium substitution on the phase transformation and crystal structure of calcium phosphate derived by chemical precipitation
KR101639504B1 (ko) 아파타이트 결정
Li et al. Preparation and characterization of novel biphasic calcium phosphate powders (α‐TCP/HA) derived from carbonated amorphous calcium phosphates
Nasiri-Tabrizi et al. A comparative study of hydroxyapatite nanostructures produced under different milling conditions and thermal treatment of bovine bone
Ressler et al. Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone
Demnati et al. A comparative physico-chemical study of chlorapatite and hydroxyapatite: from powders to plasma sprayed thin coatings
Qiu et al. Fine structure analysis and sintering properties of Si-doped hydroxyapatite
Harabi et al. A new and economic approach to synthesize and fabricate bioactive diopside ceramics using a modified domestic microwave oven. Part 1: Study of sintering and bioactivity
Wu et al. Preparation and characteristics of nanosized carbonated apatite by urea addition with coprecipitation method
Li et al. Preparation of nano carbonate‐substituted hydroxyapatite from an amorphous precursor
Fereshteh et al. Synthesis and characterization of fluorapatite nanoparticles via a mechanochemical method
Sopyan et al. Zinc-doped biphasic calcium phosphate nanopowders synthesized via sol-gel method
Cho et al. The densification mechanism of hydroxyapatite particles during spray pyrolysis with variable carrier gas rates of flow
Shen et al. Solid-phase steam-assisted synthesis of hydroxyapatite nanorods and nanoparticles
Chen et al. Template-engaged solid-state synthesis of barium–strontium silicate hexagonal tubes
Sugiura et al. PO4 adsorption on the calcite surface modulates calcite formation and crystal size
Prakash Parthiban et al. Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method
Cho et al. Advanced yolk–shell hydroxyapatite for bone graft materials: kilogram-scale production and structure-in vitro bioactivity relationship
Swamiappan Synthesis of carbonate substituted hydroxyapatite by Pechini method
Wang et al. EFFECT OF SINTERING TEMPERATURE ON THE STRUCTURE AND DEGRADABILITY OF STRONTIUM-DOPED CALCIUM POLYPHOSPHATE BIOCERAMICS
Nishikawa et al. Preparation of Spherical Zn‐Substituted Tricalcium Phosphate Powder by Ultrasonic Spray‐Pyrolysis Technique and Its Characterization
Chen et al. Microwave-assisted sol-gel synthesis of hydroxyapatite nanoparticles
Klinkaewnarong et al. Synthesis and characterization of high purity hydroxyapatite nanorods by hydrothermal technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant