WO2014209085A1 - 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 - Google Patents
디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 Download PDFInfo
- Publication number
- WO2014209085A1 WO2014209085A1 PCT/KR2014/005811 KR2014005811W WO2014209085A1 WO 2014209085 A1 WO2014209085 A1 WO 2014209085A1 KR 2014005811 W KR2014005811 W KR 2014005811W WO 2014209085 A1 WO2014209085 A1 WO 2014209085A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon atoms
- group
- copolymer
- transition metal
- radicals
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 150000001993 dienes Chemical class 0.000 title claims abstract description 39
- 229920001198 elastomeric copolymer Polymers 0.000 title claims abstract description 34
- 229920001577 copolymer Polymers 0.000 claims abstract description 88
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 68
- 239000003054 catalyst Substances 0.000 claims abstract description 47
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 28
- 150000003624 transition metals Chemical class 0.000 claims abstract description 27
- 239000004711 α-olefin Substances 0.000 claims abstract description 22
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000005977 Ethylene Substances 0.000 claims abstract description 21
- 229920001971 elastomer Polymers 0.000 claims abstract description 20
- 238000003860 storage Methods 0.000 claims abstract description 18
- 239000005060 rubber Substances 0.000 claims abstract description 13
- 230000010355 oscillation Effects 0.000 claims abstract description 6
- -1 Alkyl radicals Chemical class 0.000 claims description 65
- 239000000178 monomer Substances 0.000 claims description 31
- 150000003623 transition metal compounds Chemical class 0.000 claims description 27
- 150000001875 compounds Chemical class 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 25
- 229920001897 terpolymer Polymers 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 238000007334 copolymerization reaction Methods 0.000 claims description 16
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 12
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical group CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 claims description 10
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 claims description 9
- 150000005840 aryl radicals Chemical class 0.000 claims description 9
- 229910052736 halogen Inorganic materials 0.000 claims description 9
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 9
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 9
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 239000000806 elastomer Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- WCYWZMWISLQXQU-UHFFFAOYSA-N methyl Chemical compound [CH3] WCYWZMWISLQXQU-UHFFFAOYSA-N 0.000 claims description 7
- 150000003254 radicals Chemical class 0.000 claims description 7
- 239000004215 Carbon black (E152) Substances 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052752 metalloid Inorganic materials 0.000 claims description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 239000002841 Lewis acid Substances 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 229910052795 boron group element Inorganic materials 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- 230000007935 neutral effect Effects 0.000 claims description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 claims description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 49
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 21
- 229920002943 EPDM rubber Polymers 0.000 description 19
- LWNGJAHMBMVCJR-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenoxy)boronic acid Chemical compound OB(O)OC1=C(F)C(F)=C(F)C(F)=C1F LWNGJAHMBMVCJR-UHFFFAOYSA-N 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000006116 polymerization reaction Methods 0.000 description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- QXALIERKYGCHHA-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenyl)borane Chemical compound BC1=C(F)C(F)=C(F)C(F)=C1F QXALIERKYGCHHA-UHFFFAOYSA-N 0.000 description 4
- RURFJXKOXIWFJX-UHFFFAOYSA-N (2,3,4,6-tetrafluorophenoxy)boronic acid Chemical compound OB(O)OC1=C(F)C=C(F)C(F)=C1F RURFJXKOXIWFJX-UHFFFAOYSA-N 0.000 description 4
- QTYUSOHYEPOHLV-FNORWQNLSA-N 1,3-Octadiene Chemical compound CCCC\C=C\C=C QTYUSOHYEPOHLV-FNORWQNLSA-N 0.000 description 4
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 4
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 4
- DCTOHCCUXLBQMS-UHFFFAOYSA-N 1-undecene Chemical compound CCCCCCCCCC=C DCTOHCCUXLBQMS-UHFFFAOYSA-N 0.000 description 4
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 4
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 3
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 230000037048 polymerization activity Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- VQOXUMQBYILCKR-UHFFFAOYSA-N 1-Tridecene Chemical compound CCCCCCCCCCCC=C VQOXUMQBYILCKR-UHFFFAOYSA-N 0.000 description 2
- ADOBXTDBFNCOBN-UHFFFAOYSA-N 1-heptadecene Chemical compound CCCCCCCCCCCCCCCC=C ADOBXTDBFNCOBN-UHFFFAOYSA-N 0.000 description 2
- PJLHTVIBELQURV-UHFFFAOYSA-N 1-pentadecene Chemical compound CCCCCCCCCCCCCC=C PJLHTVIBELQURV-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- UCKITPBQPGXDHV-UHFFFAOYSA-N 7-methylocta-1,6-diene Chemical compound CC(C)=CCCCC=C UCKITPBQPGXDHV-UHFFFAOYSA-N 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 241000130993 Scarabaeus <genus> Species 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-O dimethyl(phenyl)azanium Chemical compound C[NH+](C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-O 0.000 description 2
- 229940069096 dodecene Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012968 metallocene catalyst Substances 0.000 description 2
- 150000002738 metalloids Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- NHLUYCJZUXOUBX-UHFFFAOYSA-N nonadec-1-ene Chemical compound CCCCCCCCCCCCCCCCCC=C NHLUYCJZUXOUBX-UHFFFAOYSA-N 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 150000003682 vanadium compounds Chemical class 0.000 description 2
- WCFQIFDACWBNJT-UHFFFAOYSA-N $l^{1}-alumanyloxy(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]O[Al] WCFQIFDACWBNJT-UHFFFAOYSA-N 0.000 description 1
- OGQVROWWFUXRST-FNORWQNLSA-N (3e)-hepta-1,3-diene Chemical compound CCC\C=C\C=C OGQVROWWFUXRST-FNORWQNLSA-N 0.000 description 1
- CLNYHERYALISIR-FNORWQNLSA-N (3e)-nona-1,3-diene Chemical compound CCCCC\C=C\C=C CLNYHERYALISIR-FNORWQNLSA-N 0.000 description 1
- DOGRYWZHOBYUMD-BQYQJAHWSA-N (4E)-5-methylhepta-1,4-diene Chemical compound CC\C(C)=C\CC=C DOGRYWZHOBYUMD-BQYQJAHWSA-N 0.000 description 1
- HYBLFDUGSBOMPI-BQYQJAHWSA-N (4e)-octa-1,4-diene Chemical compound CCC\C=C\CC=C HYBLFDUGSBOMPI-BQYQJAHWSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- 125000006021 1-methyl-2-propenyl group Chemical group 0.000 description 1
- 125000006030 1-methyl-3-butenyl group Chemical group 0.000 description 1
- FGRBYDKOBBBPOI-UHFFFAOYSA-N 10,10-dioxo-2-[4-(N-phenylanilino)phenyl]thioxanthen-9-one Chemical compound O=C1c2ccccc2S(=O)(=O)c2ccc(cc12)-c1ccc(cc1)N(c1ccccc1)c1ccccc1 FGRBYDKOBBBPOI-UHFFFAOYSA-N 0.000 description 1
- GRWZFPFQSHTXHM-UHFFFAOYSA-N 11-methyldodec-1-ene Chemical compound CC(C)CCCCCCCCC=C GRWZFPFQSHTXHM-UHFFFAOYSA-N 0.000 description 1
- LPWUGKDQSNKUOQ-UHFFFAOYSA-N 12-ethyltetradec-1-ene Chemical compound CCC(CC)CCCCCCCCCC=C LPWUGKDQSNKUOQ-UHFFFAOYSA-N 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- FEEIOCGOXYNQIM-UHFFFAOYSA-N 2,3-di(propan-2-ylidene)bicyclo[2.2.1]hept-5-ene Chemical compound C1C2C=CC1C(=C(C)C)C2=C(C)C FEEIOCGOXYNQIM-UHFFFAOYSA-N 0.000 description 1
- IOHAVGDJBFVWGE-UHFFFAOYSA-N 2-ethylidene-3-propan-2-ylidenebicyclo[2.2.1]hept-5-ene Chemical compound C1C2C=CC1C(=CC)C2=C(C)C IOHAVGDJBFVWGE-UHFFFAOYSA-N 0.000 description 1
- YVSMQHYREUQGRX-UHFFFAOYSA-N 2-ethyloxaluminane Chemical compound CC[Al]1CCCCO1 YVSMQHYREUQGRX-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- WXOFQPMQHAHBKI-UHFFFAOYSA-N 4-ethylbicyclo[2.2.1]hept-2-ene Chemical compound C1CC2C=CC1(CC)C2 WXOFQPMQHAHBKI-UHFFFAOYSA-N 0.000 description 1
- YRJNKFONIFEXAQ-UHFFFAOYSA-N 4-ethylocta-1,4-diene Chemical compound CCCC=C(CC)CC=C YRJNKFONIFEXAQ-UHFFFAOYSA-N 0.000 description 1
- KKCUYUPUJWZZBX-UHFFFAOYSA-N 4-methylnona-1,4-diene Chemical compound CCCCC=C(C)CC=C KKCUYUPUJWZZBX-UHFFFAOYSA-N 0.000 description 1
- DBQVCSAYETZQAM-UHFFFAOYSA-N 5-(2-methylpropylidene)bicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=CC(C)C)CC1C=C2 DBQVCSAYETZQAM-UHFFFAOYSA-N 0.000 description 1
- VEZQXJBGVXZEJH-UHFFFAOYSA-N 5-(3,4-dimethylhex-5-en-2-yl)bicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C(C)C(C)C(C=C)C)CC1C=C2 VEZQXJBGVXZEJH-UHFFFAOYSA-N 0.000 description 1
- SCWOXHBWHDFMMG-UHFFFAOYSA-N 5-(3,4-dimethylpent-4-enyl)bicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCC(C)C(C)=C)CC1C=C2 SCWOXHBWHDFMMG-UHFFFAOYSA-N 0.000 description 1
- ARHYMNAEEXOAGF-UHFFFAOYSA-N 5-(3-ethylpent-4-enyl)bicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCC(CC)C=C)CC1C=C2 ARHYMNAEEXOAGF-UHFFFAOYSA-N 0.000 description 1
- ZVQPLXXHYUUJRX-UHFFFAOYSA-N 5-but-3-enylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCC=C)CC1C=C2 ZVQPLXXHYUUJRX-UHFFFAOYSA-N 0.000 description 1
- NWPQAENAYWENSD-UHFFFAOYSA-N 5-butylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=CCCC)CC1C=C2 NWPQAENAYWENSD-UHFFFAOYSA-N 0.000 description 1
- HKGNYFHXJIMWJR-UHFFFAOYSA-N 5-ethylhepta-1,4-diene Chemical compound CCC(CC)=CCC=C HKGNYFHXJIMWJR-UHFFFAOYSA-N 0.000 description 1
- URLSMLBKOVLSKM-UHFFFAOYSA-N 5-ethylhepta-1,5-diene Chemical compound CCC(=CC)CCC=C URLSMLBKOVLSKM-UHFFFAOYSA-N 0.000 description 1
- WTQBISBWKRKLIJ-UHFFFAOYSA-N 5-methylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C)CC1C=C2 WTQBISBWKRKLIJ-UHFFFAOYSA-N 0.000 description 1
- RZTQYTKFARGVKP-UHFFFAOYSA-N 5-pent-4-enylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCCC=C)CC1C=C2 RZTQYTKFARGVKP-UHFFFAOYSA-N 0.000 description 1
- UAKPCRIFCXQISY-UHFFFAOYSA-N 5-prop-2-enylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CC=C)CC1C=C2 UAKPCRIFCXQISY-UHFFFAOYSA-N 0.000 description 1
- UGJBFMMPNVKBPX-UHFFFAOYSA-N 5-propan-2-ylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C(C)C)CC1C=C2 UGJBFMMPNVKBPX-UHFFFAOYSA-N 0.000 description 1
- WKWWISMSTOFOGJ-UHFFFAOYSA-N 5-propylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=CCC)CC1C=C2 WKWWISMSTOFOGJ-UHFFFAOYSA-N 0.000 description 1
- DNONEECSMXNNSS-UHFFFAOYSA-N 6-ethylidenenon-1-ene Chemical compound CCCC(=CC)CCCC=C DNONEECSMXNNSS-UHFFFAOYSA-N 0.000 description 1
- GFDIPZYKPMOUJP-UHFFFAOYSA-N 6-ethylocta-1,6-diene Chemical compound CCC(=CC)CCCC=C GFDIPZYKPMOUJP-UHFFFAOYSA-N 0.000 description 1
- KUFDSEQTHICIIF-UHFFFAOYSA-N 6-methylhepta-1,5-diene Chemical compound CC(C)=CCCC=C KUFDSEQTHICIIF-UHFFFAOYSA-N 0.000 description 1
- VLBCYLMKVRFERM-UHFFFAOYSA-N 6-methylocta-1,5-diene Chemical compound CCC(C)=CCCC=C VLBCYLMKVRFERM-UHFFFAOYSA-N 0.000 description 1
- 241000234282 Allium Species 0.000 description 1
- 239000007848 Bronsted acid Substances 0.000 description 1
- IQIJVSQUGQAAOS-UHFFFAOYSA-N CC(C)(C)N(C)C.CC(C)(C)N(C)C.OB(O)OC(C(F)=CC(F)=C1F)=C1F Chemical compound CC(C)(C)N(C)C.CC(C)(C)N(C)C.OB(O)OC(C(F)=CC(F)=C1F)=C1F IQIJVSQUGQAAOS-UHFFFAOYSA-N 0.000 description 1
- HXTCRTXENZVBCA-UHFFFAOYSA-N CCCN(CCC)CCC.CCCN(CCC)CCC.OB(O)OC(C(F)=CC(F)=C1F)=C1F Chemical compound CCCN(CCC)CCC.CCCN(CCC)CCC.OB(O)OC(C(F)=CC(F)=C1F)=C1F HXTCRTXENZVBCA-UHFFFAOYSA-N 0.000 description 1
- WBGOPKFDVGABOL-UHFFFAOYSA-N CCN(CC)CC.CCN(CC)CC.OB(O)OC(C(F)=CC(F)=C1F)=C1F Chemical compound CCN(CC)CC.CCN(CC)CC.OB(O)OC(C(F)=CC(F)=C1F)=C1F WBGOPKFDVGABOL-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 101150052863 THY1 gene Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000000441 X-ray spectroscopy Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- HQZJODBJOBTCPI-VHCPEVEQSA-N [(3ar,4s,6ar,8r,9s,9ar,9br)-8-hydroxy-3,6-dimethylidene-2-oxospiro[3a,4,5,6a,7,8,9a,9b-octahydroazuleno[4,5-b]furan-9,2'-oxirane]-4-yl] (2s)-2-methyloxirane-2-carboxylate Chemical compound O([C@@H]1[C@H]2C(=C)C(=O)O[C@H]2[C@@H]2[C@@]3(OC3)[C@H](O)C[C@H]2C(=C)C1)C(=O)[C@]1(C)CO1 HQZJODBJOBTCPI-VHCPEVEQSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005626 carbonium group Chemical group 0.000 description 1
- 238000007036 catalytic synthesis reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- GQRCDUBMGNBKOX-UHFFFAOYSA-N deca-1,8-diene Chemical compound CC=CCCCCCC=C GQRCDUBMGNBKOX-UHFFFAOYSA-N 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000005131 dialkylammonium group Chemical group 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical compound [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- MYBJXSAXGLILJD-UHFFFAOYSA-N diethyl(methyl)alumane Chemical compound CC[Al](C)CC MYBJXSAXGLILJD-UHFFFAOYSA-N 0.000 description 1
- NAPSCFZYZVSQHF-UHFFFAOYSA-N dimantine Chemical compound CCCCCCCCCCCCCCCCCCN(C)C NAPSCFZYZVSQHF-UHFFFAOYSA-N 0.000 description 1
- JGHYBJVUQGTEEB-UHFFFAOYSA-M dimethylalumanylium;chloride Chemical compound C[Al](C)Cl JGHYBJVUQGTEEB-UHFFFAOYSA-M 0.000 description 1
- CQSPSDNMZQLQSJ-UHFFFAOYSA-M dimethylalumanylium;hydroxide Chemical compound [OH-].C[Al+]C CQSPSDNMZQLQSJ-UHFFFAOYSA-M 0.000 description 1
- ORVACBDINATSAR-UHFFFAOYSA-N dimethylaluminum Chemical compound C[Al]C ORVACBDINATSAR-UHFFFAOYSA-N 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- SHGOGDWTZKFNSC-UHFFFAOYSA-N ethyl(dimethyl)alumane Chemical compound CC[Al](C)C SHGOGDWTZKFNSC-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 125000001207 fluorophenyl group Chemical group 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- PRBHEGAFLDMLAL-UHFFFAOYSA-N hexa-1,4-diene Chemical compound CC=CCC=C PRBHEGAFLDMLAL-UHFFFAOYSA-N 0.000 description 1
- 239000002815 homogeneous catalyst Substances 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical compound C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 description 1
- WFVLGDMOCAFNNS-UHFFFAOYSA-N n,n-di(tetradecyl)tetradecan-1-amine Chemical compound CCCCCCCCCCCCCCN(CCCCCCCCCCCCCC)CCCCCCCCCCCCCC WFVLGDMOCAFNNS-UHFFFAOYSA-N 0.000 description 1
- YWWNNLPSZSEZNZ-UHFFFAOYSA-N n,n-dimethyldecan-1-amine Chemical compound CCCCCCCCCCN(C)C YWWNNLPSZSEZNZ-UHFFFAOYSA-N 0.000 description 1
- YWFWDNVOPHGWMX-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(C)C YWFWDNVOPHGWMX-UHFFFAOYSA-N 0.000 description 1
- SFBHPFQSSDCYSL-UHFFFAOYSA-N n,n-dimethyltetradecan-1-amine Chemical compound CCCCCCCCCCCCCCN(C)C SFBHPFQSSDCYSL-UHFFFAOYSA-N 0.000 description 1
- BUHHOHWMNZQMTA-UHFFFAOYSA-N n,n-dioctadecyloctadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCN(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC BUHHOHWMNZQMTA-UHFFFAOYSA-N 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical group CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- ATBNMWWDBWBAHM-UHFFFAOYSA-N n-decyl-n-methyldecan-1-amine Chemical compound CCCCCCCCCCN(C)CCCCCCCCCC ATBNMWWDBWBAHM-UHFFFAOYSA-N 0.000 description 1
- UWHRNIXHZAWBMF-UHFFFAOYSA-N n-dodecyl-n-methyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(C)CCCCCCCCCCCC UWHRNIXHZAWBMF-UHFFFAOYSA-N 0.000 description 1
- VFLWKHBYVIUAMP-UHFFFAOYSA-N n-methyl-n-octadecyloctadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCN(C)CCCCCCCCCCCCCCCCCC VFLWKHBYVIUAMP-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- NMFOAHIHPAPYJJ-UHFFFAOYSA-N nona-2,5-diene Chemical compound CCCC=CCC=CC NMFOAHIHPAPYJJ-UHFFFAOYSA-N 0.000 description 1
- JZOMOBUGVZDCPA-UHFFFAOYSA-N nona-2,6-diene Chemical compound CCC=CCCC=CC JZOMOBUGVZDCPA-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- MWSOLOKEHHPOBC-UHFFFAOYSA-N pentylaluminum Chemical compound CCCCC[Al] MWSOLOKEHHPOBC-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- GNWCEVOXWDZRJH-UHFFFAOYSA-N repin Natural products CC1(CO1)C(=O)OC2CC3C(OC(=O)C3=C)C4C(CC(O)C45CO5)C2=C GNWCEVOXWDZRJH-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical group C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 1
- LTOZDDGSTSOOCJ-UHFFFAOYSA-N tetradeca-1,12-diene Chemical compound CC=CCCCCCCCCCC=C LTOZDDGSTSOOCJ-UHFFFAOYSA-N 0.000 description 1
- NDUUEFPGQBSFPV-UHFFFAOYSA-N tri(butan-2-yl)alumane Chemical compound CCC(C)[Al](C(C)CC)C(C)CC NDUUEFPGQBSFPV-UHFFFAOYSA-N 0.000 description 1
- 125000005208 trialkylammonium group Chemical group 0.000 description 1
- SQBBHCOIQXKPHL-UHFFFAOYSA-N tributylalumane Chemical compound CCCC[Al](CCCC)CCCC SQBBHCOIQXKPHL-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- CMHHITPYCHHOGT-UHFFFAOYSA-N tributylborane Chemical compound CCCCB(CCCC)CCCC CMHHITPYCHHOGT-UHFFFAOYSA-N 0.000 description 1
- ABVVEAHYODGCLZ-UHFFFAOYSA-O tridecylazanium Chemical compound CCCCCCCCCCCCC[NH3+] ABVVEAHYODGCLZ-UHFFFAOYSA-O 0.000 description 1
- SWZDQOUHBYYPJD-UHFFFAOYSA-N tridodecylamine Chemical compound CCCCCCCCCCCCN(CCCCCCCCCCCC)CCCCCCCCCCCC SWZDQOUHBYYPJD-UHFFFAOYSA-N 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- LALRXNPLTWZJIJ-UHFFFAOYSA-N triethylborane Chemical compound CCB(CC)CC LALRXNPLTWZJIJ-UHFFFAOYSA-N 0.000 description 1
- WXRGABKACDFXMG-UHFFFAOYSA-N trimethylborane Chemical compound CB(C)C WXRGABKACDFXMG-UHFFFAOYSA-N 0.000 description 1
- ZNEOHLHCKGUAEB-UHFFFAOYSA-N trimethylphenylammonium Chemical compound C[N+](C)(C)C1=CC=CC=C1 ZNEOHLHCKGUAEB-UHFFFAOYSA-N 0.000 description 1
- LFXVBWRMVZPLFK-UHFFFAOYSA-N trioctylalumane Chemical compound CCCCCCCC[Al](CCCCCCCC)CCCCCCCC LFXVBWRMVZPLFK-UHFFFAOYSA-N 0.000 description 1
- JOJQVUCWSDRWJE-UHFFFAOYSA-N tripentylalumane Chemical compound CCCCC[Al](CCCCC)CCCCC JOJQVUCWSDRWJE-UHFFFAOYSA-N 0.000 description 1
- JQPMDTQDAXRDGS-UHFFFAOYSA-N triphenylalumane Chemical compound C1=CC=CC=C1[Al](C=1C=CC=CC=1)C1=CC=CC=C1 JQPMDTQDAXRDGS-UHFFFAOYSA-N 0.000 description 1
- CNWZYDSEVLFSMS-UHFFFAOYSA-N tripropylalumane Chemical compound CCC[Al](CCC)CCC CNWZYDSEVLFSMS-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- ZMPKTELQGVLZTD-UHFFFAOYSA-N tripropylborane Chemical compound CCCB(CCC)CCC ZMPKTELQGVLZTD-UHFFFAOYSA-N 0.000 description 1
- XDSSGQHOYWGIKC-UHFFFAOYSA-N tris(2-methylpropyl)borane Chemical compound CC(C)CB(CC(C)C)CC(C)C XDSSGQHOYWGIKC-UHFFFAOYSA-N 0.000 description 1
- JOHIXGUTSXXADV-UHFFFAOYSA-N undec-2-ene Chemical compound CCCCCCCCC=CC JOHIXGUTSXXADV-UHFFFAOYSA-N 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
- C08F210/18—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
- C08F255/02—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
- C08F255/06—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethene-propene-diene terpolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/20—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds unconjugated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2420/00—Metallocene catalysts
- C08F2420/02—Cp or analog bridged to a non-Cp X anionic donor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/09—Long chain branches
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65908—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
Definitions
- Ternary elastic copolymer comprising a diene and a method of manufacturing the same
- the present invention relates to a ternary elastic copolymer which is a copolymer of ethylene, alpha olefin and diene, and a method for producing the same. More specifically, the present invention relates to a ternary elastic copolymer having a long chain branch capable of simultaneously striking excellent mechanical properties and elasticity (flexibility) and a method for producing the same.
- EPDM rubber which is a terpolymer-based elastomeric copolymer of dienes such as ethylene, propylene, and dienes such as ethilidene norbornene, has a molecular structure that does not have an unsaturated bond in the main chain, and is a conjugated diene rubber having general weather resistance, chemical resistance, and heat resistance. Has better properties. Due to these characteristics, ternary elastic copolymers such as EPDM rubber are widely used in various automotive parts materials, electric wire materials, construction and industrial materials such as various hoses, gaskets, belts, bumpers or blends with plastics.
- such terpolymer-based elastomeric copolymers such as EPDM rubber have been prepared by copolymerizing three monomers using a catalyst mainly comprising a vanadium compound, for example, a vanadium-based Ziegler-Natta catalyst.
- a catalyst mainly comprising a vanadium compound for example, a vanadium-based Ziegler-Natta catalyst.
- vanadium-based catalysts need to use an excessive amount of catalyst with low catalytic activity, and thus have a disadvantage in that the residual metal content in the copolymer is increased. Accordingly, after the copolymer is prepared, catalyst removal and decolorization processes are required, and catalyst residues in the resin may cause deterioration of heat resistance, foreign matter generation, or vulcanization reaction.
- the preparation of the terpolymer-based elastomeric copolymer using the catalyst containing the vanadium compound is difficult to control the reaction temperature due to low polymerization activity and low-temperature polymerization conditions, and it is difficult to control the intake amount of comonomers such as propylene and diene, so that the molecules of the copolymer It was true that structural control was difficult. Therefore, in the case of using a vanadium-based catalyst, for the production of ternary elastic copolymer of various physical properties There has been a limit. Due to these problems, a method for producing an EPDM rubber round ternary elastic copolymer using a metallocene Group 4 transition metal catalyst instead of a vanadium Ziegler-Natta catalyst has recently been developed.
- Such a Group 4 transition metal catalyst exhibits high polymerization activity in ellepin polymerization, enables not only the production of a copolymer having a higher molecular weight, but also easy control of the molecular weight distribution and composition of the copolymer.
- 5,902,867 and the like disclose a method of lowering the viscosity of the polymer by widening the molecular weight distribution in order to improve the rough workability and extrusion processability of EPDM, but in this case, Due to the molecular weight component, there is a limit in which the polymer is separated into the processing process and the surface characteristics and the low temperature characteristics are lowered.
- Patent Document 0001 US Patent No. 5,229,478
- Patent Document 0002 US Patent No. 6,545,088 (Patent Document 0003) Korean Dongrok Patent No. 0488833
- Patent Document 0004 US Patent No. 5,902,867
- the present invention is to provide a ternary elastic copolymer having a long chain branch that can simultaneously satisfy excellent processability and elasticity (flexibility).
- the present invention also provides a method for producing a ternary elastic copolymer capable of producing the ternary elastic copolymer having the long chain branch with high productivity.
- the present invention is a copolymer of ethylene, alpha -olefin and diene having 3 to 20 carbon atoms, obtained in the presence of a Group 4 transition metal catalyst,
- the weight average molecular weight measured by GPC is 100,000 to 500, 000
- LAOS Large Angles of Oscillation and high Strains
- the present invention also, in the presence of a catalyst composition comprising a first transition metal compound represented by the following formula (1) and a second transition metal compound represented by the following formula (2), 40 to 70% by weight of ethylene, 20 to 50% by weight
- a catalyst composition comprising a first transition metal compound represented by the following formula (1) and a second transition metal compound represented by the following formula (2), 40 to 70% by weight of ethylene, 20 to 50% by weight
- a method of preparing the terpolymer-based elastomeric copolymer comprising the step of copolymerizing while continuously supplying a monomer composition comprising an alpha olefin having 3 to 20 carbon atoms and 2 to 20% by weight of a diene:
- Ri to R 13 may be the same as or different from each other, and each independently hydrogen; Alkyl radicals having 1 to 20 carbon atoms; Alkenyl radicals having 2 to 20 carbon atoms; Aryl radicals having 6 to 20 carbon atoms; Silyl radicals; Alkylaryl radicals having 7 to 20 carbon atoms; Arylalkyl radicals having 7 to 20 carbon atoms; Or a metalloid radical of a Group 4 metal substituted with hydrocarbyl; Two adjacent groups of R 13 to each other may be connected to each other by an alkylidine radical including an alkyl having 1 to 20 carbon atoms or an aryl radical having 6 to 20 carbon atoms to form an aliphatic ring or an aromatic ring;
- M is a Group 4 transition metal
- Qi and Q 2 may be the same as or different from each other, and each independently a halogen radical; Alkyl radicals having 1 to 20 carbon atoms; Alkenyl radicals having 2 to 20 carbon atoms; Aryl radicals having 6 to 20 carbon atoms; Alkylaryl radicals having 7 to 20 carbon atoms; Arylalkyl radicals having 7 to 20 carbon atoms; Alkyl amido radicals having 1 to 20 carbon atoms; Aryl amido radicals having 6 to 20 carbon atoms; Or 1 carbon Alkylidene radical of from 20 to 20.
- a ternary elastic copolymer and a method of preparing the same according to a specific embodiment of the present invention will be described in detail.
- ternary elastic copolymer used in the present specification may be defined as follows unless otherwise specified.
- the "ternary elastomeric copolymer” may refer to any elastomeric copolymer (for example, a crosslinkable random copolymer) in which ethylene, an alpha olefin having 3 to 20 carbon atoms, and three monomers of dienes are copolymerized. have.
- Representative examples of such "ternary elastomeric copolymers” include EPDM rubber which is a copolymer of ethylene, propylene and diene.
- terminal elastomeric copolymers do not refer to copolymers of only three monomers, and together with the ethylene, one or more monomers belonging to the category of alphalefin and one or more monomers belonging to the category of diene are copolymerized. Of course, it can include any elastic copolymer.
- ethylene, alpaeul repin the two kinds of propylene and 1-butene and ethyl Lee Den-norbornene and 1,4-hex-diene two of diene is copolymerized elastomeric copolymer also of ethylene with alpha Since an olefin and three monomers which respectively belong to the category of dienes are copolymerized, it can belong to the category of said "ternary elastic copolymer.”
- a copolymer of ethylene, alpha-olefin and diene having 3 to 20 carbon atoms obtained in the presence of a Group 4 transition metal catalyst i) a weight average molecular weight measured by GPC is 100,000 to 500, 000, and ii) the first harmonic of the storage modulus for the fifth harmonic of the storage modulus measured with a Rubber Process Analyzer at 25 ° C using the Large Angles of Oscillation and high Strains (LAOS) method.
- LAOS Large Angles of Oscillation and high Strains
- Ternary elastomeric copolymer of such an embodiment is a copolymer of three monomers of ethylene, alpha olefin and diene in a certain content range, as measured by GPC about 100,000 to 500,000, or about 150,000 to 400,000, or 200,000 to 300 , Has a relatively large weight average molecular weight of 000.
- This large weight average molecular weight is achieved due to the excellent activity of Group 4 transition metal catalysts, for example, the first and second transition metal compounds of Formulas 1 and 2 described below belonging to the metallocene series,
- the ternary elastomer for example EPDM rubber, can exhibit excellent mechanical properties.
- the tertiary elastic copolymer of the embodiment may have a positive value, and preferably, may be greater than about 0 and 5 or less, or about 0.01 to 3.5.
- the ternary elastomeric copolymer of the embodiment that satisfies this relationship has a long chain branching degree such that the LCB Index can represent a positive value, and thus exhibits excellent processability and is suitable for extrusion processing, and has improved elasticity and flexibility. With excellent mechanical properties can be stratified at the same time.
- the ternary elastic copolymer of the embodiment may be obtained in the presence of a Group 4 transition metal catalyst.
- the terpolymer-based elastomeric copolymer having the above characteristics can be produced, for example, with excellent productivity and yields peculiar to the Group 4 transition metal catalyst belonging to the metallocene series, while having a large molecular weight and thus excellent mechanical properties.
- excellent processability, elasticity, and flexibility can be simultaneously satisfied.
- the copolymer of ethylene, an alpha olefin having 3 to 20 carbon atoms and a diene is a copolymer of 40 to 70 wt% ethylene, 15 to 55 wt% alpha olefin having 3 to 20 carbon atoms and 0.5 to 20 wt% diene.
- Such copolymers are continuously mixed with a monomer composition comprising 40 to 70% by weight of ethylene, 20 to 50% by weight of alpha olefins having 3 to 20 carbon atoms and 2 to 20% by weight of diene in the presence of a catalyst composition. It may be produced by copolymerization while supplying, and in particular, by including each monomer in the above ratio, it may exhibit better elasticity and flexibility.
- the LCB Index of the ternary elastic copolymer of the embodiment may be measured by a rubber process analyzer using a large angles of oscillation and high strains (LAOS) method as follows. First, polymerize and prepare the ternary elastic copolymer, and then, for each copolymer, the temperature (125 ° C) and the frequency 0.2 Hz determined by the SIS V-50 Rubber Process Analyzer of SCARABAEUS INSTRUMENTS SYSTEMSS. The shear storage modulus behavior is measured by varying the strain from 0.23 ⁇ 4> to 1250%. The first harmonics and the fifth harmonics are derived by FT conversion of the measured storage modulus, and then, the ratio of the first harmonic of the storage modulus to the fifth harmonic can be calculated using the LCB Index.
- LAOS large angles of oscillation and high strains
- the LCB Index may be represented by the following general formula (1).
- the long chain branching degree is higher than that of the EPDM rubber prepared for the Group 4 transition metal catalyst, which was used previously, the LCB Index. It has been found that can have a positive value. High long-chain branching, and the amount of the one embodiment the ternary elastic copolymer having a LCB Index was confirmed that the same may be satisfied at the same time or the like excellent i elasticity, flexibility and melt processability along with the excellent mechanical properties due to the large molecular weight.
- the ternary elastic copolymer of the embodiment has a dynamic viscosity difference of about 30,000 Pa.s at an angular frequency of 1.0 rad / s and 100.0 rad / s measured by a rubber process analyzer at 125 ° C. Or more, preferably about 30,000 to 50,000 Pa. can be s.
- the ternary elastic copolymer of such an embodiment has a difference in dynamic viscosity at angular frequencies of 1.0 rad / s and 100.0 rad / s. s or more, so at low angular frequencies, the actual state of the ternary elastomer It has high dynamic viscosity, shows excellent mechanical properties, and has high dynamic viscosity and low dynamic viscosity at high angular frequency, so it shows excellent elasticity, flexibility, and melt processability.
- the ternary elastic copolymer may have a dynamic viscosity at 1.0 rad / s angular frequency of 30,000 Pa's or more, or 33,000 to 150,000 Pa-s.
- the angular frequency of 1.0 rad / s is similar to the state in which the actual ternary elastic copolymer is used, and the copolymer has high dynamic viscosity of 30,000 Pa's or more at an angular frequency of 1.0 rad / s, and thus exhibits excellent mechanical properties. Can be.
- the ternary elastomer may have a dynamic viscosity at 100.0 rad / s angular frequency of 5,000 Pa's or less, or 4,500 Pa's or less.
- the angular frequency of 100.0 rad / s is similar to that of the injection molding process, and the co-polymer has low dynamic viscosity at an angular frequency of 100.0 rad / s, thereby exhibiting excellent elasticity, flexibility, and melt processability.
- the dynamic viscosity difference value of the terpolymer-based elastomeric copolymer may be measured as follows using a rubber process analyzer. First, the ternary elastic copolymer was polymerized and manufactured, and then, for each copolymer, at a temperature (125 ° C) and 0.1 ⁇ 210 rad / s determined by Monsanto's PA2000 MV 2000E Rubber Process Analyzer. Measure the dynamic com lex viscosity over the frequency range. The difference between the dynamic viscosity at the measured 1.0 rad / s angular frequency and the dynamic viscosity at the 100.0 rad / s angular frequency can be calculated by arithmetically.
- the terpolymer-based elastomeric copolymer of the embodiment has a density range in which suitable physical layering, such as EPDM rubber, is possible, for example, about 0.840 to 0.895 g / cm 3 , or about 0.850 to 0.890 g / cm 3 . Can be.
- the terpolymer-based elastomeric copolymer of the embodiment has a pattern viscosity (1 + 4 ⁇ 125 ° C) range, for example, about 1 MU to 180 MU, or about 5 MU It may have a pattern viscosity of 150 MU, or about 20 MU to 130 MU.
- the pattern viscosity (1 + 4®125 ° C) can be measured using Monsanto Alpha 2000 equipment based on ASTM D1646-04, If the pattern viscosity is less than 20 MU, there is no difference in processability according to the long chain branching, and if the pattern viscosity exceeds 130 kPa, it can be manufactured by the present invention, but the resin productivity due to high viscosity is not economically advantageous.
- alpha olefin propylene, 1-butene, 1-nuxene, 1-octene, 1 kpentene, ⁇ 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1- tetradecene, 1-pentadecene, 1-nuxadecene, 1-heptadecene, 1-nonadecene, 9-
- alpha 3-olefins having 3 to 20 carbon atoms such as methyl-1-decene, 11-methyl-1 dodecene and 12-ethyl-1-tetradecene, may be used, and among these, alpha olefins having 3 to 10 carbon atoms are typical.
- a nonconjugated diene type monomer can be used as said diene.
- specific examples thereof include 5-1,4-nucleadiene, 1 ⁇ 5 ⁇ heptadiene, 1,6 ⁇ octadiene, 1, its nonadiene, 1, 8-decadiene, 1,12-tetradecadiene, 3 -Methyl -1, 4-nuxadiene, 4 'methyl -1,4-nuxadiene, 5-methyl -1,4-nuxadiene, 4-ethyl -1,4-nuxadiene, 3,3' dimethyl- 1,4-nuxadiene, 5-methyl-1,4-heptadiene, 5-ethyl-1,4-heptadiene, 5 'methyl-1,5-heptadiene, 6-methyl-1,5-heptadiene , 5—Ethyl-1,5-heptadiene, 4-methyl ⁇ 1, 4-octadiene, 5 ⁇ methyl
- dienes in particular, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, or 4 -nuxadiene is suitably used, and the weight average molecular weight of
- Ternary elastomeric copolymers satisfying the LCB Index can be prepared.
- VNB 5-vinyl-2-norboene
- DCPD dicyclopentadiene
- the two double bonds Participation in the polymerization reaction shows a cross-linked polymer structure, so that gel particles are formed during the polymerization process, and molecular weight of the copolymer is difficult to control and polymerization reaction is also difficult to control.
- Method for preparing such a copolymer is 40 to 70% by weight of ethylene, 20 to 50 in the presence of a catalyst composition comprising a first transition metal compound represented by the formula (1) and a second transition metal compound represented by the formula (2)
- the method may comprise the step of continuously copolymerizing a monomer composition comprising an alpha olefin having 3 to 20 carbon atoms by weight and 2 to 20 weight 3 ⁇ 4 dienes by continuously feeding the reactor to:
- Ri to Ri 3 may be the same as or different from each other, and each independently hydrogen; Alkyl radicals having 1 to 20 carbon atoms; Alkenyl radicals having 2 to 20 carbon atoms; Aryl radicals having 6 to 20 carbon atoms; Silyl radicals; Alkylaryl radicals having 7 to 20 carbon atoms; Arylalkyl radicals having 7 to 20 carbon atoms; Or a metalloid radical of a Group 4 metal substituted with hydrocarbyl; Two adjacent groups of 3 ⁇ 4 to Ri 3 may be connected to each other by an alkylidine radical including an alkyl having 1 to 20 carbon atoms or an aryl radical having 6 to 20 carbon atoms to form an aliphatic ring or an aromatic ring;
- M is a Group 4 transition metal
- Qi and Q 2 may be the same as or different from each other, and each independently a halogen radical; Alkyl radicals having 1 to 20 carbon atoms; Of 2 to 20 carbon atoms. Alkenyl radicals; Aryl radicals having 6 to 20 carbon atoms; Alkylaryl radicals having 7 to 20 carbon atoms; Arylalkyl radicals having 7 to 20 carbon atoms; Alkyl amido radicals having 1 to 20 carbon atoms; Aryl amido radicals having 6 to 20 carbon atoms; Or an alkylidene radical having 1 to 20 carbon atoms. :
- a certain amount of monomer that is, about 40 to 70% by weight, or about 50 to 70% by weight of ethylene, about 15 to 55% by weight, black is about 25 to 45% by weight
- the tertiary elastic copolymer of one embodiment having a large molecular weight range and a positive LCB Index value described above It was confirmed that it can be obtained with high yield and productivity.
- catalysts of the first and second transition metal compounds exhibit excellent catalytic activity as Group 4 transition metal catalysts, and in particular, can exhibit excellent selectivity and copolymerization reactivity for comonomers such as alphaolefins and dienes.
- the copolymerization can be carried out while the diene is uniformly distributed in the polymer chain with a relatively high content.
- the specific catalysts of Formulas 1 and 2 remain very stable in the pentagonal ring and hexagonal ring composition around the metal site by the quinoline-based amido group, and thus have structural characteristics that make it easy to access the monomers structurally. Seems. That is, the specific catalysts of Chemical Formulas 1 and 2 may form macromers having long chain branched double bonds during the copolymerization of ethylene and alphalefin based on the structural characteristics of the above-described catalysts, which in turn react with the catalysts. It can be copolymerized to form a ternary elastic copolymer having a long chain branch.
- the copolymerization proceeds in a continuous process while supplying a monomer composition containing each monomer continuously to a polymerization reactor, Monomers, in particular dienes, may be more uniformly distributed in the polymer chain.
- Monomers, in particular dienes may be more uniformly distributed in the polymer chain.
- the ternary elastic copolymer having a long chain branch can be produced with high productivity and yield, so that the characteristics of the embodiment described above, for example, the weight average molecular weight 100,000 to 500, 000, and the characteristics such as the LCB Index has a positive value can be satisfied.
- Ternary elastomeric copolymers can be produced with high productivity and yield, and such terpolymeric elastomeric copolymers are very preferably EPDM rubbers made of Group 4 transition metal catalysts that simultaneously satisfy excellent mechanical properties and improved elasticity. Can be used.
- the above-mentioned two specific catalysts are not used or one of them In the case of using only a catalyst, or in a case where it is out of the appropriate content range of each monomer described above, in particular, in the content range of diene, the final prepared terpolymer-based elastomer copolymer satisfies the high molecular weight range of one embodiment or the range of LCB Index value, etc. You may not be able to.
- hydrocarbyl may refer to a monovalent functional group in a form in which a hydrogen atom is removed from hydrocarbon, and includes, for example, an alkyl group such as ethyl or an aryl group such as phenyl. can do.
- metalloid is a metal and an element showing intermediate properties between metal and nonmetal, and may refer to, for example, arsenic, boron, silicon, tellurium, and the like.
- the M may refer to a Group 4 transition metal element such as titanium, zirconium or hafnium.
- first and second transition metal compounds as the first transition metal compound of Formula 1, one or more compounds selected from the group consisting of compounds of the following formulas may be suitably used:
- 3 ⁇ 4 and 3 ⁇ 4 may be the same or different from each other, each independently hydrogen or methyl radical
- M is a Group 4 transition metal
- 3 ⁇ 4 and 3 ⁇ 4 may be the same or different from each other, each independently methyl radical, dimethylimide Neither is a radical or a chlorine radical.
- 3 ⁇ 4 and 3 ⁇ 4 may be the same as or different from each other, and are each independently hydrogen or methyl radicals
- M is a Group 4 transition metal
- 3 ⁇ 4 and 3 ⁇ 4 may be the same as or different from each other, and are each independently a methyl radical, dimethylimide Neither is a radical or a chlorine radical.
- one or more promoter compounds selected from the group consisting of Chemical Formulas 3, 4, and 5 may further include:
- R may be the same as or different from each other, and each independently halogen; Hydrocarbons having 1 to 20 carbon atoms; Or a hydrocarbon having 1 to 20 carbon atoms substituted with halogen; n is an integer of 2 or more;
- R is as defined in Formula 3; D is aluminum or boron;
- L is a neutral or cationic Lewis acid
- H is a hydrogen atom
- Z is a Group 13 element
- A may be the same or different from each other, and each independently is an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms, unsubstituted or substituted with one or more hydrogen atoms, halogen, hydrocarbon having 1 to 20 carbon atoms, alkoxy or phenoxy.
- examples of the compound represented by Formula 3 include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane or butyl aluminoxane.
- Examples of the compound represented by Formula 4 include trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum tri-s-butylaluminum and tricyclo Pentyl Aluminum, Tripentyl Aluminum, Triisopentyl Aluminum, Trinuclear Aluminum, Trioctyl Aluminum, Ethyl Dimethyl Aluminum, Methyl Diethyl Aluminum, Triphenyl Aluminum, Tri-P-allyl Aluminum, Dimethyl Aluminum Hydroxide, Dimethyl Aluminum Eryoxide And trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron or tributyl boron.
- the compound represented by Chemical Formula 5 includes a non-coordinating anion compatible with cations which are Bronsted acids. Suitable anions are those that are relatively large in size and contain a single coordinating complex comprising a metalloid. In particular, compounds containing a single boron atom in the anion moiety are widely used. In view of this, as the compound represented by Formula 5, a salt containing an anion including a coordinating complex compound containing a single boron atom may be appropriately used.
- Such compounds include trimethylammonium tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate in the case of trialkylammonium salts.
- trophylium tetrakis (pentafluorophenyl) bore ⁇ 3 triphenylmethyllium tetrakis (pentafluorophenyl) bore ⁇ or benzene (diazonium) tetrakis (pentafluorophenyl) borate and the like
- triphenylmethyllium tetrakis (pentafluorophenyl) bore ⁇
- benzene (diazonium) tetrakis (pentafluorophenyl) borate and the like
- the catalyst composition comprising the above-described first and second transition metal compound and optionally a promoter compound, for example, the first and second transition metal Contacting the compound with a promoter compound of Formula 3 or Formula 4 to obtain a mixture; And it may be prepared by a method comprising the step of adding the promoter compound of Formula 5 to the mixture.
- the molar ratio of the first transition metal compound: second transition metal compound may be about 10: 1 to 1:10, and the total transition metal compound in which the first and second transition metal compounds are added together.
- the molar ratio of the cocatalyst compound of Formula 3 or Formula 4 may be about 1: 5 to 1: 500.
- the molar ratio of the total transition metal compound: the promoter compound of Chemical Formula 5 may be about 1: 1 to 1:10.
- the catalyst composition may further include a reaction mixture, and the reaction composition may include a hydrocarbon solvent such as pentane, nucleic acid or heptane; Aromatic solvents such as benzene or toluene; and the like, but are not limited thereto.
- a hydrocarbon solvent such as pentane, nucleic acid or heptane
- Aromatic solvents such as benzene or toluene
- the alpha olefin included in the monomer composition propylene, 1-butene, 1-nuxene, 1-octene, 1-pentene, 4-methyl-1-pentene 1-nuxene, 1- Hellene, 1-decene, 1-undecene, or 1-dodecene may be used, and as the diene, a nonconjugated diene monomer may be used.
- monomers conventionally used in the production of EPDM rubber for example, propylene as the alpha olefin, 5-ethylidene-2-norbornene as the diene, 1,4-nuxadiene or dicyclopentadiene, etc.
- the nonconjugated diene monomer of can be used suitably.
- the copolymerization step may be carried out at a temperature of about 100 to 170 ° C, or a temperature of about 100 to 160 ° C.
- the copolymerization temperature is too low, it may be difficult to synthesize a three-way elastic copolymer in which three monomers are uniformly distributed, and when the polymerization reaction temperature is too high, the monomer or the prepared copolymer may be thermally decomposed.
- This copolymerization can also be carried out by solution polymerization, in particular by continuous solution polymerization. At this time, the catalyst composition described above may be used in the form of a homogeneous catalyst dissolved in such a solution.
- the polymerizing step is carried out while continuously supplying a catalyst composition including the monomer composition described above, the first and second transition metal compounds, and optionally a cocatalyst in a solution state in a reaction vessel.
- the copolymerization step may be continuously performed while continuously discharging the copolymerized ternary elastic copolymer from the reactor.
- a ternary elastic copolymer having a long chain branch is produced by a Group 4 transition metal catalyst which can be used very favorably as EPDM rubber and the like by showing excellent processability, improved elasticity and flexibility, and the like. .
- Ternary elastomeric copolymer having a long chain branch obtained in accordance with the present invention overcomes the limitations of EPDM rubber and the like made of metallocene-based Group 4 transition metal catalysts, and can satisfy the excellent elasticity and flexibility with other physical properties. Therefore, it can be very preferably used as EPDM rubber or the like while taking advantage of the Group 4 transition metal catalyst.
- N] titanium dimethyl) and N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate and triisobutylaluminum were used as cocatalyst compounds.
- the first and second transition metal compounds were prepared and used in the same manner as in Examples 2 and 14 of Korean Patent Registration No. 0,976,131, and the promoter compounds were the same as those used in Example 9 of Korean Patent Registration No. 0,820,542.
- Cocatalyst compounds were prepared and used.
- Three-way copolymerization reactions of ethylene, propylene and 5-ethylidene-2-norbornene were carried out continuously using a 2L pressure reactor. Nucleic acid was continuously introduced from the bottom of the reactor as a polymerization solvent at a feed rate of 6.7 kg per hour, and the polymerization solution was continuously withdrawn from the top of the reactor.
- first and second transition metal compounds examples include the above-mentioned [(1,2,3,4-tetrahydroquinolin-8-yl) tetramethylcyclopentadienyl-eta 5, kepa-
- N] titanium dimethyl and [(2-methylindoline-7-yl) tetramethylcyclopentadienyl-eta 5, kepa-N] titanium dimethyl were used dissolved in nucleic acid and 24 to 60 ⁇ per hour Into the reaction vessel at a speed.
- the above-described N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate was used in a state dissolved in toluene, and was introduced into the reactor at a rate of 105 to 270 ⁇ 1 per hour.
- the above-mentioned triisobutylaluminum was used in the state dissolved in nucleic acid as an additional promoter compound, and was introduced into the reactor at a rate of 1800 to 3200 ⁇ per hour.
- Ethylene, a monomer, is 890 to 900 g per hour
- propylene is 450 to 550 g
- 5-ethylidene-2-norbornene was subjected to the copolymerization while being continuously supplied to the reaction machine at a rate of 80 to 250 g per hour.
- the copolymerization temperature in the reaction vessel was adjusted to between 130 and 160 ° C. while increasing the feed rate of 5-ethylidene-2-norbornene at around 160 ° C. in increments of 0.5 mL / min from I mL / min.
- copolymerization was carried out by continuous solution polymerization, and the terpolymer-based elastomeric copolymers of Examples 1 to 6 were continuously prepared in a uniform solution state, and the polymerization solution continuously discharged from the top of the reactor was subjected to polymerization reaction under ethanol. After quenching, drying was carried out under reduced pressure in a vacuum oven at 60 ° C. to form the final copolymer of Examples 1-6.
- KEP-2320 from Kumho Polychem a commercially available EPDM rubber known to be manufactured with a Ziegler-Natta catalyst, was used as the terpolymer based copolymer of Comparative Example 8.
- Test Example 1 Measurement of LCB Index
- the copolymers obtained in Examples and Comparative Examples were strained at 0.2% strain at a temperature (125 ° C) and a frequency (0.2 Hz) as determined by the SIS V-50 Rubber Process Analyzer from SCARABAEUS INSTRUMENTS SYSTEMSS.
- the shear storage modulus behavior was measured while changing up to 1250%.
- the first order harmonics and fifth order are obtained by FT conversion of the measured storage modulus.
- the ratio of the first harmonic of the storage modulus to the fifth harmonic is calculated by LCB Index and is shown in Table 1 and FIG. 1.
- the LCB Index may be represented by the following general formula (1).
- Dynamic complex viscosity was measured using a Rubber Process Analyzer according to ASTM D6204-01.
- the RPA2000 MV 2000E instrument model from Monsanto was used, and the measurement sample was made of a sheet of copolymer treated with an antioxidant (Irganox 1076) using a press mold, which was 7% strain at 125 ° C and 0.1-210.
- Dynamic complex viscosity was measured in the frequency range of rad / s.
- the dynamic complex viscosity values and the graphs of the angular frequency changes of the copolymers of Examples and Comparative Examples are shown in Tables 2 and 3 below.
- Patterned viscosity of the copolymers obtained in Examples and Comparative Examples is at 125 ° C.
- the weight average molecular weight of the copolymers obtained in Examples and Comparative Examples was measured by PL-GPC 220 of Polymer Laboratory, Inc., equipped with three linearly mixed bed columns, and is shown in Table 2 below. At this time, the temperature was 16 (C, it was measured at a flow rate of 1.0 ml / min using 1,2,4-trichlorobenzene as a solvent.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480002718.2A CN104768986A (zh) | 2013-06-28 | 2014-06-30 | 弹性二烯三元共聚物及其制备方法 |
JP2015539529A JP2015532362A (ja) | 2013-06-28 | 2014-06-30 | ジエンを含む三元系弾性共重合体およびその製造方法 |
IN2232DEN2015 IN2015DN02232A (ko) | 2013-06-28 | 2014-06-30 | |
EP14818626.5A EP2883891A4 (en) | 2013-06-28 | 2014-06-30 | TERNARY ELASTOMER COPOLYMER WITH A DIEN AND METHOD FOR THE PRODUCTION THEREOF |
US14/442,527 US9493593B2 (en) | 2013-06-28 | 2014-06-30 | Elastic diene terpolymer and preparation method thereof |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130075873A KR101585204B1 (ko) | 2013-06-28 | 2013-06-28 | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 |
KR10-2013-0075873 | 2013-06-28 | ||
KR20140040551 | 2014-04-04 | ||
KR10-2014-0040551 | 2014-04-04 | ||
KR1020140047679A KR101684648B1 (ko) | 2014-04-21 | 2014-04-21 | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 |
KR10-2014-0047679 | 2014-04-21 | ||
KR10-2014-0080039 | 2014-06-27 | ||
KR1020140080039A KR101446685B1 (ko) | 2014-04-04 | 2014-06-27 | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014209085A1 true WO2014209085A1 (ko) | 2014-12-31 |
Family
ID=52142322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/005811 WO2014209085A1 (ko) | 2013-06-28 | 2014-06-30 | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9493593B2 (ko) |
EP (1) | EP2883891A4 (ko) |
JP (1) | JP2015532362A (ko) |
CN (1) | CN104768986A (ko) |
IN (1) | IN2015DN02232A (ko) |
WO (1) | WO2014209085A1 (ko) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2883891A4 (en) | 2013-06-28 | 2016-06-01 | Lg Chemical Ltd | TERNARY ELASTOMER COPOLYMER WITH A DIEN AND METHOD FOR THE PRODUCTION THEREOF |
KR101585206B1 (ko) | 2013-07-22 | 2016-01-13 | 주식회사 엘지화학 | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 |
KR101585204B1 (ko) | 2013-06-28 | 2016-01-13 | 주식회사 엘지화학 | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 |
US9650460B2 (en) | 2013-06-28 | 2017-05-16 | Lg Chem, Ltd. | Elastic diene terpolymer and preparation method thereof |
US9428600B2 (en) | 2013-06-28 | 2016-08-30 | Lg Chem, Ltd. | Elastic diene terpolymer and preparation method thereof |
CN106459326B (zh) | 2013-12-06 | 2019-08-13 | 株式会社Lg化学 | 嵌段共聚物 |
EP3078691B1 (en) | 2013-12-06 | 2018-04-18 | LG Chem, Ltd. | Block copolymer |
WO2015084122A1 (ko) | 2013-12-06 | 2015-06-11 | 주식회사 엘지화학 | 블록 공중합체 |
EP3078694B1 (en) | 2013-12-06 | 2021-01-27 | LG Chem, Ltd. | Block copolymer |
US10227438B2 (en) | 2013-12-06 | 2019-03-12 | Lg Chem, Ltd. | Block copolymer |
EP3078690B1 (en) | 2013-12-06 | 2021-01-27 | LG Chem, Ltd. | Block copolymer |
CN105980342B (zh) | 2013-12-06 | 2019-02-15 | 株式会社Lg化学 | 单体和嵌段共聚物 |
JP6410327B2 (ja) | 2013-12-06 | 2018-10-24 | エルジー・ケム・リミテッド | ブロック共重合体 |
EP3078689B1 (en) | 2013-12-06 | 2020-12-02 | LG Chem, Ltd. | Block copolymer |
WO2015084131A1 (ko) | 2013-12-06 | 2015-06-11 | 주식회사 엘지화학 | 블록 공중합체 |
EP3101043B1 (en) | 2013-12-06 | 2021-01-27 | LG Chem, Ltd. | Block copolymer |
US10227436B2 (en) | 2013-12-06 | 2019-03-12 | Lg Chem, Ltd. | Block copolymer |
WO2016053001A1 (ko) | 2014-09-30 | 2016-04-07 | 주식회사 엘지화학 | 블록 공중합체 |
US10240035B2 (en) | 2014-09-30 | 2019-03-26 | Lg Chem, Ltd. | Block copolymer |
JP6538159B2 (ja) | 2014-09-30 | 2019-07-03 | エルジー・ケム・リミテッド | ブロック共重合体 |
US10370529B2 (en) | 2014-09-30 | 2019-08-06 | Lg Chem, Ltd. | Method of manufacturing patterned substrate |
WO2016052999A1 (ko) | 2014-09-30 | 2016-04-07 | 주식회사 엘지화학 | 블록 공중합체 |
WO2016053005A1 (ko) | 2014-09-30 | 2016-04-07 | 주식회사 엘지화학 | 블록 공중합체 |
US10287430B2 (en) | 2014-09-30 | 2019-05-14 | Lg Chem, Ltd. | Method of manufacturing patterned substrate |
JP6505212B2 (ja) | 2014-09-30 | 2019-04-24 | エルジー・ケム・リミテッド | ブロック共重合体 |
WO2016053011A1 (ko) | 2014-09-30 | 2016-04-07 | 주식회사 엘지화학 | 블록 공중합체 |
WO2016053010A1 (ko) * | 2014-09-30 | 2016-04-07 | 주식회사 엘지화학 | 블록 공중합체 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5229478A (en) | 1988-06-16 | 1993-07-20 | Exxon Chemical Patents Inc. | Process for production of high molecular weight EPDM elastomers using a metallocene-alumoxane catalyst system |
JPH09512848A (ja) * | 1994-05-06 | 1997-12-22 | デーエスエム ナムローゼ フェンノートシャップ | エチレン、α−オレフィン及び付加的なジエンからの弾性ポリマーの製法 |
US6545088B1 (en) | 1991-12-30 | 2003-04-08 | Dow Global Technologies Inc. | Metallocene-catalyzed process for the manufacture of EP and EPDM polymers |
KR100488833B1 (ko) | 1997-04-30 | 2005-05-11 | 듀폰 다우 엘라스토마스 엘. 엘. 씨. | 에틸렌/알파-올레핀/디엔 공중합체 및 그의 제조 방법 |
JP2005517068A (ja) * | 2002-02-08 | 2005-06-09 | エクソンモービル・ケミカル・パテンツ・インク | マルチモーダルエチレン、α−オレフィン及びジエンポリマー、当該組成物を生成する方法及び当該組成物を含む装置 |
KR100820542B1 (ko) | 2006-03-24 | 2008-04-08 | 주식회사 엘지화학 | 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합 |
KR100976131B1 (ko) | 2007-01-10 | 2010-08-16 | 주식회사 엘지화학 | 전이금속 화합물의 제조 방법, 상기 방법으로 제조된전이금속 화합물 및 상기 전이금속 화합물을 포함하는 촉매조성물 |
KR20110002153A (ko) * | 2009-07-01 | 2011-01-07 | 주식회사 엘지화학 | 전이금속 촉매를 이용한 탄성 중합체의 제조방법 |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5153157A (en) | 1987-01-30 | 1992-10-06 | Exxon Chemical Patents Inc. | Catalyst system of enhanced productivity |
DE4236218C2 (de) | 1991-12-19 | 2001-08-16 | Degussa | Vulkanisierbare EPDM-Kautschukmischungen |
US5571883A (en) | 1995-06-14 | 1996-11-05 | Exxon Chemical Patents Inc. | Elastomeric vehicle vibration damping devices |
CN1224433A (zh) | 1996-05-03 | 1999-07-28 | Dsm有限公司 | 制备乙烯、α-烯烃和二烯烃的三元共聚物的方法 |
CN1254350A (zh) | 1997-04-30 | 2000-05-24 | 唐化学原料公司 | 乙烯/α-烯烃/二烯共聚物和其制备 |
WO1999010422A1 (en) | 1997-08-27 | 1999-03-04 | The Dow Chemical Company | Rheology modification of low density polyethylene |
US5942587A (en) | 1997-11-21 | 1999-08-24 | Exxon Chemical Patents Inc. | Ethylene polymers with a norbornene comonomer for LLDPE like resins of improved toughness and processibility for film production |
CN1134467C (zh) | 1998-11-02 | 2004-01-14 | 杜邦唐弹性体公司 | 剪切稀化的乙烯/α-烯烃共聚体及它们的制备 |
KR100581761B1 (ko) | 1999-01-30 | 2006-05-22 | 주식회사 엘지화학 | 회전 성형 제품을 위한 올레핀 공중합체 |
US6369176B1 (en) | 1999-08-19 | 2002-04-09 | Dupont Dow Elastomers Llc | Process for preparing in a single reactor polymer blends having a broad molecular weight distribution |
US6403520B1 (en) | 1999-09-17 | 2002-06-11 | Saudi Basic Industries Corporation | Catalyst compositions for polymerizing olefins to multimodal molecular weight distribution polymer, processes for production and use of the catalyst |
CN1234740C (zh) | 1999-12-10 | 2006-01-04 | 埃克森化学专利公司 | 由丙烯二烯烃共聚物制备的制品 |
US6977287B2 (en) | 1999-12-10 | 2005-12-20 | Exxonmobil Chemical Patents Inc. | Propylene diene copolymers |
CA2292387A1 (en) | 1999-12-17 | 2001-06-17 | Bayer Inc. | Process for producing olefin polymer with long chain branching |
US6509431B1 (en) | 2000-01-18 | 2003-01-21 | Exxonmobil Oil Corporation | Terpolymers |
AU2001241892A1 (en) | 2000-05-10 | 2001-11-20 | Exxonmobil Chemical Patents Inc | Polyolefin compositions having improved low temperature toughness and methods therefor |
EP2093240B1 (en) | 2002-06-19 | 2015-07-15 | ExxonMobil Chemical Patents Inc. | Polymers comprising ethylene, higher alpha-olefin comonomer and dienes, especially vinyl norbornene |
CN100528915C (zh) | 2003-07-09 | 2009-08-19 | 帝斯曼知识产权资产管理有限公司 | 包含乙烯、α-烯烃和乙烯基降冰片烯单体单元的聚合物的制备方法 |
AU2006227352A1 (en) | 2005-03-17 | 2006-09-28 | Dow Global Technologies Llc | Polymer blends from interpolymers of ethylene/alpha-olefins and flexible molded articles made therefrom |
WO2006101930A2 (en) | 2005-03-17 | 2006-09-28 | Dow Global Technologies Inc. | Compositions of ethylene/alpha-olefin multi-block interpolymer suitable for films |
EP2024399B1 (en) | 2006-05-17 | 2014-04-09 | Dow Global Technologies LLC | Ethylene/ alpha-olefin/ diene solution polymerization process |
ATE531738T1 (de) | 2007-02-08 | 2011-11-15 | Lanxess Elastomers Bv | Elastomerverbindung |
US20120172548A1 (en) * | 2007-05-02 | 2012-07-05 | Lg Chem, Ltd. | Polyolefin and preparation method thereof |
KR100994252B1 (ko) | 2007-05-09 | 2010-11-12 | 주식회사 엘지화학 | 에틸렌 알파-올레핀 공중합체 |
KR101066969B1 (ko) | 2007-05-18 | 2011-09-22 | 주식회사 엘지화학 | 공중합성이 뛰어난 전이금속 촉매를 이용한 올레핀중합체의 제조 방법 |
TW200932770A (en) | 2007-10-22 | 2009-08-01 | Univation Tech Llc | Metallocene catalysts and their use in polymerization processes |
ATE556097T1 (de) | 2007-12-05 | 2012-05-15 | Mitsui Chemicals Inc | Copolymerkautschuk, kautschukzusammensetzung und geformter kautschuk |
KR101084677B1 (ko) * | 2008-05-14 | 2011-11-22 | 주식회사 엘지화학 | 올레핀 중합체의 제조방법 |
KR101149755B1 (ko) | 2009-01-06 | 2012-06-01 | 에스케이종합화학 주식회사 | 에틸렌-프로필렌-디엔 공중합체 제조방법 |
KR101206166B1 (ko) | 2009-08-13 | 2012-11-28 | 주식회사 엘지화학 | 메탈로센 촉매를 포함하는 촉매 조성물 |
JP2013510221A (ja) | 2009-11-06 | 2013-03-21 | エルジー・ケム・リミテッド | 混合メタロセン触媒組成物およびこれを用いたポリオレフィンの製造方法 |
US8829106B2 (en) | 2009-11-20 | 2014-09-09 | Dow Global Technologies Llc | Thermoplastic elastomer for cold and wet applications |
KR101367402B1 (ko) | 2009-11-27 | 2014-02-25 | 주식회사 엘지화학 | 높은 디엔계 단량체 함량과 고분자량을 가지는 탄성 중합체의 제조방법 |
KR101339391B1 (ko) | 2010-08-16 | 2013-12-09 | 주식회사 엘지화학 | 올레핀계 공중합체 및 이의 제조방법 |
KR101889978B1 (ko) | 2012-01-30 | 2018-08-21 | 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 | 다환기가 치환된 신규의 전이금속 화합물, 이를 포함한 전이금속 촉매 조성물 및 이를 이용한 에틸렌과 α-올레핀 공중합체 또는 에틸렌과 올레핀-디엔 공중합체의 제조방법 |
KR101587189B1 (ko) | 2012-02-06 | 2016-02-02 | 주식회사 엘지화학 | 폴리올레핀계 삼원 공중합체 및 이의 제조방법 |
EP2867293A4 (en) | 2012-06-28 | 2015-12-02 | Dow Global Technologies Llc | NETWORKED HARDENER AND LOW PRESSURE FORMING RESIN |
KR101391692B1 (ko) | 2012-11-14 | 2014-05-07 | 주식회사 엘지화학 | 3원계 탄성 공중합체 및 이의 제조 방법 |
KR20140144076A (ko) | 2013-06-10 | 2014-12-18 | 주식회사 엘지화학 | 3원계 탄성 공중합체의 제조 방법 |
KR101585206B1 (ko) * | 2013-07-22 | 2016-01-13 | 주식회사 엘지화학 | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 |
US9650460B2 (en) | 2013-06-28 | 2017-05-16 | Lg Chem, Ltd. | Elastic diene terpolymer and preparation method thereof |
EP2883891A4 (en) | 2013-06-28 | 2016-06-01 | Lg Chemical Ltd | TERNARY ELASTOMER COPOLYMER WITH A DIEN AND METHOD FOR THE PRODUCTION THEREOF |
-
2014
- 2014-06-30 EP EP14818626.5A patent/EP2883891A4/en not_active Withdrawn
- 2014-06-30 IN IN2232DEN2015 patent/IN2015DN02232A/en unknown
- 2014-06-30 US US14/442,527 patent/US9493593B2/en active Active
- 2014-06-30 WO PCT/KR2014/005811 patent/WO2014209085A1/ko active Application Filing
- 2014-06-30 CN CN201480002718.2A patent/CN104768986A/zh active Pending
- 2014-06-30 JP JP2015539529A patent/JP2015532362A/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5229478A (en) | 1988-06-16 | 1993-07-20 | Exxon Chemical Patents Inc. | Process for production of high molecular weight EPDM elastomers using a metallocene-alumoxane catalyst system |
US6545088B1 (en) | 1991-12-30 | 2003-04-08 | Dow Global Technologies Inc. | Metallocene-catalyzed process for the manufacture of EP and EPDM polymers |
JPH09512848A (ja) * | 1994-05-06 | 1997-12-22 | デーエスエム ナムローゼ フェンノートシャップ | エチレン、α−オレフィン及び付加的なジエンからの弾性ポリマーの製法 |
US5902867A (en) | 1994-05-06 | 1999-05-11 | Dsm Nv | Process for the preparation of an elastomeric polymer from ethylene, alpha-olefine and optionally diene |
KR100488833B1 (ko) | 1997-04-30 | 2005-05-11 | 듀폰 다우 엘라스토마스 엘. 엘. 씨. | 에틸렌/알파-올레핀/디엔 공중합체 및 그의 제조 방법 |
JP2005517068A (ja) * | 2002-02-08 | 2005-06-09 | エクソンモービル・ケミカル・パテンツ・インク | マルチモーダルエチレン、α−オレフィン及びジエンポリマー、当該組成物を生成する方法及び当該組成物を含む装置 |
KR100820542B1 (ko) | 2006-03-24 | 2008-04-08 | 주식회사 엘지화학 | 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합 |
KR100976131B1 (ko) | 2007-01-10 | 2010-08-16 | 주식회사 엘지화학 | 전이금속 화합물의 제조 방법, 상기 방법으로 제조된전이금속 화합물 및 상기 전이금속 화합물을 포함하는 촉매조성물 |
KR20110002153A (ko) * | 2009-07-01 | 2011-01-07 | 주식회사 엘지화학 | 전이금속 촉매를 이용한 탄성 중합체의 제조방법 |
Non-Patent Citations (2)
Title |
---|
HENRI G. BURHIN ET AL.: "An Innovative Method to Investigate Polymer Long Chain Branching with FT-Rheoiogy and Large Amplitude Oscillatory Shear(LAOS)", CHEM LISTY, vol. 103, 2009, pages S48 - S51, XP055197857 * |
SUSANTA MITRA. ET AL.: "Structural Determination of Ethylene-Propylene-Diene Rubber (EPDM) Containing High Degree of Controlled Long-Chain Branching", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 113, March 2009 (2009-03-01), pages 2962 - 2972, XP055197851 * |
Also Published As
Publication number | Publication date |
---|---|
EP2883891A1 (en) | 2015-06-17 |
JP2015532362A (ja) | 2015-11-09 |
CN104768986A (zh) | 2015-07-08 |
EP2883891A4 (en) | 2016-06-01 |
IN2015DN02232A (ko) | 2015-08-21 |
US9493593B2 (en) | 2016-11-15 |
US20160280823A1 (en) | 2016-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014209085A1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
KR101585206B1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
KR101262305B1 (ko) | 전이금속 촉매를 이용한 탄성 중합체의 제조방법 | |
KR101391692B1 (ko) | 3원계 탄성 공중합체 및 이의 제조 방법 | |
WO2014209084A1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
KR101655392B1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
KR101585204B1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
CN104250332B (zh) | 含二烯的三元弹性共聚物及其制备方法 | |
KR20170075365A (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
KR101476374B1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
KR101680831B1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
KR101691629B1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
KR101462208B1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
WO2014209082A1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
KR101684648B1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
KR101446685B1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
KR101652920B1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 | |
KR101660480B1 (ko) | 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14818626 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014818626 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014818626 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015539529 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14442527 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |