WO2014203678A1 - 半導体モジュール - Google Patents

半導体モジュール Download PDF

Info

Publication number
WO2014203678A1
WO2014203678A1 PCT/JP2014/063555 JP2014063555W WO2014203678A1 WO 2014203678 A1 WO2014203678 A1 WO 2014203678A1 JP 2014063555 W JP2014063555 W JP 2014063555W WO 2014203678 A1 WO2014203678 A1 WO 2014203678A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal output
circuits
semiconductor module
control circuits
lead frame
Prior art date
Application number
PCT/JP2014/063555
Other languages
English (en)
French (fr)
Inventor
忠彦 佐藤
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to KR1020157023812A priority Critical patent/KR20160022799A/ko
Priority to CN201480012091.9A priority patent/CN105027281B/zh
Priority to DE112014000741.2T priority patent/DE112014000741T5/de
Priority to JP2015522689A priority patent/JP6107949B2/ja
Publication of WO2014203678A1 publication Critical patent/WO2014203678A1/ja
Priority to US14/842,768 priority patent/US9906009B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0038Details of emergency protective circuit arrangements concerning the connection of the detecting means, e.g. for reducing their number
    • H02H1/0046Commutating the detecting means in dependance of the fault, e.g. for reducing their number
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/18Modifications for indicating state of switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • H01L2224/48096Kinked the kinked part being in proximity to the bonding area on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K2017/0806Modifications for protecting switching circuit against overcurrent or overvoltage against excessive temperature

Definitions

  • the present invention relates to a semiconductor module including a plurality of power semiconductor elements and a plurality of control circuits that drive these semiconductor elements on and off, respectively.
  • FIG. 4 is a diagram showing a schematic configuration of a main part of a semiconductor module IPM used in an inverter device for driving a three-phase motor M.
  • Q1, Q2 to Q6 are six switching elements that respectively form three sets of half-bridge circuits. It is.
  • D1, D2 to D6 are freewheeling diodes connected in antiparallel to the switching elements Q1, Q2 to Q6, respectively.
  • the three sets of half-bridge circuits are connected in common to a power supply terminal P to which a DC voltage is applied, and switching elements Q1, Q2, and Q3 that form an upper arm, and switching elements Q4 and Q5 that form a lower arm. , Q6 are paired and connected directly.
  • Each of these half-bridge circuits has a connection point between the switching element Q1 (Q2, Q3) forming the upper arm and the switching element Q4 (Q5, Q6) forming the lower arm, connected to the three-phase motor M by U ( The output terminals L1 (L2, L3) for supplying the V, W) phase power are used.
  • each of the switching elements Q1, Q2 to Q6 is a power semiconductor element made of IGBT or MOS-FET having a gate as a control electrode.
  • the semiconductor module IPM having such a configuration is as described in detail in, for example, Patent Document 1.
  • control circuits IC1 to IC6 provided on the semiconductor module IPM for driving the switching elements Q1, Q2 to Q6 on and off, respectively, are connected to the gates of the switching elements Q1, Q2 to Q6 as shown in FIG.
  • Output amplifiers A1 to A6 are provided as drive circuits for applying a drive signal to.
  • Each of the control circuits IC1 to IC6 monitors the current flowing through the switching elements Q1, Q2 to Q6, the operating temperature, etc., and detects an abnormality such as an overcurrent or overheating of the switching elements Q1, Q2 to Q6.
  • Circuits ED1 to ED6 are provided.
  • the semiconductor module IPM prohibits the operation of the output amplifiers A1 to A6 via the output control circuits C1 to C6, thereby the switching elements Q1, Q2 Are configured to protect Q6.
  • the semiconductor module IPM uses the abnormal information detected by the abnormality detection circuits ED1 to ED6 as abnormality status information of the control circuits IC1 to IC6, for example, via the switch elements S1 to S6. Are configured to output externally.
  • the number of input / output terminals in the semiconductor module IPM can surely be reduced.
  • the external control device that controls the operation of the semiconductor module IPM it takes time to determine the type of abnormality that has occurred in the semiconductor module IPM and to properly operate the protection function of the semiconductor module IPM. There is.
  • the present invention has been made in view of such circumstances, and its purpose is to be able to externally output operation status information of a plurality of control circuits without increasing the number of input / output terminals.
  • An object of the present invention is to provide a semiconductor module having a simple configuration capable of promptly starting a protection operation against an abnormality detected in a circuit.
  • a semiconductor module includes a plurality of power semiconductor elements made of, for example, an IGBT or a MOS-FET, a plurality of control circuits for driving these semiconductor elements on and off, A plurality of signal output circuits that are provided in the control circuit and input / output operation status information,
  • each of the signal output circuits is composed of a switch element having a signal output terminal having an open drain configuration, and the signal output terminal in these signal output circuits is connected to each of the power semiconductor elements of the semiconductor module and each of the control elements. It is characterized by being connected to an internal lead frame on which a circuit is mounted.
  • each signal output circuit includes a switch element having a signal output terminal having an open collector configuration, and the signal output terminal in these signal output circuits is connected to each power semiconductor element and each control of the semiconductor module. It is characterized by being connected to an internal lead frame on which a circuit is mounted.
  • At least one of the plurality of signal output circuits is configured such that the signal output terminal is pulled up or pulled down via a resistor in the control circuit.
  • the internal lead frame to which the output terminals of the plurality of signal output circuits are connected can be configured to be pulled up or pulled down via a resistor.
  • a specific output terminal of the semiconductor module to which the internal lead frame is connected can be pulled up or pulled down via a resistor outside the semiconductor module.
  • the switch elements in which the signal output terminals of the open collector configuration or the open drain configuration in the plurality of signal output circuits have different output resistance values for each of the signal output circuits.
  • the operation status information output by the plurality of signal output circuits is abnormal information indicating an abnormal operation of the power semiconductor element.
  • Each of the control circuits preferably includes a protection circuit that detects the operation status information output to the internal lead frame and stops driving the power semiconductor element.
  • the plurality of signal output circuits that are respectively provided in the plurality of control circuits and output the operation status information include an output terminal having an open drain configuration or an open collector configuration, and these output terminals Are connected to the internal lead frame of the semiconductor module and wired or ORed. Therefore, regardless of the number of the plurality of control circuits, the operation status information output from each of the control circuits can be externally output by combining the output terminals. Therefore, a semiconductor module can be constructed without increasing the number of input / output terminals for external connection.
  • each control circuit outputs its own operation status information externally via the internal lead frame in which the output terminal of the signal output circuit is wired-or connected, and other control circuits via the internal lead frame. It is possible to capture the operation status information output externally. Accordingly, it is possible to quickly and easily acquire abnormality information detected in other control circuits and execute appropriate abnormality countermeasure processing. Further, the output resistance value of the switch element forming the signal output terminal of the open drain configuration or the open collector configuration, that is, the ON resistance of the switch element can be made different for each signal output circuit. In this way, it is possible to easily detect which signal output circuit has output the operation status information that is an abnormal signal from the voltage change at the signal output end when the abnormality is detected. Therefore, the abnormality countermeasure function can be enhanced simply and effectively, and the practical advantages are great.
  • FIG. 1 is a schematic configuration diagram of a semiconductor module according to an embodiment of the present invention.
  • FIG. 2 is a view showing a layout structure of the semiconductor module shown in FIG. 1.
  • FIG. 1 is a schematic configuration diagram of a semiconductor module IPM according to the present invention.
  • the semiconductor module IPM shown in FIG. 1 includes six switching elements Q1, Q2 to Q6 and six freewheeling diodes D1, D2 to D6 forming three sets of half-bridge circuits. Further, the semiconductor module IPM includes three control circuits IC1, IC2, and IC3 for driving the switching elements Q1 and Q2 to Q6 in a complementary manner for each half bridge circuit. Although the semiconductor module IPM that forms three sets of half-bridge circuits will be described here, two sets or four or more sets of half-bridge circuits may be formed.
  • the six switching elements Q1, Q2 to Q6 are made of, for example, an IGBT, and basically two pairs are connected in series to form three sets of half-bridge circuits.
  • the six freewheeling diodes D1, D2 to D6 are basically connected in antiparallel to the switching elements Q1, Q2 to Q6 as described above to form a freewheeling current path. To play a role.
  • the control circuits IC1, IC2, and IC3 are complementary to the gates that are the control electrodes for each pair of the switching elements Q1, Q2 to Q6 forming the half bridge circuit as shown in FIG.
  • Output amplifiers A1u, A1d to A3u, A3d for applying drive signals are provided.
  • Each of the control circuits IC1 to IC3 monitors the current flowing through the switching elements Q1, Q2 to Q6, the operating temperature, etc., and detects an abnormality such as an overcurrent or overheating of the switching elements Q1, Q2 to Q6.
  • Circuits ED1 to ED3 are provided.
  • each of the control circuits IC1, IC2, and IC3 uses the abnormal information detected by the abnormality detection circuits ED1 to ED3 as abnormal operation information such as overcurrent and overheat as operation status information of the control circuits IC1 to IC3, for example. It is configured to output externally via signal output circuits IO1 to IO3 mainly composed of switch elements S1 to S3 made of n-type MOS-FETs.
  • each of the switching elements S1 to S3 is constructed by forming signal output circuits IO1 to IO3 having a so-called open drain configuration.
  • the drains which are signal output terminals of the switch elements S1 to S3 made of MOS-FETs are connected to an internal lead frame 3c described later.
  • the signal output terminals of these switch elements S1 to S3 are collectors. Therefore, in this case, each of the switch elements S1 to S3 may have an open collector configuration.
  • the above-described output control circuits C1 to C3 compare the operation status by comparing the voltage of each signal output terminal of the signal output circuits IO1 to IO3, that is, the voltage of the internal lead frame 3c with a predetermined threshold voltage Vref. Information is to be detected.
  • FIG. 3 shows a layout structure of a semiconductor module IPM including a plurality of switching elements Q1, Q2 to Q6 composed of the above-described IGBT, the freewheeling diodes D1, D2 to D6, and the control circuits IC1 to IC3.
  • the semiconductor module IPM includes an insulating substrate 2 made of, for example, an Al substrate, provided at a substantially central portion of a terminal case that forms a rectangular frame body 1.
  • the switching elements Q1, Q2 to Q6 and the freewheeling diodes D1, D2 to D6 are mounted on the insulating substrate 2 in a line.
  • the control circuits IC1 to IC3 are mounted side by side on an internal lead frame 3a (described later) used as a ground line, for example.
  • 3 (3a to 3c) is an internal lead frame forming a plurality of internal wiring patterns as conductor layers, and 4 (4a to 4o) and 5 (5a to 5j) are control terminals for external connection, respectively.
  • 2 shows a plurality of lead frames.
  • the lead frame 4 (4a to 4o) arranged side by side on the one side of the frame body 1 plays a role of inputting / outputting control signals and the like to / from the control circuits IC1, IC2, IC3.
  • the lead frames 5 (5a to 5j) arranged side by side on the other side of the frame body 1 serve to supply the currents output from the switching elements Q1 and Q2 to Q6 to the outside.
  • the switching elements Q1, Q2 to Q6, the freewheeling diodes D1, D2 to D6, and the control circuits IC1 to IC3 are connected to the internal lead frame 3 ( 3a to 3c) and the lead frames 4 (4a to 4o) and 5 (5a to 5j), respectively, constitute a semiconductor module IPM.
  • the emitters which are the low-potential side electrodes of the switching elements Q1, Q2, Q3 on the upper arm side in the plurality of groups, for example, three groups of half bridge circuits, and the lower arm
  • the collectors which are the high potential side electrodes of the switching elements Q4, Q5 and Q6 on the side are individually connected to the lead frames 5a, 5b to 5j as the plurality of external connection output terminals as shown in FIG.
  • the freewheeling diodes D4, D5, D6 provided on the lower arm side of each half bridge circuit have their cathodes connected to the emitters of the switching elements Q1, Q2, Q3 on the upper arm side. Are connected in series.
  • the anodes of the freewheeling diodes D4, D5, and D6 are connected to the emitters of the switching elements Q4, Q5, and Q6 on the lower arm side, respectively.
  • the cathodes of the freewheeling diodes D1, D2, and D3 provided on the upper arm side are commonly connected to the collectors of the switching elements Q1, Q2, and Q3 on the upper arm side.
  • the anodes of the freewheeling diodes D1, D2, and D3 are connected in series to the collectors of the switching elements Q4, Q5, and Q6 on the lower arm side, respectively.
  • the switching elements Q1, Q2, Q3 on the upper arm side and the freewheeling diodes D4, D5, D6 on the lower arm side are respectively connected in series and the switching elements Q4, Q5, Q6 and the freewheeling diodes D1, D2, and D3 on the upper arm side are respectively connected in series.
  • Six series circuits composed of these switching elements Q and freewheeling diodes D are provided in parallel.
  • each independent lead frame 5 (5b, 5c, 5e, 5f, 5h, 5i) are connected to the connection points of the switching elements Q and the freewheeling diodes D in the series circuits.
  • These external connection output terminals L1 +, L1-, L2 +, L2-, L3 +, L3- are connected to the upper arm side switching element Q1 (Q2, Q3) when, for example, a double forward converter or an interleaved boost converter is formed. This is a consideration for enabling the insertion of a coil or transformer inductance between the lower arm side switching element Q4 (Q5, Q6).
  • the collectors of the switching elements Q1, Q2, and Q3 on the upper arm side and the cathodes of the freewheeling diodes D1, D2, and D3 are commonly connected to each other, that is, one of the lead frames 5, that is, , Connected to the lead frame 5a and led out to the outside as a power terminal P.
  • the emitters of the switching elements Q4, Q5, and Q6 on the lower arm side are individually connected to other lead frames 5 (5d, 5g, and 5j) in the ten lead frames 5, and externally connected.
  • the output terminals N1, N2, and N3 are derived to the outside.
  • the signal output terminals of the signal output circuits IO1 to IO3 in the control circuits IC1, IC2, and IC3 are respectively connected to the internal lead frame 3c using the bonding wires 7. It is connected and led out as an operation status information output terminal GPIO.
  • a pull-up resistor is provided between the internal lead frame 3c and the internal lead frame 3b used as a supply line for the power supply voltage Vcc. The example which mounts 8 is shown.
  • the switch elements S1 to S3 made of MOS-FETs constituting the signal output circuits IO1 to IO3 in the plurality of control circuits IC1, IC2, and IC3 are respectively configured as open drains. It has become.
  • the drains which are the signal output terminals of the switch elements S1 to S3 are connected to the internal lead frame 3c and pulled up to the power supply voltage Vcc via the pull-up resistor 8. If the switch elements S1 to S3 constituting the signal output circuits IO1 to IO3 are bipolar transistors or the like, the open collector configuration may be used as described above.
  • the operation status information output from each of the control circuits IC1, IC2, IC3, specifically the signal output circuits IO1 to IO3, is wired-or in the internal lead frame 3c, and the operation status information output It is externally output via the terminal GPIO. Therefore, it is not necessary to provide a plurality of output terminals for the operation status information as in the prior art, and the number of input / output terminals as the semiconductor module IPM is not increased.
  • the operation status information externally output from a certain control circuit IC1 (IC2, IC3) in this way is detected by the output control circuit C1 (C2, C3) of the control circuit IC1 (IC2, IC3).
  • it is detected by the output control circuits C2 and C3 (C1) in the other control circuits IC2 and IC3 (IC1) through the internal lead frame 3c.
  • the control circuits IC1 (IC2, IC3) prohibit the operations of the output amplifiers A1u, A1d to A3u, A3d all at once according to the operation status information.
  • the plurality of the switching elements Q1, Q2 to Q6 with respect to the switching elements Q1, Q2 to Q6 can be provided inside the semiconductor module IPM without increasing the number of external connection terminals for inputting / outputting various information under the simple configuration described above.
  • the protection operation by the control circuits IC1, IC2, and IC3 can be surely executed. Therefore, its practical advantage is great.
  • the on-resistances of the switch elements S1 to S3 made of MOS-FETs having the signal output terminal of the open drain configuration are made different for each signal output circuit, the signal output terminal at the time of detecting an abnormality is obtained. It is also possible to detect which signal output circuit has output the operation status information from the voltage change.
  • the pull-up resistor described above can be provided so as to pull up the operation status information output terminal GPIO outside the semiconductor module IPM.
  • an example is shown in which the drains of the switch elements S1 to S3 made of MOS-FETs having an open drain configuration are pulled up to the power supply voltage Vcc.
  • the drains of the switch elements S1 to S3 having an open drain configuration may be pulled down to the ground potential GND. Needless to say.
  • the switch elements S1 to S3 may have an open collector configuration.
  • control circuits IC1, IC2, and IC3 can be provided corresponding to the switching elements Q1, Q2 to Q6, for example. It is also possible to integrate a predetermined number of control circuit ICs into one chip. Specifically, for example, one control circuit IC1 formed as one chip for the switching elements Q1, Q2, and Q3, and one control circuit formed as one chip for the remaining switching elements Q4, Q5, and Q6. It is also possible to configure as IC2.
  • the number of the switching elements Q mounted on the semiconductor module IPM is not specified in the above-described embodiment.
  • a power MOS-FET can be used as the switching element Q.
  • the signal output circuits IO1 to IO3 various circuit configurations conventionally proposed can be appropriately employed.
  • the present invention can be variously modified and implemented without departing from the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)

Abstract

 複数の電力用半導体素子をそれぞれオン・オフ駆動する複数の制御回路と、これらの各制御回路に設けられて動作ステータス情報を出力する複数の信号出力回路とを具備し、前記各信号出力回路は、それぞれオープンドレイン構成の信号出力端を備え、これらの各信号出力端を前記電力用半導体素子および前記制御回路を搭載した内部リードフレームにそれぞれ接続したことを特徴とする。

Description

半導体モジュール
 本発明は、複数の電力用半導体素子と、これらの半導体素子をそれぞれオン・オフ駆動する複数の制御回路とを備えた半導体モジュールに関する。
 複数のスイッチング素子と、これらのスイッチング素子をそれぞれオン・オフ駆動する複数の制御回路とを備えた半導体モジュールは、例えばモータ等の負荷を駆動するインバータ装置の構成部品として用いられる。図4は三相モータMを駆動するインバータ装置に用いられる半導体モジュールIPMの要部概略構成を示す図で、Q1,Q2~Q6は、3組のハーフブリッジ回路をそれぞれ形成する6個のスイッチング素子である。またD1,D2~D6は前記各スイッチング素子Q1,Q2~Q6にそれぞれ逆並列に接続されたフリーホイリング・ダイオードである。
 ここで前記3組のハーフブリッジ回路は、直流電圧が印加される電源端子Pに共通に接続されて上アームを形成するスイッチング素子Q1,Q2,Q3と、下アームを形成するスイッチング素子Q4,Q5,Q6とを、それぞれ対にして直接接続して構成される。これらの各ハーフブリッジ回路は、上アームを形成するスイッチング素子Q1(Q2,Q3)と、下アームを形成するスイッチング素子Q4(Q5,Q6)との接続点を、前記三相モータMにU(V,W)相の電力を供給する出力端子L1(L2,L3)としている。
 また前記下アームを形成するスイッチング素子Q4,Q5,Q6の他端は、接地側端子N1,N2,N3にそれぞれ接続される。これらの接地側端子N1,N2,N3は、例えばシャント抵抗R1,R2,R3を介して接地される。尚、前記各スイッチング素子Q1,Q2~Q6は、制御電極であるゲートを備えたIGBTまたはMOS-FETからなる電力用半導体素子である。このような構成の半導体モジュールIPMについては、例えば特許文献1等に詳しく紹介される通りである。
 ところで前記半導体モジュールIPMに設けられて前記スイッチング素子Q1,Q2~Q6をそれぞれオン・オフ駆動する制御回路IC1~IC6は、例えば図5に示すように、前記各スイッチング素子Q1,Q2~Q6のゲートに駆動信号を印加するドライブ回路として、出力アンプA1~A6を備える。また前記各制御回路IC1~IC6は、前記スイッチング素子Q1,Q2~Q6に流れる電流や動作温度等を監視して該スイッチング素子Q1,Q2~Q6の過電流や過熱等の異常を検出する異常検出回路ED1~ED6をそれぞれ備える。
 そして前記半導体モジュールIPMは、前記異常検出回路ED1~ED6にて異常を検出したときには出力制御回路C1~C6を介して前記出力アンプA1~A6の動作を禁止し、これによって前記スイッチング素子Q1,Q2~Q6を保護するように構成されている。また同時に前記半導体モジュールIPMは、前記異常検出回路ED1~ED6にて検出された前記過電流や過熱等の異常情報を前記制御回路IC1~IC6の動作ステータス情報として、例えばスイッチ素子S1~S6を介して外部出力するように構成されている。
特許第3394377号公報
 ところで上述した如く構成された半導体モジュールIPMにおいては、前記制御回路IC1~IC6の動作ステータス情報をそれぞれ外部出力するには、前記各スイッチ素子S1~S6にそれぞれ接続した外部接続端子が必要となる。この為、前記半導体モジュールIPMにおける入出力端子数の増加を招くことが否めない。そこで従来では、専ら、前記半導体モジュールIPMにおける特定の制御回路ICにだけ、前述した動作ステータス情報の出力機能を持たせている。更には前記複数の制御回路IC1~IC6間で前記動作ステータス情報を相互に通知し、異常検出時には前記特定の制御回路ICからだけ前記動作ステータス情報を外部出力することも提唱されている。
 このような構成を採用した場合、確かに前記半導体モジュールIPMにおける入出力端子数を低減することが可能である。しかしながらこの場合、異常検出から前記動作ステータス情報を外部出力するまでに時間が掛かることが否めない。更には前記半導体モジュールIPMの動作を制御する外部制御装置においては、前記半導体モジュールIPMで発生した異常の種別を判定して該半導体モジュールIPMの保護機能を適切に働かせるまでに時間が掛かると言う問題がある。
 本発明はこのような事情を考慮してなされたもので、その目的は、入出力端子数を増加させることなく複数の制御回路の動作ステータス情報を外部出力することが可能であり、しかも各制御回路において検出された異常に対する保護動作を速やかに起動することのできる簡易な構成の半導体モジュールを提供することにある。
 上述した目的を達成するべく本発明に係る半導体モジュールは、例えばIGBTやMOS-FETからなる複数の電力用半導体素子と、これらの半導体素子をそれぞれオン・オフ駆動する複数の制御回路と、これらの制御回路にそれぞれ設けられて動作ステータス情報を入出力する複数の信号出力回路とを具備したものであって、
 特に前記各信号出力回路は、それぞれオープンドレイン構成の信号出力端を備えたスイッチ素子からなり、これらの信号出力回路における前記信号出力端を、当該半導体モジュールの前記各電力用半導体素子および前記各制御回路を搭載した内部リードフレームにそれぞれ接続したことを特徴としている。
 或いは前記各信号出力回路は、それぞれオープンコレクタ構成の信号出力端を備えたスイッチ素子からなり、これらの信号出力回路における前記信号出力端を、当該半導体モジュールの前記各電力用半導体素子および前記各制御回路を搭載した内部リードフレームにそれぞれ接続したことを特徴としている。
 好ましくは前記複数の信号出力回路の内の少なくとも1つは、前記制御回路の内部において抵抗を介して前記信号出力端をプルアップまたはプルダウンされたものとして構成される。また或いは前記複数の信号出力回路の各出力端子がそれぞれ接続される前記内部リードフレームを、抵抗を介してプルアップまたはプルダウンした構成としておくことも可能である。尚、前記内部リードフレームが接続された前記半導体モジュールの特定の出力端子を、該前記半導体モジュールの外部において抵抗を介してプルアップまたはプルダウンすることも勿論可能である。また前記複数の信号出力回路におけるオープンコレクタ構成またはオープンドレイン構成の信号出力端を形成したスイッチ素子は、前記各信号出力回路毎に互いに異なる出力抵抗値を有することが好ましい。
 ちなみに前記複数の信号出力回路が出力する前記動作ステータス情報は、前記電力用半導体素子の異常動作を示す異常情報である。また前記各制御回路は、前記内部リードフレームに出力された前記動作ステータス情報を検出して前記電力用半導体素子の駆動を停止させる保護回路を備えることが望ましい。
 本発明に係る半導体モジュールによれば、前記複数の制御回路にそれぞれ設けられて前記動作ステータス情報を出力する複数の信号出力回路がオープンドレイン構成またはオープンコレクタ構成の出力端子を備え、これらの出力端子を該半導体モジュールの内部リードフレームにそれぞれ接続してワイヤード・オアされるように構成されている。従って前記複数の制御回路の数に拘わることなく、その出力端子を1つにまとめて前記各制御回路からそれぞれ出力される前記動作ステータス情報を外部出力することができる。従って外部接続用の入出力端子数の増加を招来することなく半導体モジュールを構築することが可能となる。
 しかも前記各制御回路は、その信号出力回路の出力端子をワイヤード・オア接続した前記内部リードフレームを介して自身の動作ステータス情報を外部出力すると共に、前記内部リードフレームを介して他の制御回路が外部出力した前記動作ステータス情報をそれぞれ取り込むことが可能である。従って他の制御回路において検出された異常情報を速やかに、しかも簡易に取得して適切な異常対策処理を実行することが可能である。また前記オープンドレイン構成またはオープンコレクタ構成の信号出力端を形成したスイッチ素子の出力抵抗値、即ち、スイッチ素子のオン抵抗を、前記各信号出力回路毎に互いに異なるようにすることも可能である。このようにすれば、異常検出時における前記信号出力端の電圧変化から、どの信号出力回路が異常信号である動作ステータス情報を出力したかを容易に検出することも可能となる。故に、簡易にして効果的にその異常対策機能の充実化を図ることができ、実用的利点が多大である。
本発明の一実施形態に係る半導体モジュールの概略構成図。 半導体モジュールに設けられる制御回路の概略構成を示す図。 図1に示す半導体モジュールのレイアウト構造を示す図。 三相モータを駆動するインバータ装置に用いられる従来一般的な半導体モジュールの出力段の構成例を示す図。 従来の半導体モジュールに設けられる制御回路の概略構成を示す図。
 以下、図面を参照して本発明の一実施形態に係る半導体モジュールについて説明する。
 図1は本発明に係る半導体モジュールIPMの概略構成図である。この図1に示す半導体モジュールIPMは、3組のハーフブリッジ回路を形成する6個のスイッチング素子Q1,Q2~Q6、および6個のフリーホイリング・ダイオードD1,D2~D6を備える。更に半導体モジュールIPMは、前記スイッチング素子Q1,Q2~Q6を、前記各ハーフブリッジ回路毎にそれぞれ相補的にオン・オフ駆動する3個の制御回路IC1,IC2,IC3を備えて構成される。尚、ここでは3組のハーフブリッジ回路を形成する半導体モジュールIPMについて説明するが、2組または4組以上のハーフブリッジ回路を形成するものであっても良い。
 ちなみに前記6個のスイッチング素子Q1,Q2~Q6は、例えばIGBTからなり、基本的には2個ずつ対をなして直列に接続されて3組のハーフブリッジ回路を形成する。また前記6個のフリーホイリング・ダイオードD1,D2~D6は、基本的には前述したように前記スイッチング素子Q1,Q2~Q6のそれぞれに逆並列に接続されてフリーホイリング電流の経路を形成する役割を担う。
 また前記制御回路IC1,IC2,IC3は、例えば図2にその概略構成を示すように前記ハーフブリッジ回路を形成した各スイッチング素子Q1,Q2~Q6の対毎に、その制御電極であるゲートに相補的に駆動信号を印加する出力アンプA1u,A1d~A3u,A3dをそれぞれ備える。また前記各制御回路IC1~IC3は、前記スイッチング素子Q1,Q2~Q6に流れる電流や動作温度等を監視して該スイッチング素子Q1,Q2~Q6の過電流や過熱等の異常を検出する異常検出回路ED1~ED3をそれぞれ備える。
 更に前記各制御回路IC1,IC2,IC3は、前記異常検出回路ED1~ED3にて異常を検出したときには後述するように保護回路としての出力制御回路C1~C3を介して前記出力アンプA1u,A1d~A3u,A3dの動作を禁止し、これによって前記スイッチング素子Q1,Q2~Q6を保護するように構成されている。また同時に前記各制御回路IC1,IC2,IC3は、前記異常検出回路ED1~ED3にてそれぞれ検出された前記過電流や過熱等の異常情報を、当該制御回路IC1~IC3の動作ステータス情報として、例えばn型のMOS-FETからなるスイッチ素子S1~S3を主体として構成された信号出力回路IO1~IO3を介して外部出力するように構成されている。
 ここで前記各スイッチ素子S1~S3は、いわゆるオープンドレイン構成の信号出力回路IO1~IO3をそれぞれ構築したものである。そしてMOS-FETからなる前記各スイッチ素子S1~S3の信号出力端であるドレインは、後述する内部リードフレーム3cにそれぞれ接続されている。尚、前記各スイッチ素子S1~S3が、例えばバイポーラトランジスタ等からなる場合、これらのスイッチ素子S1~S3の信号出力端はコレクタとなる。従ってこの場合には、前記各スイッチ素子S1~S3をオープンコレクタ構成とすれば良い。
 また前記信号出力回路IO1~IO3の中の1つ、具体的には前記信号入出力回路IO3の信号出力端は、当該制御回路IC3の内部においてプルアップ抵抗Rを介してその電源電圧Vccに接続されている。ちなみに前述した出力制御回路C1~C3は、前記信号出力回路IO1~IO3の各信号出力端の電圧、即ち、前記内部リードフレーム3cの電圧を所定の閾値電圧Vrefとそれぞれ比較することで前記動作ステータス情報を検出するものとなっている。
 図3は上述したIGBTからなる複数のスイッチング素子Q1,Q2~Q6、前記フリーホイリング・ダイオードD1,D2~D6、並びに前記制御回路IC1~IC3を備えた半導体モジュールIPMのレイアウト構造を示している。この半導体モジュールIPMは、矩形状のフレーム本体1を形成する端子ケースの略中央部に設けられた、例えばAl基板からなる絶縁基板2を備える。そして前記スイッチング素子Q1,Q2~Q6、および前記フリーホイリング・ダイオードD1,D2~D6は、前記絶縁基板2上にそれぞれ1列に並べて搭載される。また前記制御回路IC1~IC3は、例えば接地ラインとして用いられる後述する内部リードフレーム3a上に並べて搭載される。
 尚、図中3(3a~3c)は、導体層である複数の内部配線パターンをなす内部リードフレームであり、また4(4a~4o),5(5a~5j)はそれぞれ外部接続用制御端子をなす複数本のリードフレームを示している。ちなみに前記フレーム本体1の一辺側に並べて設けられた前記リードフレーム4(4a~4o)は、前記制御回路IC1,IC2,IC3に制御信号等を入出力する役割を担う。また前記フレーム本体1の他辺側に並べて設けられた前記リードフレーム5(5a~5j)は、前記スイッチング素子Q1,Q2~Q6がそれぞれ出力する電流を外部に供給する役割を担う。
 そして、例えばAu線からなるボンディング・ワイヤ7を用いて前記スイッチング素子Q1,Q2~Q6、前記フリーホイリング・ダイオードD1,D2~D6、並びに前記制御回路IC1~IC3を、前記内部リードフレーム3(3a~3c)、および前記リードフレーム4(4a~4o),5(5a~5j)にそれぞれ接続することで半導体モジュールIPMが構成される。
 ちなみにこの実施形態においては、図1に示すように前記複数組、例えば3組のハーフブリッジ回路における上アーム側の前記スイッチング素子Q1,Q2,Q3の各低電位側電極であるエミッタ、および下アーム側の前記スイッチング素子Q4,Q5,Q6の各高電位側電極であるコレクタは、図3に示すように前記複数の外部接続用出力端子としてのリードフレーム5a,5b~5jにそれぞれ個別に接続される。
 そして図1に示すように前記各ハーフブリッジ回路の下アーム側に設けられるフリーホイリング・ダイオードD4,D5,D6については、そのカソードを前記上アーム側のスイッチング素子Q1,Q2,Q3の各エミッタにそれぞれ直列に接続している。また前記各フリーホイリング・ダイオードD4,D5,D6のアノードを、前記下アーム側のスイッチング素子Q4,Q5,Q6の各エミッタにそれぞれ接続している。
 また上アーム側に設けられる前記フリーホイリング・ダイオードD1,D2,D3については、そのカソードを前記上アーム側のスイッチング素子Q1,Q2,Q3の各コレクタにそれぞれ共通に接続している。そして前記各フリーホイリング・ダイオードD1,D2,D3の各アノードを、前記下アーム側のスイッチング素子Q4,Q5,Q6の各コレクタにそれぞれ直列に接続している。
 即ち、この例では上アーム側のスイッチング素子Q1,Q2,Q3と下アーム側のフリーホイリング・ダイオードD4,D5,D6とをそれぞれ直列に接続すると共に、下アーム側のスイッチング素子Q4,Q5,Q6と上アーム側のフリーホイリング・ダイオードD1,D2,D3とをそれぞれ直列に接続している。そしてこれらのスイッチング素子Qとフリーホイリング・ダイオードDとからなる6組の直列回路を並列的に設けている。
 そして前記各直列回路における前記スイッチング素子Qとフリーホイリング・ダイオードDとの接続点を、図3に示すようにそれぞれ独立した6本のリードフレーム5(5b,5c,5e,5f,5h,5i)にそれぞれ個別に接続し、外部接続用出力端子L1+,L1-,L2+,L2-,L3+,L3-として外部に導出している。これらの外部接続用出力端子L1+,L1-,L2+,L2-,L3+,L3-は、例えばダブルフォワード・コンバータやインターリーブ昇圧コンバータ等を構成するに際して、上アーム側スイッチング素子Q1(Q2,Q3)と、下アーム側のスイッチング素子Q4(Q5,Q6)との間にコイルやトランスのインダクタンスの介装を可能とする為の配慮である。
 また前記上アーム側の前記スイッチング素子Q1,Q2,Q3の各コレクタ、および前記フリーホイリング・ダイオードD1,D2,D3の各カソードについては、互いに共通接続して前記リードフレーム5の1つ、即ち、リードフレーム5aに接続し、電源端子Pとして外部に導出している。更に前記下アーム側の前記スイッチング素子Q4,Q5,Q6の各エミッタについては、前記10本のリードフレーム5中の別のリードフレーム5(5d,5g,5j)にそれぞれ個別に接続し、外部接続用出力端子N1,N2,N3として外部に導出している。
 そして図2および図3にそれぞれ示すように、前記制御回路IC1,IC2,IC3における前記信号出力回路IO1~IO3の各信号出力端を、前記ボンディング・ワイヤ7を用いて前記内部リードフレーム3cにそれぞれ接続し、動作ステータス情報用出力端子GPIOとして外部に導出している。尚、図3においては、前述した制御回路IC3に組み込まれるプルアップ抵抗Rに代えて、前記内部リードフレーム3cと電源電圧Vccの供給ラインとして用いられる前記内部リードフレーム3bとの間にプルアップ抵抗8を搭載した例を示している。
 かくして上述した如く構成された半導体モジュールIPMによれば、前記複数の制御回路IC1,IC2,IC3における前記信号出力回路IO1~IO3を構成するMOS-FETからなるスイッチ素子S1~S3がそれぞれオープンドレイン構成となっている。そして前記各スイッチ素子S1~S3の信号出力端であるドレインが、前記内部リードフレーム3cに接続されてプルアップ抵抗8を介して電源電圧Vccにプルアップされている。尚、前記信号出力回路IO1~IO3を構成するスイッチ素子S1~S3がバイポーラトランジスタ等である場合には、前述したようにオープンコレクタ構成とすれば良い。
 この結果、前記制御回路IC1,IC2,IC3、具体的には信号出力回路IO1~IO3からそれぞれ出力される前記動作ステータス情報は、前記内部リードフレーム3cにおいてワイヤード・オアされ、前記動作ステータス情報用出力端子GPIOを介して外部出力される。従って前記動作ステータス情報用の出力端子として、従来のように複数個設ける必要がなく、半導体モジュールIPMとしての入出力端子数の増加を招くことがない。
 またこのようにして或る制御回路IC1(IC2,IC3)から外部出力された前記動作ステータス情報は、当該制御回路IC1(IC2,IC3)の前記出力制御回路C1(C2,C3)において検出されると共に、前記内部リードフレーム3cを介して他の制御回路IC2,IC3(IC1)における前記出力制御回路C2,C3(C1)においてそれぞれ検出される。この結果、前記各制御回路IC1(IC2,IC3)は、前記動作ステータス情報に従って一斉に前記出力アンプA1u,A1d~A3u,A3dの動作を禁止する。
 従って前記複数の制御回路IC1,IC2,IC3のいずれかにおいて前記スイッチング素子Q1,Q2~Q6の異常が検出されたとき、前記複数のスイッチング素子Q1,Q2~Q6の全てが略同時に動作禁止され、その異常から速やかに保護されることになる。故に本発明によれば、上述した簡易な構成の下で各種情報の入出力用の外部接続端子数を増加させることなく、半導体モジュールIPMの内部において前記スイッチング素子Q1,Q2~Q6に対する前記複数の制御回路IC1,IC2,IC3による保護動作をそれぞれ確実に実行させることができる。従ってその実用的利点が多大である。
 また前記オープンドレイン構成の信号出力端を形成したMOS-FETからなるスイッチ素子S1~S3のオン抵抗を、前記各信号出力回路毎に互いに異なるようにしておけば、異常検出時における前記信号出力端の電圧変化から、どの信号出力回路が動作ステータス情報を出力したかを検出することも可能となる。
 尚、本発明は上述した実施形態に限定されるものではない。例えば前述したプルアップ抵抗については、前記半導体モジュールIPMの外部において前記動作ステータス情報用出力端子GPIOをプルアップするように設けることも可能である。またここではオープンドレイン構成のMOS-FETからなる前記スイッチ素子S1~S3のドレインを電源電圧Vccにプルアップする例について示した。しかし、例えば前記スイッチ素子S1~S3としてp型のMOS-FETを用いるような場合には、オープンドレイン構成の前記スイッチ素子S1~S3のドレインを接地電位GNDにプルダウンするように構成しても良いことは言うまでもない。
 また前記スイッチ素子S1~S3としてバイポーラトランジスタを用いる場合には、該スイッチ素子S1~S3をオープンコレクタ構成とすれば良いことは言うまでもない。 
 更には前記制御回路IC1,IC2,IC3についても、例えば前記スイッチング素子Q1,Q2~Q6のそれぞれに対応させて設けることも可能である。また所定数の制御回路ICをまとめて1チップ化することも可能である。具体的には、例えば前記スイッチング素子Q1,Q2,Q3に対して1チップ化した1つの制御回路IC1とし、残された前記スイッチング素子Q4,Q5,Q6に対して1チップ化した1つの制御回路IC2として構成することも可能である。
 また半導体モジュールIPMに搭載する前記スイッチング素子Qの数についても上述した実施形態に特定されるものではない。また前記スイッチング素子Qとして、パワーMOS-FETを用いることも勿論可能である。また前記信号出力回路IO1~IO3についても、従来より種々提唱されている回路構成のものを適宜採用可能である。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。
 IPM 半導体モジュール
 Q1,Q2~Q6 スイッチング素子(IGBT)
 D1,D2~D6 フリーホイリング・ダイオード
 IC1,IC2,IC3 制御回路
 C1~C3 出力制御回路(保護回路)
 A1u,A1d~A3u,A3d 出力アンプ(ドライブ回路)
 ED1~ED3 異常検出回路
 IO1~IO3 信号出力回路
 S1~S3 スイッチ素子(MOS-FET)
 R プルアップ抵抗
 1 フレーム本体
 2 絶縁基板
 3(3a~3c) 内部リードフレーム(導体層)
 4(4a~4o) リードフレーム
 5(5a~5j) リードフレーム
 7 ボンディング・ワイヤ
 8 プルアップ抵抗

Claims (7)

  1.  複数の電力用半導体素子と、これらの半導体素子をそれぞれオン・オフ駆動する複数の制御回路と、これらの制御回路にそれぞれ設けられて動作ステータス情報を出力する複数の信号出力回路とを具備し、
     前記各信号出力回路は、それぞれオープンドレイン構成の信号出力端を備え、これらの各信号出力端を前記各電力用半導体素子および前記各制御回路が搭載された回路基板の内部リードフレームにそれぞれ接続したことを特徴とする半導体モジュール。
  2.  複数の電力用半導体素子と、これらの半導体素子をそれぞれオン・オフ駆動する複数の制御回路と、これらの制御回路にそれぞれ設けられて動作ステータス情報を出力する複数の信号出力回路とを具備し、
     前記各信号出力回路は、それぞれオープンコレクタ構成の信号出力端を備え、これらの各信号出力端を前記各電力用半導体素子および前記各制御回路が搭載された回路基板の内部リードフレームにそれぞれ接続したことを特徴とする半導体モジュール。
  3.  前記複数の信号出力回路の内の1つは、前記制御回路の内部において抵抗を介して前記信号出力端をプルアップまたはプルダウンされている請求項1または2に記載の半導体モジュール。
  4.  前記複数の信号出力回路における各信号出力端がそれぞれ接続される前記内部リードフレームは、抵抗を介してプルアップまたはプルダウンされている請求項1または2に記載の半導体モジュール。
  5.  前記複数の信号出力回路における信号出力端を形成した半導体素子は、前記各信号出力回路毎に互いに異なる出力抵抗値を有する請求項1または2に記載の半導体モジュール。
  6.  前記複数の信号出力回路が出力する前記動作ステータス情報は、前記電力用半導体素子の異常動作を示す異常情報である請求項1または2に記載の半導体モジュール。
  7.  前記各制御回路は、前記内部リードフレームに出力された前記動作ステータス情報を検出して前記電力用半導体素子の駆動を停止させる保護回路を備えている請求項1または2に記載の半導体モジュール。
PCT/JP2014/063555 2013-06-20 2014-05-22 半導体モジュール WO2014203678A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157023812A KR20160022799A (ko) 2013-06-20 2014-05-22 반도체 모듈
CN201480012091.9A CN105027281B (zh) 2013-06-20 2014-05-22 半导体模块
DE112014000741.2T DE112014000741T5 (de) 2013-06-20 2014-05-22 Halbleitermodul
JP2015522689A JP6107949B2 (ja) 2013-06-20 2014-05-22 半導体モジュール
US14/842,768 US9906009B2 (en) 2013-06-20 2015-09-01 Semiconductor module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-129706 2013-06-20
JP2013129706 2013-06-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/842,768 Continuation US9906009B2 (en) 2013-06-20 2015-09-01 Semiconductor module

Publications (1)

Publication Number Publication Date
WO2014203678A1 true WO2014203678A1 (ja) 2014-12-24

Family

ID=52104420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063555 WO2014203678A1 (ja) 2013-06-20 2014-05-22 半導体モジュール

Country Status (6)

Country Link
US (1) US9906009B2 (ja)
JP (1) JP6107949B2 (ja)
KR (1) KR20160022799A (ja)
CN (1) CN105027281B (ja)
DE (1) DE112014000741T5 (ja)
WO (1) WO2014203678A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022015787A (ja) * 2020-07-10 2022-01-21 富士電機株式会社 半導体モジュール

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3358738A1 (de) * 2017-02-03 2018-08-08 Siemens Aktiengesellschaft Leistungshalbleiterschaltung
TWI631681B (zh) * 2017-12-15 2018-08-01 來揚科技股份有限公司 雙晶片封裝結構
US11545971B2 (en) * 2019-12-17 2023-01-03 Analog Devices International Unlimited Company Aging protection techniques for power switches
CN112564462A (zh) * 2020-12-07 2021-03-26 矽力杰半导体技术(杭州)有限公司 应用于电源芯片中的通信控制电路
CN116830441A (zh) * 2021-11-10 2023-09-29 宁德时代新能源科技股份有限公司 电气系统及用电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175513A (ja) * 1989-12-04 1991-07-30 Sharp Corp 安定化電源装置
JPH0498950A (ja) * 1990-08-16 1992-03-31 Nec Ibaraki Ltd 信号伝達システム
JPH09172470A (ja) * 1995-12-20 1997-06-30 Denso Corp 電子制御装置
JPH09191659A (ja) * 1996-01-09 1997-07-22 Mitsubishi Electric Corp 半導体装置および半導体モジュール
JPH11187668A (ja) * 1997-12-22 1999-07-09 Matsushita Electric Works Ltd インバータ装置
JPH11252785A (ja) * 1998-03-04 1999-09-17 Toshiba Corp 半導体スタック及び半導体装置
JP2002185295A (ja) * 2000-12-12 2002-06-28 Mitsubishi Electric Corp 半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528446A (en) * 1994-07-05 1996-06-18 Ford Motor Company Integrated power module diagnostic unit
JPH0998950A (ja) * 1995-10-04 1997-04-15 Nikon Corp 角膜内皮観察用アライメント機構を備える細隙灯顕微鏡
JP3941246B2 (ja) 1998-07-22 2007-07-04 セイコーエプソン株式会社 半導体装置の製造方法
JP4004715B2 (ja) * 2000-05-31 2007-11-07 三菱電機株式会社 パワーモジュール
JP2004028885A (ja) * 2002-06-27 2004-01-29 Fujitsu Ltd 半導体装置、半導体パッケージ及び半導体装置の試験方法
JP2006156711A (ja) * 2004-11-30 2006-06-15 Mitsubishi Electric Corp パワー半導体モジュールの冷却システム
US7605579B2 (en) * 2006-09-18 2009-10-20 Saifun Semiconductors Ltd. Measuring and controlling current consumption and output current of charge pumps

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175513A (ja) * 1989-12-04 1991-07-30 Sharp Corp 安定化電源装置
JPH0498950A (ja) * 1990-08-16 1992-03-31 Nec Ibaraki Ltd 信号伝達システム
JPH09172470A (ja) * 1995-12-20 1997-06-30 Denso Corp 電子制御装置
JPH09191659A (ja) * 1996-01-09 1997-07-22 Mitsubishi Electric Corp 半導体装置および半導体モジュール
JPH11187668A (ja) * 1997-12-22 1999-07-09 Matsushita Electric Works Ltd インバータ装置
JPH11252785A (ja) * 1998-03-04 1999-09-17 Toshiba Corp 半導体スタック及び半導体装置
JP2002185295A (ja) * 2000-12-12 2002-06-28 Mitsubishi Electric Corp 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022015787A (ja) * 2020-07-10 2022-01-21 富士電機株式会社 半導体モジュール
JP7494609B2 (ja) 2020-07-10 2024-06-04 富士電機株式会社 半導体モジュール

Also Published As

Publication number Publication date
JPWO2014203678A1 (ja) 2017-02-23
US9906009B2 (en) 2018-02-27
CN105027281B (zh) 2017-12-08
JP6107949B2 (ja) 2017-04-05
KR20160022799A (ko) 2016-03-02
DE112014000741T5 (de) 2015-10-29
US20150372471A1 (en) 2015-12-24
CN105027281A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
JP6107949B2 (ja) 半導体モジュール
JP4682007B2 (ja) 電力用半導体装置
US8027183B2 (en) 3-phase inverter module, motor driving apparatus using the same, and inverter integrated circuit package
JP5397571B2 (ja) 制御装置
JP2008503194A (ja) 三つの電圧レベルのスイッチングのためのコンバータ回路における漏電処理のための方法
JP6350422B2 (ja) 電力変換装置
JP4004460B2 (ja) 半導体装置
JP2015035515A (ja) 半導体装置
US10389227B2 (en) Semiconductor device drive circuit and inverter device with desaturation detection
KR102117719B1 (ko) 전력 반도체 회로
JP2009165285A (ja) 半導体装置
JPWO2020017169A1 (ja) 駆動回路内蔵型パワーモジュール
JP4847707B2 (ja) 電力用半導体装置
WO2012043146A1 (ja) 半導体装置
JP2008061339A (ja) インバータ回路
JP2022016749A (ja) スイッチング装置および電力変換装置
JP5503427B2 (ja) ゲート駆動回路
WO2013150866A1 (ja) スイッチング回路
JP2015154572A (ja) インバータ回路の故障検出方法、駆動装置及びモータ駆動システム
CN108736740B (zh) 半导体装置
WO2023145144A1 (ja) パワー半導体モジュール
JP2019088078A (ja) ドライバ回路および電力変換装置
WO2024189687A1 (ja) 半導体素子の駆動回路及び電力変換装置
WO2022075000A1 (ja) 半導体モジュール
JP2004253448A (ja) 電力用半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012091.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157023812

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014000741

Country of ref document: DE

Ref document number: 1120140007412

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2015522689

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14814077

Country of ref document: EP

Kind code of ref document: A1