WO2014204082A1 - 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지 - Google Patents

유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지 Download PDF

Info

Publication number
WO2014204082A1
WO2014204082A1 PCT/KR2014/002058 KR2014002058W WO2014204082A1 WO 2014204082 A1 WO2014204082 A1 WO 2014204082A1 KR 2014002058 W KR2014002058 W KR 2014002058W WO 2014204082 A1 WO2014204082 A1 WO 2014204082A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
formula
alkoxy
aryl
heteroaryl
Prior art date
Application number
PCT/KR2014/002058
Other languages
English (en)
French (fr)
Inventor
김윤희
권순기
하종진
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140021096A external-priority patent/KR101563120B1/ko
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Publication of WO2014204082A1 publication Critical patent/WO2014204082A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic semiconductor compound consisting of a single molecule, a method for producing the same, and an organic solar cell employing the same.
  • a monomolecular organic semiconductor compound in which an aromatic compound containing alkyl imide is introduced into an electron accepting region in a molecule a method for preparing the same, an organic solar cell containing a polymer compound and a polymer compound containing such a monomolecular organic semiconductor compound It is about.
  • Organic solar cells are likely to be used as rollable or wearable solar cells because they are lightweight and can be implemented on plastic substrates.
  • organic solar cells have been reported with single cell efficiency, and high organic solar cells of 7-9% have been reported.
  • Representative polymer organic solar cell materials developed to date include P3HT [poly (3-hexylthiophene)] and MEH-PPV [poly (2-methoxy-5- (2-ethyl-hexyl) -1,4 -Phenylene-vinylene)], PCPDTBT [poly (2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b] -di Thiophene) -alter-4,7- (2,1,3-benzothiadiazol)], etc.
  • MEH-PPV and P3HT were used to form n-type PCBM (phenyl-C61-butylic). Acid methyl) to form an active layer.
  • P3HT has a high crystallinity, so annealing was performed for morphological improvement and reported an efficiency of more than 5%.
  • polymer materials polymerized with one repeating unit such as P3HT, are limited in absorbing long wavelengths, and in order to realize higher efficiency, new materials that absorb long wavelengths need to be developed.
  • Several methods of absorbing the long wavelength region of light have been studied, and among them, polymer materials made by alternating polymerization of electron donors and electron acceptors in a molecule are reported to be able to absorb long wavelengths by converting energy bend gaps. It was.
  • Korean Patent No. 1042530 discloses an organic solar cell using an aromatic material having an alkoxy group as a side chain as an intramolecular electron donor.
  • the present invention provides a monomolecular organic semiconductor compound that has high solubility and allows for absorption of long wavelengths while being morphologically excellent when mixed with an n-type (electron acceptor) material, for example, PCBM.
  • an n-type (electron acceptor) material for example, PCBM.
  • the present invention provides a monomolecular organic semiconductor compound having a high filling rate and thermally stable while having a high short circuit current and an electron accepting structure having a high electron density by introducing an electron receiving structure.
  • the development of the p-type material in the active layer configuration is prioritized and aims to control the energy band gap by using a structure in which the electron donor and electron acceptor in the molecule is alternately polymerized.
  • the present invention also provides a method for producing an organic semiconductor compound.
  • the present invention also provides an organic solar cell having the polymer compound according to the present invention as an active layer.
  • the present invention provides an organic semiconductor compound consisting of a single molecule, a method for producing the same, and an organic solar cell containing the same.
  • the organic semiconductor compound of the present invention is represented by the following formula (1).
  • Z is S, O or Se
  • R 1 is C 1 -C 30 alkyl, C 6 -C 30 aryl or C 3 -C 30 heteroaryl, wherein the alkyl, aryl and heteroaryl are C 1 -C 30 alkyl, C 2 -C 30 alkenyl, C May be further substituted with one or more substituents selected from 2 to C 30 alkynyl, C 1 to C 30 alkoxy, amino, hydroxy, halogen, cyano, nitro, trifluoromethyl and silyl groups,
  • R 3 and R 4 are each independently , , , or Is selected from
  • Z 1 and Z 2 are each independently S, O or Se,
  • R 5 and R 6 are each independently hydrogen, halogen, C 1 -C 50 alkyl, C 1 -C 50 alkoxy, C 1 -C 50 alkylC 1 -C 50 alkoxycarbonyl, C 6 -C 50 aryl, C 3 to C 30 heteroaryl, C 6 to C 50 ar are C 1 to C 50 alkyl, and R 5 and R 6 are alkyl, alkoxy, alkylalkoxycarbonyl, aryl, heteroaryl, aralkyl are C 1 to C 30 alkyl , C 2 ⁇ C 30 alkenyl, C 2 ⁇ C 30 alkynyl, C 1 ⁇ C 30 alkoxy group, an amino group, a hydroxyl group, a halogen group, which cyano group, a selection group a methyl group, and silyl into groups, trifluoromethyl, nitro May be further substituted with one or more substituents.]
  • organic semiconductor compound of the present invention is represented by the following formula (21).
  • Z is S, O or Se
  • R 1 is C 1 -C 30 alkyl, C 6 -C 30 aryl or C 3 -C 30 heteroaryl, wherein the alkyl, aryl and heteroaryl are C 1 -C 30 alkyl, C 2 -C 30 alkenyl, C May be further substituted with one or more substituents selected from 2 to C 30 alkynyl, C 1 to C 30 alkoxy, amino, hydroxy, halogen, cyano, nitro, trifluoromethyl and silyl groups,
  • R 7 is hydrogen, halogen, C 1 -C 50 alkyl, C 1 -C 50 alkoxy, C 1 -C 50 alkylC 1 -C 50 alkoxycarbonyl, C 6 -C 50 aryl, C 3 -C 30 heteroaryl , C 6 -C 50 ar C 1 -C 50 alkyl, alkyl, alkoxy, alkylalkoxycarbonyl, aryl, heteroaryl, aralkyl of R 5 and R 6 are C 1 -C 30 alkyl, C 2 -C 30 Further substituted with one or more substituents selected from alkenyl, C 2 to C 30 alkynyl, C 1 to C 30 alkoxy, amino, hydroxy, halogen, cyano, nitro, trifluoromethyl and silyl groups Can be]
  • the organic semiconductor compound of the present invention is a compound having an aromatic structure incorporating an imide having a high electron density, and when combined with an electron donor, can control HOMO and LUMO values due to ⁇ -electron delocalization of the compound backbone, and deep HOMO You can get high Voc by This improves the electron density and improves the solubility by introducing a substituent to the imide.
  • the small, hard aromatic group enhances the intermolecular interaction, and introduces it as an electron donor, which combines an electron acceptor with an electron donor.
  • the active layer material of the battery shows high efficiency and excellent thermal stability.
  • TPD (hereinafter full name: 1,3-dibromo-5-octyl-4H-thieno [3,4-c] pyrrole-4,6 (5H) -dione ) Is a strong electron attracting body, and has a property of attracting electrons well.
  • HOMO energy level can be easily controlled and band gap tuning can be easily performed while changing the material of the donor side.
  • the structural aspect has the advantage of having a flat structure and a solid structure. This can induce the planar structure of the molecular main chain to increase the interaction force between the main chain, and thanks to the symmetrical structure, the shape change is constant and high reproducibility.
  • ICT intramolecular charge transfer
  • the alkyl substituent of N in the imide may have a high solubility in an organic solvent to improve morphology, and have a high electron density to provide excellent electrical properties.
  • R 1 may be a C 1 -C 30 alkyl group, and Z may be S.
  • Formula 1 may be represented by the following formula (2).
  • R 1 is C 1 -C 30 alkyl
  • R 3 and R 4 are each independently , , , or Is selected from
  • Z 1 and Z 2 are each independently S, O or Se,
  • R 5 and R 6 are each independently hydrogen, halogen, C 1 -C 50 alkyl, C 1 -C 50 alkoxy, C 1 -C 50 alkylC 1 -C 50 alkoxycarbonyl, C 6 -C 50 aryl, C 3 to C 30 heteroaryl, C 6 to C 50 ar are C 1 to C 50 alkyl, and R 5 and R 6 are alkyl, alkoxy, alkylalkoxycarbonyl, aryl, heteroaryl, aralkyl are C 1 to C 30 alkyl , C 2 ⁇ C 30 alkenyl, C 2 ⁇ C 30 alkynyl, C 1 ⁇ C 30 alkoxy group, an amino group, a hydroxyl group, a halogen group, which cyano group, a selection group a methyl group, and silyl into groups, trifluoromethyl, nitro May be further substituted with one or more substituents.]
  • R 1 is C 1 ⁇ C 10 alkyl
  • R 5 and R 6 may be each independently C 1 ⁇ C 30 alkyl, solubility can be controlled by replacing the alkyl group and ultimately the process Low cost and large area of top is possible.
  • Chemical Formula 2 may be selected from Chemical Formulas 3 to 15 below.
  • R 1 is C 1 -C 10 alkyl
  • R 51 and R 61 are each independently C 1 -C 30 alkyl.
  • R 1 may be C 5 -C 10 alkyl
  • R 51 and R 61 may be each independently C 5 -C 10 alkyl
  • solubility can be controlled by substituting an alkyl group in this range and ultimately the process Low cost and large area of top is possible.
  • R 1 is C 8 H 17
  • R 51 and R 61 may be each independently C 8 H 17 .
  • Chemical Formula 1 may be selected from the following compounds.
  • the present invention provides a method for producing an organic semiconductor compound represented by the formula (1).
  • Z is S, O or Se
  • R 1 is C 1 -C 30 alkyl, C 6 -C 30 aryl or C 3 -C 30 heteroaryl, wherein the alkyl, aryl and heteroaryl are C 1 -C 30 alkyl, C 2 -C 30 alkenyl, C May be further substituted with one or more substituents selected from 2 to C 30 alkynyl, C 1 to C 30 alkoxy, amino, hydroxy, halogen, cyano, nitro, trifluoromethyl and silyl groups,
  • R 3 and R 4 are each independently , , , or Is selected from
  • Z 1 and Z 2 are each independently S, O or Se,
  • R 5 and R 6 are each independently hydrogen, halogen, C 1 -C 50 alkyl, C 1 -C 50 alkoxy, C 1 -C 50 alkylC 1 -C 50 alkoxycarbonyl, C 6 -C 50 aryl, C 3 to C 30 heteroaryl, C 6 to C 50 ar are C 1 to C 50 alkyl, and R 5 and R 6 are alkyl, alkoxy, alkylalkoxycarbonyl, aryl, heteroaryl, aralkyl are C 1 to C 30 alkyl , C 2 ⁇ C 30 alkenyl, C 2 ⁇ C 30 alkynyl, C 1 ⁇ C 30 alkoxy group, an amino group, a hydroxyl group, a halogen group, which cyano group, a selection group a methyl group, and silyl into groups, trifluoromethyl, nitro May be further substituted with one or more substituents.]
  • Formula 1 may be a reaction of 2 to 2.05 mol of the compound of Formula 19 to 1 mole of the compound of Formula 20.
  • Z is S, R 1 is C 1 -C 30 alkyl,
  • R 3 and R 4 are each independently , , , or Is selected from
  • Z 1 and Z 2 are each independently S, O or Se,
  • R 5 and R 6 are each independently hydrogen, halogen, C 1 -C 50 alkyl, C 1 -C 50 alkoxy, C 1 -C 50 alkylC 1 -C 50 alkoxycarbonyl, C 6 -C 50 aryl, C 3 to C 30 heteroaryl, C 6 to C 50 ar are C 1 to C 50 alkyl, and R 5 and R 6 are alkyl, alkoxy, alkylalkoxycarbonyl, aryl, heteroaryl, aralkyl are C 1 to C 30 alkyl , C 2 ⁇ C 30 alkenyl, C 2 ⁇ C 30 alkynyl, C 1 ⁇ C 30 alkoxy group, an amino group, a hydroxyl group, a halogen group, which cyano group, a selection group a methyl group, and silyl into groups, trifluoromethyl, nitro It may be further substituted with one or more substituents.
  • Z is S, R 1 is C 1 -C 30 alkyl,
  • R 3 and R 4 are each independently or ego
  • Z 1 is S or Se
  • R 5 may be C 1 -C 50 alkyl.
  • Z is S, R 1 is C 5 -C 10 alkyl,
  • R 3 and R 4 are each independently or ego
  • Z 1 is S or Se
  • R 5 may be C 5 -C 10 alkyl.
  • Z is S, R 1 is C 8 H 17 ,
  • R 3 and R 4 are each independently or ego
  • Z 1 is S or Se
  • R 5 may be C 8 H 17 .
  • the solvent used in the method of preparing the organic semiconductor compound of the present invention may be any solvent used in conventional organic synthesis, but is not limited thereto, and the reaction time and temperature may be changed within a range not departing from the core of the present invention. It is possible.
  • the present invention relates to an organic semiconductor compound consisting of the formula (21).
  • Z is S, O or Se
  • R 1 is C 1 -C 30 alkyl, C 6 -C 30 aryl or C 3 -C 30 heteroaryl, wherein the alkyl, aryl and heteroaryl are C 1 -C 30 alkyl, C 2 -C 30 alkenyl, C 2 to C 30 alkynyl, C 1 to C 30 alkoxy, amino, hydroxy, halogen, cyano, nitro, trifluoromethyl and silyl groups may be further substituted with one or more substituents,
  • R 7 is hydrogen, halogen, C 1 -C 50 alkyl, C 1 -C 50 alkoxy, C 1 -C 50 alkylC 1 -C 50 alkoxycarbonyl, C 6 -C 50 aryl, C 3 -C 30 heteroaryl , C 6 -C 50 ar C 1 -C 50 alkyl, alkyl, alkoxy, alkylalkoxycarbonyl, aryl, heteroaryl, aralkyl of R 5 and R 6 are C 1 -C 30 alkyl, C 2 -C 30 Further substituted with one or more substituents selected from alkenyl, C 2 to C 30 alkynyl, C 1 to C 30 alkoxy, amino, hydroxy, halogen, cyano, nitro, trifluoromethyl and silyl groups Can be]
  • Z is S
  • R 1 It may be C 1 ⁇ C 30 Alkyl
  • R 7 It may be C 1 ⁇ C 50 Alkyl.
  • Z may be S
  • R 1 may be C 5 ⁇ C 10 alkyl
  • R 7 may be C 5 ⁇ C 10 alkyl.
  • Z may be S
  • R 1 may be C 8 H 17
  • R 7 may be C 6 H 13 .
  • the present invention provides a method for producing an organic semiconductor compound represented by the formula (21).
  • Z is S, O or Se
  • R 1 is C 1 -C 30 alkyl, C 6 -C 30 aryl or C 3 -C 30 heteroaryl, wherein the alkyl, aryl and heteroaryl are C 1 -C 30 alkyl, C 2 -C 30 alkenyl, C May be further substituted with one or more substituents selected from 2 to C 30 alkynyl, C 1 to C 30 alkoxy, amino, hydroxy, halogen, cyano, nitro, trifluoromethyl and silyl groups,
  • R 7 is hydrogen, halogen, C 1 -C 50 alkyl, C 1 -C 50 alkoxy, C 1 -C 50 alkylC 1 -C 50 alkoxycarbonyl, C 6 -C 50 aryl, C 3 -C 30 heteroaryl , C 6 -C 50 ar C 1 -C 50 alkyl, alkyl, alkoxy, alkylalkoxycarbonyl, aryl, heteroaryl, aralkyl of R 5 and R 6 are C 1 -C 30 alkyl, C 2 -C 30 Further substituted with one or more substituents selected from alkenyl, C 2 to C 30 alkynyl, C 1 to C 30 alkoxy, amino, hydroxy, halogen, cyano, nitro, trifluoromethyl and silyl groups Can be]
  • Z may be S
  • R 1 may be C 1 -C 30 alkyl
  • R 7 may be C 1 -C 50 alkyl.
  • Z may be S
  • R 1 may be C 5 ⁇ C 10 alkyl
  • R 7 may be C 5 ⁇ C 10 alkyl.
  • Z may be S
  • R 1 may be C 8 H 17
  • R 7 may be C 6 H 13 .
  • the formula 21 may be a reaction of 2.2 to 2.5 moles of the compound of Formula 22 with respect to 1 mole of the compound of Formula 16.
  • the solvent used in the method of preparing the organic semiconductor compound of the present invention may be any solvent used in conventional organic synthesis, but is not limited thereto, and the reaction time and temperature may be changed within a range not departing from the core of the present invention. It is possible.
  • the present invention also provides an organic solar cell containing the polymer compound of the present invention.
  • An organic solar cell according to an embodiment of the present invention may be a substrate, a transparent electrode, a hole transport layer, an active layer, an electron transport layer, a metal electrode sequentially stacked, the polymer compound of Formula 11 according to the present invention p of the active layer Provided is an organic solar cell used as a type.
  • the organic solar cell according to the present invention may be manufactured by the above-described method, but this is described by way of example and is not limited thereto.
  • the solar cell is generally composed of a glass substrate / transparent electrode (ITO) / hole transport layer / active layer (electron donor / electron acceptor) / electron transport layer / metal electrode (Al) as shown in FIG.
  • the driving principle is that when light reaches the active layer through the organic substrate, the ITO, and the hole transport layer, excitons are generated between the p-type (electron donor) polymer and the n-type (electron acceptor). The electrons move to the metal electrode through hopping, and the remaining holes move to the ITO layer through the hole transport layer. These separated electrons and holes generate currents and voltages and generate power.
  • the hole transport layer is composed of PEDOT: PSS [poly (3,4-ethylenedioxythiophene)]: [poly (styrenesulfonate)] and helps to transport holes while preventing electrons from moving to the anode ITO layer. give.
  • the active layer of the present invention is more preferably composed of bulk-heterojunction (bulk-heterojunction) to widen the interface between the p-type and n-type and has the advantage that the excitons generated through this can be easily separated into electrons and holes do.
  • bulk-heterojunction bulk-heterojunction
  • PEDOT-PSS (Baytron P TP AI 4083, Bayer AG) is spin-coated on a glass substrate coated with a transparent electrode ITO to coat a layer with a thickness of 30 to 50 nm. Thereafter, the solvent is removed by annealing at 120 DEG C for 60 minutes.
  • the active layer is a PEDOT after the polymer compound, PCBM derivative and additives according to the present invention (DIO; diiodooctane, ODT; octadithiol) are stirred at 60 ° C. for 12 hours and then filtered with a 0.45 ⁇ m filter -Coat 100 nm thick using spin coating on the PSS layer.
  • TiO 2 indium tin oxide
  • Al aluminum
  • the substrate may be formed of a plastic substrate such as PET [poly (ethylene terephthalate), PES [poly (esulfone), or the like.
  • the active layer using the organic semiconductor compound according to the present invention may be formed into a thin film by screen printing, printing, spin casting, spin coating, dipping or ink spraying.
  • the metal electrode may be a conductive material, but may be formed of a material selected from the group consisting of gold (Au), silver (Ag), aluminum (Al), nickel (Ni), chromium (Cr), and indium tin oxide (ITO). It is preferable.
  • the transparent electrode is not limited, but ITO (indium tin oxide), ZnO (zinc oxide), MnO (manganese oxide) and the like can be used.
  • the organic semiconductor compound according to the present invention is a monomolecular compound, and has a high production yield, is easy to be purified after synthesis, and has a high purity, thereby making it possible to manufacture a high purity film.
  • the monomolecular compound of the present invention is characterized by less change in physical properties according to temperature, humidity, time, and the state of the material, and has superior reproducibility as compared with the polymer compound.
  • the monomolecular compound of the present invention has an excellent effect equal to or higher than that of the conventional polymer compound.
  • the electron donor compound not only has high solubility by having a substituent substituted in the imide, but Benzodithiophene (BDT) is one of many researched materials.
  • BDT Benzodithiophene
  • One of the advantages of BDT is its high hole mobility. This is because the carrier ability is very good because there is little steric hindrance and the planar structure, so that the main chain is little twisted in the polymer. For this reason, it is attracting attention not only in TFT but also in OPV, and is being used in various ways. Due to the high electron density, the branch can improve the short-circuit current (Jsc) value when applied to organic solar cells.
  • the organic semiconductor compound according to the present invention may be used as a p-type material of an active layer of an organic solar cell and may have a high open voltage by adjusting an energy band gap, and thus an organic solar cell employing the organic semiconductor compound may have high efficiency.
  • the present invention can improve the oxidative stability, the open voltage value and the current density of the organic solar cell employing the same according to the structure of the substituent substituted in the imide of the organic semiconductor compound which is an electron donor compound.
  • the organic semiconductor compound according to the present invention may be prepared by a solution process such as spin coating or printing due to high solubility in a solvent, thereby reducing costs and having a large area.
  • the organic solar cell is commercialized, it may be applicable to many places. It can be used as a power source for mobile devices, OLED TVs, and e-paper, and it will be a future industry with high added value.
  • FIG. 1 is a cross-sectional view showing a general organic solar cell structure made of a glass substrate / transparent electrode (ITO) / hole transport layer (PEDOT: PSS) / active layer (p / n) / electron transport layer (TiO 2 ) / metal electrode (Al). to be.
  • ITO transparent electrode
  • PEDOT hole transport layer
  • p / n active layer
  • TiO 2 electron transport layer
  • Al metal electrode
  • FIG. 2 is a view illustrating segmental motion of molecules through a TGA according to Example 1.
  • FIG. 2 is a view illustrating segmental motion of molecules through a TGA according to Example 1.
  • FIG. 3 is a view illustrating segmental motion of molecules through TGA according to Example 2.
  • FIG. 4 is a view illustrating segmental motion of molecules through TGA according to Example 3.
  • FIG. 4 is a view illustrating segmental motion of molecules through TGA according to Example 3.
  • FIG. 5 is a view illustrating segmental motion of molecules through TGA according to Example 4.
  • FIG. 5 is a view illustrating segmental motion of molecules through TGA according to Example 4.
  • FIG. 6 is a view illustrating segmental motion of molecules through TGA according to Example 5.
  • FIG. 7 is a UV-vis absorption spectra of a solution phase and a film phase of the organic semiconductor compound according to Example 1.
  • FIG. 8 is a UV-vis absorption spectra of a solution phase and a film phase of the organic semiconductor compound according to Example 2.
  • FIG. 9 is a UV-vis absorption spectra of a solution phase and a film phase of the organic semiconductor compound according to Example 3.
  • FIG. 9 is a UV-vis absorption spectra of a solution phase and a film phase of the organic semiconductor compound according to Example 3.
  • FIG. 11 is a UV-vis absorption spectra of a solution phase and a film phase of the organic semiconductor compound according to Example 5.
  • FIG. 11 is a UV-vis absorption spectra of a solution phase and a film phase of the organic semiconductor compound according to Example 5.
  • FIG. 12 is a diagram of the electrical properties (cyclic voltammetry) of the compound according to Example 1.
  • FIG. 12 is a diagram of the electrical properties (cyclic voltammetry) of the compound according to Example 1.
  • FIG. 13 is a cyclic voltammetry diagram of the compound according to Example 2.
  • FIG. 14 is a diagram of the electrical properties (cyclic voltammetry) of the compound according to Example 3.
  • FIG. 14 is a diagram of the electrical properties (cyclic voltammetry) of the compound according to Example 3.
  • FIG. 15 is a diagram of electrical properties (cyclic voltammetry) of the compound according to Example 4.
  • FIG. 15 is a diagram of electrical properties (cyclic voltammetry) of the compound according to Example 4.
  • FIG. 16 is a cyclic voltammetry diagram of the compound according to Example 5.
  • 17 to 18 are drawings of Examples 1 to 5 fabricated using an organic solar cell device and measured.
  • I D Drain current
  • V G Gate voltage
  • IPCE Incident-Photon-to-electron Conversion Efficiency
  • Voc The voltage across a photovoltaic unit with no load connected at a specific temperature and sunshine intensity.
  • Jsc The output current of a photovoltaic device, such as a solar cell or module, in a short circuit condition at a specific temperature and sunshine intensity.
  • the short circuit current per unit area is sometimes called Jsc.
  • FF The ratio of the maximum output to the product of the open voltage and the short-circuit current and the quality of the current voltage characteristic curve (IV curve) as a solar cell.It is mainly an internal series, parallel resistance and diode quality factor. Depends).
  • PCE The product of the maximum power output (Pmax) of a solar cell (solar cell area A) and the incident irradiation intensity (E) measured under the specified test conditions, expressed as a percentage, expressed as a percentage. Display.
  • 1,3-Dibromo-5-octyl-4H-thieno [3,4-c] pyrrole-4,6 (5H) -dione (7.50 g, 17.73) in a well-dried 500 mL three neck round bottom flask mmol) and tributyl (thiophen-2-yl) stainane (16.53 g, 44.32 mmol) were added and dissolved in 300 mL of toluene. With a balloon containing nitrogen, it is kept under nitrogen stream for 10 minutes. Pd (PPh 3 ) 2 Cl 2 (0.37 g, 0.53 mmol) was added, the temperature was raised to 100 ° C., and the mixture was stirred for 12 hours under a nitrogen stream.
  • Pd (PPh 3 ) 2 Cl 2 (0.37 g, 0.53 mmol
  • PEDOTPSS (Baytron P TP AI 4083, Bayer AG) is coated on the ITO layer. At this time, the thickness is about 3050 nm and annealed at 120 °C 60 minutes.
  • the monomolecular compounds prepared in Examples 1 to 5, PCBM derivatives and additives (DIO; diiooctane, ODT; octadithiol) were stirred at 60 ° C. for 12 hours, and then filtered into a 0.45 ⁇ m filter. The material was filtered and then coated 100 nm thick on the PEDOT-PSS layer using spin coating.
  • TiO 2 indium tin oxide
  • Al aluminum
  • annealing may be carried out with the aim of improving the morphological properties.
  • Keithley's 4200 source was used to measure current density voltage curve (JV), and organic solar cell device characteristics were measured under standard PVM132 (NREL, measured at 100mW / cm2) under AM 1.5G. (Using Oriel 1kW solarsimulator).
  • Example 1 the light absorption regions of the compounds (BT-TPD, TBDT-TTPD, BDTO-TTPD, BDTEH-TTPD, SBDT-TTPD) were measured in the solution state and the film state. Shown. Table 1 shows the result values for the graphs of FIGS. 7 to 11.
  • the HOMO values of Examples 1 to 5 are values calculated by using the result values measured in FIG. 8 below.
  • the band gap was obtained from the UV absorption wavelength in the film state.
  • the organic semiconductor compound according to the present invention has a wide bandgap, which can absorb light having a long wavelength, that is, it can absorb even light in a wavelength region similar to sunlight, thereby producing more current. High short-circuit current can occur.
  • Example 1 to 5 The thermal properties of Examples 1 to 5 are summarized in Table 2 as a result of the measurement in FIGS. 2 to 6.
  • the glass transition temperature value was not measured, but the Tm and Tc were measured, so the properties of the material are expected to have crystallinity.
  • the characteristics of the organic solar cell can be classified into four characteristics: short circuit current (Jsc), open circuit voltage (Voc), fill factor (FF), and power conversion efficiency (Power conversion). efficiency: PCE). The correlation between them can be expressed by Equation 1 below.
  • Equation 1 high short-circuit current and open voltage are required for the device to realize high efficiency.
  • high-efficiency device implementation is possible only with a high filling rate.
  • material In order to realize high short-circuit current, material must have high charge mobility and high open voltage is related to HOMO value and LUMO value of electron donor in molecule.
  • the morphological characteristics should be excellent when mixed with PCBM, which is generally used as an electron acceptor. Therefore, a high efficiency organic solar cell is possible only when the above various conditions are satisfied.
  • 17 to 18 show the results of measuring the organic solar cell characteristics of the compounds synthesized in Examples 1 to 5, respectively, and the results are shown in Table 3 below.
  • the TBDT-TTPD shows a high short circuit current (Jsc) of 9.1 mA / cm 2 and a high open voltage (Voc) of 0.97V.
  • FF is 52.0% and the efficiency of the material is about 4.6%.
  • SBDT-TTPD has a high short-circuit current (Jsc) of 10.4 mA / cm2, a high open voltage of 0.90V, and FF of 45.7%. The efficiency of the material was 4.24%, indicating a high efficiency value.
  • BDTEH-TTPD, BDTO-TTPD, and BT-TPD had short-circuit current (Jsc) values of 7.1, 2.4, and 6.2 mA / cm2, respectively, and the open voltages of 0.91, 0.86, and 0.84V, respectively, and FF, respectively.
  • Jsc short-circuit current
  • the values of 41.8, 54.0 and 27.5% were shown, and the efficiency of the materials was 2.70, 1.12 and 1.43%, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

본 발명은 단분자로 이루어진 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지에 관한 것이다. 보다 구체적으로 분자 내 전자 받게 영역에 알킬 이미드를 포함하는 방향족 화합물을 도입한 단분자 유기 반도체 화합물, 이의 제조방법, 이러한 단분자 유기 반도체 화합물을 함유하는 고분자 화합물 및 고분자 화합물을 함유하는 유기 태양전지에 관한 것이다.

Description

유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지
본 발명은 단분자로 이루어진 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지에 관한 것이다.
보다 구체적으로 분자 내 전자 받게 영역에 알킬 이미드를 포함하는 방향족 화합물을 도입한 단분자 유기 반도체 화합물, 이의 제조방법, 이러한 단분자 유기 반도체 화합물을 함유하는 고분자 화합물 및 고분자 화합물을 함유하는 유기 태양전지에 관한 것이다.
최근 환경문제와 화석 에너지 자원의 고갈에 따라 대체 에너지 개발의 중요성이 대두되고 있다. 그 중에 가장 각광받는 분야가 바로 태양전지 분야이며 거의 무한대에 가까운 에너지 자원이면서도 친환경적이고 높은 효율을 가지는 것으로 알려져 있다.
태양전지 분야는 오래 전부터 무기물을 기반으로 한 태양전지의 개발이 이루어져 오고 있으며 최근에 들어서는 상용화를 위해 높은 가격경쟁력을 가지는 태양전지의 개발이 이슈가 되고 있다. 이러한 추세로 인해 기존의 벌크(bulk)한 태양전지보다 보다 얇은 박막형 태양전지 위주로 개발이 진행되고 있다. 발전(Plant)용 태양전지의 개발은 대부분 무기물 타입의 태양전지가 주를 이루고 있으며 저가형 휴대기기의 발전용으로 유기 태양전지가 개발되고 있다.
반면 유기태양전지는 가볍고 플라스틱 기판위에 소자 구현이 가능하기 때문에 두루마리식 혹은 입고 다니는 태양전지로 응용될 가능성이 높다. 이미 단일 셀 효율로는 8%가 넘는 유기태양전지가 보고되고 있으며 7~9% 사이의 높은 유기태양전지가 보고되고 있다.
최초 유기태양전지 개발은 단분자 재료인 CuPc와 Perylene을 이용한 이종접합구조로부터 시작되었으며 당시 1%의 효율을 보고하였다. 그러나 2000년대 유기물 태양전지에 관한 연구가 단분자에서 고분자로 전환되면서 급격하게 효율이 향상되었다. 현재까지 개발된 대표적인 고분자계 유기태양전지 재료로는 P3HT[폴리(3-헥실티오펜)]과 MEH-PPV[폴리(2-메톡시-5-(2-에틸-헥소일)-1,4-페닐렌-바이닐렌)], PCPDTBT[폴리(2,6-(4,4-비스-(2-에틸헥실)-4H-싸이클로펜타 [2,1-b;3,4-b]-다이싸이오펜)-얼터-4,7-(2,1,3-벤조싸이아다이아졸)] 등이 있다. 기존에는 MEH-PPV 및 P3HT를 이용하여 n 타입 재료인 PCBM(페닐-C61-부틸릭엑시드메틸이서)와 혼합하여 활성층을 만들었다.
또한 P3HT의 경우 높은 결정성을 가지므로 형태학적 개선을 위해 어닐링을 실시하여 5%가 넘는 효율을 보고하였다. 그러나 P3HT와 같은 한 가지 반복단위로 중합된 고분자 재료들은 장파장을 흡수하는데 한계가 있으며 더 높은 효율을 구현하기 위해서는 장파장을 흡수하는 신규 재료 개발이 필요하게 되었다. 빛의 장파장 영역을 흡수하는 여러 가지 방법이 연구되었고 그 중 분자 내 전자 주게와 전자 받게를 교대 중합하여 만든 고분자 재료가 에너지 벤드갭을 변환시킴으로써 장파장을 흡수할 수 있다는 것이 보고되면서 중점적으로 연구되기 시작하였다.
이러한 일례로 한국등록특허 제 1042530호에 알콕시기를 곁사슬로 가지는 방향족 재료를 분자 내 전자주게로 사용한 유기태양전지를 개시하고 있다.
그러나 여전히 유기 태양전지의 활성층으로 장파장의 빛을 흡수해 높은 효율을 구현할 수 있는 재료의 개발이 요구되고 있다.
본 발명은 높은 용해도를 가져 n타입(전자 받게) 재료, 일례로 PCBM와 혼합 시 형태학적으로 우수하면서도 장파장의 흡수를 가능하게 하는 단분자 유기 반도체 화합물을 제공한다.
또한, 본 발명은 밴드갭 조절이 가능하며, 높은 전자밀도를 가지는 전자 받게구조를 도입하여 높은 단락전류와 개방전압을 가지면서 열적으로 안정하여 높은 충진율을 가지는 단분자 유기 반도체 화합물을 제공한다.
또한, 활성층의 구성 중에서 p타입재료의 개발을 우선으로 하며 분자 내 전자주게와 전자받게가 교대 중합되어 있는 구조를 이용하여 에너지 밴드갭을 조절하는데 목적을 두고 있다.
또한 본 발명은 본 발명에 유기 반도체 화합물을 제조하는 방법을 제공한다.
또한, 본 발명은 본 발명에 따른 고분자 화합물을 활성층으로 가지는 유기 태양전지를 제공한다.
본 발명은 단분자로 이루어진 유기 반도체 화합물, 이의 제조방법, 이를 함유하는 유기 태양전지를 제공한다.
본 발명의 유기 반도체 화합물은 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2014002058-appb-I000001
[상기 화학식 1에서,
Z는 S, O 또는 Se이고;
R1 은 C1~C30알킬, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 아릴 및 헤테로아릴은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있고,
R3 및 R4는 각각 독립적으로
Figure PCTKR2014002058-appb-I000002
,
Figure PCTKR2014002058-appb-I000003
,
Figure PCTKR2014002058-appb-I000004
,
Figure PCTKR2014002058-appb-I000005
또는
Figure PCTKR2014002058-appb-I000006
에서 선택되며,
Z1 및 Z2는 각각 독립적으로 S, O 또는 Se이고,
R5 및 R6는 각각 독립적으로 수소, 할로겐, C1~C50알킬, C1~C50알콕시, C1~C50알킬C1~C50알콕시카보닐, C6~C50아릴, C3~C30헤테로아릴, C6~C50아르C1~C50알킬이며, R5 및 R6의 알킬, 알콕시, 알킬알콕시카보닐, 아릴, 헤테로아릴, 아르알킬은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
또한, 본 발명의 유기 반도체 화합물은 하기 화학식 21로 표시된다.
[화학식 21]
Figure PCTKR2014002058-appb-I000007
[상기 화학식 21에서,
Z는 S, O 또는 Se이고;
R1 은 C1~C30알킬, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 아릴 및 헤테로아릴은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있고,
R7 은 수소, 할로겐, C1~C50알킬, C1~C50알콕시, C1~C50알킬C1~C50알콕시카보닐, C6~C50아릴, C3~C30헤테로아릴, C6~C50아르C1~C50알킬이며, R5 및 R6의 알킬, 알콕시, 알킬알콕시카보닐, 아릴, 헤테로아릴, 아르알킬은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
본 발명의 유기 반도체 화합물은 높은 전자밀도를 가지는 이미드를 도입한 방향족 구조의 화합물로 전자주게와 결합 시, 화합물 backbone의 π전자 비편재화로 인해 HOMO, LUMO 값을 조절할 수 있고, deep한 HOMO값을 가져서 높은 Voc값을 얻을 수가 있다. 이를 통해 전자밀도를 향상시키고 이미드에 치환기를 도입하여 용해도를 향상시키게 되며, 작고 딱딱한 방향족 그룹은 분자간 상호작용을 높여주어 이를 전자주게로 도입하여 전자받게와 전자주게를 결합한 단분자 화합물은 유기 태양전지의 활성층 재료로 높은 효율과 우수한 열적 안정성을 나타낸다.TPD (이하 full name : 1,3-dibromo-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione)는 강한 전자당김체로써, 전자를 잘 끌어당길 수 있는 성질을 가지고 있다. 이로 인해서, HOMO energy level 조절이 용이하고, donor 쪽의 물질을 변화시키면서 band gap 튜닝을 쉽게 할 수 있다. 또한 구조적인 면에서는 평면 구조와 단단한 구조를 가지는 장점을 가지고 있다. 이것은 분자 주 사슬의 평면구조를 유도하여 주 사슬 간의 상호작용력을 증가시킬 수 있고, 좌우 대칭적인 구조 덕분에 형태의 변화가 일정하고 높은 재현성을 가지고 있다. 그리고 강한 전자 당김체를 가지고 있기 때문에 donor와 acceptor 사이에서 intramolecular charge transfer (ICT)가 원활하게 이루어 질 수 있다. 또한 낮은 HOMO energy levels을 유도하기 때문에 OPV에서 높은 Voc값을 기대할 수 있다. TPD가 들어간 구조들은 대개 평탄한 구조이기 때문에 face-on 형태로 주변 분자들과 π-π stacking을 잘 할 수 있기 때문에 좋은 결과를 기대 해 볼 수 있을 것이라 예상한다.
구체적으로 상기 화학식 1 및 화학식 21에서 이미드의 N에 알킬치환기를 가져 유기용매에 대한 높은 용해도를 가져 모폴로지(morphology)를 향상시킬 수 있고, 높은 전자밀도를 가져 우수한 전기적 특성을 가지기위한 측면에서, 상기 R1은 C1-C30알킬기일 수 있으며, 상기 Z는 S일 수 있다.
본 발명에서, 상기 화학식 1은 하기 화학식 2로 표시되는 것일 수 있다.
[화학식 2]
Figure PCTKR2014002058-appb-I000008
[상기 화학식 2에서,
R1 은 C1-C30알킬이고,
R3 및 R4는 각각 독립적으로
Figure PCTKR2014002058-appb-I000009
,
Figure PCTKR2014002058-appb-I000010
,
Figure PCTKR2014002058-appb-I000011
,
Figure PCTKR2014002058-appb-I000012
또는
Figure PCTKR2014002058-appb-I000013
에서 선택되며,
Z1 및 Z2는 각각 독립적으로 S, O 또는 Se이고,
R5 및 R6는 각각 독립적으로 수소, 할로겐, C1~C50알킬, C1~C50알콕시, C1~C50알킬C1~C50알콕시카보닐, C6~C50아릴, C3~C30헤테로아릴, C6~C50아르C1~C50알킬이며, R5 및 R6의 알킬, 알콕시, 알킬알콕시카보닐, 아릴, 헤테로아릴, 아르알킬은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
구체적으로 상기 화학식 2에서, R1 은 C1~C10알킬이고, R5 및 R6는 각각 독립적으로 C1~C30알킬인 것일 수 있으며, 알킬기를 치환함으로써 용해도를 조절할 수 있고 궁극적으로 공정상의 저비용 및 대면적화가 가능하다.
보다 구체적으로, 상기 화학식 2는 하기 화학식 3 내지 화학식 15에서 선택되는 것일 수 있다.
[화학식 3]
Figure PCTKR2014002058-appb-I000014
[화학식 4]
Figure PCTKR2014002058-appb-I000015
[화학식 5]
Figure PCTKR2014002058-appb-I000016
[화학식 6]
Figure PCTKR2014002058-appb-I000017
[화학식 7]
Figure PCTKR2014002058-appb-I000018
[화학식 8]
Figure PCTKR2014002058-appb-I000019
[화학식 9]
Figure PCTKR2014002058-appb-I000020
[화학식 10]
Figure PCTKR2014002058-appb-I000021
[화학식 11]
Figure PCTKR2014002058-appb-I000022
[화학식 12]
Figure PCTKR2014002058-appb-I000023
[화학식 13]
Figure PCTKR2014002058-appb-I000024
[화학식 14]
Figure PCTKR2014002058-appb-I000025
[화학식 15]
Figure PCTKR2014002058-appb-I000026
[상기 화학식 3 내지 화학식 15에서,
R1 은 C1-C10알킬이고,
R51 및 R61은 각각 독립적으로 C1-C30알킬이다.]
더욱 구체적으로, R1 은 C5-C10알킬이고, R51 및 R61은 각각 독립적으로 C5-C10알킬인 것일 수 있으며, 이 범위의 알킬기를 치환함으로써 용해도를 조절할 수 있고 궁극적으로 공정상의 저비용 및 대면적화가 가능하다.
더욱 구체적으로 R1 은 C8H17이고, R51 및 R61은 각각 독립적으로 C8H17인 것일 수 있다.
더욱 구체적으로 상기 화학식 1은 하기 화합물에서 선택되는 것일 수 있다.
Figure PCTKR2014002058-appb-I000027
Figure PCTKR2014002058-appb-I000028
Figure PCTKR2014002058-appb-I000029
Figure PCTKR2014002058-appb-I000030
Figure PCTKR2014002058-appb-I000031
Figure PCTKR2014002058-appb-I000032
또한 본 발명은 상기 화학식 1로 표시되는 유기 반도체 화합물의 제조방법을 제공한다.
본 발명의 상기 화학식 1로 표시되는 유기 반도체 화합물의 제조방법은,
하기 화학식 16으로 표시되는 화합물과 화학식 17로 표시되는 화합물을 반응시켜 화학식 18로 표시되는 화합물을 제조하는 단계;
화학식 18로 표시되는 화합물과 n-브로모숙신이미드를 반응시켜 화학식 19로 표시되는 화합물을 제조하는 단계;
화학식 19로 표시되는 화합물과 화학식 20으로 표시되는 화합물을 반응시켜 화학식 1로 표시되는 화합물을 제조하는 단계;
를 포함한다.
[화학식 1]
Figure PCTKR2014002058-appb-I000033
[화학식 16]
Figure PCTKR2014002058-appb-I000034
[화학식 17]
Figure PCTKR2014002058-appb-I000035
[화학식 18]
Figure PCTKR2014002058-appb-I000036
[화학식 19]
Figure PCTKR2014002058-appb-I000037
[화학식 20]
Figure PCTKR2014002058-appb-I000038
[상기 화학식 1및 화학식 16 내지 20에서,
Z는 S, O 또는 Se이고;
R1 은 C1~C30알킬, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 아릴 및 헤테로아릴은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있고,
R3 및 R4는 각각 독립적으로
Figure PCTKR2014002058-appb-I000039
,
Figure PCTKR2014002058-appb-I000040
,
Figure PCTKR2014002058-appb-I000041
,
Figure PCTKR2014002058-appb-I000042
또는
Figure PCTKR2014002058-appb-I000043
에서 선택되며,
Z1 및 Z2는 각각 독립적으로 S, O 또는 Se이고,
R5 및 R6는 각각 독립적으로 수소, 할로겐, C1~C50알킬, C1~C50알콕시, C1~C50알킬C1~C50알콕시카보닐, C6~C50아릴, C3~C30헤테로아릴, C6~C50아르C1~C50알킬이며, R5 및 R6의 알킬, 알콕시, 알킬알콕시카보닐, 아릴, 헤테로아릴, 아르알킬은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
본 발명에서 상기 화학식 1은 화학식 20 화합물 1몰에 대하여, 화학식 19 화합물을 2 ~ 2.05몰을 반응시킨 것일 수 있다.
구체적으로 상기 화학식 1및 화학식 16 내지 20에서,
Z는 S이며, R1 은 C1~C30알킬이고,
R3 및 R4는 각각 독립적으로
Figure PCTKR2014002058-appb-I000044
,
Figure PCTKR2014002058-appb-I000045
,
Figure PCTKR2014002058-appb-I000046
,
Figure PCTKR2014002058-appb-I000047
또는
Figure PCTKR2014002058-appb-I000048
에서 선택되며,
Z1 및 Z2는 각각 독립적으로 S, O 또는 Se이고,
R5 및 R6는 각각 독립적으로 수소, 할로겐, C1~C50알킬, C1~C50알콕시, C1~C50알킬C1~C50알콕시카보닐, C6~C50아릴, C3~C30헤테로아릴, C6~C50아르C1~C50알킬이며, R5 및 R6의 알킬, 알콕시, 알킬알콕시카보닐, 아릴, 헤테로아릴, 아르알킬은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환된 것일 수 있다.
보다 구체적으로, 상기 화학식 1및 화학식 16 내지 20에서,
Z는 S이며, R1 은 C1-C30알킬이고,
R3 및 R4는 각각 독립적으로
Figure PCTKR2014002058-appb-I000049
또는
Figure PCTKR2014002058-appb-I000050
이고,
Z1 은 S 또는 Se이며,
R5 는 C1-C50알킬인 것일 수 있다.
더욱 구체적으로 상기 화학식 1및 화학식 16 내지 20에서,
Z는 S이며, R1 은 C5-C10알킬이고,
R3 및 R4는 각각 독립적으로
Figure PCTKR2014002058-appb-I000051
또는
Figure PCTKR2014002058-appb-I000052
이고,
Z1 은 S 또는 Se이며,
R5 는 C5-C10알킬인 것일 수 있다.
더욱 구체적으로 상기 화학식 1및 화학식 16 내지 20에서,
Z는 S이며, R1 은 C8H17이고,
R3 및 R4는 각각 독립적으로
Figure PCTKR2014002058-appb-I000053
또는
Figure PCTKR2014002058-appb-I000054
이고,
Z1 은 S 또는 Se이며,
R5 는 C8H17인 것일 수 있다.
본 발명의 유기 반도체 화합물의 제조방법에서 사용되는 용매는 통상의 유기합성에서 사용되는 용매라도 모두 가능하나, 이에 한정이 있는 것은 아니며, 반응시간과 온도 또한 발명의 핵심을 벗어나지 않는 범위 내에서 변경이 가능하다.
또한, 본 발명은 하기 화학식 21로 이루어진 유기 반도체 화합물에 관한 것이다.
[화학식 21]
Figure PCTKR2014002058-appb-I000055
[상기 화학식 21에서,
Z는 S, O 또는 Se이고;
R1 은 C1~C30알킬, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 아릴 및 헤테로아릴은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있고,
R7 은 수소, 할로겐, C1~C50알킬, C1~C50알콕시, C1~C50알킬C1~C50알콕시카보닐, C6~C50아릴, C3~C30헤테로아릴, C6~C50아르C1~C50알킬이며, R5 및 R6의 알킬, 알콕시, 알킬알콕시카보닐, 아릴, 헤테로아릴, 아르알킬은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
구체적으로 Z는 S이고, R1 은 C1~C30알킬이고, R7 은 C1~C50알킬인 것일 수 있다.
보다 구체적으로 Z는 S이고, R1 은 C5~C10알킬이고, R7 은 C5~C10알킬인 것일 수 있다.
보다 구체적으로 Z는 S이고, R1 은 C8H17이고, R7 은 C6H13인 것일 수 있다.
또한 본 발명은 상기 화학식 21로 표시되는 유기 반도체 화합물의 제조방법을 제공한다.
본 발명의 상기 화학식 21로 표시되는 유기 반도체 화합물의 제조방법은,
하기 화학식 16의 화합물과 화학식 22의 화합물을 반응시켜 화학식 21의 화합물을 제조하는 단계;
를 포함한다.
[화학식 16]
Figure PCTKR2014002058-appb-I000056
[화학식 22]
Figure PCTKR2014002058-appb-I000057
[화학식 21]
Figure PCTKR2014002058-appb-I000058
[상기 화학식 16, 21 및 22에서,
Z는 S, O 또는 Se이고;
R1 은 C1~C30알킬, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 아릴 및 헤테로아릴은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있고,
R7 은 수소, 할로겐, C1~C50알킬, C1~C50알콕시, C1~C50알킬C1~C50알콕시카보닐, C6~C50아릴, C3~C30헤테로아릴, C6~C50아르C1~C50알킬이며, R5 및 R6의 알킬, 알콕시, 알킬알콕시카보닐, 아릴, 헤테로아릴, 아르알킬은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
구체적으로 Z는 S이고, R1 은 C1-C30알킬이고, R7 은 C1-C50알킬인 것일 수 있다.
보다 구체적으로 Z는 S이고, R1 은 C5~C10알킬이고, R7 은 C5~C10알킬인 것일 수 있다.
보다 구체적으로 Z는 S이고, R1 은 C8H17이고, R7 은 C6H13인 것일 수 있다.
본 발명에서 상기 화학식 21은 화학식 16 화합물 1몰에 대하여, 화학식 22 화합물을 2.2 ~ 2.5몰을 반응시킨 것일 수 있다.
본 발명의 유기 반도체 화합물의 제조방법에서 사용되는 용매는 통상의 유기합성에서 사용되는 용매라도 모두 가능하나, 이에 한정이 있는 것은 아니며, 반응시간과 온도 또한 발명의 핵심을 벗어나지 않는 범위 내에서 변경이 가능하다.
또한 본 발명은 본 발명의 고분자 화합물을 함유하는 유기태양전지를 제공한다.
본 발명의 일 실시예에 따른 유기태양전지는 기판, 투명전극, 정공수송층, 활성층, 전자수송층, 금속전극이 순차적으로 적층된 것일 수 있으며, 본 발명에 따른 상기 화학식 11의 고분자 화합물을 활성층의 p타입으로 사용되는 유기 태양전지를 제공한다.
일반적으로 본 발명에 따른 유기 태양전지는 이하 상술하는 방법으로 제조될 수 있으나 이는 일례를 들어 설명하는 것으로 이에 한정이 있는 것은 아니다.
태양전지는 일반적으로 도 1과 같이 유리기판/투명전극(ITO)/정공수송층/활성층(전자주게/전자받게)/전자수송층/금속전극(Al)으로 이루어진다. 구동원리는 빛이 유기기판과 ITO, 정공수송층을 통과하여 활성층에 도달하게 되면 p타입(전자주게) 고분자와 n타입(전자받게) 사이에서 여기자(Exciton)가 발생하게 되고 n타입의 물질을 따라 전자가 뜀(호핑)을 통해 금속전극으로 이동하게 되고 남은 정공은 정공수송층을 통해 ITO층으로 이동하게 된다. 이렇게 분리된 전자와 정공은 전류와 전압을 발생시키게 되고 전력을 생성시키게 된다. 정공수송층은 PEDOT:PSS[폴리(3,4-에틸렌다이옥시티오펜)]:[폴리(스티렌설포네이트)]로 이루어져 있으며 전자가 양극인 ITO층으로 이동하는 것을 막아주면서 정공의 수송을 원활하게 도와준다.
또한 본 발명의 활성층은 보다 바람직하게 p타입과 n타입의 계면을 넓게 하는 괴상이종접합(bulk-heterojunction)으로 이루어져 있는 것이 좋으며 이를 통해 생성되는 여기자가 쉽게 전자와 정공으로 분리될 수 있다는 장점을 가지게 된다.
보다 상세하게 설명하면, 투명전극인 ITO가 코팅된 유리기판위에 PEDOT-PSS(Baytron P TP AI 4083, Bayer AG)를 스핀코팅하여 30 ~ 50nm 두께로 층을 코팅한다. 그 후 120 ℃에서 60분간 어닐링을 하여 용매를 제거한다. 활성층은 본 발명에 따른 고분자 화합물과 PCBM 유도체 및 첨가제(DIO;다이아이오도옥탄, ODT;옥타다이싸이올)를 60 ℃에서 12시간동안 교반시킨 후에 0.45 ㎛크기의 필터로 물질을 필터한 후에 PEDOT-PSS 층위에 스핀코팅을 이용하여 100 nm 두께로 코팅한다. 그 후에 고진공 (10-6 torr)에서 10 nm 두께로 TiO2(인듐 틴 옥사이드)를 코팅하고 금속 전극으로 알루미늄(Al)을 100 nm 두께로 증착한다. 증착 후 필요에 따라 글러브 박스 안에서 120-150 ℃의 온도로 30분간 어닐링을 실시하여 형태학적 최적화를 실시한다.
상기 기판은 유리기판 이외에도 플라스틱 기판으로 PET[폴리(에틸렌테레프탈레이트), PES[폴리(이서술폰) 등의 소재를 사용할 수 있다.
본 발명에 따른 유기반도체 화합물을 사용하는 활성층은 스크린 인쇄법, 프린팅법, 스핀캐스팅법, 스핀코팅법, 딥핑법 또는 잉크분사법을 통하여 박막으로 형성될 수 있다.
상기 금속 전극은 전도성 물질이면 가능하나, 금(Au), 은(Ag), 알루미늄(Al), 니켈(Ni), 크롬(Cr) 및 인듐틴산화물(ITO)로 이루어진 군으로부터 선택된 물질로 형성되는 것이 바람직하다.
또한 투명전극은 제한이 있는 것은 아니나, ITO(인듐틴옥사이드), ZnO(아연옥사이드), MnO(망간옥사이드)등이 사용될 수 있다.
본 발명에 따른 유기 반도체 화합물은 단분자 화합물로써, 생산 수율이 높고, 합성 후 정제가 용이하며, 순도가 높아서 고순도막의 제조가 가능하다. 또한, 고분자 화합물에 비하여, 본 발명의 단분자 화합물은 온도, 습도, 시간, 재료의 상태에 따른 물성의 변화가 적어 고분자 화합물에 비하여 재현성이 우수한 특징이 있다. 또한, 본 발명의 단분자 화합물은 종래 고분자 화합물의 PCE값과 비교하였을 때, 동등 이상의 우수한 효과가 있다.
또한, 전자 주게 화합물이 이미드에 치환된 치환기를 가짐으로써 높은 용해도를 가질 뿐만 아니라 Benzodithiophene (BDT)는 현재 많은 연구가 진행되고 있는 물질 중 하나이다. BDT의 여러 장점 중 하나가 바로 hole mobility가 높다는 점이다. 입체장애가 적고, Planar한 구조를 가지고 있어서 고분자에서 주 사슬의 뒤틀림이 적기 때문에 사슬간의 상호작용이 원활하여 carrier 능력이 아주 좋기 때문이다. 이러한 이유로 TFT 뿐만 아니라 OPV에서도 주목 받고 있고, 다양하게 사용 되고 있다. 가지는 높은 전자밀도로 인해 유기 태양전지에 적용하면 단락전류(Jsc)값을 향상시킬 수 있다.
또한 본 발명은 본 발명에 따른 유기 반도체 화합물은 유기 태양전지의 활성층의 p타입재료로 사용되며 에너지 밴드갭을 조절하여 높은 개방 전압을 가질 수 있어 이를 채용한 유기 태양전지는 높은 효율을 가질 수 있다.
또한 본 발명은 전자 주게 화합물인 유기 반도체 화합물의 이미드에 치환되는 치환기의 구조에 따라 이를 채용한 유기 태양전지의 산화 안정성, 개방 전압값 및 전류 밀도를 향상 시킬 수 있다.
또한 본 발명에 따른 유기 반도체 화합물은 용매에 대한 용해도가 높아 스핀코팅이나 프린팅 같은 용액 공정으로도 제조할 수 있어 비용을 절감할 수 있을 뿐만 아니라 대면적화가 가능한 장점을 가진다.
대면적화를 가지게 되면 공정경쟁력을 가지게 된다. 그러나 대면적 구현시 저항문제가 해결되지 않아 아직 많은 연구가 필요한 실정이다.
유기태양전지가 상용화 된다면 많은 곳에 응용이 가능할 것으로 보인다. 휴대기기나 OLED TV의 전원, E-paper의 전원 등으로 사용될 수 있으며 높은 부가가치를 지니는 미래형 산업이 될 것이다.
도 1은 유리기판/투명전극(ITO)/정공수송층(PEDOT:PSS)/활성층(p/n)/전자수송층(TiO2)/금속전극(Al)으로 제조되는 일반적인 유기태양전지 구조를 보여주는 단면도이다.
도 2는 실시예 1에 따른 TGA를 통해 분자의 분절운동을 관측한 도면이다.
도 3은 실시예 2에 따른 TGA를 통해 분자의 분절운동을 관측한 도면이다.
도 4는 실시예 3에 따른 TGA를 통해 분자의 분절운동을 관측한 도면이다.
도 5는 실시예 4에 따른 TGA를 통해 분자의 분절운동을 관측한 도면이다.
도 6은 실시예 5에 따른 TGA를 통해 분자의 분절운동을 관측한 도면이다.
도 7은 실시예 1에 따른 유기반도체 화합물의 용액상 및 필름상의 UV-vis 흡수 스펙트라이다.
도 8은 실시예 2에 따른 유기반도체 화합물의 용액상 및 필름상의 UV-vis 흡수 스펙트라이다.
도 9는 실시예 3에 따른 유기반도체 화합물의 용액상 및 필름상의 UV-vis 흡수 스펙트라이다.
도 10은 실시예 4에 따른 유기반도체 화합물의 용액상 및 필름상의 UV-vis 흡수 스펙트라이다.
도 11은 실시예 5에 따른 유기반도체 화합물의 용액상 및 필름상의 UV-vis 흡수 스펙트라이다.
도 12는 실시예 1에 따른 화합물의 전기적 특성(cyclic voltammetry) 도면이다.
도 13은 실시예 2에 따른 화합물의 전기적 특성(cyclic voltammetry) 도면이다.
도 14는 실시예 3에 따른 화합물의 전기적 특성(cyclic voltammetry) 도면이다.
도 15는 실시예 4에 따른 화합물의 전기적 특성(cyclic voltammetry) 도면이다.
도 16는 실시예 5에 따른 화합물의 전기적 특성(cyclic voltammetry) 도면이다.
도 17~18은 실시예 1~5 를 유기태양전지소자로 제작하여 측정한 도면이다.
본 발명은 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다.
또한 본 발명에서 언급되는 용어 중 특별히 정의하지 않는다면 당업자들 사이에서 통상적으로 사용되는 의미로 이해되는 것을 의미한다.
ID(Drain current): Drain에 흐르는 전류
VG(Gate voltage): Gate에 인가되는 Voltage
IPCE(Incident-Photon-to-electron Conversion Efficiency): 양자효율
Mn(Number of molecular weight): 수평균 분자량
PDI(Poly dispersity index): 다분산지수
HOMO(highest occupied molecular orbital): 최고점유 분자궤도
LUMO(lowest unoccupied molecular orbital): 최저비점유 분자궤도
Band gap: HOMO와 LUMO 사이의 공간
Voc: 특정한 온도와 일조 강도에서 부하를 연결하지 않은(개방 상태의)태양광발전장치 양단에 걸리는 전압.
Jsc: 특정한 온도와 일조 강도에서 단락 조건에 있는 태양전지나 모듈 등 태양광발전장치의 출력 전류. 단위 면적당 단락 전류를 특별히 Jsc라고 하는 경우도 있다.
FF: 개방전압과 단략 전류의 곱에 대한 최대 출력의 비율, 태양전지로서의 전류 전압 특성 곡선(I-V 곡선)의 질을 나타내는 지표이며, 주로 내부의 직렬, 병렬 저항과 다디오드 성능 지수(diode quality factor)에 따라 달라진다.
PCE : 태양전지의 최대 출력(Pmax)을 발전하는 면적(태양전지 면적 A)과 규정된 시험 조건에서 측정한 입사 조사 강도(incidence irradiance ; E)의 곱으로 나누 값을 백분율로 나타낸 것으로서, %로 표시한다.
[실시예 1]
1,3-bis(5'-hexyl-[2,2'-bithiophen]-5-yl)-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione(1,3-비스(5‘-헥실-2,2’-바이티오펜-5-일)-5-옥틸-4H-싸이에노[3,4-c]피롤-4,6(5H)-다이온, 이하, BT-TPD)의 합성
Figure PCTKR2014002058-appb-I000059
잘 건조시킨 100mL 삼구 둥근 바닥 플라스크에 1,3-디브로모-5-옥틸-4H-싸이에노[3,4-c]피롤-4,6(5H)-다이온(1.01g, 2.38mmol)과 (5‘-헥실-2,2’-바이티오펜-5-일)트리메틸스타네인(1.97g, 4.77mmol)을 넣고 톨루엔 40ml에 녹였다. 질소가 담긴 풍선을 이용하여, 10분 동안 질소 기류하를 유지시켜준다.
그 후에 촉매로 Pd(PPh3)2Cl2(0.05g, 0.07 mmol)을 넣고, 온도를 100 ℃로 올린 후, 질소기류 하에서 12시간 동안 교반하였다. 혼합물을 클로로포름으로 추출하고 유기층을 물로 씻어 준 다음 MgSO4로 건조시킨 후, 회전식 증발기를 이용하여 용매를 제거하였다. n-헥산/클로로포름(부피비 2:1의 비율로)용매를 사용하여 컬럼크로마토그래피로 분리해서 노란색 고체화합물을 0.96g(53%)의 수득율로 얻었다.
1H NMR (300 MHz, CDCl3): δ = 7.92 (d, 2H), 7.11 (d, 4H), 6.73 (d, 2H), 3.68 (t, 2H), 2.82 (t, 4H), 1.68 (m, 6H), 1.431.25 (br, 22H), 0.89 (t, 9H).
13C NMR (500 MHz, CDCl3): δ = 163.0, 147.4, 141.8, 136.3, 134.1, 131.1, 130.7, 128.5, 125.5, 125.0, 124.3, 39.0, 38.2, 32.1, 31.9, 31.8, 30.6, 29.6, 29.5, 29.1, 28.9, 27.3, 23.0, 22.9, 14.4
HRMS (EI): m/z calcd for C42H51NO2S5 (M+) 761.25
[실시예 2] TBDT-TTPD의 합성
1)5-octyl-1,3-di(thiophen-2-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione(a)(5-옥틸-1,3-디(싸이오펜-2-일)-4H-싸이에노[3,4-c]피롤-4,6(5H)-다이온(a))의 합성
Figure PCTKR2014002058-appb-I000060
잘 건조시킨 500 mL 삼구 둥근 바닥 플라스크에 1,3-디브로모-5-옥틸-4H-싸이에노[3,4-c]피롤-4,6(5H)-다이온(7.50 g, 17.73 mmol)과 트리부틸(싸이오펜-2-일)스테네인(16.53 g, 44.32 mmol)을 넣고 톨루엔 300 mL에 녹였다. 질소가 담긴 풍선을 이용하여, 10분 동안 질소기류하를 유지시켜준다. Pd(PPh3)2Cl2 (0.37 g, 0.53 mmol)을 넣고, 온도를 100℃로 올린 후, 질소기류하에서 12시간동안 교반하였다. 혼합물을 클로로포름으로 추출하고 유기층을 물로 씻어 준 다음 MgSO4로 건조시킨 후, 회전식 증발기를 이용하여 용매를 제거하였다. n-헥산/디클로로메탄(부피비4;1의 비율로)용매를 사용하여 컬럼 크로마토그래피로 분리해서 노란색 고체화합물을 4.88 g (64%) 의 수득율로 얻었다.
1H NMR (300 MHz, CDCl3): δ = 8.00 (s, 2H), 7.45 (s, 2H), 7.15 (t, 2H), 3.68(t, 2H), 1.72 (m, 2H), 1.32 (m, 10H), 0.88 (t, 3H).
2)1-(5-bromothiophen-2-yl)-5-octyl-3-(thiophen-2-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione(b)(1-(5-브로모싸이오펜-2-일)-5-옥틸-3-(싸이오펜-2-일)-4H-싸이에노[3,4-c]피롤-4,6(5H)-다이온(b))의 합성
Figure PCTKR2014002058-appb-I000061
잘 건조시킨 250 mL 삼구 둥근 바닥 플라스크에 5-옥틸-1,3-디(싸이오펜-2-일)-4H-싸이에노[3,4-c]피롤-4,6(5H)-다이온 (5.50 g, 12.79 mmol)과 클로로포름100mL , DMF 100 mL 에 녹였다. n-브로모숙신이미드(NBS) (2.27 g, 12.79 mmol) 를 클로로포름 50mL, DMF 50mL와 같이 녹인 후, -5℃로 내린 플라스크 용기에 천천히 적가시켰다. 10시간 후, 혼합물을 클로로포름으로 추출하고 유기층을 물로 씻어준다음 MgSO4로 건조시킨 후, 회전식 증발기를 이용하여 용매를 제거하였다. n-헥산/디클로로메탄 (부피비 5:1의 비율로)용매를 사용하여 컬럼 크로마토그래피로 분리해서, 재결정 후 노란색 고체화합물을 3.44 g (53%) 의 수득율로 얻었다.
1H NMR (300 MHz, CDCl3): δ = 8.00 (s, 2H), 7.45 (s, 2H), 7.15 (t, 2H), 3.68(t, 2H), 1.72 (m, 2H), 1.32 (m, 10H), 0.88 (t, 3H).
3) TBDT-TTPD의 합성
Figure PCTKR2014002058-appb-I000062
잘 건조시킨 100 mL 삼구 둥근 바닥 플라스크에 1-(5-브로모싸이오펜-2-일)-5-옥틸-3-(싸이오펜-2-일)-4H-싸이에노[3,4-c]피롤-4,6(5H)-다이온 (1.00 g, 1.96 mmol)과 2,6-비스(트리메틸틴)-4,8-비스(5-(2-에틸헥실)싸이오펜-2-일)벤조[1,2-b:4,5b0]다이싸이오펜 (0.89 g, 0.98 mmol)을 넣고 톨루엔 30 mL에 녹였다. 질소가 담긴 풍선을 이용하여, 10분 동안 질소기류하를 유지시켜준다. Pd(PPh3)2Cl2 (0.02 g, 0.03 mmol)을 넣고, 온도를 100℃로 올린 후, 질소기류 하에서 12시간동안 교반하였다. 혼합물을 클로로포름으로 추출하고 유기층을 물로 씻어준 다음 MgSO4로 건조시킨 후, 회전식 증발기를 이용하여 용매를 제거하였다. n-헥산/클로로포름 (부피비 1:1의 비율로)용매를 사용하여 컬럼 크로마토그래피로 분리해서 검붉은 고체화합물을 0.49 g (35%) 의 수득율로 얻었다.
1H NMR (300 MHz, CDCl3), δ = 8.01 (d, 2H), 7.91 (d, 2H), 7.66 (s, 2H), 7.44 (t, 2H), 7.32(d, 2H), 7.24 (d, 2H), 7.13 (d, 2H), 6.97 (d, 2H), 3.66 (t, 4H), 2.95 (t, 4H), 1.70 (br, 8H), 1.571.29 (br, 34H), 1.070.87 (m, 18H).
13C NMR (500 MHz, CDCl3): δ 162.7, 162.6, 146.2, 140.6, 139.6, 137.4, 136.9, 135.9, 135.6, 132.9, 132.7, 132.2, 130.9, 130.2, 128.8, 128.7, 128.6, 128.4, 126.1, 125.9, 125.6, 123.6, 120.3, 41.8, 38.9, 34.8, 33.0, 32.2, 29.6, 29.4, 28.8, 27.5, 27.4, 26.2, 23.5, 23.0, 14.7, 14.4, 11.4
MS (MALDI-TOF/TOF): calculated for C78H84N2O4S10, 1432.36;
[실시예 3] BDTO-TTPD의 합성
Figure PCTKR2014002058-appb-I000063
잘 건조시킨 100 mL 삼구 둥근 바닥 플라스크에 1-(5-브로모싸이오펜-2-일)-5-옥틸-3-(싸이오펜-2-일)-4H-싸이에노[3,4-c]피롤-4,6(5H)-다이온 (1.00 g, 1.96 mmol)과 2,6-비스(트리메틸틴)-4,8-비스(5-(2-옥틸옥시))벤조[1,2-b:4,5b0]다이싸이오펜 (0.76 g, 0.98 mmol)을 넣고 Toluene 30 mL에 녹였다. 질소가 담긴 풍선을 이용하여, 10분 동안 질소기류하를 유지시켜준다. Pd(PPh3)2Cl2 (0.02 g, 0.03 mmol)을 넣고, 온도를 100℃로 올린 후, 질소기류 하에서 12시간동안 교반하였다. 혼합물을 클로로포름으로 추출하고 유기층을 물로 씻어준 다음 MgSO4로 건조시킨 후, 회전식 증발기를 이용하여 용매를 제거하였다. n-헥산/클로로포름(부피비 1:1의 비율로)용매를 사용하여 컬럼 크로마토그래피로 분리해서 검붉은 고체화합물을 0.61 g (48%) 의 수득율로 얻었다.
1H NMR (300 MHz, CDCl3), δ = 7.93 (d, 4H), 7.36 (d, 2H), 7.10 (s, 2H), 7.06 (d, 4H), 4.11 (t, 4H), 3.61 (t, 4H), 1.88-1.57 (br, 16H), 1.441.12 (br, 32H), 1.030.88 (m, 12H).
13C NMR (500 MHz, CDCl3): δ (162.8, 162.7, 162.6, 144.3, 140.8, 139.7, 136.7, 135.7, 132.8, 132.7, 132.4, 131.0, 130.3, 130.2, 128.8, 128.7, 126.3, 125.7, 117.3, 41.1, 39.0, 38.9, 32.2, 30.8, 29.7, 29.6, 28.9, 27.4, 24.2, 23.7, 23.6, 23.0, 14.7, 14.4, 11.8)
MS (MALDI-TOF/TOF): calculated for C70H80N2O6S8, 1300.54;
[실시예 4] BDTEH-TTPD의 합성
Figure PCTKR2014002058-appb-I000064
잘 건조시킨 100 mL 삼구 둥근 바닥 플라스크에 1-(5-브로모싸이오펜-2-일)-5-옥틸-3-(싸이오펜-2-일)-4H-싸이에노[3,4-c]피롤-4,6(5H)-다이온 (1.00 g, 1.96 mmol)과 2,6-비스(트리메틸틴)-4,8-비스(5-(2-에틸헥실옥시))벤조[1,2-b:4,5b0]다이싸이오펜 (0.76 g, 0.98 mmol)을 넣고 톨루엔 30 mL에 녹였다. 질소가 담긴 풍선을 이용하여, 10분 동안 질소기류하를 유지시켜준다. Pd(PPh3)2Cl2 (0.02 g, 0.03 mmol)을 넣고, 온도를 100'C로 올린 후, 질소기류하에서 12시간동안 교반하였다. 혼합물을 클로로포름으로 추출하고 유기층을 물로 씻어준다음 MgSO4로 건조시킨후, 회전식 증발기를 이용하여 용매를 제거하였다. n-Hexane/chloroform (1/1)용매를 사용하여 컬럼 크로마토그래피로 분리해서 검붉은 고체화합물을 0.58 g (46%) 의 수득율로 얻었다.
1H NMR (300 MHz, CDCl3), δ = 7.89 (d, 2H), 7.74 (d, 2H), 7.31 (t, 2H), 7.16 (s, 2H), 7.01(d, 4H), 4.09 (t, 4H), 3.63 (t, 4H), 1.69 (br, 10H), 1.361.16 (br, 32H), 1.130.88 (m, 18H).
13C NMR (500 MHz, CDCl3): δ(162.7, 162.6, 162.5, 146.2, 140.6, 139.6, 136.9, 135.9, 132.9, 132.7, 132.2, 130.9, 130.2, 128.7, 126.1, 125.9, 125.6, 123.6, 120.3, 41.8, 38.9, 34.8, 33.0, 32.2, 29.6, 29.4, 28.9, 27.5, 27.4, 26.2, 23.5, 23.0, 14.7, 14.4, 11.4)
MS (MALDI-TOF/TOF): calculated for C70H80N2O6S8, 1300.08;
[실시예 5] SBDT-TTPD의 합성
Figure PCTKR2014002058-appb-I000065
잘 건조시킨 100 mL 삼구 둥근 바닥 플라스크에 1-(5-브로모싸이오펜-2-일)-5-옥틸-3-(싸이오펜-2-일)-4H-싸이에노[3,4-c]피롤-4,6(5H)-다이온 (1.00 g, 1.96 mmol)과 2,6-비스(트리메틸틴)-4,8-비스(5-(2-에틸헥실)셀레노펜-2-일)벤조[1,2-b:4,5b0]다이싸이오펜 (0.98 g, 0.98 mmol)을 넣고 톨루엔 30 mL에 녹였다. 질소가 담긴 풍선을 이용하여, 10분 동안 질소기류하를 유지시켜준다. Pd(PPh3)2Cl2 (0.02 g, 0.03 mmol)을 넣고, 온도를 100'C로 올린 후, 질소기류하에서 12시간동안 교반하였다. 혼합물을 클로로포름으로 추출하고 유기층을 물로 씻어준 다음 MgSO4로 건조시킨 후, 회전식 증발기를 이용하여 용매를 제거하였다. n-Hexane/chloroform (1/1)용매를 사용하여 컬럼 크로마토그래피로 분리해서 검붉은 고체화합물을 0.46 g (31%) 의 수득율로 얻었다.
1H NMR (300 MHz, CD2Cl2), δ= 7.99 (d, 2H), 7.91 (d, 2H), 7.66 (s, 2H), 7.44 (t, 2H), 7.32(d, 2H), 7.24 (d, 2H), 7.13 (d, 2H), 6.97 (d, 2H), 3.68 (t, 4H), 2.95 (t, 4H), 1.70 (br, 8H), 1.571.29 (br, 34H), 1.070.97 (m, 18H).
13C NMR (500 MHz, CDCl3): δ162.7, 162.6, 146.2, 140.6, 139.6, 137.4, 136.9, 135.9, 135.6, 132.9, 132.7, 132.2, 130.9, 130.2, 128.8, 128.7, 128.6, 128.4, 126.1, 125.9, 125.6, 123.6, 120.3, 41.8, 38.9, 34.8, 33.0, 32.2, 29.6, 29.4, 28.8, 27.5, 27.4, 26.2, 23.5, 23.0, 14.7, 14.4, 11.4. MS (MALDI-TOF/TOF): calculated for C78H84N2O4S8Se2, 1528.25.
[실시예 6] 유기반도체 소자제작
ITO가 코팅된 유리기판을 아세톤과 IPA(Isopropylalcohol)로 세척한 후에, PEDOTPSS (Baytron P TP AI 4083, Bayer AG)를 ITO층 위에 코팅한다. 이때 두께는 3050 nm 정도가 되도록 하며 120℃에서 60분간 어닐링을 실시한다. 활성층으로 상기 실시예 1 내지 5에서 제조한 단분자 화합물과 PCBM 유도체 및 첨가제(DIO;다이아이오도옥탄, ODT;옥타다이싸이올)를 60℃에서 12시간동안 교반시킨 후에 0.45 ㎛ 크기의 필터로 물질을 필터한 후에 PEDOT-PSS 층위에 스핀코팅을 이용하여 100 nm 두께로 코팅한다. 그 후에 고진공 (10-6 torr)에서 10 nm 두께로 TiO2(인듐틴 옥사이드)를 코팅하고 알루미늄(Al)을 100 nm 두께로 증착하여 유기 태양전지 소자를 제작하였다. 필요에 따라 형태학적 특성의 개선을 목표로 어닐링을 실시하기도 한다. 또한 전류밀도전압 곡선(JV) 측정에는 Keithley사의 4200 소스를 이용하였으며 AM 1.5 G 조건 하에 표준 PVM132(NREL, 100mW/㎠의 세기로 측정함) 범위 하에서 유기 태양전지 소자 특성을 측정하여 도 17 ~ 18에 나타내었다.(Oriel 1kW solarsimulator 사용).
상기 실시예 1 내지 5에서 화합물(BT-TPD, TBDT-TTPD, BDTO-TTPD, BDTEH-TTPD, SBDT-TTPD)의 광 흡수영역을 용액상태와 필름상태에서 측정하여 결과를 도7~도11에 도시하였다. 하기에 도7 ~ 도 11그래프에 대한 결과 값을 표 1로 정리하였다.
[표 1]
Figure PCTKR2014002058-appb-I000066
여기서 실시예 1 내지 5의 HOMO값은 하기에 도8 에서 측정한 결과 값을 이용하여 계산한 값이다. 또한 밴드갭은 필름상태에서 UV흡수파장에서 구하였다. 표 1의 결과에서 보이는 바와 같이 본 발명에 따른 유기 반도체 화합물은 밴드갭이 넓어 장파장의 빛까지 흡수할 수 있으며 즉, 태양광과 유사한 파장영역의 빛까지 흡수가 가능하기 때문에 보다 많은 전류를 생산하게 되어 높은 단락전류가 발생할 수 있다.
실시예 1 내지 5의 열적특성은 하기에 도 2~6 에서 측정한 결과 값을 표 2로 정리하였다. 실시예 1,2,3,4,5에서 합성된 물질에 대한 열적 안정성에서, 유리전이온도 값은 측정되지 않았으나, Tm과 Tc가 측정된 것으로 보아 물질의 특성이 결정성을 가진 것으로 예상된다.
[표 2]
Figure PCTKR2014002058-appb-I000067
한편 유기태양전지의 특성은 크게 4가지 특성으로 나타낼 수 있는데, 단락전류(Short circuit current; Jsc), 개방전압(Open circuit voltage; Voc), 충진율(Fill factor; FF), 전력 변환 효율(Power conversion efficiency: PCE)이다. 이들 간의 상관관계는 아래의 식 1로 표현할 수 있다.
Figure PCTKR2014002058-appb-I000068
식 1
식1에 의하면 고효율을 구현하기 위해서는 소자에 높은 단락전류와 개방전압이 필요하다. 또한 높은 충진율을 가져야만 고효율의 소자구현이 가능하다. 높은 단락전류를 구현하기 위해서는 재료적으로 높은 전하이동도를 가져야 하며 높은 개방전압은 분자 내 전자주게의 HOMO 값과 LUMO 값에 연관이 있다. 또한 높은 충진율을 가지기 위해서는 일반적으로 전자 받게로 사용되는 PCBM과 혼합하였을 때 형태학적 특성이 우수해야만 한다. 따라서 위와 같은 여러 가지 조건이 충족되었을 때 비로소 고효율의 유기태양전지가 가능해 진다.
도 17~18은 각각 실시예 1 ~ 5에서 합성된 화합물의 유기태양전지 특성을 측정한 결과 값을 나타냈으며, 이에 해당하는 결과 값을 하기 표 3에 나타내었다.
[표 3]
Figure PCTKR2014002058-appb-I000069
표 3에서 보이는 바와 같이, TBDT-TTPD의 경우 9.1 mA/cm2의 높은 단락전류(Jsc)값을 보여주며 0.97V의 높은 개방전압(Voc) 값을 나타내고 있다. FF는 52.0%를 나타내고 있고, 물질의 효율은 약 4.6%의 값을 보여주고 있다. SBDT-TTPD의 경우 10.4 mA/cm2의 높은 단락전류(Jsc)값을 가지고, 0.90V의 높은 개방전압을 가지고 있으며, FF는 45.7%의 값을 나타내고 있다. 물질의 효율은 4.24%로 높은 효율 값을 나타내었다. BDTEH-TTPD, BDTO-TTPD, BT-TPD는 각각 7.1, 2.4, 6.2 mA/cm2 의 단락전류(Jsc)값을 가지고, 개방전압은 각각 0.91, 0.86, 0.84V의 값을 나타내고 있었으며, FF는 각각 41.8, 54.0, 27.5 %의 값을 나타내며, 물질의 효율은 각각 2.70, 1.12, 1.43%의 값을 나타내었다.

Claims (19)

  1. 하기 화학식 1로 표시되는 단량체로 이루어진 유기 반도체 화합물.
    [화학식 1]
    Figure PCTKR2014002058-appb-I000070
    [상기 화학식 1에서,
    Z는 S, O 또는 Se이고;
    R1 은 C1~C30알킬, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 아릴 및 헤테로아릴은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있고,
    R3 및 R4는 각각 독립적으로
    Figure PCTKR2014002058-appb-I000071
    ,
    Figure PCTKR2014002058-appb-I000072
    ,
    Figure PCTKR2014002058-appb-I000073
    ,
    Figure PCTKR2014002058-appb-I000074
    또는
    Figure PCTKR2014002058-appb-I000075
    에서 선택되며,
    Z1 및 Z2는 각각 독립적으로 S, O 또는 Se이고,
    R5 및 R6는 각각 독립적으로 수소, 할로겐, C1~C50알킬, C1~C50알콕시, C1~C50알킬C1~C50알콕시카보닐, C6~C50아릴, C3~C30헤테로아릴, C6~C50아르C1~C50알킬이며, R5 및 R6의 알킬, 알콕시, 알킬알콕시카보닐, 아릴, 헤테로아릴, 아르알킬은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
  2. 제 1항에 있어서,
    상기 화학식 1은 하기 화학식 2로 표시되는 유기 반도체 화합물.
    [화학식 2]
    Figure PCTKR2014002058-appb-I000076
    [상기 화학식 2에서,
    R1 은 C1~C30알킬이고,
    R3 및 R4는 각각 독립적으로
    Figure PCTKR2014002058-appb-I000077
    ,
    Figure PCTKR2014002058-appb-I000078
    ,
    Figure PCTKR2014002058-appb-I000079
    ,
    Figure PCTKR2014002058-appb-I000080
    또는
    Figure PCTKR2014002058-appb-I000081
    에서 선택되며,
    Z1 및 Z2는 각각 독립적으로 S, O 또는 Se이고,
    R5 및 R6는 각각 독립적으로 수소, 할로겐, C1~C50알킬, C1~C50알콕시, C1~C50알킬C1~C50알콕시카보닐, C6~C50아릴, C3~C30헤테로아릴, C6~C50아르C1~C50알킬이며, R5 및 R6의 알킬, 알콕시, 알킬알콕시카보닐, 아릴, 헤테로아릴, 아르알킬은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
  3. 제 2항에 있어서,
    상기 화학식 2에서,
    R1 은 C1~C10알킬이고,
    R5 및 R6는 각각 독립적으로 C1~C30알킬인 유기 반도체 화합물.
  4. 제 3항에 있어서,
    R1 은 C5-C10알킬이고,
    R51 및 R61은 각각 독립적으로 C5-C10알킬인 유기 반도체 화합물.
  5. 제 1항에 있어서,
    상기 화학식 1은 하기 화합물에서 선택되는 것인 유기 반도체 화합물.
    Figure PCTKR2014002058-appb-I000082
    Figure PCTKR2014002058-appb-I000083
    Figure PCTKR2014002058-appb-I000084
    Figure PCTKR2014002058-appb-I000085
    Figure PCTKR2014002058-appb-I000086
    Figure PCTKR2014002058-appb-I000087
  6. 하기 화학식 16으로 표시되는 화합물과 화학식 17로 표시되는 화합물을 반응시켜 화학식 18로 표시되는 화합물을 제조하는 단계;
    화학식 18로 표시되는 화합물과 n-브로모숙신이미드를 반응시켜 화학식 19로 표시되는 화합물을 제조하는 단계;
    화학식 19로 표시되는 화합물과 화학식 20으로 표시되는 화합물을 반응시켜 화학식 1로 표시되는 화합물을 제조하는 단계;
    를 포함하는 화학식 1로 표시되는 유기 반도체 화합물의 제조방법.
    [화학식 1]
    Figure PCTKR2014002058-appb-I000088
    [화학식 16]
    Figure PCTKR2014002058-appb-I000089
    [화학식 17]
    Figure PCTKR2014002058-appb-I000090
    [화학식 18]
    Figure PCTKR2014002058-appb-I000091
    [화학식 19]
    Figure PCTKR2014002058-appb-I000092
    [화학식 20]
    Figure PCTKR2014002058-appb-I000093
    [상기 화학식 1및 화학식 16 내지 20에서,
    Z는 S, O 또는 Se이고;
    R1 은 C1~C30알킬, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 아릴 및 헤테로아릴은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있고,
    R3 및 R4는 각각 독립적으로
    Figure PCTKR2014002058-appb-I000094
    ,
    Figure PCTKR2014002058-appb-I000095
    ,
    Figure PCTKR2014002058-appb-I000096
    ,
    Figure PCTKR2014002058-appb-I000097
    또는
    Figure PCTKR2014002058-appb-I000098
    에서 선택되며,
    Z1 및 Z2는 각각 독립적으로 S, O 또는 Se이고,
    R5 및 R6는 각각 독립적으로 수소, 할로겐, C1~C50알킬, C1~C50알콕시, C1~C50알킬C1~C50알콕시카보닐, C6~C50아릴, C3~C30헤테로아릴, C6~C50아르C1~C50알킬이며, R5 및 R6의 알킬, 알콕시, 알킬알콕시카보닐, 아릴, 헤테로아릴, 아르알킬은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
  7. 제 6항에 있어서,
    상기 화학식 1은 화학식 20 화합물 1몰에 대하여, 화학식 19 화합물을 2 ~ 2.2몰을 반응시킨 것인 유기 반도체 화합물의 제조방법.
  8. 제 6항에 있어서,
    Z는 S이며, R1 은 C1~C30알킬이고,
    R3 및 R4는 각각 독립적으로
    Figure PCTKR2014002058-appb-I000099
    ,
    Figure PCTKR2014002058-appb-I000100
    ,
    Figure PCTKR2014002058-appb-I000101
    ,
    Figure PCTKR2014002058-appb-I000102
    또는
    Figure PCTKR2014002058-appb-I000103
    에서 선택되며,
    Z1 및 Z2는 각각 독립적으로 S, O 또는 Se이고,
    R5 및 R6는 각각 독립적으로 수소, 할로겐, C1~C50알킬, C1~C50알콕시, C1~C50알킬알콕시카보닐, C6~C50아릴, C3~C30헤테로아릴, C6~C50아르C1~C50알킬이며, R5 및 R6의 알킬, 알콕시, 알킬알콕시카보닐, 아릴, 헤테로아릴, 아르알킬은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환된 것인 유기 반도체 화합물의 제조방법.
  9. 제 8항에 있어서,
    Z는 S이며, R1 은 C1~C30알킬이고,
    R3 및 R4는 각각 독립적으로
    Figure PCTKR2014002058-appb-I000104
    또는
    Figure PCTKR2014002058-appb-I000105
    이고,
    Z1 은 S 또는 Se이며,
    R5 는 C1~C50알킬인 유기 반도체 화합물의 제조방법.
  10. 제 9항에 있어서,
    Z는 S이며, R1 은 C5~C10알킬이고,
    R3 및 R4는 각각 독립적으로
    Figure PCTKR2014002058-appb-I000106
    또는
    Figure PCTKR2014002058-appb-I000107
    이고,
    Z1 은 S 또는 Se이며,
    R5 는 C5~C10알킬인 유기 반도체 화합물의 제조방법.
  11. 하기 화학식 21로 표시되는 단량체로 이루어진 유기 반도체 화합물.
    [화학식 21]
    Figure PCTKR2014002058-appb-I000108
    [상기 화학식 21에서,
    Z는 S, O 또는 Se이고;
    R1 은 C1~C30알킬, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 아릴 및 헤테로아릴은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있고,
    R7 은 수소, 할로겐, C1~C50알킬, C1~C50알콕시, C1~C50알킬C1~C50알콕시카보닐, C6~C50아릴, C3~C30헤테로아릴, C6~C50아르C1~C50알킬이며, R5 및 R6의 알킬, 알콕시, 알킬알콕시카보닐, 아릴, 헤테로아릴, 아르알킬은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
  12. 제 11항에 있어서,
    Z는 S이고, R1 은 C1~C30알킬이고, R7 은 C1~C50알킬인 유기 반도체 화합물.
  13. 제 12항에 있어서,
    Z는 S이고, R1 은 C5~C10알킬이고, R7 은 C5~C10알킬인 유기 반도체 화합물.
  14. 하기 화학식 16의 화합물과 화학식 22의 화합물을 반응시켜 화학식 21의 화합물을 제조하는 단계;
    를 포함하는 화학식 21로 표시되는 유기 반도체 화합물의 제조방법.
    [화학식 16]
    Figure PCTKR2014002058-appb-I000109
    [화학식 22]
    Figure PCTKR2014002058-appb-I000110
    [화학식 21]
    Figure PCTKR2014002058-appb-I000111
    [상기 화학식 16, 21 및 22에서,
    Z는 S, O 또는 Se이고;
    R1 은 C1~C30알킬, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 아릴 및 헤테로아릴은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있고,
    R7 은 수소, 할로겐, C1~C50알킬, C1~C50알콕시, C1~C50알킬C1~C50알콕시카보닐, C6~C50아릴, C3~C30헤테로아릴, C6~C50아르C1~C50알킬이며, R5 및 R6의 알킬, 알콕시, 알킬알콕시카보닐, 아릴, 헤테로아릴, 아르알킬은 C1~C30알킬, C2~C30알케닐, C2~C30알키닐, C1~C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
  15. 제 14항에 있어서,
    Z는 S이고, R1 은 C1~C30알킬이고, R7 은 C1~C50알킬인 유기 반도체 화합물의 제조방법.
  16. 제 14항에 있어서,
    Z는 S이고, R1 은 C5~C10알킬이고, R7 은 C5~C10알킬인 유기 반도체 화합물의 제조방법.
  17. 제 14항에 있어서,
    상기 화학식 21은 화학식 16 화합물 1몰에 대하여, 화학식 22 화합물을 2 ~ 2.2몰을 반응시킨 것인 유기 반도체 화합물의 제조방법.
  18. 제 1항 내지 제 17항에서 선택되는 어느 한 항에 따른 유기 반도체 화합물을 함유하는 유기 태양전지.
  19. 제 18항에 있어서,
    상기 유기 태양전지는 구조가 기판, 투명전극, 정공수송층, 활성층, 전자수송층, 금속전극이 순차적으로 적층된 구조인 유기 태양전지.
PCT/KR2014/002058 2013-06-20 2014-03-12 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지 WO2014204082A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130071155 2013-06-20
KR10-2013-0071155 2013-06-20
KR10-2014-0021096 2014-02-24
KR1020140021096A KR101563120B1 (ko) 2013-06-20 2014-02-24 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지

Publications (1)

Publication Number Publication Date
WO2014204082A1 true WO2014204082A1 (ko) 2014-12-24

Family

ID=52104777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002058 WO2014204082A1 (ko) 2013-06-20 2014-03-12 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지

Country Status (1)

Country Link
WO (1) WO2014204082A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017120572A1 (en) 2016-01-09 2017-07-13 Flexterra, Inc. Dithiophenethiadiazole semiconductors and related devices
US10040804B2 (en) 2016-12-21 2018-08-07 Biotheryx, Inc. Compounds targeting proteins, compositions, methods, and uses thereof
KR101914710B1 (ko) 2017-10-30 2019-01-14 재단법인 나노기반소프트일렉트로닉스연구단 아이소인돌린다이온 기반 전도성 고분자 및 그를 포함하는 유기 태양 전지
CN109369686A (zh) * 2018-09-30 2019-02-22 华南理工大学 一种基于噻吩并吡咯二酮型小分子受体材料及其制备与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080042443A (ko) * 2006-11-10 2008-05-15 주식회사 엘지화학 π-확장 테트라티아풀발렌 화합물, 이를 이용한 유기 전자소자 및 이 유기 전자 소자를 포함하는 전자 장치
KR101042530B1 (ko) * 2010-06-18 2011-06-17 경상대학교산학협력단 알콕시 화합물을 곁사슬로 포함하는 유기태양전지 재료 개발
US20110204341A1 (en) * 2009-09-04 2011-08-25 Plextronics, Inc. Organic electronic devices and polymers, including photovoltaic cells and diketone-based polymers
US20130048075A1 (en) * 2009-11-30 2013-02-28 Universite Laval Novel photoactive polymers
KR20130048175A (ko) * 2011-11-01 2013-05-09 경상대학교산학협력단 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080042443A (ko) * 2006-11-10 2008-05-15 주식회사 엘지화학 π-확장 테트라티아풀발렌 화합물, 이를 이용한 유기 전자소자 및 이 유기 전자 소자를 포함하는 전자 장치
US20110204341A1 (en) * 2009-09-04 2011-08-25 Plextronics, Inc. Organic electronic devices and polymers, including photovoltaic cells and diketone-based polymers
US20130048075A1 (en) * 2009-11-30 2013-02-28 Universite Laval Novel photoactive polymers
KR101042530B1 (ko) * 2010-06-18 2011-06-17 경상대학교산학협력단 알콕시 화합물을 곁사슬로 포함하는 유기태양전지 재료 개발
KR20130048175A (ko) * 2011-11-01 2013-05-09 경상대학교산학협력단 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017120572A1 (en) 2016-01-09 2017-07-13 Flexterra, Inc. Dithiophenethiadiazole semiconductors and related devices
CN108431076A (zh) * 2016-01-09 2018-08-21 飞利斯有限公司 二噻吩噻二唑半导体和相关器件
EP3400253A4 (en) * 2016-01-09 2019-09-11 Flexterra, Inc. SEMI-CONDUCTORS OF THE DITHIOPHENETHIAZIAZOLE TYPE AND ASSOCIATED DEVICES
CN108431076B (zh) * 2016-01-09 2020-12-15 飞利斯有限公司 二噻吩噻二唑半导体和相关器件
US10040804B2 (en) 2016-12-21 2018-08-07 Biotheryx, Inc. Compounds targeting proteins, compositions, methods, and uses thereof
US10336771B2 (en) 2016-12-21 2019-07-02 Biotheryx, Inc. Compounds targeting proteins, compositions, methods, and uses thereof
US10889593B2 (en) 2016-12-21 2021-01-12 Biotheryx, Inc. Compounds targeting proteins, compositions, methods, and uses thereof
US11345714B2 (en) 2016-12-21 2022-05-31 Biotheryx, Inc. Compounds targeting proteins, compositions, methods, and uses thereof
KR101914710B1 (ko) 2017-10-30 2019-01-14 재단법인 나노기반소프트일렉트로닉스연구단 아이소인돌린다이온 기반 전도성 고분자 및 그를 포함하는 유기 태양 전지
CN109369686A (zh) * 2018-09-30 2019-02-22 华南理工大学 一种基于噻吩并吡咯二酮型小分子受体材料及其制备与应用
CN109369686B (zh) * 2018-09-30 2020-09-22 华南理工大学 一种基于噻吩并吡咯二酮型小分子受体材料及其制备与应用

Similar Documents

Publication Publication Date Title
WO2013066065A1 (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지
Yao et al. Molecular design of benzodithiophene-based organic photovoltaic materials
WO2013119022A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2010087655A2 (ko) 플러렌 유도체 및 이를 함유하는 유기 전자 소자
WO2021118238A1 (ko) 신규한 중합체 및 이를 이용하는 유기 전자 소자
WO2016099218A2 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2015163614A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2018216880A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2011068305A2 (ko) 파이렌 화합물이 도입된 전도성 고분자 및 그를 이용한 유기 태양전지
WO2015008939A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2016133368A2 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2013089443A1 (ko) 신규한 다이케토피롤로피롤 중합체 및 이를 이용한 유기 전자 소자
WO2010074520A2 (ko) 신규 유기 반도체 화합물, 그의 제조 방법, 상기를 포함하는 유기 반도체 조성물, 유기 반도체 박막 및 소자
WO2014119962A1 (ko) 고효율 유기 박막 태양전지를 위한 신규의 고분자 재료 및 이를 이용한 유기 박막 태양전지
WO2019112220A1 (ko) 극성관능기가 부분적으로 도입된 중합체, 이의 제조방법 및 이를 함유하는 유기 전자 소자
WO2015122722A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2014077590A1 (ko) 신규한 나프탈렌 다이이미드를 포함하는 중합체 및 이를 이용한 유기 전자 소자
WO2015167284A1 (ko) 유기 태양 전지 및 이의 제조방법
WO2014061867A1 (ko) 신규한 유기 반도체 화합물 및 이의 제조방법
WO2014204082A1 (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지
WO2019066305A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2019004605A1 (ko) 유기 태양 전지
WO2019221386A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2014092408A1 (ko) 공중합체 및 이를 이용한 유기 태양 전지
WO2015037966A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814587

Country of ref document: EP

Kind code of ref document: A1