WO2013066065A1 - 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지 - Google Patents

유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지 Download PDF

Info

Publication number
WO2013066065A1
WO2013066065A1 PCT/KR2012/009108 KR2012009108W WO2013066065A1 WO 2013066065 A1 WO2013066065 A1 WO 2013066065A1 KR 2012009108 W KR2012009108 W KR 2012009108W WO 2013066065 A1 WO2013066065 A1 WO 2013066065A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
alkyl
heteroaryl
aryl
compound
Prior art date
Application number
PCT/KR2012/009108
Other languages
English (en)
French (fr)
Inventor
권순기
김슬옹
강일
김윤희
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Publication of WO2013066065A1 publication Critical patent/WO2013066065A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3227Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing only one kind of heteroatoms other than N, O, S, Si, Se, Te
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic semiconductor compound, a manufacturing method thereof and an organic solar cell employing the same.
  • the present invention relates to an organic semiconductor compound in which an aromatic compound containing an alkyl imide is introduced into an intramolecular electron accepting region, a method for preparing the same, a polymer compound containing such an organic semiconductor compound, and an organic solar cell containing the polymer compound.
  • Organic solar cells are likely to be used as rollable or wearable solar cells because they are lightweight and can be implemented on plastic substrates.
  • organic solar cells have been reported with single cell efficiency, and high organic solar cells of 7-9% have been reported.
  • Representative polymer organic solar cell materials developed to date include P3HT [poly (3-hexylthiophene)] and MEH-PPV [poly (2-methoxy-5- (2-ethyl-hexyl) -1,4 -Phenylene-vinylene)], PCPDTBT [poly (2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b] -di Thiophene) -alter-4,7- (2,1,3-benzothiadiazol)], etc.
  • MEH-PPV and P3HT were used to form n-type PCBM (phenyl-C61-butylic). Acid methyl) to form an active layer.
  • P3HT has a high crystallinity, so annealing was performed for morphological improvement and reported an efficiency of more than 5%.
  • polymer materials polymerized with one repeating unit such as P3HT, are limited in absorbing long wavelengths, and in order to realize higher efficiency, new materials that absorb long wavelengths need to be developed.
  • Several methods of absorbing the long wavelength region of light have been studied, and among them, polymer materials made by alternating polymerization of electron donors and electron acceptors in a molecule are reported to be able to absorb long wavelengths by converting energy bend gaps. It was.
  • Korean Patent No. 1042530 discloses an organic solar cell using an aromatic material having an alkoxy group as a side chain as an intramolecular electron donor.
  • the present invention provides an organic semiconductor compound that has high solubility and allows for absorption of long wavelengths while being morphologically excellent when mixed with n-type (electron acceptor) materials (eg, PCBM).
  • n-type (electron acceptor) materials eg, PCBM
  • the present invention provides an organic semiconductor compound that can control the band gap, and has an electron accepting structure having a high electron density and thermally stable while having a high short-circuit current to have a high filling rate.
  • the present invention also provides a method for producing an organic semiconductor compound.
  • the present invention also provides a polymer compound comprising the organic semiconductor compound according to the present invention as a unit and a p-type material of the active layer of the organic solar cell.
  • the present invention also provides an organic solar cell having the polymer compound according to the present invention as an active layer.
  • the present invention provides an organic semiconductor compound, a method for producing the same, a polymer compound containing the same, and an organic solar cell containing the polymer compound.
  • the organic semiconductor compound of the present invention is represented by the following formula (1).
  • Z is S or Se
  • R is C 1 -C 30 alkyl, C 2 -C 30 alkylene, C 2 -C 30 alkynylene, C 6 -C 30 aryl or C 3 -C 30 heteroaryl, the alkyl, alkylene, alkynylene, Aryl and heteroaryl are C 1 -C 30 alkyl, C 2 -C 30 alkenyl, C 2 -C 30 alkynyl, C 1 -C 30 alkoxy, amino, hydroxy, halogen, cyano, nitro And one or more substituents selected from a group, a trifluoromethyl group and a silyl group.]
  • the organic semiconductor compound of the present invention is an aromatic compound incorporating an imide having a high electron density to improve electron density through thiophenothiophene or selenophenoselenophene fused ring and imide and introduce a substituent into the imide. Solubility is improved, and small and hard aromatic groups enhance the intermolecular interactions and introduce them into electron donors. Indicates.
  • N has an alkyl substituent on N-imide to have high solubility in an organic solvent, thereby improving morphology, and having a high electron density in terms of having excellent electrical properties. It may be a C 1 -C 30 alkyl group, Z may be S.
  • the present invention provides a method for producing an organic semiconductor compound represented by the formula (1).
  • Z is S or Se
  • R is C 1 -C 30 alkyl, C 2 -C 30 alkylene, C 2 -C 30 alkynylene, C 6 -C 30 aryl or C 3 -C 30 heteroaryl, the alkyl, alkylene, alkynylene, Aryl and heteroaryl are C 1 -C 30 alkyl, C 2 -C 30 alkenyl, C 2 -C 30 alkynyl, C 1 -C 30 alkoxy, amino, hydroxy, halogen, cyano, nitro May be further substituted with one or more substituents selected from groups, trifluoromethyl groups and silyl groups;
  • R 1 or R 2 are, independently from each other, C 1 -C 30 alkyl
  • a catalyst may be used, and more specifically, copper oxide may be used.
  • Formula 1 according to an embodiment of the present invention may be prepared by the reaction of Formula 7, 0.5 to 2 moles with respect to Formula 6, 1 mole.
  • the compound of Chemical Formula 2 may be prepared by reacting a compound of Chemical Formula 8 with a compound of Chemical Formula 9 in the presence of an organic lithium. .
  • X or X 1 is halogen
  • R 1 is C 1 -C 20 alkyl.
  • the organolithium according to an embodiment of the present invention may be any material as long as it is a material composed of an organic compound and lithium, but is preferably alkyllithium, more preferably ethyllithium, n-butyllithium, tert-butyllithium.
  • Z is S, and R may be a C 1 -C 20 alkyl group.
  • the solvent used in the method of preparing the organic semiconductor compound of the present invention may be any solvent used in conventional organic synthesis, but is not limited thereto, and the reaction time and temperature may be changed within a range not departing from the core of the present invention. It is possible.
  • the present invention provides a polymer compound comprising an organic semiconductor compound represented by the formula (1) as a unit.
  • the polymer compound including the organic semiconductor compound represented by Chemical Formula 1 as a unit of the present invention has an fused ring of an organic semiconductor compound with an imide group and thiophenothiophene or selenophenoselenophene, and has a high electron density, and the N of the imide group
  • the solubility is improved by having a substituent in the organic solar cell containing the polymer compound containing the organic semiconductor compound of the present invention as a unit as an active layer shows high efficiency and high stability.
  • the polymer compound of the present invention prepared by introducing the organic semiconductor compound of the present invention into an electron donor and alternating polymerization with an electron acceptor compound has high solubility, charge mobility and stability.
  • the polymer compound according to the present invention may be represented by the following formula (11).
  • Z is S or Se
  • Ar is C 6 -C 30 arylene or C 3 -C 30 heteroarylene
  • R is selected from C 1 -C 30 alkyl, C 2 -C 30 alkylene, C 2 -C 30 alkynylene, C 6 -C 30 aryl and C 3 -C 30 heteroaryl, said alkyl, alkylene, alkoxy Niylene, aryl and heteroaryl are C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 1 -C 20 alkoxy, amino, hydroxy, halogen, cyano, May be further substituted with one or more substituents selected from nitro, trifluoromethyl and silyl groups;
  • N is an integer of 1 to 1000.
  • the polymer compound of the present invention is configured to alternately polymerize the organic semiconductor compound of the present invention with an electron acceptor compound as an electron donor to increase electrical characteristics and stability of an organic solar cell including the same.
  • Ar in Formula 11 may be one or more selected from the following structures.
  • R 11 and R 12 independently of one another are selected from hydrogen, C 1 -C 30 alkyl, C 2 -C 30 alkylene, C 2 -C 30 alkynylene, C 6 -C 30 aryl and C 3 -C 30 heteroaryl Become;
  • the alkyl, alkylene, alkynylene, aryl and heteroaryl may be further substituted with halogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 6 -C 30 aryl and C 3 -C 30 heteroaryl. .)
  • Formula 11 may be represented by the following Formula 12.
  • Ar is C 6 -C 30 arylene or C 3 -C 30 heteroarylene
  • R 21 is C 1 -C 30 alkyl
  • N is an integer of 1 to 1000.
  • Ar may be arylene or heteroarylene selected from the following structures.
  • R 11 and R 12 independently of one another are selected from hydrogen, C 1 -C 30 alkyl, C 2 -C 30 alkylene, C 2 -C 30 alkynylene, C 6 -C 30 aryl and C 3 -C 30 heteroaryl Become;
  • the alkyl, alkylene, alkynylene, aryl and heteroaryl may be further substituted with halogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 6 -C 30 aryl and C 3 -C 30 heteroaryl. .)
  • the polymer compound according to an embodiment of the present invention may be preferably exemplified by the following structural formula, but is not limited thereto.
  • N is an integer of 1 to 1000 in the formula structure.
  • a method for synthesizing a polymer compound using the organic semiconductor compound as a unit according to the present invention through alkylation reaction, bromination reaction, cyclization reaction, reduction reaction, dehydration reaction, stiller coupling reaction, Suzuki coupling reaction, etc. It may be prepared, but is not limited to the above synthesis method, and may be synthesized by an organic chemical reaction that is commonly used in addition to the above synthesis method.
  • the present invention also provides an organic solar cell containing the polymer compound of the present invention.
  • An organic solar cell according to an embodiment of the present invention may be a substrate, a transparent electrode, a hole transport layer, an active layer, an electron transport layer, a metal electrode sequentially stacked, the polymer compound of Formula 11 according to the present invention p of the active layer Provided is an organic solar cell used as a type.
  • the organic solar cell according to the present invention may be manufactured by the above-described method, but this is described by way of example and is not limited thereto.
  • the solar cell is generally composed of a glass substrate / transparent electrode (ITO) / hole transport layer / active layer (electron donor / electron acceptor) / electron transport layer / metal electrode (Al) as shown in FIG.
  • the driving principle is that when light reaches the active layer through the organic substrate, the ITO, and the hole transport layer, excitons are generated between the p-type (electron donor) polymer and the n-type (electron acceptor). The electrons move to the metal electrode through hopping, and the remaining holes move to the ITO layer through the hole transport layer. These separated electrons and holes generate currents and voltages and generate power.
  • the hole transport layer is composed of PEDOT: PSS [poly (3,4-ethylenedioxythiophene)]: [poly (styrenesulfonate)] and helps to transport holes while preventing electrons from moving to the anode ITO layer. give.
  • the active layer of the present invention is more preferably composed of bulk-heterojunction (bulk-heterojunction) to widen the interface between the p-type and n-type and has the advantage that the excitons generated through this can be easily separated into electrons and holes do.
  • bulk-heterojunction bulk-heterojunction
  • PEDOT-PSS (Baytron P TP AI 4083, Bayer AG) is spin-coated on a glass substrate coated with a transparent electrode ITO to coat a layer with a thickness of 30-50 nm. Thereafter, the solvent is removed by annealing at 120 ° C. for 60 minutes. After the active layer was stirred at 60 ° C. for 12 hours, the polymer compound, the PCBM derivative, and the additive (DIO; diio-octane, ODT; octadithiol) according to the present invention were filtered through a 0.45 ⁇ m filter. 100 nm thick is coated on the PEDOT-PSS layer using spin coating.
  • TiO 2 indium tin oxide
  • Al aluminum
  • the substrate may be made of a material such as PET (poly (ethylene terephthalate), PES (poly (esulfone)), etc. as a plastic substrate.
  • PET poly (ethylene terephthalate), PES (poly (esulfone)
  • PES poly (esulfone)
  • the active layer using the organic semiconductor compound according to the present invention may be formed into a thin film by screen printing, printing, spin casting, spin coating, dipping or ink spraying.
  • the metal electrode may be a conductive material, but may be formed of a material selected from the group consisting of gold (Au), silver (Ag), aluminum (Al), nickel (Ni), chromium (Cr), and indium tin oxide (ITO). It is preferable.
  • the transparent electrode is not limited, but ITO (indium tin oxide), ZnO (zinc oxide), MnO (manganese oxide) and the like can be used.
  • the organic semiconductor compound according to the present invention has not only high solubility because the electron donor compound has a substituent substituted in the imide, but also due to the high electron density of the imide and thiophenothiophene or serenophenoselenophene fused ring.
  • a polymer compound containing a unit By applying a polymer compound containing a unit to an organic solar cell, a short circuit current (Jsc) value can be improved.
  • the polymer compound containing the organic semiconductor compound according to the present invention is used as a p-type material of the active layer of the organic solar cell and may have a high open voltage by adjusting the energy band gap. Can have efficiency.
  • the present invention can improve the oxidative stability, the open voltage value and the current density of the organic solar cell employing the same according to the structure of the substituent substituted in the imide of the organic semiconductor compound which is an electron donor compound.
  • organic semiconductor compound according to the present invention a polymer compound containing the monomer as a high solubility in a solvent can be prepared by a solution process such as spin coating or printing, which can reduce cost and large area.
  • FIG. 1 is a cross-sectional view showing a general organic solar cell structure made of a glass substrate / transparent electrode (ITO) / hole transport layer (PEDOT: PSS) / active layer (p / n) / electron transport layer (TiO 2 ) / metal electrode (Al). to be.
  • ITO transparent electrode
  • PEDOT hole transport layer
  • p / n active layer
  • TiO 2 electron transport layer
  • Al metal electrode
  • FIG. 2 is a view showing UV-vis absorption spectra of solution phase and film phase of organic semiconductor compounds according to Examples 4 and 5.
  • FIG. 2 is a view showing UV-vis absorption spectra of solution phase and film phase of organic semiconductor compounds according to Examples 4 and 5.
  • Example 3 is a view showing the UV-vis absorption spectra of the solution phase and the film phase of the organic semiconductor compound according to Example 6.
  • Example 4 is a view showing a solution phase and a film-like UV-vis absorption spectra of the organic semiconductor compound according to Example 7.
  • 5 is a view showing the electrical properties (cyclic voltammetry) of the organic semiconductor compound according to Examples 4, 5.
  • FIG. 6 is a view showing the electrical properties (cyclic voltammetry) of the organic semiconductor compound according to Examples 6, 7.
  • FIG. 7 is a view of observing segmental motion of molecules in Example 4 through DSC.
  • FIG. 8 is a diagram of Example 5 observing segmental motion of molecules through DSC.
  • FIG. 9 is a diagram of Example 6 observing segmental motion of molecules through DSC.
  • FIG. 10 is a diagram illustrating a segmental motion of a molecule of Example 7 through DSC.
  • FIG. 10 is a diagram illustrating a segmental motion of a molecule of Example 7 through DSC.
  • FIG. 11 is a diagram illustrating a decomposition temperature of molecules through Example 4 in TGA.
  • FIG. 13 is a view illustrating a decomposition temperature of a molecule of Example 6 through TGA.
  • FIG. 14 is a view illustrating a decomposition temperature of molecules through TGA in Example 7.
  • FIG. 15 is a diagram of current density-voltage curves JV measured by fabricating Examples 4 and 5 with the organic solar cell device.
  • 16 is a view illustrating the external quantum efficiency of Examples 4 and 5 by using an organic solar cell device.
  • Example 17 is a current density-voltage curve measured by fabricating Example 6 with an organic solar cell device ( JV Drawing: (POBOBDTPD: PC 71 BM (1: 1) w / DIO-1000 rpm; ⁇ : POBOBDTPD: PC 71 BM (1: 1) w / DIO-1000rpm-w / TiO 2 ; ⁇ : POBOBDTPD: PC 71 BM (1: 1) w / DIO-3000 rpm; ⁇ : POBOBDTPD: PC 71 BM (1: 1) w / DIO-3000rpm-w / TiO 2 ).
  • FIG. 19 is a view showing the external quantum efficiency of Examples 6 and 7 by using an organic solar cell device ( ⁇ : PEBOBDTPD: PC) 71 BM (1: 1) w / 0 DIO; PEBOBDTPD: PC 71 BM (1: 2) w / 0 DIO; ⁇ : POBOBDTPD: PC 71 BM (1: 1) w / DIO; ⁇ : POBOBDTPD: PC 71 BM (1: 2) w / DIO).
  • I D Drain current
  • V G Gate voltage
  • IPCE Incident-Photon-to-electron Conversion Efficiency
  • the voltage across the device is the voltage across the device.
  • Jsc The output current of a photovoltaic device, such as a solar cell or module, in a short circuit condition at a specific temperature and sunshine intensity.
  • the short circuit current per unit area is sometimes referred to as Jsc.
  • 6-octyl-5H-thieno [3 ', 4', 4,5] thieno [2,3-c] pyrrole-5,7 (6H) -dione (3.40 g, 0.01058 mol) Dissolve in 50 mL of chloroform and block the light with foil. Then n-bromosuccinimide (NBS) (5.65 g, 0.03173 mol) is added at 0 ° C. and stirred at room temperature for 2 hours. Terminate the reaction with water, extract with methylenedichloride and remove moisture. The organic layer was distilled under reduced pressure and column separated with nucleic acid to give the title compound (3.80 g) as an orange solid (yield: 75%).
  • NBS n-bromosuccinimide
  • the polymer may polymerize through a stiller coupling.
  • 1,2-b: 4,5-b '] diothiophene 0.806 g 0.00104 mmol
  • CB chlorobenzene solution
  • the filtered solid is purified through soxhlet in the order of methanol, nucleic acid and chloroform. Precipitated liquid was precipitated again in methanol, filtered and dried to give the title compound (0.72 g) as a dark green solid (yield 90%).
  • the polymer may be polymerized through Suzuki coupling.
  • PEDOT-PSS (Baytron P TP AI 4083, Bayer AG) is coated on the ITO layer. At this time, the thickness is about 30-50 nm and annealed at 120 °C 60 minutes. 0.45 ⁇ m after stirring the polymer compound prepared in Examples 4, 5, 6 and 7 and PCBM derivatives and additives (DIO; diiooctane, ODT; octadithiol) at 60 o C for 12 hours as an active layer The material is filtered with a filter of size and then coated onto the PEDOT-PSS layer by spin coating to a thickness of 100 nm.
  • DIO diiooctane
  • ODT octadithiol
  • TiO 2 indium tin oxide
  • Al aluminum
  • UV-S (max) (nm) UV-F (max) (nm) UV-ann (max) (nm) UV-edge (nm) Band gap (optical) (eV) LUMO (optical) (eV) HOMO (electronic) (eV) PEBTTPD (Example 4) 491, 668 496, 703 500, 726 919 (939-ann) 1.35 (1.32) 4.01 5.36 POBTTPD (Example 5) 491, 648 491, 651 491, 660 934 (947-ann) 1.33 (1.31) 3.97 5.30 POBOBDTPD (Example 6) 490, 638 490, 650 - 919 1.35 4.01 5.36 PEBOBDTPD (Example 7) 490, 636 490, 650 - 873 1.42 3.97 5.30
  • the HOMO values of Examples 4, 5, 6, and 7 are values calculated by using the result values measured in FIGS. 2, 3, and 4 below.
  • the band gap was obtained from the UV absorption wavelength in the film state.
  • the organic semiconductor compound according to the present invention has a wide bandgap, which can absorb light having a long wavelength, that is, it can absorb even light in a wavelength region similar to sunlight, thereby producing more current. High short-circuit current can occur.
  • the temperature at which 5% degradation of the polymer compound (PEBTTPD) of Example 4 occurred was measured at 337 ° C.
  • the temperature at which 5% decomposition of the polymer compound (POBTTPD) of Example 5 occurred was measured at 339 ° C.
  • the temperature at which 5% degradation of the polymer compound of Example 6 (POBOBDTPD) was 355 ° C and the temperature at which 5% degradation of the polymer compound of Example 7 (PEBOBDTPD) was measured at 345 ° C. Therefore, it can be seen that the polymer compound according to the present invention is a thermally stable compound because decomposition does not occur even at a high temperature.
  • the characteristics of the organic solar cell can be classified into four characteristics: short circuit current (Jsc), open circuit voltage (Voc), fill factor (FF), and power conversion efficiency (Power conversion). efficiency: PCE). The correlation between them can be expressed by Equation 1 below.
  • Equation 1 high short-circuit current and open voltage are required for the device to realize high efficiency.
  • high-efficiency device implementation is possible only with a high filling rate.
  • material In order to realize high short-circuit current, material must have high charge mobility and high open voltage is related to HOMO value and LUMO value of electron donor in molecule.
  • the morphological characteristics should be excellent when mixed with PCBM, which is generally used as an electron acceptor. Therefore, a high efficiency organic solar cell is possible only when the above various conditions are satisfied.
  • the polymer compound (PEBTTPD) of Example 4 exhibits a high short circuit current (Jsc) of 13.5 mA / cm 2 , a high open voltage (Voc) of 0.72 V, and a filling rate (FF) of 54%. 5.3% efficiency.
  • the polymer compound of Example 5 shows a lower open voltage (0.7 eV) and a short circuit current (11.1 mA / cm 2 ) than the polymer compound of Example 4, but due to the high filling rate (64%) The efficiency is 5.0%.
  • the polymer compound (POBOBDTPD) synthesized in Example 6 shows a high short circuit current (Jsc) value of 9.39 mA / cm 2 and a high open voltage (Voc) value of 0.68 V. The result shows an efficiency of 4.02%.
  • the polymer compound (PEBOBDTPD) synthesized in Example 7 has a low open voltage (0.64 eV), short circuit current (4.81 mA / cm 2 ) and low filling rate (46%) compared to the polymer compound of Example 3 This is 1.41%.
  • FIGS. 16 and 19 illustrate the polymer compounds (PEBTTPD and POBTTPD) synthesized in Examples 4 to 5 and the polymer compounds (PEBOBDTPD) synthesized in Examples 6 to 7, respectively, to PCBM ([6,6] -phenyl C71 butyric acid.
  • This figure shows the energy photon efficiency when the device is manufactured by mixing with methyl ester).
  • the energy quantum efficiency of Example 5 (POBTTPD) is about 58% and about 55% of Example 4 (PEBTTPD).
  • the energy quantum efficiency of Example 6 (POBOBDTPD) is about 50% and about 35% of Example 7 (PEBOBDTPD), and thus it can be seen that it has low efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 알킬 이미드를 가지는 방향족 구조의 화합물인 유기 반도체 화합물과 이를 분자 내 전자받게로 사용하고 다양한 분자 내 전자주게를 사용하여 서로 공중합시킨 고분자 화합물을 제공하며, 본 발명에 따른 고분자 화합물을 채용한 유기 태양전지는 높은 산화안정성을 가지며 열적으로 안정하고 장파장의 빛까지 흡수하여 고효율을 가질 수 있다.

Description

유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지
본 발명은 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지에 관한 것이다.
보다 구체적으로 분자 내 전자 받게 영역에 알킬 이미드를 포함하는 방향족 화합물을 도입한 유기 반도체 화합물, 이의 제조방법, 이러한 유기 반도체 화합물을 함유하는 고분자 화합물 및 고분자 화합물을 함유하는 유기 태양전지에 관한 것이다.
최근 환경문제와 화석 에너지 자원의 고갈에 따라 대체 에너지 개발의 중요성이 대두되고 있다. 그 중에 가장 각광받는 분야가 바로 태양전지 분야이며 거의 무한대에 가까운 에너지 자원이면서도 친환경적이고 높은 효율을 가지는 것으로 알려져 있다.
태양전지 분야는 오래 전부터 무기물을 기반으로 한 태양전지의 개발이 이루어져 오고 있으며 최근에 들어서는 상용화를 위해 높은 가격경쟁력을 가지는 태양전지의 개발이 이슈가 되고 있다. 이러한 추세로 인해 기존의 벌크(bulk)한 태양전지보다 보다 얇은 박막형 태양전지 위주로 개발이 진행되고 있다. 발전(Plant)용 태양전지의 개발은 대부분 무기물 타입의 태양전지가 주를 이루고 있으며 저가형 휴대기기의 발전용으로 유기 태양전지가 개발되고 있다.
반면 유기태양전지는 가볍고 플라스틱 기판위에 소자 구현이 가능하기 때문에 두루마리식 혹은 입고 다니는 태양전지로 응용될 가능성이 높다. 이미 단일 셀 효율로는 8%가 넘는 유기태양전지가 보고되고 있으며 7~9% 사이의 높은 유기태양전지가 보고되고 있다.
최초 유기태양전지 개발은 단분자 재료인 CuPc와 Perylene을 이용한 이종접합구조로부터 시작되었으며 당시 1%의 효율을 보고하였다. 그러나 2000년대 유기물 태양전지에 관한 연구가 단분자에서 고분자로 전환되면서 급격하게 효율이 향상되었다. 현재까지 개발된 대표적인 고분자계 유기태양전지 재료로는 P3HT[폴리(3-헥실티오펜)]과 MEH-PPV[폴리(2-메톡시-5-(2-에틸-헥소일)-1,4-페닐렌-바이닐렌)], PCPDTBT[폴리(2,6-(4,4-비스-(2-에틸헥실)-4H-싸이클로펜타 [2,1-b;3,4-b]-다이싸이오펜)-얼터-4,7-(2,1,3-벤조싸이아다이아졸)] 등이 있다. 기존에는 MEH-PPV 및 P3HT를 이용하여 n 타입 재료인 PCBM(페닐-C61-부틸릭엑시드메틸이서)와 혼합하여 활성층을 만들었다.
또한 P3HT의 경우 높은 결정성을 가지므로 형태학적 개선을 위해 어닐링을 실시하여 5%가 넘는 효율을 보고하였다. 그러나 P3HT와 같은 한 가지 반복단위로 중합된 고분자 재료들은 장파장을 흡수하는데 한계가 있으며 더 높은 효율을 구현하기 위해서는 장파장을 흡수하는 신규 재료 개발이 필요하게 되었다. 빛의 장파장 영역을 흡수하는 여러 가지 방법이 연구되었고 그 중 분자 내 전자 주게와 전자 받게를 교대 중합하여 만든 고분자 재료가 에너지 벤드갭을 변환시킴으로써 장파장을 흡수할 수 있다는 것이 보고되면서 중점적으로 연구되기 시작하였다.
이러한 일례로 한국등록특허 제 1042530호에 알콕시기를 곁사슬로 가지는 방향족 재료를 분자 내 전자주게로 사용한 유기태양전지를 개시하고 있다.
그러나 여전히 유기 태양전지의 활성층으로 장파장의 빛을 흡수해 높은 효율을 구현할 수 있는 재료의 개발이 요구되고 있다.
본 발명은 높은 용해도를 가져 n타입(전자 받게) 재료(일례로 PCBM)와 혼합 시 형태학적으로 우수하면서도 장파장의 흡수를 가능하게 하는 유기 반도체 화합물을 제공한다.
또한, 본 발명은 밴드갭 조절이 가능하며, 높은 전자밀도를 가지는 전자 받게구조를 도입하여 높은 단락전류를 가지면서 열적으로 안정하여 높은 충진율을 가지는 유기 반도체 화합물을 제공한다.
또한 본 발명은 본 발명에 유기 반도체 화합물을 제조하는 방법을 제공한다.
또한, 본 발명은 본 발명에 따른 유기 반도체 화합물을 단위체로 포함하며, 유기 태양전지의 활성층의 p타입재료인 고분자 화합물을 제공한다.
또한, 본 발명은 본 발명에 따른 고분자 화합물을 활성층으로 가지는 유기 태양전지를 제공한다.
본 발명은 유기 반도체 화합물, 이의 제조방법, 이를 함유하는 고분자 화합물 및 이러한 고분자 화합물을 함유하는 유기 태양전지를 제공한다.
본 발명의 유기 반도체 화합물은 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2012009108-appb-I000001
[상기 화학식 1에서,
Z는 S 또는 Se이고;
R은 C1-C30알킬, C2~C30알킬렌, C2~C30알키닐렌, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 알킬렌, 알키닐렌, 아릴 및 헤테로아릴은 C1-C30알킬, C2-C30알케닐, C2-C30알키닐, C1-C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
본 발명의 유기 반도체 화합물은 높은 전자밀도를 가지는 이미드를 도입한 방향족 구조의 화합물로 티오페노티오펜 또는 셀레노페노셀레노펜 융합고리와 이미드를 통해 전자밀도를 향상시키고 이미드에 치환기를 도입하여 용해도를 향상시키게 되며, 작고 딱딱한 방향족 그룹은 분자간 상호작용을 높여주어 이를 전자주게로 도입하여 전자받게와 전자주게를 교대중합한 고분자 화합물은 유기 태양전지의 활성층 재로로 높은 효율과 우수한 열적 안정성을 나타낸다.
구체적으로 상기 화학식 1에서 이미드의 N에 알킬치환기를 가져 유기용매에 대한 높은 용해도를 가져 모폴로지(morphology)의 향상시킬 수 있고, 높은 전자밀도를 가져 우수한 전기적 특성을 가지기위한 측면에서, 상기 R은 C1-C30알킬기일 수 있으며, 상기 Z는 S일 수 있다.
또한 본 발명은 상기 화학식 1로 표시되는 유기 반도체 화합물의 제조방법을 제공한다.
본 발명의 상기 화학식 1로 표시되는 유기 반도체 화합물의 제조방법은,
하기 화학식 2로 표시되는 화합물과 화학식 3으로 표시되는 화합물을 반응시켜 하기 화학식 4로 표시되는 화합물을 제조하는 단계;
하기 화학식 4로 표시되는 화합물을 산화시켜 화학식 5로 표시되는 화합물을 제조하는 단계;
하기 화학식 5로 표시되는 화합물을 무수아세틱산과 반응시켜 화학식 6으로 표시되는 화합물을 제조하는 단계;및
하기 화학식 6으로 표시되는 화합물을 하기 화학식 7로 표시되는 화합물과 반응시켜 화학식 1로 표시되는 화합물을 제조하는 단계;를 포함한다.
[화학식 2]
Figure PCTKR2012009108-appb-I000002
[화학식 3]
Figure PCTKR2012009108-appb-I000003
[화학식 4]
Figure PCTKR2012009108-appb-I000004
[화학식 5]
Figure PCTKR2012009108-appb-I000005
[화학식 6]
Figure PCTKR2012009108-appb-I000006
[화학식 7]
RNH2
[상기 화학식 2 내지 7에서,
Z는 S 또는 Se이고;
R은 C1-C30알킬, C2~C30알킬렌, C2~C30알키닐렌, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 알킬렌, 알키닐렌, 아릴 및 헤테로아릴은 C1-C30알킬, C2-C30알케닐, C2-C30알키닐, C1-C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;
R1 또는 R2는 서로 독립적으로, C1-C30알킬이며;
X는 할로겐이다.]
본 발명의 일 실시예에 따른 상기 화학식 4의 제조 시 촉매가 사용될 수 있으며 보다 구체적으로 산화구리를 사용할 수 있다.
본 발명의 일 실시예에 따른 상기 화학식 1은 상기 화학식 6, 1몰에 대하여 화학식 7, 0.5 ~ 2몰로 반응시켜 제조될 수 있다.
본 발명의 상기 화학식 1로 표시되는 유기 반도체 화합물의 제조방법의 일 실시예에 따른 상기 화학식 2의 화합물은 유기리튬 존재하에 하기 화학식 8의 화합물과 하기 화학식 9의 화합물을 반응시켜 제조되는 것일 수 있다.
[화학식 8]
Figure PCTKR2012009108-appb-I000007
[화학식 9]
Figure PCTKR2012009108-appb-I000008
(상기 화학식 8 또는 화학식 9에서,
X 또는 X1은 할로겐이며;
R1은 C1-C20알킬이다.)
본 발명의 일 실시예에 따른 유기리튬은 유기화합물과 리튬으로 구성된 물질이면, 모두 가능하나, 바람직하게 알킬리튬이며, 보다 바람직하게는 에틸리튬, n-부틸리튬, tert-부틸리튬일 수 있다.
바람직하게 상기 화학식 1 내지 7에서 Z는 S이며, R은 C1-C20알킬기일 수 있다.
본 발명의 유기 반도체 화합물의 제조방법에서 사용되는 용매는 통상의 유기합성에서 사용되는 용매라도 모두 가능하나, 이에 한정이 있는 것은 아니며, 반응시간과 온도 또한 발명의 핵심을 벗어나지 않는 범위내에서 변경이 가능하다.
또한 본 발명은 상기 화학식 1로 표시되는 유기 반도체 화합물을 단위체로 포함하는 고분자 화합물을 제공한다.
본 발명의 상기 화학식 1로 표시되는 유기 반도체 화합물을 단위체로 포함하는 고분자 화합물은 유기 반도체 화합물을 이미드기와 티오페노티오펜 또는 셀레노페노셀레노펜 융합고리를 가져 전자밀도가 높고, 이미드기의 N에 치환기를 가져 용해도가 향상되어 본 발명의 유기 반도체 화합물을 단위체로 포함하는 고분자 화합물을 활성층으로 함유하는 유기 태양전지는 높은 효율과 높은 안정성을 나타낸다.
즉, 본 발명의 유기 반도체 화합물을 전자주게로 도입하고 전자받게인 화합물과 교대중합하여 제조된 본 발명의 고분자 화합물은 높은 용해도, 전하이동도 및 안정성을 가진다.
본 발명에 따른 고분자 화합물은 하기 화학식 11로 표시되는 것일 수 있다.
[화학식 11]
Figure PCTKR2012009108-appb-I000009
(상기 화학식 11에서,
Z는 S 또는 Se이고;
Ar은 C6-C30아릴렌 또는 C3-C30헤테로아릴렌이며;
R은 C1-C30알킬, C2~C30알킬렌, C2~C30알키닐렌, C6~C30아릴 및 C3~C30헤테로아릴로부터 선택되며, 상기 알킬, 알킬렌, 알키닐렌, 아릴 및 헤테로아릴은 C1-C20알킬, C2-C20알케닐, C2-C20알키닐, C1-C20알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;
상기 n은 1 내지 1000의 정수이다.)
본발명의 고분자 화합물은 본 발명의 유기 반도체 화합물을 전자주게로 전자받게인 화합물과 교대중합되도록 구성하여 이를 포함하는 유기 태양전지의 전기특성 및 안정성을 높인다.
바람직하게 상기 화학식 11에서 Ar은 하기 구조에서 선택되는 하나이상인 것일 수 있다.
Figure PCTKR2012009108-appb-I000010
Figure PCTKR2012009108-appb-I000011
Figure PCTKR2012009108-appb-I000012
Figure PCTKR2012009108-appb-I000013
Figure PCTKR2012009108-appb-I000014
Figure PCTKR2012009108-appb-I000015
Figure PCTKR2012009108-appb-I000016
Figure PCTKR2012009108-appb-I000017
(상기 구조식에서,
R11 및 R12는 서로 독립적으로 수소, C1-C30알킬, C2~C30알킬렌, C2~C30알키닐렌, C6~C30아릴 및 C3~C30헤테로아릴로부터 선택되며; 상기 알킬, 알킬렌, 알키닐렌, 아릴 및 헤테로아릴은 할로겐, C1-C30알킬, C1-C30알콕시, C6~C30아릴 및 C3~C30헤테로아릴로 더 치환될 수 있다.)
바람직하게 상기 화학식 11은 하기 화학식 12로 표시될 수 있다.
[화학식 12]
Figure PCTKR2012009108-appb-I000018
(상기 화학식 12에서,
Ar은 C6-C30아릴렌 또는 C3-C30헤테로아릴렌이며;
R21은 C1-C30알킬이며;
상기 n은 1 내지 1000의 정수이다.)
보다 바람직하게는 상기 Ar은 하기 구조에서 선택되는 아릴렌 또는 헤테로아릴렌일 수 있다.
Figure PCTKR2012009108-appb-I000019
Figure PCTKR2012009108-appb-I000020
Figure PCTKR2012009108-appb-I000021
(상기 구조식에서,
R11 및 R12는 서로 독립적으로 수소, C1-C30알킬, C2~C30알킬렌, C2~C30알키닐렌, C6~C30아릴 및 C3~C30헤테로아릴로부터 선택되며; 상기 알킬, 알킬렌, 알키닐렌, 아릴 및 헤테로아릴은 할로겐, C1-C30알킬, C1-C30알콕시, C6~C30아릴 및 C3~C30헤테로아릴로 더 치환될 수 있다.)
본 발명의 일 실시예에 따른 고분자 화합물은 바람직하게 하기 구조식으로 예시될 수 있으나, 이에 한정이 있는 것은 아니다.
Figure PCTKR2012009108-appb-I000022
Figure PCTKR2012009108-appb-I000023
Figure PCTKR2012009108-appb-I000024
Figure PCTKR2012009108-appb-I000025
(상기 화학식 구조에서 n은 1 내지 1000의 정수이다.)
본 발명에 따른 유기 반도체 화합물을 단위체로 하는 고분자 화합물을 합성하기 위한 방법으로, 알킬화반응, 브롬화반응, 고리화반응, 환원반응, 탈수반응, 스틸러커플링반응, 스즈키커플링반응 등의 방법을 통하여 제조할 수 있으나 상기의 합성방법으로 한정하는 것은 아니며, 상기의 합성방법 이외에도 통상적으로 사용되는 유기화학 반응에 의하여 합성될 수 있다.
또한 본 발명은 본 발명의 고분자 화합물을 함유하는 유기태양전지를 제공한다.
본 발명의 일 실시예에 따른 유기태양전지는 기판, 투명전극, 정공수송층, 활성층, 전자수송층, 금속전극이 순차적으로 적층된 것일 수 있으며, 본 발명에 따른 상기 화학식 11의 고분자 화합물을 활성층의 p타입으로 사용되는 유기 태양전지를 제공한다.
일반적으로 본 발명에 따른 유기 태양전지는 이하 상술하는 방법으로 제조될 수 있으나 이는 일례를 들어 설명하는 것으로 이에 한정이 있는 것은 아니다.
태양전지는 일반적으로 도 1과 같이 유리기판/투명전극(ITO)/정공수송층/활성층(전자주게/전자받게)/전자수송층/금속전극(Al)으로 이루어진다. 구동원리는 빛이 유기기판과 ITO, 정공수송층을 통과하여 활성층에 도달하게 되면 p타입(전자주게) 고분자와 n타입(전자받게) 사이에서 여기자(Exciton)가 발생하게 되고 n타입의 물질을 따라 전자가 뜀(호핑)을 통해 금속전극으로 이동하게 되고 남은 정공은 정공수송층을 통해 ITO층으로 이동하게 된다. 이렇게 분리된 전자와 정공은 전류와 전압을 발생시키게 되고 전력을 생성시키게 된다. 정공수송층은 PEDOT:PSS[폴리(3,4-에틸렌다이옥시티오펜)]:[폴리(스티렌설포네이트)]로 이루어져 있으며 전자가 양극인 ITO층으로 이동하는 것을 막아주면서 정공의 수송을 원활하게 도와준다.
또한 본 발명의 활성층은 보다 바람직하게 p타입과 n타입의 계면을 넓게 하는 괴상이종접합(bulk-heterojunction)으로 이루어져 있는 것이 좋으며 이를 통해 생성되는 여기자가 쉽게 전자와 정공으로 분리될 수 있다는 장점을 가지게 된다.
보다 상세하게 설명하면, 투명전극인 ITO가 코팅된 유리기판위에 PEDOT-PSS(Baytron P TP AI 4083, Bayer AG)를 스핀코팅하여 30-50nm 두께로 층을 코팅한다. 그 후 120 oC에서 60분간 어닐링을 하여 용매를 제거한다. 활성층은 본 발명에 따른 고분자 화합물과 PCBM 유도체 및 첨가제(DIO;다이아이오도옥탄, ODT;옥타다이싸이올)를 60 oC에서 12시간동안 교반시킨 후에 0.45 μm크기의 필터로 물질을 필터한 후에 PEDOT-PSS 층위에 스핀코팅을 이용하여 100 nm 두께로 코팅한다. 그 후에 고진공 (10-6 torr)에서 10 nm 두께로 TiO2(인듐 틴 옥사이드)를 코팅하고 금속 전극으로 알루미늄(Al)을 100 nm 두께로 증착한다. 증착 후 필요에 따라 글러브 박스 안에서 120-150 oC의 온도로 30분간 어닐링을 실시하여 형태학적 최적화를 실시한다.
상기 기판은 유리기판 이외에도 플라스틱 기판으로 PET[폴리(에틸렌테레프탈레이트), PES[폴리(이서술폰) 등의 소재를 사용할 수 있다.
본 발명에 따른 유기반도체 화합물을 사용하는 활성층은 스크린 인쇄법, 프린팅법, 스핀캐스팅법, 스핀코팅법, 딥핑법 또는 잉크분사법을 통하여 박막으로 형성될 수 있다.
상기 금속 전극은 전도성 물질이면 가능하나, 금(Au), 은(Ag), 알루미늄(Al), 니켈(Ni), 크롬(Cr) 및 인듐틴산화물(ITO)로 이루어진 군으로부터 선택된 물질로 형성되는 것이 바람직하다.
또한 투명전극은 제한이 있는 것은 아니나, ITO(인듐틴옥사이드), ZnO(아연옥사이드), MnO(망간옥사이드)등이 사용될 수 있다.
본 발명에 따른 유기 반도체 화합물은 전자 주게 화합물이 이미드에 치환된 치환기를 가짐으로써 높은 용해도를 가질 뿐만 아니라 이미드와 티오페노티오펜 또는 세레노페노셀레노펜 융합고리가 가지는 높은 전자밀도로 인해 이를 단위체로 함유하는 고분자 화합물을 유기 태양전지에 적용하면 단락전류(Jsc)값을 향상시킬 수 있다.
또한 본 발명은 본 발명에 따른 유기 반도체 화합물을 함유하는 고분자 화합물은 유기 태양전지의 활성층의 p타입재료로 사용되며 에너지 밴드갭을 조절하여 높은 개방 전압을 가질 수 있어 이를 채용한 유기 태양전지는 높은 효율을 가질 수 있다.
또한 본 발명은 전자 주게 화합물인 유기 반도체 화합물의 이미드에 치환되는 치환기의 구조에 따라 이를 채용한 유기 태양전지의 산화 안정성, 개방 전압값 및 전류 밀도를 향상 시킬 수 있다.
또한 본 발명에 따른 유기 반도체 화합물뿐만 아니라 이를 단위체로 함유하는 고분자 화합물은 용매에 대한 용해도가 높아 스핀코팅이나 프린팅 같은 용액 공정으로도 제조할 수 있어 비용을 절감할 수 있을 뿐만 아니라 대면적화가 가능한 장점을 가진다.
도 1은 유리기판/투명전극(ITO)/정공수송층(PEDOT:PSS)/활성층(p/n)/전자수송층(TiO2)/금속전극(Al)으로 제조되는 일반적인 유기태양전지 구조를 보여주는 단면도이다.
도 2는 실시예 4, 5에 따른 유기반도체 화합물의 용액상 및 필름상의 UV-vis 흡수 스펙트라를 나타낸 도면이다.
도 3은 실시예 6에 따른 유기반도체 화합물의 용액상 및 필름상의 UV-vis 흡수 스펙트라를 나타낸 도면이다.
도 4는 실시예 7에 따른 유기반도체 화합물의 용액상 및 필름상의 UV-vis 흡수 스펙트라를 나타낸 도면이다.
도 5는 실시예 4, 5에 따른 유기반도체 화합물의 전기적 특성(cyclic voltammetry)을 나타낸 도면이다.
도 6은 실시예 6, 7에 따른 유기반도체 화합물의 전기적 특성(cyclic voltammetry)을 나타낸 도면이다.
도 7은 실시예 4를 DSC를 통해 분자의 분절운동을 관측한 도면이다.
도 8은 실시예 5를 DSC를 통해 분자의 분절운동을 관측한 도면이다.
도 9는 실시예 6를 DSC를 통해 분자의 분절운동을 관측한 도면이다.
도 10은 실시예 7를 DSC를 통해 분자의 분절운동을 관측한 도면이다.
도 11은 실시예 4를 TGA를 통해 분자의 분해온도를 관측한 도면이다.
도 12는 실시예 5를 TGA를 통해 분자의 분해온도를 관측한 도면이다.
도 13은 실시예 6을 TGA를 통해 분자의 분해온도를 관측한 도면이다.
도 14는 실시예 7를 TGA를 통해 분자의 분해온도를 관측한 도면이다.
도 15는 실시예 4,5를 유기태양전지소자로 제작하여 측정한 전류밀도-전압 곡선(J-V)의 도면이다.
도 16은 실시예 4, 5를 유기 태양전지소자로 제작하여 외부양자효율을 측정한 도면이다.
도 17은 실시예 6를 유기태양전지소자로 제작하여 측정한 전류밀도-전압 곡선(J-V)도면이다(□:POBOBDTPD:PC71BM(1:1)w/DIO-1000rpm; ■:POBOBDTPD:PC71BM(1:1)w/DIO-1000rpm-w/TiO2; ○:POBOBDTPD:PC71BM(1:1)w/DIO-3000rpm; ●:POBOBDTPD:PC71BM(1:1)w/DIO-3000rpm-w/TiO2).
도 18은 실시예 7을 유기태양전지소자로 제작하여 측정한 전류밀도-전압 곡선(J-V)도면이다(□:PEBOBDTPD:PC71BM(1:1)w/0 DIO; ■:PEBOBDTPD:PC71BM(1:2)w/0 DIO; ○:PEBOBDTPD:PC71BM(1:1)w/ DIO; ●:PEBOBDTPD:PC71BM(1:2)w/ DIO).
도 19은 실시예 6, 7을 유기 태양전지소자로 제작하여 외부양자효율을 측정한 도면이다(□:PEBOBDTPD:PC71BM(1:1)w/0 DIO; ■:PEBOBDTPD:PC71BM(1:2)w/0 DIO; ○:POBOBDTPD:PC71BM(1:1)w/ DIO; ●:POBOBDTPD:PC71BM(1:2)w/ DIO).
본 발명은 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다.
또한 본 발명에서 언급되는 용어중 특별히 정의하지 않는다면 당업자들 사이에서 통상적으로 사용되어 의미로 이해되는 것을 의미한다.
ID(Drain current): Drain에 흐르는 전류
VG(Gate voltage): Gate에 인가되는 Voltage
IPCE(Incident-Photon-to-electron Conversion Efficiency): 양자효율
Mn(Number of molecular weight): 수평균 분자량
PDI(Poly dispersity index): 다분산지수
HOMO(highest occupied molecular orbital): 최고점유 분자궤도
LUMO(lowest unoccupied molecular orbital): 최저비점유 분자궤도
Band gap: HOMO와 LUMO 사이의 공간
Voc: 특정한 온도와 일조 강도에서 부하를 연결하지 않은(개방 상태의)태양광발전
장치 양단에 걸리는 전압.
Jsc: 특정한 온도와 일조 강도에서 단락 조건에 있는 태양전지나 모듈 등 태양광발전장치의 출력 전류. 단위 면적당 단락 전류를 특별히 Jsc라고 하는 경우도 있다.
[실시예 1] 1,3-다이브로모-6-옥틸-5H-싸이에노[3',4',4,5]싸이에노[2,3-c]피롤-5,7(6H)-다이온의 합성
화합물 1-1(에틸-2-(4-브로모싸이오펜-3-일)-2-옥쏘아세테이트)의 합성
Figure PCTKR2012009108-appb-I000026
플라스크에 3,4-다이브로모싸이오펜(120.0 g, 0.49601 mol)을 넣고 다이에틸이서 600 mL에 녹인 후 -78 oC 로 온도를 낮추고 t-BuLi (437.65 mL, 0.74401 mol, 1.7 M solution)을 10분에 걸쳐 천천히 첨가한다. 20분간 -78 oC로 유지하면서 교반시키고 다이에틸이서 100 mL 에 diethyl oxalate(76.11 g, 0.52081 mol)를 녹인 후 액체질소를 이용하여 -78 oC로 온도를 낮추고 투입시킨다. -78 oC에서 1시간 동안 교반시키고 저온용기를 제거하고 0 oC로 온도를 올린 후 4시간동안 교반시킨다. 다시 0 oC까지 냉각시키고 300 mL의 2N-HCl을 빠르게 주입한다. 그 후, Ether로 추출하고 수분제거 후, 100 oC 에서 진공승화시켜 다이에틸옥살레이트를 제거한다. 그리고 남은 용매를 다이에틸이서에 희석시키고 실리카겔로 도포한 후 핵산:에틸아세테이트(1:20)의 비율로 칼럼분리하여 진노랑색의 점성이 있는 액체인 표제화합물(91.35 g)을 얻었다. (수득률: 70%)
1H NMR(300MHz, CDCl3)[ppm] δ8.49-8.48(d,1H), 7.38-7.37(d,1H), 4.45-4.44(m,2H), 1.44-1.40(t, 3H).
13C NMR(300MHz, CDCl3)[ppm] δ 178.29, 162.26, 138.64, 133.87, 125.88, 110.76, 62.75, 14.02.
화합물 1-2(다이에틸싸이에토[3,2-c]싸이오펜-2,3-다이카르복실레이트)의 합성
Figure PCTKR2012009108-appb-I000027
에틸-2-(4-브로모싸이오펜-3-일)-2-옥소아세테이트 (75.00 g, 0.28505 mol)과 포타슘카보네이트 (55.15 g, 0.39908 mol), 산화구리(Ⅱ) (18.14 g, 0.28804 mol)를 DMF 220 mL에 녹인다. 그 후에 에틸 멀캅토아세테이트 (37.68 g, 0.31356 mol)를 넣고 80 oC로 온도를 올리고 24시간동안 교반시킨다. 필터를 통해 고체를 걸러내고 여액을 다이에틸이서와 물로 추출 후 수분을 제거한다. 그 후 핵산으로 칼럼분리하여 노란색 점성이 있는 액체인 표제화합물(32.42g)을 얻었다(수득률: 40%).
1H NMR (300MHz, CDCl3)[ppm] δ7.73-7.72(d,1H), 7.31-7.30(d,1H), 4.43-4.36(m,4H), 1.41-1.34(t,6H).
13C NMR (300MHz, CDCl3)[ppm] δ 162.88, 162.25, 143.67, 142.24, 136.51, 124.76, 117.02, 112.08, 62.31, 61.70, 14.16, 14.09.
화합물 1-3(싸이에노[3,4-b]싸이오펜-2,3-다이카르복실릭엑시드)의 합성
Figure PCTKR2012009108-appb-I000028
다이에틸싸이에노[3,4-b]싸이오펜-2,3-다이카르복실레이트 (29.20 g, 0.10269 mol)를 메탄올 200 mL에 넣고 포타슘하이드록사이드 (23.05 g, 0.41076 mol, 45% 수용액)을 넣은 후 2시간 동안 가열 환류시킨다. 그 후에 에틸아세테이와 2N-HCl로 추출 후 수분을 제거한다. 다시 에틸아세테이트와 핵산으로 재결정을 잡아 노란색 고체인 표제화합물(16.4 g)을 얻었다(수득률: 70%).
1H NMR (300MHz, CDCl3)[ppm] δ8.09-8.08(d,1H), 7.75-7.74(d,1H), 5.38(s,2OH).
화합물 1-4(싸이에노[3,4-b]싸이오펜퓨란-2,3-다이온)의 합성
Figure PCTKR2012009108-appb-I000029
싸이에노[3,4-b]싸이오펜-2,3-다이카르복실릭엑시드 (5.00 g, 0.02191 mol)를 아세틱언하이드라이드(50 mL)에 넣고 4시간동안 140 oC에서 환류시킨다. 그 후에 액체질소를 이용하여 0 oC로 온도를 낮추고 석출된 고체를 걸러낸 후 물과 다이에틸이서로 추출 후 다이에틸이서와 핵산으로 재결정하여 표제화합물인 진노란색 고체( 4.15 g)을 얻었다(수득률: 90%).
1H NMR (300MHz, CDCl3)[ppm] δ8.03-8.02(d,1H), 7.63-7.62(d,1H).
화합물 1-5(6-옥틸-5H-싸이에노[3',4',4,5]싸이에노[2,3-c]피롤-5,7(6H)-다이온)의 합성
Figure PCTKR2012009108-appb-I000030
싸이에노[3,4-b]싸이오펜퓨란-2,3-다이온 (2.00 g, 0.00951 mol)과 옥틸아민 (1.352 g, 0.01046 mol)을 무수DMF 20 mL에 녹인다. 140 oC로 온도를 올리고 4시간동안 가열 환류시킨다. 박막크로마토그래피로 반응 정도를 확인 한 후, 물로 천천히 반응을 종결시키고 클로로포름으로 추출 후 건조시킨다. 그 후 아황산다이클로라이드 용액(1.0 M 메틸렌클로라이드) 50mL에 넣고 3시간동안 60 oC에서 환류시킨다. 나온 물질을 이서로 추출하고 수분제거 후 핵산으로 칼럼분리하여 노란색 고체인 표제화합물(1.41 g)을 얻었다(수득률: 46%).
1H NMR (300MHz, CDCl3)[ppm] δ7.86-7.85(d,1H), 7.50-7.49(d,1H), 3.65-3.60(t,2H), 1.67-1.34(d,2H) 1.34-1.27(m,10H), 0.91-0.86(t, 3H).
13C NMR (300MHz, CDCl3)[ppm] δ 164.38, 163.83, 149.60, 143.93, 135.90, 131.63, 116.02, 113.82, 38.53, 31.78, 29.16, 28.84, 26.80, 22.63, 14.08.
1,3-다이브로모-6-옥틸-5H-싸이에노[3',4',4,5]싸이에노[2,3-c]피롤-5,7(6H)-다이온의 합성
Figure PCTKR2012009108-appb-I000031
6-옥틸-5 H-싸이에노[3',4',4,5]싸이에노[2,3-c]피롤-5,7(6H)-다이온 (3.40 g, 0.01058 mol)을 클로로포름 50 mL에 녹이고 호일로 빛을 차단한다. 그 후 n-브로모쑥신이미드(NBS) (5.65 g, 0.03173 mol)을 0 oC에서 넣고 2시간동안 실온에서 교반시킨다. 물로 반응을 종결시키고 메틸렌다이클로라이드로 추출하고 수분을 제거한다. 유기층을 감압증류하고 핵산으로 칼럼분리하여 주황색 고체인 표제화합물(3.80 g)을 얻었다(수득률: 75%).
1H NMR (300MHz, CDCl3)[ppm] δ3.65-3.61(t,2H), 1.69-1.64(m,2H), 1.33-1.27(m,10H), 0.91-0.87(t, 3H).
13C NMR (300MHz, CDCl3)[ppm] δ 163.83, 162.68, 150.89, 145.11, 137.26, 132.27, 102.81, 100.33, 39.20, 32.17, 30.10, 29.53, 29.10, 27.19, 23.01, 14.46.
HRMS: calcd for C16H17Br2NO2S2,476.9067 ;found,476.9068.
[실시예 2] 1,3-다이브로모-5-(2-데실테트라데실)-2,7-다이싸이아-5-아자-싸이클로펜타[a]팬탈렌-4,6-다이온
화합물 2-1(5-(2-데실테트라데실)-2,7-다이싸이아-5-아자-싸이클로펜타[a]팬탈렌-4,6-다이온)의 제조
Figure PCTKR2012009108-appb-I000032
싸이에노[3,4-b]싸이오펜퓨란-2,3-다이온 (5.00 g, 0.02378 mol)과 2-데실테트라데칸-1-아민(9.253 g, 0.02616 mol)을 무수DMF 50 mL에 녹인다. 140 oC로 온도를 올리고 4시간동안 가열 환류시킨다. 박막크로마토그래피로 반응 정도를 확인 한 후, 물로 천천히 반응을 종결시키고 클로로포름으로 추출 후 건조시킨다. 그 후 아황산다이클로라이드 용액(1.0 M 메틸렌클로라이드) 50mL에 넣고 3시간동안 60 oC에서 환류시킨다. 나온 물질을 이서로 추출하고 수분제거 후 핵산으로 칼럼분리하여 노란색 고체인 표제화합물(4.7 g)을 얻었다(수득률: 36%).
1H NMR (300MHz, CDCl3)[ppm] δ7.84-7.83(d,1H), 7.49-7.48(d,1H), 3.52-3.50(d,2H), 1.84 (s,1H) 1.25(s,40H), 0.90-0.86(t, 6H).
13C NMR (300MHz, CDCl3)[ppm] δ 164.51, 163.99, 149.53, 143.96, 135.94, 131.55, 115.98, 113.75, 42.71, 37.21, 31.92, 31.44, 29.96, 29.68, 29.65, 29.61, 29.35, 26.31, 22.69, 18.45, 14.11
화합물 2(1,3-다이브로모-5-(2-데실테트라데실)-2,7-다이싸이아-5-아자-싸이클로펜타[a]팬탈렌-4,6-다이온)의 제조
Figure PCTKR2012009108-appb-I000033
5-(2-데실테트라데실)-2,7-다이싸이아-5-아자-싸이클로펜타[a]팬탈렌-4,6-dion (4.50 g, 0.00824 mol)을 클로로포름 50 mL에 녹이고 호일로 빛을 차단한다. 그 후 n-브로모쑥신이미드(NBS) (4.40 g, 0.02473 mol)을 0 oC에서 넣고 2시간동안 실온에서 교반시킨다. 물로 반응을 종결시키고 메틸렌다이클로라이드로 추출하고 수분을 제거한다. 유기층을 감압증류하고 핵산으로 칼럼분리하여 주황색 고체인 표제화합물(4.50 g)을 얻었다(수득률: 78%).
1H NMR (300MHz, CDCl3)[ppm] δ3.53-3.50(d,2H), 1.85(s,1H), 1.26 (s,40H), 0.89-0.87(t, 6H). HRMS: calcd for C16H17Br2NO2S2, 703.1551 found: 703.1552
[실시예 3] 1,3-다이브로모-5-(2-부틸옥틸)-2,7-다이싸이아-5-아자-싸이클로펜타[a]팬탈렌-4,6-다이온
화합물 3-1(5-(2-부틸옥틸)-2,7-다이싸이아-5-아자-싸이클로펜타[a]팬탈렌-4,6-다이온)의 제조
Figure PCTKR2012009108-appb-I000034
싸이에노[3,4-b]싸이오펜퓨란-2,3-다이온 (3.33 g, 0.01584 mol)과 2-부틸옥탄-1-아민(3.229 g, 0.01742 mol)을 무수DMF 50 mL에 녹인다. 140 oC로 온도를 올리고 4시간동안 가열 환류시킨다. 박막크로마토그래피로 반응 정도를 확인 한 후, 물로 천천히 반응을 종결시키고 클로로포름으로 추출 후 건조시킨다. 그 후 아황산다이클로라이드 용액(1.0 M 메틸렌클로라이드) 50mL에 넣고 3시간동안 60 oC에서 환류시킨다. 나온 물질을 이서로 추출하고 수분제거 후 핵산으로 칼럼분리하여 노란색 고체인 표제화합물(2.5 g)을 얻었다(수득률: 47%).
1H NMR(300 MHz, CDCl3)[ppm] δ7.82-7.79 (t, 1H), 7.45-7.44 (d, 1H), 3.53-3.47 (d, 2H), 1.81 (s, 1H) 1.25-1.20 (m, 16H), 0.89-0.82 (m, 6H). 13C NMR (300MHz, CDCl3)[ppm] δ 164.49, 163.97, 149.46, 143.91, 135.86, 131.48, 115.99, 113.81, 42.62, 37.19, 31.80, 31.41, 31.08, 29.63, 28.47, 26.25, 23.00, 22.62, 18.40, 14.06. MS (EI) m/z: 377 (M+).
화합물 3(1,3-다이브로모-5-(2-부틸옥틸)-2,7-다이싸이아-5-아자-싸이클로펜타[a]팬탈렌-4,6-다이온)의 제조
Figure PCTKR2012009108-appb-I000035
5-(2-부틸옥틸)-2,7-다이싸이아-5-아자-싸이클로펜타[a]팬탈렌-4,6-dion (2.60 g, 0.00689 mol)을 클로로포름 50 mL에 녹이고 호일로 빛을 차단한다. 그 후 n-브로모쑥신이미드(NBS) (3.06 g, 0.01722 mol)을 0 oC에서 넣고 2시간동안 실온에서 교반시킨다. 물로 반응을 종결시키고 메틸렌다이클로라이드로 추출하고 수분을 제거한다. 유기층을 감압증류하고 핵산으로 칼럼분리하여 주황색 고체인 표제화합물(4.50 g)을 얻었다(수득률: 78%).
1H NMR(300MHz, CDCl3)[ppm] δ3.53-3.51 (d, 2H), 1.85 (s, 1H), 1.31-1.28 (t, 16H), 0.92-0.87 (m, 6H). 13C NMR(300MHz, CDCl3)[ppm] δ42.62, 37.17, 31.75, 31.40, 31.07, 29.60, 28.41, 26.23, 23.00, 22.60, 18.40, 14.05. HRMS: calcd for C16H17Br2NO2S2, 532.9693 found: 532.9692
[실시예 4] 고분자 1(PEBTTPD)의 합성
Figure PCTKR2012009108-appb-I000036
상기 고분자는 스틸러 커플링을 통해 중합할 수 있다. 1,3-다이브로모-6-옥틸-5H-싸이에노[3',4',4,5]싸이에노[2,3-c]피롤-5,7(6H)-다이온(0.50 g 0.00104 mol)과 2,6-비스(트리메틸스타닐)-4,8-비스((2-에틸헥실)옥시)벤조 [1,2-b:4,5-b']다이싸이오펜 (0.806 g 0.00104 mmol)을 5 mL 클로로벤젠 용액(CB)에 녹이고 질소 치환을 실시한다. 그 후에 촉매로 Pd2(dba)3(Tris(dibenzylideneaceton)dipalladium(0))(0.019 mg, 2 mol%)와 p(o-tol)3(Tri(o-toly)phosphine)(0.025 g/ 8 mol%)을 넣고 110 oC에서 48시간 동안 환류시킨다. 그후 말단기 반응을 종결시키기 위해서 2-브로모싸이오펜 (0.1g)을 넣고 6시간 동안 환류시키고, 2-싸이오펜메틸틴(0.1 g)을 넣어 6시간동안 환류시킨다. 반응혼합물을 메탄올 (300 mL) 에 천천히 침전시키고 고체를 걸러낸다. 걸러낸 고체는 속실렛을 통해 메탄올, 핵산, 클로로포름 순으로 정제한다. 내려온 액체를 메탄올에 다시 침전시키고 여과한 후 건조시켜 침전을 시켜 검녹색 고체인 표제화합물(0.72 g)을 얻었다(수득률 90%).
1H NMR (300 MHz, CDCl3)[ppm]: 7.21(s, 2H), 4.04-3.98(s, 6H), 1.46-1.35(m, 30H), 1.04-0.95(s, 15H)
[실시예 5] 고분자 2(POBTTPD)의 합성
Figure PCTKR2012009108-appb-I000037
1,3-다이브로모-6-옥틸-5 H-싸이에노[3',4',4,5]싸이에노[2,3-c]피롤-5,7(6H)-다이온(0.50 g 0.00104 mol)과 2,6-비스(트리메틸스타닐)-4,8-비스((2-옥틸)옥시)벤조[1,2-b:4,5-b'']다이싸이오펜(0.806 g 0.00104 mmol), Pd2(dba)3 (0.019 mg, 2 mol%)와 p(o-tol)3(0.025 g/ 8 mol%)을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 합성하여 표제화합물(0.72 g)을 얻었다(수득률: 90%).
1H NMR (300 MHz, CDCl3)[ppm]: 7.20(s, 2H), 4.03-4.00(s, 6H), 1.47-1.35(m, 30H), 1.04-0.96(s, 15H)
[실시예 6] 고분자 3(POBOBDTPD)의 합성
Figure PCTKR2012009108-appb-I000038
1,3-다이브로모-6-(부틸옥틸)-5 H-싸이에노[3',4',4,5]싸이에노[2,3-c]피롤-5,7(6H)-다이온(0.40 g 0.00075 mol)과 2,6-비스(트리메틸스타닐)-4,8-비스((2-옥틸)옥시)벤조[1,2-b:4,5-b'']다이싸이오펜(0.577 g 0.00075 mmol), Pd2(dba)3 (0.014 mg, 2 mol%)와 p(o-tol)3(0.018 g/ 8 mol%)을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 합성하여 표제화합물(0.45 g)을 얻었다(수득률: 73%).
1H NMR (300 MHz, CDCl3)[ppm]: 7.20(s, 2H), 4.03-4.00(d, 6H), 1.55(s, 1H) 1.47-1.35 (m, 40H), 1.04-0.96(s, 12H).
[실시예 7] 고분자 4(PEBOBDTPD)의 합성
Figure PCTKR2012009108-appb-I000039
1,3-다이브로모-6-(부틸옥틸)-5 H-싸이에노[3',4',4,5]싸이에노[2,3-c]피롤-5,7(6H)-다이온(0.500 g 0.00093 mol)과 2,6-비스(트리메틸스타닐)-4,8-비스((2-에틸옥틸)옥시)벤조[1,2-b:4,5-b'']다이싸이오펜(0.721 g 0.00093 mmol), Pd2(dba)3 (0.017 mg, 2 mol%)와 p(o-tol)3(0.023 g/ 8 mol%)을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 합성하여 표제화합물(0.60 g)을 얻었다(수득률: 79%).
1H NMR (300 MHz, CDCl3)[ppm]: 7.20(s, 2H), 4.03-4.00(s, 6H), 1.55(m, 3H), 1.47-1.35(m, 32H), 1.04-0.96(s, 18H)
[실시예 8] 고분자 5(PPBTTPD)의 합성
Figure PCTKR2012009108-appb-I000040
상기 고분자는 스즈키 커플링을 통해 중합할 수 있다. 1,3-다이브로모-6-옥틸-5 H-싸이에노[3',4',4,5]싸이에노[2,3-c]피롤-5,7(6H)-다이온(0.50 g 0.00104 mol)과 1,4-비스(4,4,5,5-테트라메틸-1,3,2-다이옥사보란-2-일)벤젠(0.344 g 0.0010 mmol)을 5 mL 톨루엔 용액에 녹이고 2M K2CO3와 알리카트 336을 넣은 후 질소 치환을 실시한다. 여기에 촉매로 Pd(PPh3)4 (0.06 g, 5 mol%)을 넣고 100 oC에서 48시간 동안 환류시킨다. 그 후 말단기 반응을 종결시키기 위해서 2-브로모싸이오펜 (0.1g)을 넣고 6시간 동안 환류시키고, 2-싸이오펜보로닉엑시드(0.1 g)을 넣어 6시간동안 환류시킨다. 반응혼합물을 메탄올 (300 mL) 에 천천히 침전시키고 고체를 여과한다. 여과한 고체를 속실렛을 통해 메탄올, 핵산, 클로로포름 순으로 정제한다. 내려온 액체를 메탄올에 다시 침전시키고 필터를 통해 걸러낸 후 건조시켜 침전을 시켜 검녹색 고체인 표제화합물 (0.37 g)을 얻었다(수득률 90%).
1H NMR (300 MHz, CDCl3)[ppm]: 7.79(d, 2H), 7.51(d, 2H), 3.42(s, 2H), 1.46-1.20(m, 12H), 0.88(m, 3H).
[실시예 9] 고분자 6(PTBTTPD)의 합성
Figure PCTKR2012009108-appb-I000041
2,5-비스(트리메틸스타닐)싸이오펜(0.427 g 0.00104 mmol)을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 합성하여 표제화합물(0.38 g)을 얻었다(수득률: 90%).
1H NMR (300 MHz, CDCl3)[ppm]: 7.73-7.69(d, 1H), 7.17(d, 1H), 3.42(m, 2H), 1.47-1.35(m, 12H), 0.88(m, 3H).
[실시예 10] 고분자 7(PTBTTPD)의 합성
Figure PCTKR2012009108-appb-I000042
2,6-비스(4,4,5,5-테트라메틸-1,3,2-다이옥사보란-2-일)-4,4-다이옥틸-4H-싸이클로펜타[2,1-b:3,4-b']다이싸이오펜(0.624 g 0.00104 mmol)을 사용한 것을 제외하고 실시예 8과 동일한 방법으로 합성하여 표제화합물(0.68 g)을 얻었다(수득률: 90%).
1H NMR (300 MHz, CDCl3)[ppm]: 6.98(s, 2H), 3.42(m, 2H), 1.87(m. 4H), 1.47-1.35(m, 36H), 0.88(m, 9H).
[실시예 11] 고분자 8(PDETTPD)의 합
Figure PCTKR2012009108-appb-I000043
1,2-비스(3-도데실-5(트리메틸스타닐)싸이오펜-2-일)에탄(0.535 g 0.00063 mmol)을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 합성하여 표제화합물(0.43 g)을 얻었다(수득률: 80%).
1H NMR (300 MHz, CDCl3)[ppm]: 7.05-6.99(d, 2H), 6.80-6.68(d, 2H), 3.42(m, 2H), 2.65-2.62(m, 4H), 1.61-1.54(m, 6H), 1.35-1.29(m, 46H), 0.88(m, 9H).
[실시예 12] 고분자 9(PETTTTPD)의 합성
Figure PCTKR2012009108-appb-I000044
1,2-비스(5-(트리메틸스타닐)싸이오펜-2-일)에탄(0.365 g 0.00071 mmol)을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 합성하여 표제화합물(0.48 g)을 얻었다(수득률: 92%).
1H NMR (300 MHz, CDCl3)[ppm]: 7.73-7.70(d, 2H), 7.35-7.32(m, 2H), 6.80-6.68(d, 2H), 3.32-3.31(m, 2H), 2.12-2.10(m, 1H), 1.30-1.21(m, 40H), 0.88(m, 6H).
[실시예 13] 고분자 10(PPDDTBTTPD)의 합성
Figure PCTKR2012009108-appb-I000045
2,6-비스(트리메틸스타닐)-4,8-비스((2-도데실)싸이오페닐)벤조[1,2-b:4,5-b']다이싸이오펜(0.25 g 0.00051 mmol)을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 합성하여 표제화합물(0.43 g)을 얻었다(수득률:83%).
1H NMR (300 MHz, CDCl3)[ppm]: 7.76-7.73(d, 2H), 7.35-7.32(m, 2H), 6.92-6.89(d, 2H), 3.32-3.31(m, 2H), 2.82-2.78(m, 6H), 1.30-1.21(m, 46H), 0.88(m, 9H).
[실시예 14] 고분자 11(PDBTTPD)의 합성
Figure PCTKR2012009108-appb-I000046
(4,4'-다이도데실-2,2'-바이싸이오펜-5,5'-다이일)비스(트리메틸스타닐)(0.781 g 0.00094 mmol)을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 합성하여 표제화합물(0.53 g)을 얻었다(수득률:69%).
1H NMR (300 MHz, CDCl3)[ppm]: 6.85-6.79(d, 2H), 3.32-3.31(m, 2H), 2.60-2.58(m, 2H), 1.60-1.58(m, 4H), 1.30-1.21(m, 46H), 0.88(m, 9H).
[실시예 15] 유기반도체 소자제작
ITO가 코팅된 유리기판을 아세톤과 IPA(Isopropylalcohol)로 세척한 후에, PEDOT-PSS (Baytron P TP AI 4083, Bayer AG)를 ITO층 위에 코팅한다. 이때 두께는 30-50 nm 정도가 되도록 하며 120℃에서 60분간 어닐링을 실시한다. 활성층으로 상기 실시예 4, 5, 6 및 7에서 제조한 고분자 화합물과 PCBM 유도체 및 첨가제(DIO;다이아이오도옥탄, ODT;옥타다이싸이올)를 60 oC에서 12시간동안 교반시킨 후에 0.45 μm 크기의 필터로 물질을 필터한 후에 PEDOT-PSS 층위에 스핀코팅을 이용하여 100 nm 두께로 코팅한다. 그 후에 고진공 (10-6 torr)에서 10 nm 두께로 TiO2(인듐틴 옥사이드)를 코팅하고 알루미늄(Al)을 100 nm 두께로 증착하여 유기 태양전지 소자를 제작하였다. 필요에 따라 형태학적 특성의 개선을 목표로 어닐링을 실시하기도 한다.
또한 전류밀도-전압 곡선(J-V) 측정에는 Keithley사의 4200 소스를 이용하였으며 AM 1.5 G 조건 하에 표준 PVM132(NREL, 100mW/cm2의 세기로 측정함) 범위 하에서 유기 태양전지 소자 특성을 측정하여 도 15, 17, 18에 나타내었다.(Oriel 1kW solarsimulator 사용).
상기 실시예 4, 5에서 합성된 고분자 화합물(PEBTTPD, POBTTPD)과 상기 실시에 6, 7에서 합성된 고분자 화합물의 광 흡수영역을 용액상태와 필름상태에서 측정하여 결과를 도 2, 3, 4에 도시하였다. 하기에 도 2, 3, 4 그래프에 대한 결과값을 표 1로 정리하였다.
표 1
UV-S (max)(nm) UV-F (max)(nm) UV-ann (max)(nm) UV-edge(nm) Band gap(optical)(eV) LUMO(optical)(eV) HOMO(electronic)(eV)
PEBTTPD(실시예 4) 491, 668 496, 703 500, 726 919(939-ann) 1.35(1.32) 4.01 5.36
POBTTPD(실시예 5) 491, 648 491, 651 491, 660 934(947-ann) 1.33(1.31) 3.97 5.30
POBOBDTPD(실시예 6) 490, 638 490, 650 - 919 1.35 4.01 5.36
PEBOBDTPD(실시예 7) 490, 636 490, 650 - 873 1.42 3.97 5.30
여기서 실시예 4, 5, 6, 7의 HOMO값은 하기에 도 2, 3, 4에서 측정한 결과값을 이용하여 계산한 값이다. 또한 밴드갭은 필름상태에서 UV흡수파장에서 구하였다. 표 1의 결과에서 보이는 바와 같이 본 발명에 따른 유기 반도체 화합물은 밴드갭이 넓어 장파장의 빛까지 흡수할 수 있으며 즉, 태양광과 유사한 파장영역의 빛까지 흡수가 가능하기 때문에 보다 많은 전류를 생산하게 되어 높은 단락전류가 발생할 수 있다.
도 5와 도 6은 각각 실시예 4, 5에서 합성된 고분자 화합물(PEBTTPD, POBTTPD)과 실시예 6, 7에서 합성된 고분자 화합물의 전기화학적 특성을 분석하기 위해서 싸이클로 볼타메트리를 이용하여 측정한 것으로 Bu4NClO4(0.1 몰농도)의 용매 하에서 50 mV/s의 조건으로 측정하였다. 측정 시 카본 전극을 사용하여 코팅을 통해 전압을 인가하였다. 도 5와 도 6의 그래프에 대한 결과값을 하기 표 2에 정리하여 나타내었다.
표 2
Oxidation onset (eV) Reduction onset (eV) HOMO(eV) LUMO(eV) Band gap(Electronic)(eV)
PEBTTPD(실시예 4) 0.95 -0.36 5.37 4.06 1.32
POBTTPD(실시예 5) 0.81 -0.42 5.23 4.00 1.30
POBOBDTPD(실시예 6) 0.92 -0.52 5.34 3.90 1.44
PEBOBDTPD(실시예 7) 1.02 -0.51 5.44 3.91 1.53
표 2에 나타낸 바와 같이 낮은 HOMO값을 가지는 것을 알 수 있는데 이는 기존의 Acceptor보다 상대적으로 전자를 잘 잡아당기기 때문에 낮은 값을 가지는 것으로 설명할 수 있다. 낮은 HOMO값을 가지게 되면 높은 개방전압의 형성이 가능할 뿐만 아니라 산화안정성도 높아지게 되어 상용화에 큰 이득이 된다.
도 7, 8, 9, 10에서는 실시예 4, 5, 6, 7에서 합성된 고분자 화합물에 대한 열적 특성(DSC)을 측정한 것으로 실시예 4, 5, 6, 7의 고분자 화합물은 유리전이온도값이 측정되지 않았으며 이것으로 본 발명에 따라 제조된 유기 반도체 화합물이 비정질의 특성을 가지는 것을 알 수 있다.
도 11, 12, 13, 14에서는 각각 실시예 4, 5, 6, 7에서 합성된 고분자 화합물의 분해온도를 TGA를 이용하여 측정한 결과를 도시한 것이다.
실시예 4의 고분자 화합물(PEBTTPD)의 5% 분해가 일어나는 온도는 337℃로 측정되으며 실시예 5의 고분자 화합물(POBTTPD)의 5% 분해가 일어나는 온도는 339℃로 측정되었다. 실시예 6의 고분자 화합물(POBOBDTPD)의 5% 분해가 일어나는 온도는 355℃였으며 실시예 7의 고분자 화합물(PEBOBDTPD)의 5% 분해가 일어나는 온도는 345℃로 측정되었다. 따라서 본 발명에 따른 고분자 화합물은 높은 온도에서도 분해가 일어나지 않아 열적으로 안정한 화합물인 것을 알 수 있다.
한편 유기태양전지의 특성은 크게 4가지 특성으로 나타낼 수 있는데, 단락전류(Short circuit current; Jsc), 개방전압(Open circuit voltage; Voc), 충진율(Fill factor; FF), 전력 변환 효율(Power conversion efficiency: PCE)이다. 이들 간의 상관관계는 아래의 식 1로 표현할 수 있다.
η = P out/P in = I max × V max/P in = I sc × V oc × FF/P in -식1
식1에 의하면 고효율을 구현하기 위해서는 소자에 높은 단락전류와 개방전압이 필요하다. 또한 높은 충진율을 가져야만 고효율의 소자구현이 가능하다. 높은 단락전류를 구현하기 위해서는 재료적으로 높은 전하이동도를 가져야 하며 높은 개방전압은 분자 내 전자주게의 HOMO 값과 LUMO 값에 연관이 있다. 또한 높은 충진율을 가지기 위해서는 일반적으로 전자 받게로 사용되는 PCBM과 혼합하였을 때 형태학적 특성이 우수해야만 한다. 따라서 위와 같은 여러 가지 조건이 충족되었을 때 비로소 고효율의 유기태양전지가 가능해 진다.
도 15, 17, 18은 각각 실시예 4와 5에서 합성된 고분자 화합물(PEBTTPD, POBTTPD)과 실시예 6 내지 7에서 합성 고분자 화합물의 유기태양전지 특성을 측정한 결과값을 도시하였으며, 이에 해당하는 결과값을 하기 표 3에 나타내었다.
표 3
Devices V OC (V) J SC (mA/cm2) FF (%) PCE (%)
PEBTTPD:PC70BM 0.72 13.5 0.54 5.3
POBTTPD:PC70BM 0.70 11.1 0.64 5.0
POBOBDTPD:PC70BM 0.68 9.39 63 4.02
PEBOBDTPD:PC70BM 0.64 4.81 46 1.41
실시예 4의 고분자 화합물(PEBTTPD)의 경우 13.5 mA/cm2의 높은 단락전류(Jsc)값을 보여주며 0.72 V의 높은 개방전압(Voc) 값을 나타내고 있으며, 충진률(FF)이 54%로 5.3%의 효율을 보여준다. 또한 실시예 5의 고분자 화합물(POBTTPD)의 경우 실시예 4의 고분자 화합물에 비해 낮은 개방전압(0.7 eV) 및 단락전류(11.1 mA/cm2)를 보여주고 있으나 높은 충진률(64%)로 인해 효율이 5.0%로 나타난다.
또한 실시예 6에서 합성된 고분자 화합물(POBOBDTPD)의 경우 9.39 mA/cm2의 높은 단락전류(Jsc)값을 보여주며 0.68 V의 높은 개방전압(Voc) 값을 나타내고 있다. 그 결과 4.02%의 효율을 보여준다. 또한 실시예 7에서 합성된 고분자 화합물(PEBOBDTPD)의 경우 실시예 3의 고분자 화합물에 비해 낮은 개방전압(0.64 eV) 및 단락전류(4.81 mA/cm2)및 낮 충진률(46%)로 인해 효율이 1.41%로 나타난다.
도 16 및 도 19은 각각 상기 실시예 4 내지 5에서 합성된 고분자 화합물(PEBTTPD, POBTTPD)과 실시예 6 내지 7에서 합성된 고분자 화합물(PEBOBDTPD)을 PCBM([6,6]-phenyl C71 butyric acid methyl ester)과 혼합하여 소자를 제작하였을 경우 나타나는 에너지 광자효율을 나타낸 그림이다. 도 16, 도 19에서 보이는 바와 같이 실시예 5(POBTTPD)의 에너지 양자효율은 약 58%이며 실시예 4 (PEBTTPD)의 경우 약 55%정도를 나타내고 있어 높은 효율을 가지는 것을 알 수 있다. 또한 실시예 6(POBOBDTPD)의 에너지 양자효율은 약 50%이며 실시예 7 (PEBOBDTPD)의 경우 약 35%정도를 나타내고 있어 낮은 효율을 가지는 것을 알 수 있다.

Claims (15)

  1. 하기 화학식 1로 표시되는 유기 반도체 화합물 단량체를 이용하여 제조되는 고분자 화합물.
    [화학식 1]
    Figure PCTKR2012009108-appb-I000047
    [상기 화학식 1에서,
    Z는 S 또는 Se이고;
    R은 C1-C30알킬, C2~C30알킬렌, C2~C30알키닐렌, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 알킬렌, 알키닐렌, 아릴 및 헤테로아릴은 C1-C30알킬, C2-C30알케닐, C2-C30알키닐, C1-C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
  2. 제 1항에 있어서,
    상기 고분자 화합물은 하기 화학식 11로 표시되는 것인 고분자 화합물.
    [화학식 11]
    Figure PCTKR2012009108-appb-I000048
    (상기 화학식 11에서,
    Z는 S 또는 Se이고;
    Ar은 C6-C30아릴렌 또는 C3-C30헤테로아릴렌이며;
    R은 C1-C30알킬, C2~C30알킬렌, C2~C30알키닐렌, C6~C30아릴 및 C3~C30헤테로아릴로부터 선택되며, 상기 알킬, 알킬렌, 알키닐렌, 아릴 및 헤테로아릴은 C1-C20알킬, C2-C30알케닐, C2-C30알키닐, C1-C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;
    상기 n은 1 내지 1000의 정수이다.)
  3. 제 2항에 있어서,
    Ar은 하기 구조에서 선택되는 하나이상인 것인 고분자 화합물.
    Figure PCTKR2012009108-appb-I000049
    Figure PCTKR2012009108-appb-I000050
    Figure PCTKR2012009108-appb-I000051
    Figure PCTKR2012009108-appb-I000052
    Figure PCTKR2012009108-appb-I000053
    Figure PCTKR2012009108-appb-I000054
    Figure PCTKR2012009108-appb-I000055
    Figure PCTKR2012009108-appb-I000056
    (상기 구조식에서,
    R11 및 R12는 서로 독립적으로 수소, C1-C30알킬, C2~C30알킬렌, C2~C30알키닐렌, C6~C30아릴 및 C3~C30헤테로아릴로부터 선택되며; 상기 알킬, 알킬렌, 알키닐렌, 아릴 및 헤테로아릴은 할로겐, C1-C30알킬, C1-C30알콕시, C6~C30아릴 및 C3~C30헤테로아릴로 더 치환될 수 있다.)
  4. 제 2항에 있어서,
    상기 화학식 11은 하기 화학식 12로 표시되는 고분자 반도체 화합물.
    [화학식 12]
    Figure PCTKR2012009108-appb-I000057
    (상기 화학식 12에서,
    Ar은 C6-C30아릴렌 또는 C3-C30헤테로아릴렌이며;
    R은 C1-C30알킬이며;
    상기 n은 1 내지 1000의 정수이다.)
  5. 제 4항에 있어서,
    Ar은 하기 구조에서 선택되는 아릴렌 또는 헤테로아릴렌인 유기 반도체 화합물.
    Figure PCTKR2012009108-appb-I000058
    Figure PCTKR2012009108-appb-I000059
    Figure PCTKR2012009108-appb-I000060
    (상기 구조식에서,
    R11 및 R12는 서로 독립적으로 수소, C1-C30알킬, C2~C30알킬렌, C2~C30알키닐렌, C6~C30아릴 및 C3~C30헤테로아릴로부터 선택되며; 상기 알킬, 알킬렌, 알키닐렌, 아릴 및 헤테로아릴은 할로겐, C1-C30알킬, C1-C30알콕시, C6~C30아릴 및 C3~C30헤테로아릴로 더 치환될 수 있다.)
  6. 제 5항에 있어서,
    상기 화학식 11은 하기 구조에서 선택되는 것인 고분자 반도체 화합물.
    Figure PCTKR2012009108-appb-I000061
    Figure PCTKR2012009108-appb-I000062
    Figure PCTKR2012009108-appb-I000063
    Figure PCTKR2012009108-appb-I000064
    (상기 화학식 구조에서 n은 1 내지 1000의 정수이다.)
  7. 하기 화학식 1로 표시되는 유기 반도체 화합물.
    [화학식 1]
    Figure PCTKR2012009108-appb-I000065
    [상기 화학식 1에서,
    Z는 S 또는 Se이고;
    R은 C1-C30알킬, C2~C30알킬렌, C2~C30알키닐렌, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 알킬렌, 알키닐렌, 아릴 및 헤테로아릴은 C1-C30알킬, C2-C30알케닐, C2-C30알키닐, C1-C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]
  8. 제 7항에 있어서,
    상기 R은 C1-C30알킬기인 유기 반도체 화합물.
  9. 제 7항에 있어서,
    상기 Z는 S인 유기 반도체 화합물.
  10. 하기 화학식 2로 표시되는 화합물과 화학식 3으로 표시되는 화합물을 반응시켜 하기 화학식 4로 표시되는 화합물을 제조하는 단계;
    화학식 4로 표시되는 화합물을 산화시켜 화학식 5로 표시되는 화합물을 제조하는 단계;
    화학식 5로 표시되는 화합물을 무수아세틱산과 반응시켜 화학식 6으로 표시되는 화합물을 제조하는 단계;및
    화학식 6으로 표시되는 화합물을 하기 화학식 7로 표시되는 화합물과 반응시켜 화학식 1로 표시되는 화합물을 제조하는 단계;를 포함하는 화학식 1로 표시되는 유기 반도체 화합물의 제조방법.
    [화학식 1]
    Figure PCTKR2012009108-appb-I000066
    [화학식 2]
    Figure PCTKR2012009108-appb-I000067
    [화학식 3]
    Figure PCTKR2012009108-appb-I000068
    [화학식 4]
    Figure PCTKR2012009108-appb-I000069
    [화학식 5]
    Figure PCTKR2012009108-appb-I000070
    [화학식 6]
    Figure PCTKR2012009108-appb-I000071
    [화학식 7]
    RNH2
    [상기 화학식 1 내지 7에서,
    Z는 S 또는 Se이고;
    R은 C1-C30알킬, C2~C30알킬렌, C2~C30알키닐렌, C6~C30아릴 또는 C3~C30헤테로아릴이며, 상기 알킬, 알킬렌, 알키닐렌, 아릴 및 헤테로아릴은 C1-C30알킬, C2-C30알케닐, C2-C30알키닐, C1-C30알콕시, 아미노기, 하이드록시기, 할로겐기, 사이아노기, 나이트로기, 트리플루오로메틸기 및 실릴기로 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;
    R1 또는 R2는 서로 독립적으로, C1-C30알킬이며;
    X는 할로겐이다.]
  11. 제 10항에 있어서,
    상기 화학식 2의 화합물은 유기리튬 존재하에 하기 화학식 8의 화합물과 하기 화학식 9의 화합물을 반응시켜 제조되는 것인 화학식 1로 표시되는 유기 반도체 화합물의 제조방법.
    [화학식 8]
    Figure PCTKR2012009108-appb-I000072
    [화학식 9]
    Figure PCTKR2012009108-appb-I000073
    (상기 화학식 8 또는 화학식 9에서,
    X 또는 X1은 할로겐이며;
    R1은 C1-C30알킬이다.)
  12. 제 10항에 있어서,
    상기 화학식 1은 상기 화학식 6, 1몰에 대하여 상기 화학식 7, 0.5 ~ 2.0몰로 반응시키는 것인 화학식 1로 표시되는 유기 반도체 화합물의 제조방법.
  13. 제 10항에 있어서,
    Z는 S이며, R은 C1-C30알킬기인 화학식 1로 표시되는 유기 반도체 화합물의 제조방법.
  14. 제 1항 내지 제 6항중 어느 한 항에 따른 고분자 화합물을 함유하는 유기 태양전지.
  15. 제 14항에 있어서,
    상기 유기 태양전지는 구조가 기판, 투명전극, 정공수송층, 활성층, 전자수송층, 금속전극이 순차적으로 적층된 구조인 유기 태양전지.
PCT/KR2012/009108 2011-11-01 2012-11-01 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지 WO2013066065A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0112801 2011-11-01
KR20110112801 2011-11-01

Publications (1)

Publication Number Publication Date
WO2013066065A1 true WO2013066065A1 (ko) 2013-05-10

Family

ID=48192352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009108 WO2013066065A1 (ko) 2011-11-01 2012-11-01 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지

Country Status (2)

Country Link
KR (1) KR101369244B1 (ko)
WO (1) WO2013066065A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208011A1 (en) * 2013-06-28 2014-12-31 Kabushiki Kaisha Toshiba Polymer and solar cell using the same
CN104993058A (zh) * 2015-05-27 2015-10-21 南昌大学 一种层状钙钛矿结构材料及在甲胺铅碘钙钛矿薄膜太阳能电池中的应用
JP5957564B1 (ja) * 2015-03-23 2016-07-27 株式会社東芝 ポリマーとそれを用いた太陽電池
JP5957563B1 (ja) * 2015-03-20 2016-07-27 株式会社東芝 ポリマーとそれを用いた太陽電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563120B1 (ko) 2013-06-20 2015-11-06 경상대학교산학협력단 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지
WO2014204082A1 (ko) * 2013-06-20 2014-12-24 경상대학교산학협력단 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지
CN103435783B (zh) * 2013-07-15 2016-01-20 中国科学院化学研究所 一种共轭聚合物及其制备方法与应用
WO2015122722A1 (ko) * 2014-02-14 2015-08-20 주식회사 엘지화학 공중합체 및 이를 포함하는 유기 태양 전지
KR101960614B1 (ko) 2017-11-08 2019-03-20 고려대학교 산학협력단 메틸렌 싸이오펜 카르복실레이트와 벤조다이싸이오펜을 함유하는 공액형 고분자 유도체와 이를 이용한 유기 태양전지

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008073149A2 (en) * 2006-07-21 2008-06-19 Plextronics, Inc. Sulfonation of conducting polymers and oled, photovoltaic, and esd devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008073149A2 (en) * 2006-07-21 2008-06-19 Plextronics, Inc. Sulfonation of conducting polymers and oled, photovoltaic, and esd devices

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN, GUAN-YU ET AL.: "Crystalline conjugated polymer containing fused 2,5-di (thiophen-2-yl)thieno[2,3-b]thiophene and thieno[3,4-c]pyrrole-4,6-dione units for bulk heterojunction solar cells", CHEM. COMMUN., vol. 47, no. 17, 24 March 2011 (2011-03-24), pages 5064 - 5066, XP055067526 *
KUO, CHIH-YIN ET AL.: "Annealing treatment improves the morphology and performance of photovoltaic devices prepared from thieno[3,4-c]pyrrole-4,6-dione-based donor/acceptor conjugated polymers and CdSe nanostructures", ENERGY ENVIRON. SCI., vol. 4, 13 May 2011 (2011-05-13), pages 2316 - 2322, XP055067527 *
ZHANG, YONG ET AL.: "Conjugated polymers based on C, Si and N-bridged dithiophene and thienopyrroledione units: synthesis, field-effect transistors and bulk heterojunction polymer solar cells", J. MATER. CHEM., vol. 21, 27 January 2011 (2011-01-27), pages 3895 - 3902, XP055067524 *
ZOU, YINGPING ET AL.: "A Thieno[3,4-c]pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells", J. AM. CHEM. SOC., vol. 132, no. 15, 29 March 2010 (2010-03-29), pages 5330 - 5331, XP055067523 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208011A1 (en) * 2013-06-28 2014-12-31 Kabushiki Kaisha Toshiba Polymer and solar cell using the same
JP2015010173A (ja) * 2013-06-28 2015-01-19 株式会社東芝 ポリマーとそれを用いた太陽電池
US9818945B2 (en) 2013-06-28 2017-11-14 Kabushiki Kaisha Toshiba Polymer and solar cell using the same
JP5957563B1 (ja) * 2015-03-20 2016-07-27 株式会社東芝 ポリマーとそれを用いた太陽電池
US20160276593A1 (en) * 2015-03-20 2016-09-22 Kabushiki Kaisha Toshiba Polymer and solar cell using the same
US9698349B2 (en) * 2015-03-20 2017-07-04 Kabushiki Kaisha Toshiba Polymer and solar cell using the same
JP5957564B1 (ja) * 2015-03-23 2016-07-27 株式会社東芝 ポリマーとそれを用いた太陽電池
US20160285001A1 (en) * 2015-03-23 2016-09-29 Kabushiki Kaisha Toshiba Polymer and solar cell using the same
US9634252B2 (en) * 2015-03-23 2017-04-25 Kabushiki Kaisha Toshiba Polymer and solar cell using the same
CN104993058A (zh) * 2015-05-27 2015-10-21 南昌大学 一种层状钙钛矿结构材料及在甲胺铅碘钙钛矿薄膜太阳能电池中的应用

Also Published As

Publication number Publication date
KR20130048175A (ko) 2013-05-09
KR101369244B1 (ko) 2014-03-25

Similar Documents

Publication Publication Date Title
WO2013066065A1 (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지
Yao et al. Molecular design of benzodithiophene-based organic photovoltaic materials
WO2013119022A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
Guo et al. Imide-and amide-functionalized polymer semiconductors
WO2016099218A2 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2015008939A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2018216880A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2015163614A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2021118238A1 (ko) 신규한 중합체 및 이를 이용하는 유기 전자 소자
WO2016133368A9 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2016171465A2 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2018236100A1 (ko) 유기 태양 전지
WO2011068305A2 (ko) 파이렌 화합물이 도입된 전도성 고분자 및 그를 이용한 유기 태양전지
WO2013089443A1 (ko) 신규한 다이케토피롤로피롤 중합체 및 이를 이용한 유기 전자 소자
WO2019004605A1 (ko) 유기 태양 전지
WO2015122722A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2019066305A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2014061867A1 (ko) 신규한 유기 반도체 화합물 및 이의 제조방법
WO2015016626A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2014204082A1 (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지
WO2021118171A1 (ko) (아릴옥시)알킬기가 치환된 화합물 및 이를 이용하는 유기 전자 소자
WO2019221386A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2015037966A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2014092408A1 (ko) 공중합체 및 이를 이용한 유기 태양 전지
WO2019083235A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846673

Country of ref document: EP

Kind code of ref document: A1