WO2014209085A1 - 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 - Google Patents

디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 Download PDF

Info

Publication number
WO2014209085A1
WO2014209085A1 PCT/KR2014/005811 KR2014005811W WO2014209085A1 WO 2014209085 A1 WO2014209085 A1 WO 2014209085A1 KR 2014005811 W KR2014005811 W KR 2014005811W WO 2014209085 A1 WO2014209085 A1 WO 2014209085A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
copolymer
transition metal
radicals
Prior art date
Application number
PCT/KR2014/005811
Other languages
English (en)
French (fr)
Inventor
김선근
박성호
윤성철
고준석
최수영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130075873A external-priority patent/KR101585204B1/ko
Priority claimed from KR1020140047679A external-priority patent/KR101684648B1/ko
Priority claimed from KR1020140080039A external-priority patent/KR101446685B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480002718.2A priority Critical patent/CN104768986A/zh
Priority to JP2015539529A priority patent/JP2015532362A/ja
Priority to IN2232DEN2015 priority patent/IN2015DN02232A/en
Priority to EP14818626.5A priority patent/EP2883891A4/en
Priority to US14/442,527 priority patent/US9493593B2/en
Publication of WO2014209085A1 publication Critical patent/WO2014209085A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/06Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethene-propene-diene terpolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/20Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds unconjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/09Long chain branches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • Ternary elastic copolymer comprising a diene and a method of manufacturing the same
  • the present invention relates to a ternary elastic copolymer which is a copolymer of ethylene, alpha olefin and diene, and a method for producing the same. More specifically, the present invention relates to a ternary elastic copolymer having a long chain branch capable of simultaneously striking excellent mechanical properties and elasticity (flexibility) and a method for producing the same.
  • EPDM rubber which is a terpolymer-based elastomeric copolymer of dienes such as ethylene, propylene, and dienes such as ethilidene norbornene, has a molecular structure that does not have an unsaturated bond in the main chain, and is a conjugated diene rubber having general weather resistance, chemical resistance, and heat resistance. Has better properties. Due to these characteristics, ternary elastic copolymers such as EPDM rubber are widely used in various automotive parts materials, electric wire materials, construction and industrial materials such as various hoses, gaskets, belts, bumpers or blends with plastics.
  • such terpolymer-based elastomeric copolymers such as EPDM rubber have been prepared by copolymerizing three monomers using a catalyst mainly comprising a vanadium compound, for example, a vanadium-based Ziegler-Natta catalyst.
  • a catalyst mainly comprising a vanadium compound for example, a vanadium-based Ziegler-Natta catalyst.
  • vanadium-based catalysts need to use an excessive amount of catalyst with low catalytic activity, and thus have a disadvantage in that the residual metal content in the copolymer is increased. Accordingly, after the copolymer is prepared, catalyst removal and decolorization processes are required, and catalyst residues in the resin may cause deterioration of heat resistance, foreign matter generation, or vulcanization reaction.
  • the preparation of the terpolymer-based elastomeric copolymer using the catalyst containing the vanadium compound is difficult to control the reaction temperature due to low polymerization activity and low-temperature polymerization conditions, and it is difficult to control the intake amount of comonomers such as propylene and diene, so that the molecules of the copolymer It was true that structural control was difficult. Therefore, in the case of using a vanadium-based catalyst, for the production of ternary elastic copolymer of various physical properties There has been a limit. Due to these problems, a method for producing an EPDM rubber round ternary elastic copolymer using a metallocene Group 4 transition metal catalyst instead of a vanadium Ziegler-Natta catalyst has recently been developed.
  • Such a Group 4 transition metal catalyst exhibits high polymerization activity in ellepin polymerization, enables not only the production of a copolymer having a higher molecular weight, but also easy control of the molecular weight distribution and composition of the copolymer.
  • 5,902,867 and the like disclose a method of lowering the viscosity of the polymer by widening the molecular weight distribution in order to improve the rough workability and extrusion processability of EPDM, but in this case, Due to the molecular weight component, there is a limit in which the polymer is separated into the processing process and the surface characteristics and the low temperature characteristics are lowered.
  • Patent Document 0001 US Patent No. 5,229,478
  • Patent Document 0002 US Patent No. 6,545,088 (Patent Document 0003) Korean Dongrok Patent No. 0488833
  • Patent Document 0004 US Patent No. 5,902,867
  • the present invention is to provide a ternary elastic copolymer having a long chain branch that can simultaneously satisfy excellent processability and elasticity (flexibility).
  • the present invention also provides a method for producing a ternary elastic copolymer capable of producing the ternary elastic copolymer having the long chain branch with high productivity.
  • the present invention is a copolymer of ethylene, alpha -olefin and diene having 3 to 20 carbon atoms, obtained in the presence of a Group 4 transition metal catalyst,
  • the weight average molecular weight measured by GPC is 100,000 to 500, 000
  • LAOS Large Angles of Oscillation and high Strains
  • the present invention also, in the presence of a catalyst composition comprising a first transition metal compound represented by the following formula (1) and a second transition metal compound represented by the following formula (2), 40 to 70% by weight of ethylene, 20 to 50% by weight
  • a catalyst composition comprising a first transition metal compound represented by the following formula (1) and a second transition metal compound represented by the following formula (2), 40 to 70% by weight of ethylene, 20 to 50% by weight
  • a method of preparing the terpolymer-based elastomeric copolymer comprising the step of copolymerizing while continuously supplying a monomer composition comprising an alpha olefin having 3 to 20 carbon atoms and 2 to 20% by weight of a diene:
  • Ri to R 13 may be the same as or different from each other, and each independently hydrogen; Alkyl radicals having 1 to 20 carbon atoms; Alkenyl radicals having 2 to 20 carbon atoms; Aryl radicals having 6 to 20 carbon atoms; Silyl radicals; Alkylaryl radicals having 7 to 20 carbon atoms; Arylalkyl radicals having 7 to 20 carbon atoms; Or a metalloid radical of a Group 4 metal substituted with hydrocarbyl; Two adjacent groups of R 13 to each other may be connected to each other by an alkylidine radical including an alkyl having 1 to 20 carbon atoms or an aryl radical having 6 to 20 carbon atoms to form an aliphatic ring or an aromatic ring;
  • M is a Group 4 transition metal
  • Qi and Q 2 may be the same as or different from each other, and each independently a halogen radical; Alkyl radicals having 1 to 20 carbon atoms; Alkenyl radicals having 2 to 20 carbon atoms; Aryl radicals having 6 to 20 carbon atoms; Alkylaryl radicals having 7 to 20 carbon atoms; Arylalkyl radicals having 7 to 20 carbon atoms; Alkyl amido radicals having 1 to 20 carbon atoms; Aryl amido radicals having 6 to 20 carbon atoms; Or 1 carbon Alkylidene radical of from 20 to 20.
  • a ternary elastic copolymer and a method of preparing the same according to a specific embodiment of the present invention will be described in detail.
  • ternary elastic copolymer used in the present specification may be defined as follows unless otherwise specified.
  • the "ternary elastomeric copolymer” may refer to any elastomeric copolymer (for example, a crosslinkable random copolymer) in which ethylene, an alpha olefin having 3 to 20 carbon atoms, and three monomers of dienes are copolymerized. have.
  • Representative examples of such "ternary elastomeric copolymers” include EPDM rubber which is a copolymer of ethylene, propylene and diene.
  • terminal elastomeric copolymers do not refer to copolymers of only three monomers, and together with the ethylene, one or more monomers belonging to the category of alphalefin and one or more monomers belonging to the category of diene are copolymerized. Of course, it can include any elastic copolymer.
  • ethylene, alpaeul repin the two kinds of propylene and 1-butene and ethyl Lee Den-norbornene and 1,4-hex-diene two of diene is copolymerized elastomeric copolymer also of ethylene with alpha Since an olefin and three monomers which respectively belong to the category of dienes are copolymerized, it can belong to the category of said "ternary elastic copolymer.”
  • a copolymer of ethylene, alpha-olefin and diene having 3 to 20 carbon atoms obtained in the presence of a Group 4 transition metal catalyst i) a weight average molecular weight measured by GPC is 100,000 to 500, 000, and ii) the first harmonic of the storage modulus for the fifth harmonic of the storage modulus measured with a Rubber Process Analyzer at 25 ° C using the Large Angles of Oscillation and high Strains (LAOS) method.
  • LAOS Large Angles of Oscillation and high Strains
  • Ternary elastomeric copolymer of such an embodiment is a copolymer of three monomers of ethylene, alpha olefin and diene in a certain content range, as measured by GPC about 100,000 to 500,000, or about 150,000 to 400,000, or 200,000 to 300 , Has a relatively large weight average molecular weight of 000.
  • This large weight average molecular weight is achieved due to the excellent activity of Group 4 transition metal catalysts, for example, the first and second transition metal compounds of Formulas 1 and 2 described below belonging to the metallocene series,
  • the ternary elastomer for example EPDM rubber, can exhibit excellent mechanical properties.
  • the tertiary elastic copolymer of the embodiment may have a positive value, and preferably, may be greater than about 0 and 5 or less, or about 0.01 to 3.5.
  • the ternary elastomeric copolymer of the embodiment that satisfies this relationship has a long chain branching degree such that the LCB Index can represent a positive value, and thus exhibits excellent processability and is suitable for extrusion processing, and has improved elasticity and flexibility. With excellent mechanical properties can be stratified at the same time.
  • the ternary elastic copolymer of the embodiment may be obtained in the presence of a Group 4 transition metal catalyst.
  • the terpolymer-based elastomeric copolymer having the above characteristics can be produced, for example, with excellent productivity and yields peculiar to the Group 4 transition metal catalyst belonging to the metallocene series, while having a large molecular weight and thus excellent mechanical properties.
  • excellent processability, elasticity, and flexibility can be simultaneously satisfied.
  • the copolymer of ethylene, an alpha olefin having 3 to 20 carbon atoms and a diene is a copolymer of 40 to 70 wt% ethylene, 15 to 55 wt% alpha olefin having 3 to 20 carbon atoms and 0.5 to 20 wt% diene.
  • Such copolymers are continuously mixed with a monomer composition comprising 40 to 70% by weight of ethylene, 20 to 50% by weight of alpha olefins having 3 to 20 carbon atoms and 2 to 20% by weight of diene in the presence of a catalyst composition. It may be produced by copolymerization while supplying, and in particular, by including each monomer in the above ratio, it may exhibit better elasticity and flexibility.
  • the LCB Index of the ternary elastic copolymer of the embodiment may be measured by a rubber process analyzer using a large angles of oscillation and high strains (LAOS) method as follows. First, polymerize and prepare the ternary elastic copolymer, and then, for each copolymer, the temperature (125 ° C) and the frequency 0.2 Hz determined by the SIS V-50 Rubber Process Analyzer of SCARABAEUS INSTRUMENTS SYSTEMSS. The shear storage modulus behavior is measured by varying the strain from 0.23 ⁇ 4> to 1250%. The first harmonics and the fifth harmonics are derived by FT conversion of the measured storage modulus, and then, the ratio of the first harmonic of the storage modulus to the fifth harmonic can be calculated using the LCB Index.
  • LAOS large angles of oscillation and high strains
  • the LCB Index may be represented by the following general formula (1).
  • the long chain branching degree is higher than that of the EPDM rubber prepared for the Group 4 transition metal catalyst, which was used previously, the LCB Index. It has been found that can have a positive value. High long-chain branching, and the amount of the one embodiment the ternary elastic copolymer having a LCB Index was confirmed that the same may be satisfied at the same time or the like excellent i elasticity, flexibility and melt processability along with the excellent mechanical properties due to the large molecular weight.
  • the ternary elastic copolymer of the embodiment has a dynamic viscosity difference of about 30,000 Pa.s at an angular frequency of 1.0 rad / s and 100.0 rad / s measured by a rubber process analyzer at 125 ° C. Or more, preferably about 30,000 to 50,000 Pa. can be s.
  • the ternary elastic copolymer of such an embodiment has a difference in dynamic viscosity at angular frequencies of 1.0 rad / s and 100.0 rad / s. s or more, so at low angular frequencies, the actual state of the ternary elastomer It has high dynamic viscosity, shows excellent mechanical properties, and has high dynamic viscosity and low dynamic viscosity at high angular frequency, so it shows excellent elasticity, flexibility, and melt processability.
  • the ternary elastic copolymer may have a dynamic viscosity at 1.0 rad / s angular frequency of 30,000 Pa's or more, or 33,000 to 150,000 Pa-s.
  • the angular frequency of 1.0 rad / s is similar to the state in which the actual ternary elastic copolymer is used, and the copolymer has high dynamic viscosity of 30,000 Pa's or more at an angular frequency of 1.0 rad / s, and thus exhibits excellent mechanical properties. Can be.
  • the ternary elastomer may have a dynamic viscosity at 100.0 rad / s angular frequency of 5,000 Pa's or less, or 4,500 Pa's or less.
  • the angular frequency of 100.0 rad / s is similar to that of the injection molding process, and the co-polymer has low dynamic viscosity at an angular frequency of 100.0 rad / s, thereby exhibiting excellent elasticity, flexibility, and melt processability.
  • the dynamic viscosity difference value of the terpolymer-based elastomeric copolymer may be measured as follows using a rubber process analyzer. First, the ternary elastic copolymer was polymerized and manufactured, and then, for each copolymer, at a temperature (125 ° C) and 0.1 ⁇ 210 rad / s determined by Monsanto's PA2000 MV 2000E Rubber Process Analyzer. Measure the dynamic com lex viscosity over the frequency range. The difference between the dynamic viscosity at the measured 1.0 rad / s angular frequency and the dynamic viscosity at the 100.0 rad / s angular frequency can be calculated by arithmetically.
  • the terpolymer-based elastomeric copolymer of the embodiment has a density range in which suitable physical layering, such as EPDM rubber, is possible, for example, about 0.840 to 0.895 g / cm 3 , or about 0.850 to 0.890 g / cm 3 . Can be.
  • the terpolymer-based elastomeric copolymer of the embodiment has a pattern viscosity (1 + 4 ⁇ 125 ° C) range, for example, about 1 MU to 180 MU, or about 5 MU It may have a pattern viscosity of 150 MU, or about 20 MU to 130 MU.
  • the pattern viscosity (1 + 4®125 ° C) can be measured using Monsanto Alpha 2000 equipment based on ASTM D1646-04, If the pattern viscosity is less than 20 MU, there is no difference in processability according to the long chain branching, and if the pattern viscosity exceeds 130 kPa, it can be manufactured by the present invention, but the resin productivity due to high viscosity is not economically advantageous.
  • alpha olefin propylene, 1-butene, 1-nuxene, 1-octene, 1 kpentene, ⁇ 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1- tetradecene, 1-pentadecene, 1-nuxadecene, 1-heptadecene, 1-nonadecene, 9-
  • alpha 3-olefins having 3 to 20 carbon atoms such as methyl-1-decene, 11-methyl-1 dodecene and 12-ethyl-1-tetradecene, may be used, and among these, alpha olefins having 3 to 10 carbon atoms are typical.
  • a nonconjugated diene type monomer can be used as said diene.
  • specific examples thereof include 5-1,4-nucleadiene, 1 ⁇ 5 ⁇ heptadiene, 1,6 ⁇ octadiene, 1, its nonadiene, 1, 8-decadiene, 1,12-tetradecadiene, 3 -Methyl -1, 4-nuxadiene, 4 'methyl -1,4-nuxadiene, 5-methyl -1,4-nuxadiene, 4-ethyl -1,4-nuxadiene, 3,3' dimethyl- 1,4-nuxadiene, 5-methyl-1,4-heptadiene, 5-ethyl-1,4-heptadiene, 5 'methyl-1,5-heptadiene, 6-methyl-1,5-heptadiene , 5—Ethyl-1,5-heptadiene, 4-methyl ⁇ 1, 4-octadiene, 5 ⁇ methyl
  • dienes in particular, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, or 4 -nuxadiene is suitably used, and the weight average molecular weight of
  • Ternary elastomeric copolymers satisfying the LCB Index can be prepared.
  • VNB 5-vinyl-2-norboene
  • DCPD dicyclopentadiene
  • the two double bonds Participation in the polymerization reaction shows a cross-linked polymer structure, so that gel particles are formed during the polymerization process, and molecular weight of the copolymer is difficult to control and polymerization reaction is also difficult to control.
  • Method for preparing such a copolymer is 40 to 70% by weight of ethylene, 20 to 50 in the presence of a catalyst composition comprising a first transition metal compound represented by the formula (1) and a second transition metal compound represented by the formula (2)
  • the method may comprise the step of continuously copolymerizing a monomer composition comprising an alpha olefin having 3 to 20 carbon atoms by weight and 2 to 20 weight 3 ⁇ 4 dienes by continuously feeding the reactor to:
  • Ri to Ri 3 may be the same as or different from each other, and each independently hydrogen; Alkyl radicals having 1 to 20 carbon atoms; Alkenyl radicals having 2 to 20 carbon atoms; Aryl radicals having 6 to 20 carbon atoms; Silyl radicals; Alkylaryl radicals having 7 to 20 carbon atoms; Arylalkyl radicals having 7 to 20 carbon atoms; Or a metalloid radical of a Group 4 metal substituted with hydrocarbyl; Two adjacent groups of 3 ⁇ 4 to Ri 3 may be connected to each other by an alkylidine radical including an alkyl having 1 to 20 carbon atoms or an aryl radical having 6 to 20 carbon atoms to form an aliphatic ring or an aromatic ring;
  • M is a Group 4 transition metal
  • Qi and Q 2 may be the same as or different from each other, and each independently a halogen radical; Alkyl radicals having 1 to 20 carbon atoms; Of 2 to 20 carbon atoms. Alkenyl radicals; Aryl radicals having 6 to 20 carbon atoms; Alkylaryl radicals having 7 to 20 carbon atoms; Arylalkyl radicals having 7 to 20 carbon atoms; Alkyl amido radicals having 1 to 20 carbon atoms; Aryl amido radicals having 6 to 20 carbon atoms; Or an alkylidene radical having 1 to 20 carbon atoms. :
  • a certain amount of monomer that is, about 40 to 70% by weight, or about 50 to 70% by weight of ethylene, about 15 to 55% by weight, black is about 25 to 45% by weight
  • the tertiary elastic copolymer of one embodiment having a large molecular weight range and a positive LCB Index value described above It was confirmed that it can be obtained with high yield and productivity.
  • catalysts of the first and second transition metal compounds exhibit excellent catalytic activity as Group 4 transition metal catalysts, and in particular, can exhibit excellent selectivity and copolymerization reactivity for comonomers such as alphaolefins and dienes.
  • the copolymerization can be carried out while the diene is uniformly distributed in the polymer chain with a relatively high content.
  • the specific catalysts of Formulas 1 and 2 remain very stable in the pentagonal ring and hexagonal ring composition around the metal site by the quinoline-based amido group, and thus have structural characteristics that make it easy to access the monomers structurally. Seems. That is, the specific catalysts of Chemical Formulas 1 and 2 may form macromers having long chain branched double bonds during the copolymerization of ethylene and alphalefin based on the structural characteristics of the above-described catalysts, which in turn react with the catalysts. It can be copolymerized to form a ternary elastic copolymer having a long chain branch.
  • the copolymerization proceeds in a continuous process while supplying a monomer composition containing each monomer continuously to a polymerization reactor, Monomers, in particular dienes, may be more uniformly distributed in the polymer chain.
  • Monomers, in particular dienes may be more uniformly distributed in the polymer chain.
  • the ternary elastic copolymer having a long chain branch can be produced with high productivity and yield, so that the characteristics of the embodiment described above, for example, the weight average molecular weight 100,000 to 500, 000, and the characteristics such as the LCB Index has a positive value can be satisfied.
  • Ternary elastomeric copolymers can be produced with high productivity and yield, and such terpolymeric elastomeric copolymers are very preferably EPDM rubbers made of Group 4 transition metal catalysts that simultaneously satisfy excellent mechanical properties and improved elasticity. Can be used.
  • the above-mentioned two specific catalysts are not used or one of them In the case of using only a catalyst, or in a case where it is out of the appropriate content range of each monomer described above, in particular, in the content range of diene, the final prepared terpolymer-based elastomer copolymer satisfies the high molecular weight range of one embodiment or the range of LCB Index value, etc. You may not be able to.
  • hydrocarbyl may refer to a monovalent functional group in a form in which a hydrogen atom is removed from hydrocarbon, and includes, for example, an alkyl group such as ethyl or an aryl group such as phenyl. can do.
  • metalloid is a metal and an element showing intermediate properties between metal and nonmetal, and may refer to, for example, arsenic, boron, silicon, tellurium, and the like.
  • the M may refer to a Group 4 transition metal element such as titanium, zirconium or hafnium.
  • first and second transition metal compounds as the first transition metal compound of Formula 1, one or more compounds selected from the group consisting of compounds of the following formulas may be suitably used:
  • 3 ⁇ 4 and 3 ⁇ 4 may be the same or different from each other, each independently hydrogen or methyl radical
  • M is a Group 4 transition metal
  • 3 ⁇ 4 and 3 ⁇ 4 may be the same or different from each other, each independently methyl radical, dimethylimide Neither is a radical or a chlorine radical.
  • 3 ⁇ 4 and 3 ⁇ 4 may be the same as or different from each other, and are each independently hydrogen or methyl radicals
  • M is a Group 4 transition metal
  • 3 ⁇ 4 and 3 ⁇ 4 may be the same as or different from each other, and are each independently a methyl radical, dimethylimide Neither is a radical or a chlorine radical.
  • one or more promoter compounds selected from the group consisting of Chemical Formulas 3, 4, and 5 may further include:
  • R may be the same as or different from each other, and each independently halogen; Hydrocarbons having 1 to 20 carbon atoms; Or a hydrocarbon having 1 to 20 carbon atoms substituted with halogen; n is an integer of 2 or more;
  • R is as defined in Formula 3; D is aluminum or boron;
  • L is a neutral or cationic Lewis acid
  • H is a hydrogen atom
  • Z is a Group 13 element
  • A may be the same or different from each other, and each independently is an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms, unsubstituted or substituted with one or more hydrogen atoms, halogen, hydrocarbon having 1 to 20 carbon atoms, alkoxy or phenoxy.
  • examples of the compound represented by Formula 3 include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane or butyl aluminoxane.
  • Examples of the compound represented by Formula 4 include trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum tri-s-butylaluminum and tricyclo Pentyl Aluminum, Tripentyl Aluminum, Triisopentyl Aluminum, Trinuclear Aluminum, Trioctyl Aluminum, Ethyl Dimethyl Aluminum, Methyl Diethyl Aluminum, Triphenyl Aluminum, Tri-P-allyl Aluminum, Dimethyl Aluminum Hydroxide, Dimethyl Aluminum Eryoxide And trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron or tributyl boron.
  • the compound represented by Chemical Formula 5 includes a non-coordinating anion compatible with cations which are Bronsted acids. Suitable anions are those that are relatively large in size and contain a single coordinating complex comprising a metalloid. In particular, compounds containing a single boron atom in the anion moiety are widely used. In view of this, as the compound represented by Formula 5, a salt containing an anion including a coordinating complex compound containing a single boron atom may be appropriately used.
  • Such compounds include trimethylammonium tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate in the case of trialkylammonium salts.
  • trophylium tetrakis (pentafluorophenyl) bore ⁇ 3 triphenylmethyllium tetrakis (pentafluorophenyl) bore ⁇ or benzene (diazonium) tetrakis (pentafluorophenyl) borate and the like
  • triphenylmethyllium tetrakis (pentafluorophenyl) bore ⁇
  • benzene (diazonium) tetrakis (pentafluorophenyl) borate and the like
  • the catalyst composition comprising the above-described first and second transition metal compound and optionally a promoter compound, for example, the first and second transition metal Contacting the compound with a promoter compound of Formula 3 or Formula 4 to obtain a mixture; And it may be prepared by a method comprising the step of adding the promoter compound of Formula 5 to the mixture.
  • the molar ratio of the first transition metal compound: second transition metal compound may be about 10: 1 to 1:10, and the total transition metal compound in which the first and second transition metal compounds are added together.
  • the molar ratio of the cocatalyst compound of Formula 3 or Formula 4 may be about 1: 5 to 1: 500.
  • the molar ratio of the total transition metal compound: the promoter compound of Chemical Formula 5 may be about 1: 1 to 1:10.
  • the catalyst composition may further include a reaction mixture, and the reaction composition may include a hydrocarbon solvent such as pentane, nucleic acid or heptane; Aromatic solvents such as benzene or toluene; and the like, but are not limited thereto.
  • a hydrocarbon solvent such as pentane, nucleic acid or heptane
  • Aromatic solvents such as benzene or toluene
  • the alpha olefin included in the monomer composition propylene, 1-butene, 1-nuxene, 1-octene, 1-pentene, 4-methyl-1-pentene 1-nuxene, 1- Hellene, 1-decene, 1-undecene, or 1-dodecene may be used, and as the diene, a nonconjugated diene monomer may be used.
  • monomers conventionally used in the production of EPDM rubber for example, propylene as the alpha olefin, 5-ethylidene-2-norbornene as the diene, 1,4-nuxadiene or dicyclopentadiene, etc.
  • the nonconjugated diene monomer of can be used suitably.
  • the copolymerization step may be carried out at a temperature of about 100 to 170 ° C, or a temperature of about 100 to 160 ° C.
  • the copolymerization temperature is too low, it may be difficult to synthesize a three-way elastic copolymer in which three monomers are uniformly distributed, and when the polymerization reaction temperature is too high, the monomer or the prepared copolymer may be thermally decomposed.
  • This copolymerization can also be carried out by solution polymerization, in particular by continuous solution polymerization. At this time, the catalyst composition described above may be used in the form of a homogeneous catalyst dissolved in such a solution.
  • the polymerizing step is carried out while continuously supplying a catalyst composition including the monomer composition described above, the first and second transition metal compounds, and optionally a cocatalyst in a solution state in a reaction vessel.
  • the copolymerization step may be continuously performed while continuously discharging the copolymerized ternary elastic copolymer from the reactor.
  • a ternary elastic copolymer having a long chain branch is produced by a Group 4 transition metal catalyst which can be used very favorably as EPDM rubber and the like by showing excellent processability, improved elasticity and flexibility, and the like. .
  • Ternary elastomeric copolymer having a long chain branch obtained in accordance with the present invention overcomes the limitations of EPDM rubber and the like made of metallocene-based Group 4 transition metal catalysts, and can satisfy the excellent elasticity and flexibility with other physical properties. Therefore, it can be very preferably used as EPDM rubber or the like while taking advantage of the Group 4 transition metal catalyst.
  • N] titanium dimethyl) and N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate and triisobutylaluminum were used as cocatalyst compounds.
  • the first and second transition metal compounds were prepared and used in the same manner as in Examples 2 and 14 of Korean Patent Registration No. 0,976,131, and the promoter compounds were the same as those used in Example 9 of Korean Patent Registration No. 0,820,542.
  • Cocatalyst compounds were prepared and used.
  • Three-way copolymerization reactions of ethylene, propylene and 5-ethylidene-2-norbornene were carried out continuously using a 2L pressure reactor. Nucleic acid was continuously introduced from the bottom of the reactor as a polymerization solvent at a feed rate of 6.7 kg per hour, and the polymerization solution was continuously withdrawn from the top of the reactor.
  • first and second transition metal compounds examples include the above-mentioned [(1,2,3,4-tetrahydroquinolin-8-yl) tetramethylcyclopentadienyl-eta 5, kepa-
  • N] titanium dimethyl and [(2-methylindoline-7-yl) tetramethylcyclopentadienyl-eta 5, kepa-N] titanium dimethyl were used dissolved in nucleic acid and 24 to 60 ⁇ per hour Into the reaction vessel at a speed.
  • the above-described N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate was used in a state dissolved in toluene, and was introduced into the reactor at a rate of 105 to 270 ⁇ 1 per hour.
  • the above-mentioned triisobutylaluminum was used in the state dissolved in nucleic acid as an additional promoter compound, and was introduced into the reactor at a rate of 1800 to 3200 ⁇ per hour.
  • Ethylene, a monomer, is 890 to 900 g per hour
  • propylene is 450 to 550 g
  • 5-ethylidene-2-norbornene was subjected to the copolymerization while being continuously supplied to the reaction machine at a rate of 80 to 250 g per hour.
  • the copolymerization temperature in the reaction vessel was adjusted to between 130 and 160 ° C. while increasing the feed rate of 5-ethylidene-2-norbornene at around 160 ° C. in increments of 0.5 mL / min from I mL / min.
  • copolymerization was carried out by continuous solution polymerization, and the terpolymer-based elastomeric copolymers of Examples 1 to 6 were continuously prepared in a uniform solution state, and the polymerization solution continuously discharged from the top of the reactor was subjected to polymerization reaction under ethanol. After quenching, drying was carried out under reduced pressure in a vacuum oven at 60 ° C. to form the final copolymer of Examples 1-6.
  • KEP-2320 from Kumho Polychem a commercially available EPDM rubber known to be manufactured with a Ziegler-Natta catalyst, was used as the terpolymer based copolymer of Comparative Example 8.
  • Test Example 1 Measurement of LCB Index
  • the copolymers obtained in Examples and Comparative Examples were strained at 0.2% strain at a temperature (125 ° C) and a frequency (0.2 Hz) as determined by the SIS V-50 Rubber Process Analyzer from SCARABAEUS INSTRUMENTS SYSTEMSS.
  • the shear storage modulus behavior was measured while changing up to 1250%.
  • the first order harmonics and fifth order are obtained by FT conversion of the measured storage modulus.
  • the ratio of the first harmonic of the storage modulus to the fifth harmonic is calculated by LCB Index and is shown in Table 1 and FIG. 1.
  • the LCB Index may be represented by the following general formula (1).
  • Dynamic complex viscosity was measured using a Rubber Process Analyzer according to ASTM D6204-01.
  • the RPA2000 MV 2000E instrument model from Monsanto was used, and the measurement sample was made of a sheet of copolymer treated with an antioxidant (Irganox 1076) using a press mold, which was 7% strain at 125 ° C and 0.1-210.
  • Dynamic complex viscosity was measured in the frequency range of rad / s.
  • the dynamic complex viscosity values and the graphs of the angular frequency changes of the copolymers of Examples and Comparative Examples are shown in Tables 2 and 3 below.
  • Patterned viscosity of the copolymers obtained in Examples and Comparative Examples is at 125 ° C.
  • the weight average molecular weight of the copolymers obtained in Examples and Comparative Examples was measured by PL-GPC 220 of Polymer Laboratory, Inc., equipped with three linearly mixed bed columns, and is shown in Table 2 below. At this time, the temperature was 16 (C, it was measured at a flow rate of 1.0 ml / min using 1,2,4-trichlorobenzene as a solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 4족 전이금속 촉매의 존재 하에 얻어진 우수한 가공성 및 탄성(유연성)을 동시에 충족할 수 있는 장쇄분지를 갖는 3원계 탄성 공중합체 및 이의 제조 방법에 관한 것이다. 상기 3원계 탄성 공중합체는 에틸렌, 탄소수 3 내지 20의 알파올레핀 및 디엔의 공중합체로서, i) GPC로 측정한 중량 평균 분자량이 100,000 내지 500,000이고, ii) LAOS(Large Angles of Oscillation and high Strains) 방법을 이용하여 125℃에서 고무 가공처리 분석기(Rubber Process Analyzer)로 측정한 저장 탄성율의 5차 고조파에 대한 저장 탄성율의 1차 고조파의 비율인 LCB Index가 양의 값을 가질 수 있다.

Description

【명세서】
【발명의 명칭】
디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 【기술분야】
본 발명은 에틸렌, 알파올레핀 및 디엔의 공중합체인 3원계 탄성 공중합체와, 이의 제조 방법에 관한 것이다. 보다 구체적으로, 본 발명은 우수한 기계적 물성 및 탄성 (유연성 )을 동시에 층족할 수 있는 장쇄분지를 갖는 3원계 탄성 공중합체 및 이의 제조 방법에 관한 것이다.
【발명의 배경이 되는 기술】
에틸렌, 프로필렌 등의 알파올레핀, 그리고 에¾리덴 노보넨 등의 디엔의 3원계 탄성 공중합체인 EPDM 고무는 주쇄에 불포화 결합올 갖지 않는 분자 구조를 가지며, 내후성, 내화학성 및 내열성 등이 일반적인 공액 디엔 고무보다 우수한 특성을 갖는다. 이러한 특성으로 인해, 상기 EPDM 고무와 같은 3원계 탄성 공중합체는 각종 자동차용 부품 재료, 전선 재료, 건축 및 각종 호스, 가스킷, 벨트, 범퍼 또는 플라스틱과의 블랜드 등의 공업용 재료 등에 널리 사용되고 있다.
이전부터 이러한 EPDM 고무 등의 3원계 탄성 공중합체는 주로 바나듐 화합물을 포함하는 촉매, 예를 들어, 바나듐계 지글러 -나타 촉매를 사용하여 3종의 단량체를 공중합함으로서 제조되어 왔다. 그러나, 이러한 바나듐계 촉매는 낮은 촉매 활성으로 과량의 촉매를 사용할 필요가 있고, 이로 인해 공중합체 내 잔류 금속 함량이 높아지는 단점이 있다. 이에 따라, 공중합체 제조 후 촉매 제거 및 탈색 과정 등이 필요하고 수지 내 촉매 잔류분에 의해 내열성 악화, 이물질 발생 또는 가황반웅 저해등을 야기할 수 있다. 또한, 상기 바나듐 화합물을 포함하는 촉매를 이용한 3원계 탄성 공중합체의 제조는 낮은 중합활성과 저온 중합조건으로 반웅 온도 조절이 용이하지 못하고 프로필렌과 디엔 등 공단량체 흡입량 조절아 용이치 못해 공중합체의 분자 구조 제어가 어려웠던 것이 사실이다. 따라서, 바나듐계 촉매를 사용하는 경우, 다양한 물성의 3원계 탄성 공중합체의 제조에 한계가 있어 왔다. 이러한 문제점으로 인해, 최근에는 바나듐계 지글러- 나타 촉매 대신 메탈로센 계열의 4족 전이금속 촉매를 사용하여 EPDM 고무 둥 3원계 탄성 공중합체를 제조하는 방법이 개발되고 있다.
이러한 4족 전이금속 촉매는 을레핀 중합에 있어 높은 중합 활성을 나타내며, 분자량이 보다 높은 공중합체의 제조를 가능케 할 뿐 아니라, 공중합체의 분자량 분포 및 조성 등의 조절이 용이하다. 또, 다양한 공단량체의 공중합이 가능한 장점이 있다. 예를 들어, 미국 특허 제 5,229,478 호, 미국 특허 제 6,545,088 호 및 한국 등록 특허 제 0488833 호 등에는 시클로펜타디에닐, 인데닐 또는 플루오레닐 등의 리간드로부터 얻어진 다양한 메탈로센계 4족 전이금속 촉매를 이용하여, 큰 분자량을 갖는 3원계 탄성 공중합체를 우수한 중합 활성으로 얻을 수 있음이 개시되어 있다.
그러나, 이러한 종래의 4족 전이금속 촉매를 사용해 3종의 단량체를 공중합할 경우, 알파올레핀의 공단량체 등에 대한 높은 반웅성으로 인해 공중합체 사슬 내에 각 단량체에서 유래한 반복단위의 분포가 균일하지 못하게 되는 단점이 발생하였다. 그 결과, 우수한 탄성 및 유연성 등을 갖는 EPDM 고무 등 3원계 탄성 공중합체를 얻기 어려웠던 것이 사실이다. 또한, 미국특허 제 5, 902, 867호 등에는 EPDM의 흔련 가공성 및 압출 가공성을 향상시키기 위해 분자량 분포를 넓혀 폴리머의 점도를 낮추는 방법이 개시되어 있지만, 이 경우 가교 고.무 제품 내에 포함된 저분자량 성분에 의해 고분자가 가공 증에 분리되어 표면특성과 저온특성이 저하되는 한계가 존재한다.
이에 우수한 가공성 및 탄성 (유연성 )을 동시에 층족할 수 있는 장쇄분지를 갖는 3원계 탄성 공중합체 및 이를 높은 생산성 및 수율로 제조할 수 있는 제조 방법와 개발이 계속적으로 요구되고 있다.
【선행기술문헌】
【특허문헌】
(특허문헌 0001) 미국등록특허 제 5,229,478 호
(특허문헌 0002) 미국등톡특허 제 6,545,088 호 (특허문헌 0003) 한국둥록특허 제 0488833호
(특허문헌 0004) 미국등록특허 제 5,902,867호
【발명의 내용】
【해결하려는 과제】
이에 본 발명은 우수한 가공성 및 탄성 (유연성 )을 동시에 충족할 수 있는 장쇄분지를 갖는 3원계 탄성 공중합체를 제공하는 것이다.
본 발명은 또한, 상기 장쇄분지를 갖는 3원계 탄성 공중합체를 생산성 높게 제조할 수 있는 3원계 탄성 공중합체의 제조 방법을 제공하는 것이다.
【과제의 해결 수단】
본 발명은 4족 전이금속 촉매의 존재 하에 얻어진, 에틸렌, 탄소수 3 내지 20의 알파을레핀 및 디엔의 공중합체로서,
i) GPC로 측정한 중량 평균 분자량이 100,000 내지 500, 000이고, i i ) LAOS (Large Angles of Oscillation and high Strains) 방법을 이용하여 125°C에서 고무 가공처리 분석기 (Rubber Process Analyzer)로 측정한 저장 탄성율의 5차 고조파에 대한 저장 탄성율의 1차 고조파의 비율인 LCB Index가 양의 값을 갖는 3원계 탄성 공중합체를 제공한다.
본 발명은 또한, 하기 화학식 1로 표시되는 제 1 전이금속 화합물 및 하기 화학식 2로 표시되는 제 2 전이금속 화합물을 포함하는 촉매 조성물의 존재 하에서, 40 내지 70 중량)의 에틸렌, 20 내지 50 중량 %의 탄소수 3 내지 20의 알파올레핀 및 2 내지 20 중량 %의 디엔을 포함하는 단량체 조성물을 연속적으로 반웅기에 공급하면서 공중합하는 단계를 포함하는 상기 3원계 탄성 공중합체의 제조방법을 제공한다:
[화학식 1]
Figure imgf000006_0001
상기 화학식 1 및 2에서,
Ri 내지 R13은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬 라디칼; 탄소수 2 내지 20의 알케닐 라디칼; 탄소수 6 내지 20의 아릴 라디칼; 실릴 라디칼; 탄소수 7 내지 20의 알킬아릴 라디칼; 탄소수 7 내지 20의 아릴알킬 라디칼; 또는 하이드로카르빌로 치환된 4족 금속의 메탈로이드 라디칼이고; 상기 내지 R13 중 이웃하는 서로 다른 2 개의 그룹은 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아릴 라디칼을 포함하는 알킬리딘 라디칼에 의해 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있으며;
M은 4족 전이금속이고;
Qi 및 Q2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐 라디칼; 탄소수 1 내지 20의 알킬 라디칼; 탄소수 2 내지 20의 알케닐 라디칼; 탄소수 6 내지 20의 아릴 라디칼; 탄소수 7 내지 20의 알킬아릴 라디칼; 탄소수 7 내지 20의 아릴알킬 라디칼; 탄소수 1 내지 20의 알킬 아미도 라디칼; 탄소수 6 내지 20의 아릴 아미도 라디칼; 또는 탄소수 1 내지 20의 알킬리덴 라디칼이다. 이하, 발명의 구체적인 구현예에 따른 3원계 탄성 공중합체 및 이의 제조 방법에 관하여 상세히 설명하기로 한다.
먼저, 본 명세서에서 사용되는 "3원계 탄성 공중합체" 의 용어는 특별히 다른 의미가 설명되지 않는 한, 다음과 같이 정의될 수 있다. 상기 "3원계 탄성 공중합체" 는 에틸렌과, 탄소수 3 내지 20의 알파올레핀과, 디엔의 3 종의 단량체가 공중합된 임의의 탄성 공중합체 (예를 들어, 가교 가능한 랜덤 공중합체)를 지칭할 수 있다. 이러한 "3원계 탄성 공중합체" 의 대표적인 예로는, 에틸렌, 프로필렌 및 디엔의 공중합체인 EPDM 고무를 들 수 있다. 다만, 이러한 "3원계 탄성 공중합체" 가 단 세 가지 단량체의 공중합체만을 지칭하지는 않으며, 상기 에틸렌과 함께, 알파을레핀의 범주에 속하는 한 가지 이상의 단량체 및 디엔의 범주에 속하는 한 가지 이상의 단량체가 공중합된 임의의 탄성 공중합체를 포함할 수 있음은 물론이다. 예를 들어, 에틸렌과, 프로필렌 및 1-부텐의 2종의 알파을레핀과, 에틸리 '덴 노보넨 및 1,4-핵사디엔의 2종의 디엔이 공중합된 탄성 공중합체 역시, 에틸렌과, 알파올레핀과, 디엔의 범주에 각각 속하는 3종의 단량체가 공중합된 것이므로, 상기 "3원계 탄성 공중합체" 의 범주에 속할 수 있다.
한편, 발명의 일 구현예에 따르면, 4족 전이금속 촉매의 존재 하에 얻어진, 에틸렌, 탄소수 3 내지 20의 알파을레핀 및 디엔의 공중합체로서, i) GPC로 측정한 중량 평균 분자량이 100,000 내지 500 ,000이고, i i ) LAOS(Large Angles of Oscillation and high Strains) 방법을 이용하예 25°C에서 고무 가공처리 분석기 (Rubber Process Analyzer)로 측정한 저장 탄성율의 5차 고조파에 대한 저장 탄성율의 1차 고조파의 비율인 LCB Index가 양의 값을 갖는, 3원계 탄성 공중합체가 제공된다.
이러한 일 구현예의 3원계 탄성 공중합체는 에틸렌, 알파올레핀 및 디엔의 3종의 단량체가 일정한 함량 범위로 공중합된 것으로서, GPC로 측정하였을 때 약 100,000 내지 500,000, 혹은 약 150,000 내지 400,000, 혹은 200,000 내지 300, 000의 비교적 큰 중량 평균 분자량을 갖는다. 이러한 큰 중량 평균 분자량은 4족 전이금속 촉매, 예를 들어, 메탈로센 계열에 속하는 후술하는 화학식 1 및 2의 제 1 및 제 2 전이금속 화합물의 우수한 활성에 기인하여 달성되는 것으로서, 일 구현예의 3원계 탄성 공중합체가 이러한 큰 분자량을 가짐에 따라, 상기 3원계 탄성 공중합체, 예를 들어, EPDM 고무는 우수한 기계적 물성을 나타낼 수 있다.
또한, 상기 일 구현예의 3원계 탄성 공중합체는, LAOS Large Angles of Oscillation and high Strains) 방법을 이용하여 125°C에서 고무 가공처리 분석기 (Rubber Process Analyzer)로 측정한 저장 탄성율의 5차 고조파에 대한 저장 탄성율의 1차 고조파의 비율인 LCB Index가 양의 값을 가질 수 있으며, 바람직하게는 약 0 초과 5 이하, 또는 약 0.01 내지 3.5의 값을 가질 수 있다.
이러한 관계를 충족하는 상기 일 구현예의 3원계 탄성 공중합체는 상기 LCB Index가 양의 값을 나타낼 수 있을 정도의 장쇄 분지도를 가지므로, 우수한 가공성을 나타내고 압출가공에 적합하며, 보다 향상된 탄성 및 유연성과 함께 우수한 기계적 물성 등올 동시에 층족할 수 있다. 그리고, 상기 일 구현예의 3원계 탄성 공중합체는 4족 전이금속 촉매의 존재 하에 얻어진 것일 수 있다. 특히, 상기 특성을 갖는 3원계 탄성 공중합체는 예를 들어, 메탈로센 계열에 속하는 4족 전이금속 촉매 특유의 우수한 생산성 및 수율로 제조될 수 있으며, 큰 분자량 및 이에 따른 우수한 기계적 물성을 층족하면서도, 종래에 메탈로센계 4족 전이금속 촉매로 제조된 EPDM 고무가 갖던 문제점을 해결하여 우수한 가공성, 탄성 및 유연성 등을 동시에 충족할 수 있다.
또한, 상기 에틸렌, 탄소수 3 내지 20의 알파올레핀 및 디엔의 공중합체는 40 내지 70 중량 %의 에틸렌, 15 내지 55 중량 %의 탄소수 3 내지 20의 알파올레핀 및 0.5 내지 20 중량 %의 디엔의 공중합체 일 수 있다. 이러한 공중합체는 촉매 조성물의 존재 하에서, 40 내지 70 중량 %의 에틸렌, 20 내지 50 중량 %의 탄소수 3 내지 20의 알파올레핀 및 2 내지 20 중량 %의 디엔을 포함하는 단량체 조성물을 연속적으로 반웅기에 공급하면서 공중합하여 제조할 수 있으며, 특히, 각각의 단량체를 상기 비율로 포함함에 따라, 보다 우수한 탄성 및 유연성을 나타낼 수 있다. 한편, 상기 일 구현예의 3원계 탄성 공중합체의 LCB Index는 LAOS (Large Angles of Oscillation and high Strains) 방법을 이용하여 고무 가공처리 분석기 (Rubber Process Analyzer)로 다음과 같이 측정할수 있다. 먼저, 3원계 탄성 공중합체를 중합 및 제조한 후, 각 공중합체에 대해, SCARABAEUS INSTRUMENTS SYSTEMSS의 SIS V-50 고무 가공처리 분석기 (Rubber Process Analyzer)로 정해진 온도 (125°C)와 Frequency 0.2Hz)에서 스트레인 (strain)을 0.2¾>에서 1250%까지 변화하면서 전단 저장탄성율의 거동을 측정한다. 그리고, 측정된 저장탄성율을 FT 변환하여 1차 고조파 (Harmonics) 및 5차 고조파 (Harmonics)를 도출한 후, 5차 고조파에 대한 저장 탄성율의 1차 고조파의 비율을 LCB Index로 산출할 수 있다.
이 때, 측정된 저장 탄성율의 1차 고조파 (lsr harmonics)와 5차 고조파를 각각 G' 1, G' 5 이라 정의하면, LCB Index는 하기 일반식 1로 표시될 수 있다.
[일반식 1]
LCB Index = G' i / G' 5
이러한 방법으로, 일 구현예의 3원계 탄성 공중합체의 LCB Index를 산출한 결과, 상기 3원계 탄성 공중합체는 이전에 사용되던 4족 전이금속 촉매 제조 EPDM 고무 등에 비하여 장쇄 분지도가 높게 나타나, LCB Index가 양의 값을 가질 수 있음이 확인되었다. 높은 장쇄 분지도 및 양의 LCB Index를 갖는 상기 일 구현예의 3원계 탄성 공중합체는 큰 분자량에 기인한 뛰어난 기계적 물성과 함께 우수한 탄성, 유연성 및 용융 가공성 등을 동시에 충족할 수 있음이 확인되었다.
그리고, 상기 일 구현예의 3원계 탄성 공중합체는 125°C에서 고무 가공처리 분석기 (Rubber Process Analyzer)로 측정한 1.0rad/s 및 100.0rad/s의 각진동수에서의 동적점도 차이가 약 30,000 Pa · s 이상일 수 있고, 바람직하게는 약 30,000 내지 50,000Pa . s 일 수 있다.
이러한 상기 일 구현예의 3원계 탄성 공중합체는 1.0rad/s 및 100.0rad/s의 각진동수에서의 동적점도 차이가 3O,000Pa . s 이상을 나타내므로, 실제 3원계 탄성 공중합체의 사용상태인 낮은 각진동수에서 높은 동적점도를 가져 우수한 기계적 물성을 나타냄과 동시에, 압사출 가공상태인 높은 각진동수에서 낮은 동적점도를 가지므로 우수한 탄성, 유연성 및 용융 가공성을 나타내어 압사출가공에 적합하다.
보다 구체적으로, 상기 3원계 탄성 공중합체는 1.0rad/s 각진동수에서의 동적점도는 30,000Pa ' s 이상일 수 있고, 또는 33,000 내지 150,000 Pa - s 일 수 있다. 1.0rad/s의 각진동수는 실제 3원계 탄성 공중합체가 사용되는 상태와 유사한 상태로, 상기 공중합체는 1.0rad/s의 각진동수에서 30,000Pa ' s 이상의 높은 동적점도를 가지므로, 우수한 기계적 물성을 나타낼 수 있다.
또한, 상기 3원계 탄성 공중합체는 100.0rad/s 각진동수에서의 동적점도는 5,000Pa ' s 이하일 수 있고, 또는 4,500Pa ' s 이하일 수 있다. 100.0rad/s 각진동수는 압사출 가공상태와 유사한 상태로, 상기 공증합체는 100.0rad/s의 각진동수에서 낮은 동적점도를 가지므로 우수한 탄성, 유연성 및 용융 가공성을 나타낼 수 있다.
이러한 상기 3원계 탄성 공중합체의 동적점도 차이 값은 고무 가공처리 분석기 (Rubber Process Analyzer)로 다음과 같이 측정할 수 있다. 먼저, 3원계 탄성 공중합체를 중합 및 제조한 후, 각 공중합체에 대해, Monsanto 사의 PA2000 MV 2000E 고무 가공처리 분석기 (Rubber Process Analyzer)로 정해진 온도 (125°C)와 0.1ᅳ 210 rad/s 의 주파수 범위에서 동적점도 (dynamic com lex viscosity) 를 측정한다. 그리고, 측정된 1.0rad/s 각진동수에서의 동적점도와 100.0rad/s 각진동수에서의 동적점도의 차이 값을 산술적으로 계산하여 도출할 수 있다.
그리고, 상기 일 구현예의 3원계 탄성 공중합체는 EPDM 고무 등으로서의 적절한 물성 층족이 가능한 밀도 범위, 예를 들어, 약 0.840 내지 0.895 g/cm3 , 혹은 약 0.850 내지 0.890 g/cm3 의 밀도를 가질 수 있다. 또한, 상기 일 구현예의 3원계 탄성 공중합체는 EPDM 고무 등으로서의 적절한 물성 층족이 가능한 무늬 점도 (1+4®125°C) 범위, 예를 들어, 약 1 MU 내지 180 MU, 혹은 약 5 MU 내지 150 MU, 혹은 약 20 MU내지 130 MU의 무늬 점도를 가질 수 있다. 상기 무늬점도 (1+4®125°C)는 ASTM D1646-04 근거하여 몬산토 알파 2000 장비를 사용하여 측정할 수 있으며, 무늬점도가 20 MU 미만인 경우 장쇄분지에 따른 가공성 차이가 나타나지 않고 무늬점도가 130 薦을 초과하는 경우 본 발명에 의해 제조는 가능하지만 고점도에 의한 수지 생산성이 낮아 경제적으로 유리하지 않다. 또, 상기 일 구현예의 3원계 탄성 공중합체에서, 상기 알파올레핀으로는, 프로필렌, 1-부텐, 1-핵센, 1-옥텐, 1ᅳ펜텐, 4-메틸 -1- 펜텐, 1-핵센, 1-헵텐, 1-데센, 1-운데센, 1-도데센, 1—트리데센, 1- 테트라데센, 1-펜타데센, 1-핵사데센, 1-헵타데센, 1-노나데센, 9-메틸 -1- 데센, 11-메틸 -1도데센, 12—에틸 -1-테트라데센 등의 탄소수 3 내지 20의 알파을레핀을 1종 이상 사용할 수 았으며, 이들 중에서도 탄소수 3 내지 10의 알파올레핀, 대표적인 예로서 프로필렌, 1-부텐, 1-핵센 또는 1ᅳ 옥텐을 적절히 사용할 수 있다.
또, 상기 디엔으로는 비공액 디엔계 단량체를 사용할 수 있다. 이의 구체적인 예로는, 5— 1,4-핵사디엔, 1ᅳ 5ᅳ헵타디엔, 1,6ᅳ옥타디엔, 1,그 노나디엔, 1, 8-데카디엔, 1,12-테트라데카디엔, 3-메틸 -1, 4-핵사디엔, 4ᅳ 메틸 -1,4-핵사디엔, 5-메틸 -1,4-핵사디엔, 4-에틸 -1,4—핵사디엔, 3,3ᅳ 다이메틸 -1,4-핵사디엔, 5-메틸 -1,4-헵타디엔, 5-에틸 -1,4-헵타디엔, 5ᅳ 메틸 -1,5-헵타디엔, 6—메틸 -1,5-헵타디엔, 5—에틸 -1,5-헵타디엔, 4-메틸ᅳ 1, 4-옥타디엔, 5ᅳ메틸 -1, 4-옥타디엔, 4-에틸 -1,4—옥타디엔, 5-에틸 -1, 4ᅳ 옥타디엔, 5ᅳ메틸 -1,5-옥타디엔, 6-메틸 -1,5-옥타디엔, 5-에틸ᅳ1,5ᅳ 옥타디엔, 6-에틸 -1,5-옥타디엔, 6-메틸 -1,6-옥타디엔, 7-메틸 -1,6- 옥타디엔, 6-에틸 -1,6-옥타디엔, 6-프로필 -1, 6-옥타디엔, 6-부틸ᅳ1,6ᅳ 옥타디엔, 7-메틸 -1,6-옥타디엔, 4-메틸 -1, 4-노나디엔, 에틸리덴 -2-노보넨, 5-메틸렌 -2ᅳ노보넨, 5-(2-프로페닐) -2-노보넨, 5— (3-부테닐) -2-노보넨, 5ᅳ (1-메틸 -2-프로페닐) -2-노보넨, 5-(4-펜테닐) -2-노보넨, 5-(1-메틸_3- 부테닐) ᅳ2-노보넨, 5-(5-핵세닐 )— 2ᅳ노보넨, 5ᅳ (1-메틸 -4-펜테닐) -2- 노보넨, 5— (2,3—디메틸 -3ᅳ부테닐) -2—노보넨, 5-(2-에틸ᅳ 3-부테닐) _2ᅳ 노보넨, 5ᅳ(6—헵테닐) -2ᅳ노보넨, 5-(3-메틸-핵세닐) -2ᅳ노보넨, 5-(3,4- 디메틸 -4-펜테닐) -2-노보넨, 5-(3-에틸 -4-펜테닐) -2-노보넨, 5-(7-옥테닐) ᅳ2ᅳ노보넨, 5-(2-메틸ᅳ 6-헵테닐) —2—노보넨, 5-(1,2ᅳ디메틸 -5-핵세닐) -2- 노보넨, 5-(5-에틸 -5—핵세닐) -2-노보넨, 5-(1,2,3-트리메틸 -4-펜테닐) -2- 노보넨, 5ᅳ프로필리덴—2-노보넨, 5-이소프로필리덴 -2-노보넨 , 5-부틸리덴- 2-노보넨, 5-이소부틸리덴 -2-노보넨, 2 ,3-디이소프로필리덴 -5-노보넨, 2- 에틸리덴 -3-이소프로필리덴 -5-노보넨, 2-프로페닐 -2 ,2-노보나디엔 등을 들 수 있고, 이들 중에 선택된 디엔을 1종 이상 사용할 수 있다.
이들 디엔 중에서도 특히, 5-에틸리덴 -2-노보넨, 5-메틸렌 -2-노보넨, 또는 4-핵사디엔을 적절히 사용하여, 상기 일 구현예의 중량 평균 분자량과
LCB Index를 만족하는 3원계 탄성 공중합체를 제조할 수 있다. 한편, 종래 3원계 탄성 공중합체의 제조에 상기 디엔으로 사용되던 5-비닐 -2- 노보렌 (VNB) 또는 디시클로펜타디엔 (DCPD)은 이중결합을 2개 포함하고, 상기 2개의 이중결합이 중합반응에 참여하여 가교된 형태의 고분자 구조를 나타내므로 증합과정에서 겔 입자가 형성되거나, 공중합체의 분자량 조절이 어렵고 중합반웅 또한 조절하기 어려운 한계가 있다. 한편 , 발명의 다른 구현예에 따르면, 상술한 일 구현예의 3원계 탄성 공중합체의 제조 방법이 제공된다. 이러한 공중합체의 제조 방법은 하기 화학식 1로 표시되는 제 1 전이금속 화합물 및 하기 화학식 2로 표시되는 제 2 전이금속 화합물을 포함하는 촉매 조성물의 존재 하에서, 40 내지 70 중량 %의 에틸렌, 20 내지 50 중량 ¾의 탄소수 3 내지 20의 알파올레핀 및 2 내지 20 중량 ¾의 디엔을 포함하는 단량체 조성물을 연속적으로 반웅기에 공급하면서 공중합하는 단계를 포함할 수 있다:
[화학식 1]
Figure imgf000012_0001
[화학식 2]
Figure imgf000013_0001
상기 화학식 1 및 2에서,
Ri 내지 Ri3은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬 라디칼; 탄소수 2 내지 20의 알케닐 라디칼; 탄소수 6 내지 20의 아릴 라디칼; 실릴 라디칼; 탄소수 7 내지 20의 알킬아릴 라디칼; 탄소수 7 내지 20의 아릴알킬 라디칼; 또는 하이드로카르빌로 치환된 4족 금속의 메탈로이드 라디칼이고; 상기 ¾ 내지 Ri3 중 이웃하는 서로 다른 2 개의 그룹은 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아릴 라디칼을 포함하는 알킬리딘 라디칼에 의해 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있으며 ;
M은 4족 전이금속이고;
Qi 및 Q2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐 라디칼; 탄소수 1 내지 20의 알킬 라디칼; 탄소수 2 내지 20의. 알케닐 라디칼; 탄소수 6 내지 20의 아릴 라디칼; 탄소수 7 내지 20의 알킬아릴 라디칼; 탄소수 7 내지 20의 아릴알킬 라디칼; 탄소수 1 내지 20의 알킬 아미도 라디칼; 탄소수 6 내지 20의 아릴 아미도 라디칼; 또는 탄소수 1 내지 20의 알킬리덴 라디칼이다. :
이하의 실시예 등을 통해서도 확인되는 바와 같이, 일정 함량의 단량체, 즉, 약 40 내지 70 중량 %, 혹은 약 50 내지 70 중량 ¾의 에틸렌, 약 15 내지 55 중량 %, 흑은 약 25 내지 45 중량 )의 탄소수 3 내지 20의 알파올레핀 및 약 0.5 내지 20 중량 %, 혹은 약 2 내지 10 중량 >의 디엔을 사용하는 한편, 이러한 각 단량체를 상기 화학식 1 혹은 2의 전이금속 촉매의 존재 하에 연속 중합 공정으로 제조함에 따라, 상술한 큰 분자량 범위 및 양의 LCB Index 값을 갖는 일 구현예의 3원계 탄성 공중합체가 높은 수율 및 생산성으로 얻어질 수 있음이 확인되었다.
이는 주로 상기 2종의 특정 촉매가 갖는 우수한 촉매 활성 및 공단량체 반웅성에 기인할 수 있다. 상기 제 1 및 제 2 전이금속 화합물의 특정 촉매는 4족 전이금속 촉매로서의 우수한 촉매 활성을 나타내며, 특히 알파올레핀과 디엔 등의 공단량체에 대해 우수한 선택성과 공중합 반응성을 나타낼 수 있다. 더구나, 이들 2종의 특정 촉매를 사용함에 따라, 디엔이 비교적 높은 함량으로 고분자 사슬 내에 균일하게 분포되면서 공중합이 진행되도록 할 수 있다. 이는 상기 화학식 1 및 2의 특정 촉매가 퀴놀린계 아미도 그룹에 의해 금속 자리 주위가 견고한 5각링 및 6각링 구도로 매우 안정적으로 유지되고, 이에 따라 구조적으로 단량체들의 접근이 용이한 구조적 특성을 가지고 있기 때문으로 보인다. 즉, 상기 화학식 1 및 2의 특정 촉매는 상술한 촉매의 구조적 특성을 바탕으로 에틸렌과 알파을레핀이 공중합되는 동안 장쇄분지형태의 이중결합을 가지는 매크로머를 형성시킬 수 있고, 이는 다시 촉매와의 반응으로 공중합되어, 장쇄분지를 갖는 3원계 탄성 공중합체를 형성할 수 있다.
더구나, 이러한 제 1 및 제 2 전이금속 화합물의 2종의 특정 촉매를 사용하는 한편, 각 단량체를 포함하는 단량체 조성물을 연속적으로 중합 반웅기에 공급하면서 상기 공중합을 연속 공정으로 진행함에 따라, 상기 공단량체, 특히 디엔은 고분자 사슬 내에 더욱 균일하게 분포될 수 있다. 그 결과, 분자량이 높으면서도, 각 단량체가 균일하게 교대 분포되어 있으며, 장쇄분지를 갖는 3원계 탄성 공중합체가 생산성 및 수율 높게 제조될 수 있어 상술한 일 구현예의 특성, 예를 들어, 중량 평균 분자량이 100,000 내지 500, 000이고, LCB Index가 양의 값을 갖는 등의 특성 등을 층족할 수 있다.
따라서, 다른 구현예의 제조 방법에 따^면, 상술한 일 구현예의
3원계 탄성 공중합체가 생산성 및 수율 높게 제조될 수 있고, 이러한 3원계 탄성 공중합체는 우수한 기계적 물성과, 보다 향상된 탄성 등을 동시에 충족하는 4족 전이금속 촉매로 제조된 EPDM 고무 등으로서 매우 바람직하게 사용될 수 있다.
다만, 상술한 2종의 특정 촉매를 사용하지 않거나, 이들 중 1종의 촉매만을 사용하거나, 상술한 각 단량체의 적절한 함량 범위, 특히 디엔의 함량 범위를 벗어나는 경우 등에 있어서는, 최종 제조된 3원계 탄성 공중합체가 일 구현예의 높은 분자량 범위나, LCB Index 값의 범위 등을 충족하지 못하게 될 수 있다.
한편, 상술한 다른 구현예의 3원계 탄성 공중합체의 제조 방법에서, 상기 화학식 1 및 2로 표시되는 제 1 및 제 2 전아금속 화합물에 대한 보다 구체적인 설명은 아래와 같다.
먼저, 상기 화학식 1 및 2에서, 하이드로카르빌은 하이드로카르본으로부터 수소 원자를 제거한 형태의 1가 작용기를 지칭할 수 있으며, 예를 들어, 에틸 등의 알킬기나, 페닐 등의 아릴기를 포괄하여 지칭할 수 있다.
또, 화학식 1 및 2에서, 메탈로이드는 준금속으로 금속과 비금속의 중간적 성질을 보이는 원소로서, 예를 들어, 비소, 붕소, 규소 또는 텔루르 등을 지칭할 수 있다. 그리고, 상기 M은, 예를 들어, 티타늄, 지르코늄 또는 하프늄 등의 4족 전이금속 원소를 지칭할 수 있다.
이들 제 1 및 제 2 전이금속 화합물 중에서, 상기 화학식 1의 제 1 전이금속 화합물로는, 하기 식의 화합물들로 이루어진 군에서 선택된 1종 이상의 화합물을 적합하게 사용할 수 있다:
Figure imgf000015_0001
Figure imgf000016_0001
상기 식에서, ¾ 및 ¾은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소 또는 메틸 라디칼이고, M은 4족 전이금속이고, ¾ 및 ¾는 서로 같거나 다를 수 있으며, 각각 독립적으로 메틸 라디칼, 디메틸이미도 라디칼 또는 염소 라디칼이다.
또한, 나머지 화학식 2의 제 2 전이금속 화합물로는, 하기 식의 화합물들로 이루어진 군에서 선택된 1종 이상의 화합물을 적합하게 사용할 수 있다:
Figure imgf000016_0002
Figure imgf000017_0001
상기 식에서, ¾ 및 ¾은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소 또는 메틸 라디칼이고, M은 4족 전이금속이고, ¾ 및 ¾는 서로 같거나 다를 수 있으며, 각각 독립적으로 메틸 라디칼, 디메틸이미도 라디칼 또는 염소 라디칼이다.
한편, 상기 다른 구현예의 제조 방법에서 사용되는 촉매 조성물은. 상술한 제 1 및 제 2 전이금속 화합물 외에 하기 화학식 3, 화학식 4 및 화학식 5로 이루어진 군에서 선택된 1종 이상의 조촉매 화합물올 더 포함할 수 있다:
[화학식 3]
-[Al(R)-0]n- 상기 화학식 3에서,
R은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고; n은 2 이상의 정수이며;
[화학식 4]
D(R)3
상기 화학식 4에서, R은 상기 화학식 3에서 정의된 바와 같고; D는 알루미늄 또는 보론이며;
[화학식 5] [L-H] + [ZA4]" 또는 [L] + [ZA4]—
상기 화학식 5에서, L은 중성 또는 양이온성 루이스 산이고; H는 수소 원자이며; Z는 13족 원소이고; A는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
이러한 조촉매 화합물에서, 상기 화학식 3으로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다.
또, 상기 화학식 4로 표시되는 화합물의 예로는, 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄 트리- s-부틸알루미늄, 트리시클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리핵실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리 -P- 를릴알루미늄, 디메틸알루미늄메록시드, 디메틸알루미늄에록시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론 또는 트리부틸보론 둥을 들 수 있고, 이 중에서도 트리메틸알루미늄, 트리에틸알루미늄 또는 트리이소부틸알루미늄을 적절히 사용할 수 있다. 그리고, 상기 화학식 5로 표시되는 화합물은 브론스테드 산인 양이온과 양립 가능한 비배위 결합성 음이온을 포함한다. 적절한 음이온은 크기가 비교적 크며 준금속을 포함하는 단일 배위결합성 착화합물을 함유하는 것이다. 특히, 음이온 부분에 단일 붕소 원자를 함유하는 화합물이 널리 사용되고 있다. 이러한 관점에서, 상기 화학식 5로 표시되는 화합물로는 단일 붕소 원자를 함유하는 배위결합성 착화합물을 포함하는 음이온을 함유한 염이 적절히 사용될 수 있다.
이러한 화합물의 구체적인 예로서, 트리알킬암모늄염의 경우에는 트리메틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리 (n—부틸)암모늄 테트라키스 (펜타폴루오로페닐)보레이트 트리 (2-부틸)암모늄 테트라키스 (펜타플루오로페닐)보레이트 Ν,Ν-디메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 Ν,Ν-디메틸아닐리늄 η- 부틸트리스 (펜타플루오로페닐)보레이트 Ν,Ν-디메틸아닐리늄 벤질트리스 (펜타플루오로페닐)보레이트 Ν,Ν—디메틸아닐리늄 테트라키스 (4-
(t-부틸디메틸실릴) _2,3,5,6-테트라플루오로페닐)보레이트, Ν,Ν- 디메틸아닐리늄 테트라키스 (4-트리이소프로필실릴 )-2, 3,5,6- 테트라플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 펜타플루오로페녹시트리스 (펜타플루오로페닐)보레이트, Ν,Ν-디에틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트, -디메틸-2,4,6ᅳ 트리메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트, 트리메틸암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 트리에틸암모늄 테트라키스 (2,3, 4,6-테트라플루오로페닐)보레이트 트리프로필암모늄 테트라키스 (2, 3 , 4 , 6-테트라플루오로페닐)보레이트 트리 (η-부틸)암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 디메틸 (t-부틸)암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 Ν,Ν-디메틸아닐리늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 Ν,Ν-디에틸아닐리늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 ^-디메틸-2,4,6- 트리메틸아닐리늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레0 데실디메틸암모늄 테트라키스 (펜타플루오로페닐)보레 ο 도데실디메틸암모늄 테트라키스 (펜타플루오로페닐)보레 ο ᄐ 테트라데실디메틸암모늄 테트라키스 (펜타플루오로페닐)보레 ο ᄐ 핵사데실디메틸암모늄 테트라키스 (펜타플루오로페닐 )보레 ο 옥타데실디메틸암모늄 테트라키스 (펜타플루오로페닐)보레 ο ᄐ 에이코실디메틸암모늄 테트라키스 (펜타플루오로페닐)보레 ο ᄐ 메틸디데실암모늄 테트라키스 (펜타플루오로페닐)보레 ο ᄐ 메틸디도데실암모늄 테트라키스 (펜타플루오로페닐)보레 ο ᄐ 메틸디테트라데실암모늄 테트라키스 (펜타플루오로페닐)보레 ο ᄐ 메틸디핵사데실암모늄 테트라키스 (펜타플루오로페닐)보레 ο 메틸디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레 0 메틸디에이코실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리도데실암모늄 테트라키스 (펜타플루오로페닐)보레。 3 트리테트라데실암모늄 테트라키스 (펜타플루오로페닐)보레 0 트리핵사데실암모늄 테트라키스 (펜타플루오로페닐)보레 0 트리옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레 0 트리에이코실암모늄 테트라키스 (펜타플루오로페닐)보레 0 데실디 (η-부틸)암모늄 테트라키스 (펜타플루오로페닐)보레 o 도데실디 (η—부틸)암모늄 테트라키스 (펜타플루오로페닐)보레 0 옥타데실디 (η-부틸)암모늄 테트라키스 (펜타플루오로페닐)보레 0 Ν,Ν-디도데실아닐리늄 테트라키스 (펜타플루오로페닐)보레 0 Ν-메틸 -Ν-도데실아닐리늄 테트라키스 (펜타플루오로페닐)보레 o 또는 메틸디 (도데실)암모늄 테트라키스 (펜타플루오로페닐)보레 ΰ 등을 예로 들 수 있다.
또한, 디알킬암모늄염의 경우에는, 디 프로필)암모늄 테트라키스 (펜타플루오로페닐)보레 ο 또는 디시클로핵실암모늄 테트라키스 (펜타플루오로페닐)보레。 등을 예로 들 수 있다.
그리고, 카르보늄염 경우에는 트로필륨 테트라키스 (펜타플루오로페닐)보레 ΰ 3 트리페닐메틸륨 테트라키스 (펜타플루오로페닐)보레 ο 또는 벤젠 (디아조늄) 테트라키스 (펜타플루오로페닐)보레이트 등을 예로 들 수 있다.
한편, 상술한 3원계 탄성 공중합체의 제조 방법에서, 상술한 제 1 및 제 2 전이금속 화합물과, 선택적으로 조촉매 화합물을 포함하는 촉매 조성물은, 예를 들어, 상기 제 1 및 제 2 전이금속 화합물과, 상기 화학식 3 또는 화학식 4의 조촉매 화합물을 접촉시켜 흔합물을 얻는 단계; 및 상기 흔합물에 상기 화학식 5의 조촉매 화합물을 첨가하는 단계를 포함하는 방법으로 제조될 수 있다.
또, 상기 촉매 조성물에서, 상기 제 1 전이금속 화합물 : 제 2 전이금속 화합물의 몰비는 약 10 : 1 내지 1 : 10으로 될 수 있고, 상기 제 1 및 제 2 전이금속 화합물을 합한 전체 전이금속 화합물 : 상기 화학식 3 또는 화학식 4의 조촉매 화합물의 몰비는 약 1 : 5 내지 1 : 500로 될 수 있으며, 상기 전체 전이금속 화합물 : 상기 화학식 5의 조촉매 화합물의 몰비는 약 1 : 1 내지 1 : 10으로 될 수 있다.
그리고, 상기 3원계 탄성 공중합체의 제조 방법에서, 상기 촉매 조성물은 반웅 용매를 추가로 포함할 수 있고, 상기 반웅 용매로는 펜탄, 핵산 또는 헵탄 등과 같은 탄화수소계 용매; 벤젠 또는 를루엔 등과 같은 방향족계 용매 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
또, 이미 상술한 바와 같이, 상기 단량체 조성물에 포함되는 알파올레핀으로는, 프로필렌, 1-부텐, 1-핵센, 1-옥텐, 1-펜텐, 4-메틸 -1- 펜텐 1-핵센, 1-헬텐, 1-데센, 1-운데센 또는 1-도데센 등을 사용할 수 있으며, 상기 디엔으로는 비공액 디엔계 단량체를 사용할 수 있다. 이중에서도, EPDM 고무의 제조에 통상적으로 사용되는 단량체, 예를 들어, 상기 알파올레핀으로서 프로필렌과, 상기 디엔으로서 5-에틸리덴 -2-노보넨, 1,4-핵사디엔 또는 디시클로펜타디엔 등의 비공액 디엔계 단량체를 적절히 사용할 수 있다.
그리고, 상술한 다른 구현예의 공중합체의 제조 방법에서, 상기 공중합 단계는 약 100 내지 170 °C의 온도, 혹은 약 100 내지 160 °C의 온도에서 진행할 수 있다. 상기 공중합 온도가 너무 낮은 경우, 3종의 단량체가 균일하게 교대 분포된 3원계 탄성 공중합체의 합성이 어려울 수 있으며, 중합 반응 온도가 너무 높은 경우 단량체 또는 제조된 공중합체가 열 분해 될 수 있다. 또, 이러한 공중합은 용액 중합, 특히, 연속 용액 중합 방법으로 진행할 수 있다. 이때, 상술한 촉매 조성물은 이러한 용액에 용해된 균일계 촉매의 형태로 사용될 수 있다.
이러한 연속 용액 중합의 진행을 위해, 상술한 단량체 조성물과, 제 1 및 제 2 전이금속 화합물, 및 선택적으로 조촉매를 포함하는 촉매 조성물을 반웅기에 용액 상태로 연속적으로 공급하면서 상기 Ϋ중합 단계를 진행할 수 있고, 공중합된 3원계탄성 공중합체를 반응기로부터 연속적으로 배출시키면서 상기 공중합 단계를 연속 진행할 수 있다.
이러한 연속 용액 중합의 진행에 의해, 장쇄분지를 갖는 3원계 탄성 공중합체를 보다 효과적으로 생산성 및 수율 높게 얻을 수 있게 된다. 【발명의 효과】
상술한 바와 같이, 본 발명에 따르면 우수한 가공성과, 보다 향상된 탄성 및 유연성 등을 나타내어 EPDM 고무 등으로서 매우 바람직하게 사용될 수 있는 4족 전이금속 촉매에 의해 장쇄분지를 갖는 3원계 탄성 공중합체가 제조된다.
또한, 본 발명에 따르면, 이러한 장쇄분지를 갖는 3원계 탄성 공중합체를 생산성 및 수율 높게 제조할 수 있는 공중합체의 제조 방법이 제공된다.
본 발명에 따라 얻어진 장쇄분지를 갖는 3원계 탄성 공중합체는 이전에 알려진 메탈로센계 4족 전이금속 촉매로 제조된 EPDM 고무 등의 한계를 극복하고, 우수한 탄성 및 유연성을 다른 물성과 함께 충족할 수 있으므로, 4족 전이금속 촉매 특유의 장점을 살리면서도 EPDM 고무 등으로서 매우 바람직하게 사용될 수 있다. 【도면의 간단한 설명】
도 1은 실시예 및 비교예에서 제조한 3원계 탄성 공중합체의 LCB Index를 나타낸 그래프이다.
【발명을 실시하기 위한 구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 발명을 예시하는 것일 뿐, 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<리간드 및 전이금속 화합물의 합성 >
모든 리간드 및 촉매합성은 공기와 수분의 접촉을 차단하는 질소분위기하에서 표준 쉴렘크 (Schlenk)와 글로브박스 (Blove—box) 기술을 사용하여 수행되었으며 반웅에 사용하는 유기용매는 표준방법으로 정제하여 사용하였다. 합성된 리간드와 촉매구조는 400腿 z 핵자기 공명기 (NMR) 및 X- ray분광기를 이용하여 확인하였다.
하기 실시예에서 제 1 및 제 2 전이금속 화합물로는, 각각 [(1,2,3,4-테트라하이드로퀴놀린 -8-일)테트라메틸시클로펜타디에닐- 에타 5,케파ᅳ N]티타늄 디메틸 ([(l,2,3,4-Tetrahydroquinolin-8- y 1 ) t e t r ame t hy 1 eye 1 opent ad i eny 1 -e t a5 , kapa-N ] t i t an i um dimethyl ) 및 [(2一 메틸인돌린 -7-일)테트라메틸시클로펜타디에닐 -에타 5,케파— N]티타늄 디메틸 ([( 2 -Me thy 1 i ndo 1 i nᅳ그 y 1 )tetr amethy 1 eye 1 opent ad i eny l-eta5, kapa—
N]titanium dimethyl)을 사용하였으며, 조촉매 화합물로는 Ν,Ν- 디메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 및 트리이소부틸알루미늄을 사용하였다. 상기 제 1 및 제 2 전이금속 화합물은 한국 특허 등록 제 0,976,131 호의 실시예 2 및 14와 동일한 방법으로 제조하여 사용하였고, 상기 조촉매 화합물은 이러한 한국 특허 등톡 제 0,820,542 호의 실시예 9에서 사용된 것과 동일한 조촉매 화합물을 제조하여 사용하였다.
<실시예 1 내지 6> 에틸렌, 프로필렌 및 5-에틸리덴 -2-노보넨의 3원계 탄성 공중합체의 제조
2L 압력 반웅기를 이용하여, 연속적으로 에틸렌, 프로필렌 및 5- 에틸리덴 -2-노보넨의 3원 공중합 반웅을 수행하였다. 상기 반응기 하부로부터 중합 용매로서 핵산을 시간당 6.7kg의 공급 속도로 연속 투입하고, 반웅기 상부로부터 연속적으로 중합 용액을 빼내헛다.
제 1 및 제 2 전이금속 화합물로는, 상술한 [(1,2,3,4- 테트라하이드로퀴놀린 -8-일)테트라메틸시클로펜타디에닐 -에타 5,케파-
N]티타늄 디메틸 및 [(2-메틸인돌린 -7-일)테트라메틸시클로펜타디에닐- 에타 5,케파 -N]티타늄 디메틸을 핵산에 용해된 상태로 사용하였고, 시간당 24 내지 60μη )1의 속도로 반웅기에 투입하였다. 또, 조촉매 화합물로는 상술한 Ν,Ν-디메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트를 를루엔에 용해된 상태로 사용하였고, 시간당 105 내지 270μπιο1의 속도로 반웅기에 투입하였다. 또, 추가적인 조촉매 화합물로서 상술한 트리이소부틸알루미늄을 핵산에 용해된 상태로 사용하였고, 시간당 1800 내지 3200μπι 의 속도로 반웅기에 투입하였다.
단량체인 에틸렌은 시간당 890 내지 900g, 프로필렌은 450 내지 550g, 그리고, 5-에틸리덴 -2-노보넨은 시간당 80 내지 250g의 속도로 반웅기에 연속 공급하면서, 상기 공중합을 진행하였다.
반웅기 내의 공중합 온도는 160°C 근방에서 5-에틸리덴 -2-노보넨의 공급 속도를 ImL/min부터 0.5mL/min씩 증가시키면서 130 내지 160°C 사이로 조절하였다.
상술한 조건 하에, 연속 용액 중합으로 공중합을 진행하여, 실시예 1 내지 6의 3원계 탄성 공중합체를 균일한 용액 상태로 연속 제조하였고, 반응기 상부로부터 연속적으로 배출된 중합 용액은 에탄올 하에서 중합 반응이 정지된 후, 60°C의 진공 오븐에서 감압 건조되어 실시예 1 내지 6의 공중합체로 최종 제조되었다.
<비교예 1 내지 7> 상용화된 에틸렌, 프로필렌 및 5-에틸리덴 -2- 노보넨의 3원계 탄성 공중합체
메탈로센 촉매로 제조된 것으로 알려진 상용화된 EPDM 고무인 Exxon의 V-2502를 비교예 1의 3원계 탄성 공중합체로 하였고, 비교예 2~7은 메탈로센 촉매로 제조된 것으로 알려진 상용화된 EPDM 고무인 D0W의 3722, 4520, 4640, 4725, 4770, 4570을 순차대로 비교예 2에서 7까지 3원계 탄성 공중합체로 하였다. <비교예 8> 상용화된 에틸렌, 프로필렌 및 5—에틸리덴 -2-노보넨의
3원계 탄성 공중합체
지글러 -나타 촉매로ᅳ 제조된 것으로 알려진 상용화된 EPDM 고무인 금호 폴리켐의 KEP-2320을 비교예 8의 3원계 탄성 공중합체로 하였다. <시험예 1> LCB Index의 측정
실시예 및 비교예에서 얻어진 공중합체를 SCARABAEUS INSTRUMENTS SYSTEMSS의 SIS V— 50 고무 가공처리 분석기 (Rubber Process Analyzer)로 정해진 온도 (125°C)와 Frequency (0.2Hz)에서 스트레인 (strain)올 0.2%에서 1250%까지 변화하면서 전단 저장탄성율의 거동을 측정하였다. 그리고, 측정된 저장탄성율을 FT 변환하여 1차 고조파 (Harmonics) 및 5차 고조파 (Harmonics)를 도출한 후, 5차 고조파에 대한 저장 탄성율의 1차 고조파의 비율을 LCB Index로 산출하여 하기 표 1과 도 1에 나타내었다.
이 때, 측정된 저장 탄성율의 1차 고조파 (lsr harmonics)와 5차 고조파를 각각 G' 1, G' 5 이라 정의하면, LCB Index는 하기 일반식 1로 표시될 수 있다.
[일반식 1]
LCB Index = G' i / G' 5
<시험예 2>동적점도 (dynamic complex viscosity)의 즉정
동적점도 (dynamic complex viscosity)는 ASTM D6204-01에 따라 고무가공처리 분석기 (Rubber Process Analyzer)를 사용하여 측정하였다. Monsanto 사의 RPA2000 MV 2000E 장비모델을 사용하였고, 측정샘플은 산화방지제 (Irganox 1076)로 처리한 공중합체 샘플을 프레스 몰드를 이용해 시트로 제작하고 이를 125°C에서 7% 변형 (strain) 및 0.1-210 rad/s 의 주파수 범위에서 동적점도 (dynamic complex viscosity) 를 측정하였다. 실시예 및 비교예의 각 공중합체의 각진동수 변화에 대한 동적점도 (dynamic complex viscosity)값과 그래프는 하기 표 2, 표 3에 나타내었다.
<시험예 3>무늬점도의 측정
실시예 및 비교예에서 얻어진 공중합체의 무늬 점도는 125°C에서
ASTM D1646-04 근거하여 몬산토 알파 2000 장비를 이용하여 측정하고 하기 '표 1에 나타내었다.
<시험예 4>중량 평균 분자량의 측정
실시예 및 비교예에서 얻어진 공중합체의 중량 평균 분자량은 3개의 선형 흔합된 베드 컬럼이 장착된 Polymer Laboratory 사의 PL-GPC 220에 의하여 측정하고, 하기 표 2에 나타내었다. 이때, 온도는 16( C이었고, 1,2,4-트리클로로벤젠을 용매로 사용하여 1.0ml/min의 유속으로 측정하였다.
[표 1]
Figure imgf000026_0001
[표 2]
Figure imgf000026_0002
* 각진동수 1.0rad/s에서의 동적점도 값과 각진동수 .0rad/s에서의 동적점도 값의 차이값이다.
[표 3]
각진동수 동적점도 (Pa · s)
Figure imgf000027_0001
* 각진동수 1.0rad/s에서의 동적점도 값과 각진동수 100.0rad/s에서의 동적점도 값의 차이값이다. 상기 표 1 및 도 1을 참고하면, 실시예 1 내지 6의 공중합체는 LCB Index 값이 양의 값을 나타내지만, 비교예 1 내지 7의 공중합체는 음의 값을 나타내는 것을 확인할 수 있다.
그리고, 상기 표 2, 표 3을 참고하면, 실시예 1 내지 6의 공중합체는 1.0rad/s 및 100.0rad/s 각진동수에서의 동적점도 값의 차이가 30,000 Pa - s 이상으로, 실제 3원계 탄성 공중합체의 사용상태에서와 압사출 가공상태에서의 동적점도 값의 차이가 크게 나타나는 것을 확인할 수 있다. 이로부터 실시예 1 내지 6의 3원계 탄성 공중합체는 보다 높은 장쇄 분지도를 가지므로, 기계적 물성이 우수하면서도, 용융 가공성이 우수하여 비교예에 비해 우수한 탄성, 유연성 및 가공성 등을 나타낼 것으로 예측된다.

Claims

【특허청구범위】
【청구항 1】
4족 전이금속 촉매의 존재 하에 얻어진, 에틸렌, 탄소수 3 내지 20의 알파올레핀 및 디엔의 공중합체로서,
i) GPC로 측정한 중량 평균 분자량이 100,000 내지 500 ,000이고, i i ) LAOS(Large Angles of Oscillation and high Strains) 방법을 이용하여 125°C에서 고무 가공처리 분석기 (Rubber Process Analyzer)로 측정한 저장 탄성율의 5차 고조파에 대한 저장 탄성율의 1차 고조파의 비율인 LCB Index가 양의 값을 갖는, 3원계 탄성 공중합체.
【청구항 2】
제 1 항에 있어서, 상기 LCB Index는 0 초과 5 이하의 값을 갖는, 원계 탄성 공중합체 .
【청구항 3】
제 1 항에 있어서, 125°C에서 고무 가공처리 분석기 (Rubber Process Analyzer)로 측정한 1.0rad/s 및 100.0rad/s의 각진동수에서의 동적점도 차이가 30,000 Pa · s 이상인 3원계 탄성 공중합체.
【청구항 4】
제 1항에 있어서, 상기 1.0rad/s 각진동수에서의 동적점도는 30,000 Pa · s 이상인, 3원계 탄성 공중합체 .
【청구항 5】
제 1항에 있어서, 상기 100.0rad/s 각진동수에서의 동적점도는 5,000
Pa · s 이하인 , 3원계 탄성 공중합체 .
【청구항 6]
거 1 1 항에 있어서, 상기 에틸렌, 탄소수 3 내지 20의 알파올레핀 및 디엔의 공중합체는 40 내지 70 중량 >의 에틸렌, 15 내지 55 중량 %의 탄소수 3 내지 20의 알파올레핀 및 0.5 내지 20.중량 %의 디엔의 공중합체인, 3원계 탄성 공중합체 .
【청구항 7】
제 1 항에 있어서, 0.840 내지 0.895 g/cm3 의 밀도를 갖는 3원계 탄성 공중합체.
【청구항 8】
제 1 항에 있어서 , 5 내지 180의 무늬점도 (1+4®125°C)를 갖는 3원계 탄성 공중합체 .
【청구항 9】
제 1 항에 있어서, 2 내지 4의 분자량 분포를 갖는 3원계 탄성 공중합체 .
【청구항 10】
제 1 항에 있어서, 알파을레핀은 프로필렌, 1-부텐, 1-핵센 및 1- 옥텐으로 이루어진 군에서 선택된 1종 이상이고, 디엔은 5-에틸리덴 -2— 노보넨 , 5-메틸렌 -2-노보넨 및 4-핵사디엔으로 이루어진 군에서 선택된 1종 이상인 3원계 탄성 공중합체 .
【청구항 111
하기 화학식 1로표시되는 제 1 전이금속 화합물 및 하기 화학식 2로 표시되는 제 2 전이금속 화합물을 포함하는 촉매 조성물의 존재 하에서, 40 내지 70 중량 %의 에틸렌, 20 내지 50 중량 %의 탄소수 3 내지 20의 알파올레핀 및 2 내지 20 중량 >의 디엔을 포함하는 단량체 조성물을 연속적으로 반웅기에 공급하면서 공중합하는 단계를 포함하는 제 1 항의 3원계 탄성 공중합체의 제조방법:
[화학식 1]
Figure imgf000030_0001
상기 화학식 1 및 2에서,
Ri 내지 Ri3은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬 라디칼; 탄소수 2 내지' 20의 알케닐 라디칼; 탄소수 6 내지 20의 아릴 라디칼; 실릴 라디칼; 탄소수 7 내지 20의 알킬아릴 라디칼; 탄소수 7 내지 20의 아릴알킬 라디칼; 또는 하이드로카르빌로 치환된 4족 금속의 메탈로이드 라디칼이고; 상기 내지 Ri3 중 이웃하는 서로 다른 2 개의 그룹은 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아릴 라디칼을 포함하는 알킬리딘 라디칼에 의해 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있으며;
M은 4족 전이금속이고;
Qi 및 ¾는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐 라디칼; 탄소수 1 내지 20의 알킬 라디칼; 탄소수 2 내지 20의 알케닐 라디칼; 탄소수 6 내지 20의 아릴 라디칼; 탄소수 7 내지 20의 알킬아릴 라디칼; 탄소수 7 내지 20의 아릴알킬 라디칼; 탄소수 1 내지 20의 알킬 아미도 라디칼; 탄소수 6 내지 20의 아릴 아미도 라디칼; 또는 탄소수 1 내지 20의 알킬리덴 라디칼이다.
【청구항 12]
제 11 항에 있어서, 상기 제 1 전이금속 화합물은 하기 식의 화합물들로 이루어진 군에서 선택된 1종 이상인 3원계 탄성 공중합체의 제조방법:
Figure imgf000031_0001
상기 식에서, ¾ 및 ¾은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소 또는 메틸 라디칼이고, M은 4족 전이금속이고, 및 ¾는 서로 같거나 다를 수 있으며, 각각 독립적으로 메틸 라디칼, 디메틸이미도 라디칼 또는 염소 라디칼이다.
【청구항 13】
제 11 항에 있어서, 상기 제 2 전이금속 화합물은 하기 식의 화합물들로 이루어진 군에서 선택된 1종 이상인 3원계 탄성 공중합체의 제조방법:
Figure imgf000032_0001
Figure imgf000033_0001
상기 식에서, ¾ 및 ¾은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소 또는 메틸 라디칼이고, M은 4족 전이금속이고, ¾ 및 ¾는 서로 같거나 다를 수 있으며, 각각 독립적으로 메틸 라디칼, 디메틸이미도 라디칼 또는 염소 라디칼이다.
【청구항 14】
제 11 항에 있어서, 촉매 조성물은 하기 화학식 3, 화학식 4 및 화학식 5로 이루어진 군에서 선택된 1종 이상의 조촉매 화합물을 더 포함하는 3원계 탄성 공중합체의 제조방법 :
[화학식 3]
-[Al(R)-0]n- 상기 화학식 3에서,
R은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고; n은 2 이상의 정수이며;
[화학식 4]
D(R)3 "
상기 화학식 4에서, R은 상기 화학식 3에서 정의된 바와 같고; D는 알루미늄 또는 보론이며; [화학식 5]
[L-H] + [ZA4]~ 또는 [L] + [ZA4r
상기 화학식 5에서, L은 중성 또는 양이온성 루이스 산이고; H는 수소 원자이며; Z는 13족 원소이고; A는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
【청구항 15]
제 11 항에 있어서, 알파올레핀은 프로필렌, 1-부텐, 1-핵센 및 1- 옥텐으로 이루어진 군에서 선택된 1종 이상이고, 디엔은 5—에틸리덴 -2- 노보넨, 5-메틸렌—2—노보넨 및 4-핵사디엔으로 이루어진 군에서 선택된 1종 이상인 3원계 탄성 공중합체의 제조방법. 【청구항 16】
제 11 항에 있어서, 상기 단량체 조성물, 제 1 및 제 2 전이금속 화합물, 및 조촉매를 반응기에 용액 상태로 연속적으로 공급하면서 공중합하는 3원계 탄성 공중합체의 제조방법 . 【청구항 17】
제 16 항에 있어서, 공중합된 3원계 탄성 공중합체를 반응기로부터 연속적으로 배출시키면서 상기 공중합 단계를 연속 진행하는 3원계 탄성 공중합체의 제조방법 . 【청구항 16】
제 11 항에 있어서, 상기 공중합 단계는 100 내지 170 °C의 온도에서 수행되는, 3원계 탄성 공중합체의 제조방법.
PCT/KR2014/005811 2013-06-28 2014-06-30 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 WO2014209085A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480002718.2A CN104768986A (zh) 2013-06-28 2014-06-30 弹性二烯三元共聚物及其制备方法
JP2015539529A JP2015532362A (ja) 2013-06-28 2014-06-30 ジエンを含む三元系弾性共重合体およびその製造方法
IN2232DEN2015 IN2015DN02232A (ko) 2013-06-28 2014-06-30
EP14818626.5A EP2883891A4 (en) 2013-06-28 2014-06-30 TERNARY ELASTOMER COPOLYMER WITH A DIEN AND METHOD FOR THE PRODUCTION THEREOF
US14/442,527 US9493593B2 (en) 2013-06-28 2014-06-30 Elastic diene terpolymer and preparation method thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020130075873A KR101585204B1 (ko) 2013-06-28 2013-06-28 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR10-2013-0075873 2013-06-28
KR20140040551 2014-04-04
KR10-2014-0040551 2014-04-04
KR1020140047679A KR101684648B1 (ko) 2014-04-21 2014-04-21 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR10-2014-0047679 2014-04-21
KR10-2014-0080039 2014-06-27
KR1020140080039A KR101446685B1 (ko) 2014-04-04 2014-06-27 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2014209085A1 true WO2014209085A1 (ko) 2014-12-31

Family

ID=52142322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005811 WO2014209085A1 (ko) 2013-06-28 2014-06-30 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법

Country Status (6)

Country Link
US (1) US9493593B2 (ko)
EP (1) EP2883891A4 (ko)
JP (1) JP2015532362A (ko)
CN (1) CN104768986A (ko)
IN (1) IN2015DN02232A (ko)
WO (1) WO2014209085A1 (ko)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2883891A4 (en) 2013-06-28 2016-06-01 Lg Chemical Ltd TERNARY ELASTOMER COPOLYMER WITH A DIEN AND METHOD FOR THE PRODUCTION THEREOF
KR101585206B1 (ko) 2013-07-22 2016-01-13 주식회사 엘지화학 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101585204B1 (ko) 2013-06-28 2016-01-13 주식회사 엘지화학 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
US9650460B2 (en) 2013-06-28 2017-05-16 Lg Chem, Ltd. Elastic diene terpolymer and preparation method thereof
US9428600B2 (en) 2013-06-28 2016-08-30 Lg Chem, Ltd. Elastic diene terpolymer and preparation method thereof
CN106459326B (zh) 2013-12-06 2019-08-13 株式会社Lg化学 嵌段共聚物
EP3078691B1 (en) 2013-12-06 2018-04-18 LG Chem, Ltd. Block copolymer
WO2015084122A1 (ko) 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
EP3078694B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
US10227438B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
EP3078690B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
CN105980342B (zh) 2013-12-06 2019-02-15 株式会社Lg化学 单体和嵌段共聚物
JP6410327B2 (ja) 2013-12-06 2018-10-24 エルジー・ケム・リミテッド ブロック共重合体
EP3078689B1 (en) 2013-12-06 2020-12-02 LG Chem, Ltd. Block copolymer
WO2015084131A1 (ko) 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
EP3101043B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
US10227436B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
WO2016053001A1 (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
US10240035B2 (en) 2014-09-30 2019-03-26 Lg Chem, Ltd. Block copolymer
JP6538159B2 (ja) 2014-09-30 2019-07-03 エルジー・ケム・リミテッド ブロック共重合体
US10370529B2 (en) 2014-09-30 2019-08-06 Lg Chem, Ltd. Method of manufacturing patterned substrate
WO2016052999A1 (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
WO2016053005A1 (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
US10287430B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Method of manufacturing patterned substrate
JP6505212B2 (ja) 2014-09-30 2019-04-24 エルジー・ケム・リミテッド ブロック共重合体
WO2016053011A1 (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
WO2016053010A1 (ko) * 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229478A (en) 1988-06-16 1993-07-20 Exxon Chemical Patents Inc. Process for production of high molecular weight EPDM elastomers using a metallocene-alumoxane catalyst system
JPH09512848A (ja) * 1994-05-06 1997-12-22 デーエスエム ナムローゼ フェンノートシャップ エチレン、α−オレフィン及び付加的なジエンからの弾性ポリマーの製法
US6545088B1 (en) 1991-12-30 2003-04-08 Dow Global Technologies Inc. Metallocene-catalyzed process for the manufacture of EP and EPDM polymers
KR100488833B1 (ko) 1997-04-30 2005-05-11 듀폰 다우 엘라스토마스 엘. 엘. 씨. 에틸렌/알파-올레핀/디엔 공중합체 및 그의 제조 방법
JP2005517068A (ja) * 2002-02-08 2005-06-09 エクソンモービル・ケミカル・パテンツ・インク マルチモーダルエチレン、α−オレフィン及びジエンポリマー、当該組成物を生成する方法及び当該組成物を含む装置
KR100820542B1 (ko) 2006-03-24 2008-04-08 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR100976131B1 (ko) 2007-01-10 2010-08-16 주식회사 엘지화학 전이금속 화합물의 제조 방법, 상기 방법으로 제조된전이금속 화합물 및 상기 전이금속 화합물을 포함하는 촉매조성물
KR20110002153A (ko) * 2009-07-01 2011-01-07 주식회사 엘지화학 전이금속 촉매를 이용한 탄성 중합체의 제조방법

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153157A (en) 1987-01-30 1992-10-06 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
DE4236218C2 (de) 1991-12-19 2001-08-16 Degussa Vulkanisierbare EPDM-Kautschukmischungen
US5571883A (en) 1995-06-14 1996-11-05 Exxon Chemical Patents Inc. Elastomeric vehicle vibration damping devices
CN1224433A (zh) 1996-05-03 1999-07-28 Dsm有限公司 制备乙烯、α-烯烃和二烯烃的三元共聚物的方法
CN1254350A (zh) 1997-04-30 2000-05-24 唐化学原料公司 乙烯/α-烯烃/二烯共聚物和其制备
WO1999010422A1 (en) 1997-08-27 1999-03-04 The Dow Chemical Company Rheology modification of low density polyethylene
US5942587A (en) 1997-11-21 1999-08-24 Exxon Chemical Patents Inc. Ethylene polymers with a norbornene comonomer for LLDPE like resins of improved toughness and processibility for film production
CN1134467C (zh) 1998-11-02 2004-01-14 杜邦唐弹性体公司 剪切稀化的乙烯/α-烯烃共聚体及它们的制备
KR100581761B1 (ko) 1999-01-30 2006-05-22 주식회사 엘지화학 회전 성형 제품을 위한 올레핀 공중합체
US6369176B1 (en) 1999-08-19 2002-04-09 Dupont Dow Elastomers Llc Process for preparing in a single reactor polymer blends having a broad molecular weight distribution
US6403520B1 (en) 1999-09-17 2002-06-11 Saudi Basic Industries Corporation Catalyst compositions for polymerizing olefins to multimodal molecular weight distribution polymer, processes for production and use of the catalyst
CN1234740C (zh) 1999-12-10 2006-01-04 埃克森化学专利公司 由丙烯二烯烃共聚物制备的制品
US6977287B2 (en) 1999-12-10 2005-12-20 Exxonmobil Chemical Patents Inc. Propylene diene copolymers
CA2292387A1 (en) 1999-12-17 2001-06-17 Bayer Inc. Process for producing olefin polymer with long chain branching
US6509431B1 (en) 2000-01-18 2003-01-21 Exxonmobil Oil Corporation Terpolymers
AU2001241892A1 (en) 2000-05-10 2001-11-20 Exxonmobil Chemical Patents Inc Polyolefin compositions having improved low temperature toughness and methods therefor
EP2093240B1 (en) 2002-06-19 2015-07-15 ExxonMobil Chemical Patents Inc. Polymers comprising ethylene, higher alpha-olefin comonomer and dienes, especially vinyl norbornene
CN100528915C (zh) 2003-07-09 2009-08-19 帝斯曼知识产权资产管理有限公司 包含乙烯、α-烯烃和乙烯基降冰片烯单体单元的聚合物的制备方法
AU2006227352A1 (en) 2005-03-17 2006-09-28 Dow Global Technologies Llc Polymer blends from interpolymers of ethylene/alpha-olefins and flexible molded articles made therefrom
WO2006101930A2 (en) 2005-03-17 2006-09-28 Dow Global Technologies Inc. Compositions of ethylene/alpha-olefin multi-block interpolymer suitable for films
EP2024399B1 (en) 2006-05-17 2014-04-09 Dow Global Technologies LLC Ethylene/ alpha-olefin/ diene solution polymerization process
ATE531738T1 (de) 2007-02-08 2011-11-15 Lanxess Elastomers Bv Elastomerverbindung
US20120172548A1 (en) * 2007-05-02 2012-07-05 Lg Chem, Ltd. Polyolefin and preparation method thereof
KR100994252B1 (ko) 2007-05-09 2010-11-12 주식회사 엘지화학 에틸렌 알파-올레핀 공중합체
KR101066969B1 (ko) 2007-05-18 2011-09-22 주식회사 엘지화학 공중합성이 뛰어난 전이금속 촉매를 이용한 올레핀중합체의 제조 방법
TW200932770A (en) 2007-10-22 2009-08-01 Univation Tech Llc Metallocene catalysts and their use in polymerization processes
ATE556097T1 (de) 2007-12-05 2012-05-15 Mitsui Chemicals Inc Copolymerkautschuk, kautschukzusammensetzung und geformter kautschuk
KR101084677B1 (ko) * 2008-05-14 2011-11-22 주식회사 엘지화학 올레핀 중합체의 제조방법
KR101149755B1 (ko) 2009-01-06 2012-06-01 에스케이종합화학 주식회사 에틸렌-프로필렌-디엔 공중합체 제조방법
KR101206166B1 (ko) 2009-08-13 2012-11-28 주식회사 엘지화학 메탈로센 촉매를 포함하는 촉매 조성물
JP2013510221A (ja) 2009-11-06 2013-03-21 エルジー・ケム・リミテッド 混合メタロセン触媒組成物およびこれを用いたポリオレフィンの製造方法
US8829106B2 (en) 2009-11-20 2014-09-09 Dow Global Technologies Llc Thermoplastic elastomer for cold and wet applications
KR101367402B1 (ko) 2009-11-27 2014-02-25 주식회사 엘지화학 높은 디엔계 단량체 함량과 고분자량을 가지는 탄성 중합체의 제조방법
KR101339391B1 (ko) 2010-08-16 2013-12-09 주식회사 엘지화학 올레핀계 공중합체 및 이의 제조방법
KR101889978B1 (ko) 2012-01-30 2018-08-21 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 다환기가 치환된 신규의 전이금속 화합물, 이를 포함한 전이금속 촉매 조성물 및 이를 이용한 에틸렌과 α-올레핀 공중합체 또는 에틸렌과 올레핀-디엔 공중합체의 제조방법
KR101587189B1 (ko) 2012-02-06 2016-02-02 주식회사 엘지화학 폴리올레핀계 삼원 공중합체 및 이의 제조방법
EP2867293A4 (en) 2012-06-28 2015-12-02 Dow Global Technologies Llc NETWORKED HARDENER AND LOW PRESSURE FORMING RESIN
KR101391692B1 (ko) 2012-11-14 2014-05-07 주식회사 엘지화학 3원계 탄성 공중합체 및 이의 제조 방법
KR20140144076A (ko) 2013-06-10 2014-12-18 주식회사 엘지화학 3원계 탄성 공중합체의 제조 방법
KR101585206B1 (ko) * 2013-07-22 2016-01-13 주식회사 엘지화학 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
US9650460B2 (en) 2013-06-28 2017-05-16 Lg Chem, Ltd. Elastic diene terpolymer and preparation method thereof
EP2883891A4 (en) 2013-06-28 2016-06-01 Lg Chemical Ltd TERNARY ELASTOMER COPOLYMER WITH A DIEN AND METHOD FOR THE PRODUCTION THEREOF

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229478A (en) 1988-06-16 1993-07-20 Exxon Chemical Patents Inc. Process for production of high molecular weight EPDM elastomers using a metallocene-alumoxane catalyst system
US6545088B1 (en) 1991-12-30 2003-04-08 Dow Global Technologies Inc. Metallocene-catalyzed process for the manufacture of EP and EPDM polymers
JPH09512848A (ja) * 1994-05-06 1997-12-22 デーエスエム ナムローゼ フェンノートシャップ エチレン、α−オレフィン及び付加的なジエンからの弾性ポリマーの製法
US5902867A (en) 1994-05-06 1999-05-11 Dsm Nv Process for the preparation of an elastomeric polymer from ethylene, alpha-olefine and optionally diene
KR100488833B1 (ko) 1997-04-30 2005-05-11 듀폰 다우 엘라스토마스 엘. 엘. 씨. 에틸렌/알파-올레핀/디엔 공중합체 및 그의 제조 방법
JP2005517068A (ja) * 2002-02-08 2005-06-09 エクソンモービル・ケミカル・パテンツ・インク マルチモーダルエチレン、α−オレフィン及びジエンポリマー、当該組成物を生成する方法及び当該組成物を含む装置
KR100820542B1 (ko) 2006-03-24 2008-04-08 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR100976131B1 (ko) 2007-01-10 2010-08-16 주식회사 엘지화학 전이금속 화합물의 제조 방법, 상기 방법으로 제조된전이금속 화합물 및 상기 전이금속 화합물을 포함하는 촉매조성물
KR20110002153A (ko) * 2009-07-01 2011-01-07 주식회사 엘지화학 전이금속 촉매를 이용한 탄성 중합체의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HENRI G. BURHIN ET AL.: "An Innovative Method to Investigate Polymer Long Chain Branching with FT-Rheoiogy and Large Amplitude Oscillatory Shear(LAOS)", CHEM LISTY, vol. 103, 2009, pages S48 - S51, XP055197857 *
SUSANTA MITRA. ET AL.: "Structural Determination of Ethylene-Propylene-Diene Rubber (EPDM) Containing High Degree of Controlled Long-Chain Branching", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 113, March 2009 (2009-03-01), pages 2962 - 2972, XP055197851 *

Also Published As

Publication number Publication date
EP2883891A1 (en) 2015-06-17
JP2015532362A (ja) 2015-11-09
CN104768986A (zh) 2015-07-08
EP2883891A4 (en) 2016-06-01
IN2015DN02232A (ko) 2015-08-21
US9493593B2 (en) 2016-11-15
US20160280823A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
WO2014209085A1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101585206B1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101262305B1 (ko) 전이금속 촉매를 이용한 탄성 중합체의 제조방법
KR101391692B1 (ko) 3원계 탄성 공중합체 및 이의 제조 방법
WO2014209084A1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101655392B1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101585204B1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
CN104250332B (zh) 含二烯的三元弹性共聚物及其制备方法
KR20170075365A (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101476374B1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101680831B1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101691629B1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101462208B1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
WO2014209082A1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101684648B1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101446685B1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101652920B1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101660480B1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818626

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014818626

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014818626

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015539529

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14442527

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE