WO2014203593A1 - Système de commande pour aéronef télécommandé sans pilote - Google Patents

Système de commande pour aéronef télécommandé sans pilote Download PDF

Info

Publication number
WO2014203593A1
WO2014203593A1 PCT/JP2014/059811 JP2014059811W WO2014203593A1 WO 2014203593 A1 WO2014203593 A1 WO 2014203593A1 JP 2014059811 W JP2014059811 W JP 2014059811W WO 2014203593 A1 WO2014203593 A1 WO 2014203593A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
flying object
control system
vehicle
remotely controlled
Prior art date
Application number
PCT/JP2014/059811
Other languages
English (en)
Japanese (ja)
Inventor
宮原 隆和
Original Assignee
株式会社エルム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エルム filed Critical 株式会社エルム
Priority to JP2014561219A priority Critical patent/JPWO2014203593A1/ja
Publication of WO2014203593A1 publication Critical patent/WO2014203593A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0866Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted to captive aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/60Tethered aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • B64U2201/202Remote controls using tethers for connecting to ground station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the present invention relates to a control system for a remotely operated unmanned air vehicle such as a radio-controlled helicopter used for aerial photography for reporting and disaster relief.
  • a radio-controlled helicopter that has a plurality of propellers and can change the flight direction and posture by changing the rotation speed of the propellers is widely used in such a flying object. It will never be done.
  • Such a flying body incorporates a direction sensor, an acceleration sensor, a GPS, etc., which have become high-performance and inexpensive by being used in a smartphone (high performance portable terminal device) in recent years. Compared to general radio controlled helicopters), it is possible to fly much more stably.
  • the pilot in order to fly freely in the three-dimensional space as the pilot intends, the pilot must have considerable ability.
  • a flying vehicle with a weight of several kilograms to more than 10kg is misoperated with camera equipment, it may cause considerable damage to human animals and structures. In some cases, higher skill is required for the pilot.
  • a radio signal helicopter and a ground station are provided with GPS signal receiving devices, respectively, and the position of the radio control helicopter is accurately detected using the GPS signal from the GPS satellite.
  • a control system is proposed in which a satellite communication device for transmitting and receiving control data to and from the data communication satellite is provided on each of the ground stations.
  • the coordinates of obstacles such as steel towers and power transmission lines are input together with the flight route in advance, and if the radio control helicopter gets too close to the obstacles, it is automatically avoided.
  • GPS a method in which the flying object flies autonomously by an altimeter using atmospheric pressure is also used.
  • the problem to be solved by the present invention is to provide a flying body that can be operated by a non-special pilot and can fly stably for a long time.
  • a remotely controlled unmanned air vehicle control system which has been made to solve the above problems, a) one camera on the ground, b) three reference points fixed at the bottom of the remotely controlled unmanned air vehicle; c) a flying object attitude detection unit that identifies a position and attitude of the remotely controlled unmanned aerial vehicle in the air based on the images of the three reference points photographed by the camera.
  • the flying object attitude detection unit analyzes an image captured by a camera placed on the ground, and is fixed at the bottom of the remotely operated unmanned aerial vehicle.
  • the position and posture of the remotely controlled unmanned aerial vehicle are specified by the position of the point. More specifically, the orientation of the remotely operated unmanned air vehicle based on the camera point (viewed from the camera) can be specified by the position of the center of gravity of the triangle formed by the three reference points.
  • the posture of the remotely controlled unmanned aerial vehicle can be specified by the triangular shape, and the distance from the camera to the remotely controlled unmanned aircraft can be specified by the area of the triangle.
  • four or more reference points may be fixed to the lower part of the remotely operated unmanned air vehicle. Two or more cameras may be placed on the ground. In the case of using two or more units, it is possible to specify a more accurate position and posture of the remotely controlled unmanned air vehicle by the parallax between both cameras.
  • the remotely operated unmanned aerial vehicle control system it is desirable to place a power supply unit on the ground and connect the remotely operated unmanned aircraft to the power supply unit with an electric wire. As a result, it is possible to fly for a long time, and the possibility of going out of the maneuverable range due to a maneuver error or the like becomes low, and it becomes easy for a person who is not a professional maneuver to maneuver.
  • the "camera” here means a device that can continuously capture images at time intervals that do not hinder the control of the flying object, and is a commonly used 30-frame / sec video camera.
  • a camera that captures an image with a lower frame rate (of course, one with a higher frame rate) is also included.
  • a remotely operated unmanned air vehicle such as a helicopter having a plurality of propellers can be easily operated without requiring a special operator.
  • this remotely operated unmanned flying vehicle a wired power supply flying vehicle, it is possible to fly for a long time, and also reduce the possibility of falling into an uncontrollable state due to erroneous steering. Therefore, it is possible to easily carry out photography that requires extensive preparation and equipment such as the necessity of using a crane camera.
  • the remote control unmanned air vehicle control system according to the present invention is a small unmanned air vehicle. Can be used. Furthermore, it can be used in many fields, such as wedding video aerial photography that takes place outdoors in gardens.
  • the top view (a) and front view (b) of the flying body used with the remote control unmanned air vehicle control system which is one Example of this invention.
  • the side view which shows the structure of the flying body of the said Example, and its control system.
  • the top view of the flying body which attached the rod-shaped light source arranged in parallel on the lower surface for position specification. It is a figure for demonstrating the range and resolution
  • FIG. 1 (a) is a plan view of the flying object 10 of the present embodiment
  • FIG. 1 (b) is a front view.
  • the flying object 10 of the present embodiment has four sets of propellers 1 and motors 2 attached to the X-type, but in addition (with respect to the flight direction), it is arranged in a + -type, or six sets or eight sets. There are things used.
  • the main body 3 of the flying object 10 includes a control device including a CPU, a motor controller called ESC that controls the rotation of the motor 2 (mainly a three-phase brushless motor is used) based on the output of the control device, It incorporates a power supply circuit that supplies power to the control device and the motor 2, a gyro sensor and acceleration sensor for attitude control, a GPS receiver, an altimeter, and a communication circuit that communicates with the ground via a network. . Furthermore, a direction sensor or a distance sensor using ultrasonic waves may be incorporated.
  • a pair of legs called skids 4 extend downward from both sides of the main body 3 to support the flying object 10 when landing and to protect the camera 6 suspended below the flying object 10. It is also possible to reduce the weight without providing the skid 4 on the main body 3 side, and to provide a landing and landing device that supports the aircraft on the ground.
  • the camera 6 uses a video camera, but a camera for taking a still image may be used.
  • the camera 6 is held in a device called a gimbal 5 for preventing the swing of the flying object 10 from being transmitted to the camera 6.
  • the gimbal 5 includes a two-axis type that can cancel the tilt of the front and rear and the left and right, and a three-axis type that can also cancel changes in the rotation direction. Again, the structure is not related to the essence of the present invention and will not be described in detail.
  • the gimbal 5 has a function not to transmit the swing of the flying object 10 to the camera 6 but also a function to arbitrarily change the direction of the camera 6 from the ground. Therefore, in the case of the three-axis type, the camera 6 can be directed in all directions. However, in the case of the two-axis type, the direction of the rotation direction corresponds by changing the direction of the flying object 10.
  • the shooting direction of the camera 6 may be fixed in the horizontal direction in front of the flying object 10, but in the case of the triaxial type, the camera 6 is directed in various directions. Therefore, depending on the angle, the skid 4 is captured. For this reason, when using the triaxial gimbal 5, a jumping mechanism for the skid 4 is provided, and at the time of shooting after takeoff, it is jumped to the position indicated by the broken line 4 b in FIGS. 1 (a) and 1 (b). As described above, when the skid 4 is not provided in the main body 3, this skid flip-up mechanism is also unnecessary.
  • FIG. 2 is a side view showing the configuration of the flying object 10 and its control system of the present embodiment, and the left side will be described as the front.
  • this control system power is supplied to the flying object 10 described above, its position / posture is detected, and the flying object control unit 20 for controlling its movement, and the position of the flying object 10 are detected. It is composed of one or more video cameras 30 and the like used for the above.
  • the flying object control unit 20 sends out and winds up an electric wire 11 for supplying power to the flying object 10, a drum 21 that can be rotated forward and backward, an electric wire tension detection mechanism using a tension detection arm 22 and an electric wire guide 23, A power supply unit 24 having a tension control mechanism for rotating the drum 21 forward and backward according to the degree of tension of the electric wire 11, the GPS detection signal and altitude signal from the flying object 10, and the flying object 10 photographed by the video camera 30.
  • a flight data processing unit 25 is included for analyzing the position and posture of the flying object 10 based on the image (video) and controlling the movement according to the command of the operator.
  • an imaging data processing device that receives an image or a video signal captured by the camera 6 of the flying object 10, analyzes it, and transmits it to a predetermined transmission destination is also provided.
  • the flying object control unit 20 and the video camera 30 are held at predetermined positions on the platform 40 fixed on the ground.
  • an input device 26 used by the operator for maneuvering and data input
  • a display device 27 for displaying an image or video from the ground video camera 30 and the camera 6 of the flying object 10. Is done.
  • the electric wire 11 needs to supply several hundred W of electric power used by the flying object 10.
  • aircraft motors with multiple propellers use a DC voltage of about 12 to 24 V.
  • the voltage is 16 V and the power used is 640 W, it is necessary to pass a current of 40 A. .
  • An electric wire for passing such an electric current needs to have a thickness of at least 3.5 mm 2 , and in the case of a general electric wire, the weight per unit length is 165 g / m. If the length of the electric wire 11 from the flying object control unit 20 to the flying object 10 is 30 m, the total weight becomes 4.95 kg, and more electric power is required to lift it. Further, a thick electric wire is not preferable because it receives wind strongly and greatly affects the movement of the flying object 10.
  • the supplied voltage is, for example, 160 V, higher than the voltage used by the motor 2, and the voltage is reduced by an inverter (step-down device) inside the aircraft 10,
  • the current flowing through the electric wire 11 is approximately 1/10.
  • the current flowing through the electric wire 11 is 5 A or less, an extremely thin electric wire can be used.
  • the electric wire 11 connected to the flying object 10 is not fixed (cannot be), and thus may contact various objects.
  • a high voltage as high as 160V is supplied to such an electric wire 11, it is very dangerous to surrounding livestock and the like when the outer jacket (insulating layer) is damaged.
  • the center conductor is set to a high voltage
  • the outer conductor is set to a ground potential.
  • the potential for high voltage exposure is minimized.
  • by surrounding the high voltage with the ground potential for example, even when the electric wire 11 is cut, it is highly possible that the current flows between the central conductor and the external conductor, and the possibility of causing damage to humans and the like can be reduced. it can.
  • the weight per 30 m is about 5 to 1 kg compared to the wire required for supplying low voltage (motor input voltage). It will be greatly reduced to kg.
  • This reduced weight of 4 kg means that equipment of the same weight can be additionally mounted on the flying object 10, and conversely, if not additionally mounted, the electric wire 11 can be further extended and a wide range of photography can be performed. To do.
  • the electric wire 11 is used not only as a power cable but also for communication, but 2.5D-2V has a coaxial cable structure in which an external electrode surrounds an internal electrode through which a signal flows. It is hard to receive. Further, since the impedance of the coaxial cable is controlled, adverse effects such as reflection and delay that occur when a high-frequency high-speed signal flows are less likely to occur, and stable communication is possible.
  • the flying object 10 is on the platform 40 (the position of the broken line in FIG. 2) or on the ground surface, and the electric wire 11 passes through the power supply unit 24 having the tension detection / control mechanisms 21 to 23 to the flying object control unit 20. Connected and finally connected to the flight data processing unit 25.
  • the tension detection arm 22 of the tension detection mechanism is pressurized by a spring or the like so as to pull down the wire guide 23 around the axis.
  • the tension control mechanisms 22 to 23 detect the degree of the tension, thereby detecting the tension of the electric wire 11 and rotating the drum 21 forward and backward so as to obtain an appropriate tension.
  • One or more video cameras 30 for detecting the position coordinates (position and altitude) of the flying object 10 are installed on the platform 40. In the case of a plurality of units, they may be installed on another platform or the like where the position with the platform 40 is fixed.
  • the image captured by the video camera 30 is image-processed, whereby the three-dimensional position coordinates of the air vehicle 10 relative to the position of the video camera 30 are obtained. Can be detected. At this time, it is possible to calculate the position coordinates of the flying object 10 by photographing the body 3 (three points) of the flying object 10 and performing image processing.
  • a rod-shaped light source 7 in which blue light emitting diodes are arranged on the front side of the lower surface of the flying object It is good to attach the rod-shaped light source 8 which arranged the red light emitting diode in the back side. This facilitates image processing. Furthermore, since it is a self-luminous light source, position detection becomes easy regardless of day or night. In addition, the color and shape (how to arrange) of the light emitting diodes are not related to the essence of the present invention.
  • FIG. 4 is a diagram for explaining the range and resolution taken by the video camera 30.
  • the resolution of the video camera 30 is a HD video shooting camera that is generally used nowadays. Has 1080 pixels.
  • the field of view of the video camera 30 is set wide in the front-rear direction (left-right direction in the figure), and the viewing angle in the longitudinal direction is set to 32 degrees. Since the flying object 10 is easier to steer when viewed in front, the maneuvering area is tilted 8 degrees forward.
  • the right-hand side shows the field of view in the front-rear direction
  • the left-hand side shows the field of view in the left-right direction.
  • the distance resolution per pixel obtained by dividing the visual field width by the number of pixels is shown.
  • the visual field width in the front-rear direction at an altitude of 30 mm is 17.57 mm
  • the horizontal field width is 9.88 mm
  • the distance resolution per pixel is 9.15 mm.
  • the visual field width can be expanded by widening the lens of the video camera 30.
  • FIG. 1 shows a state in which the image of the flying object 10 reflected on the video camera 30 installed upward is projected on the display device 27.
  • the upper side of the screen corresponds to the right side in FIG. 2, that is, the rear side, and the lower side is the front side and the left side.
  • the front side of FIG. corresponds to the front side of FIG.
  • the video camera 30 is installed at an angle of 8 degrees on the front side, the left and right centers coincide with the center of the display screen, but the front and rear centers (positions directly above the video camera 30) are the display screen. Is offset from the center of
  • the flying object 10 displayed on the upper side (h1) in FIG. 5 was taken vertically after taking off and was photographed in the field of view of the video camera 30.
  • the center of the flying object 10 is front, rear, left and right. It matches the center.
  • the length and interval of the rod-like light source 7 and the rod-like light source 8 provided before and after the flying object 10 are measured on this screen, they are 198 pixels and 222 pixels, respectively.
  • the center position of the flying object 10 is 224 pixels to the right and 1136 pixels in front, the calculation based on the above-mentioned length per pixel of 3.77 mm is 0.84 m and 4.28 m, respectively. It can be seen that the vehicle 10 is at altitude (h2) 12.83 m, 4.28 m ahead and 0.84 m to the right. Note that, as described above, for the sake of easy explanation, the explanation is made ignoring errors caused by the difference between polar coordinates and orthogonal coordinates.
  • the high resolution is verified.
  • the length per pixel is 1.9899 mm and the altitude is 6.77 m.
  • the difference with respect to 6.804 m is 7 cm, indicating that sufficient control is possible at low altitudes. Even at altitudes near 30 m, the error is about 2%, which is more accurate than the altitude information obtained from GPS, and is practical enough.
  • the present invention is not limited to such an example, and can be implemented with various modifications.
  • the altitude (distance) of the flying object 10 may be calculated using the principle of stereoscopic vision by using two (one pair) video cameras. it can. Thereby, the accuracy is further improved.
  • a resolution of about 20 cm can be obtained with the latest one, so that sufficient accuracy can be ensured within a short time.
  • the flying object 10 When the flying object 10 is captured by the video camera 30, the image processing mode is started and the position of the flying object 10 can be specified. Therefore, the flying object 10 is controlled by the pilot using the input device 26 or the like. As long as it is within the viewing angle of the camera 30, it can be freely moved back and forth and left and right. For example, even a person who is not a specialized pilot can easily control the robot by moving it forward and backward, left and right using the cursor keys on the keyboard, moving down using the Z key, and moving up using the X key.
  • the control is returned to the GPS mode, the flying object 10 automatically returns to the GPS coordinates measured at takeoff, Only rise and fall are valid. However, if such a change in control suddenly occurs, the operator will be frustrated, so that the change in the control mode is transmitted to the operator by sound or light from the flying object 10 or the flying object control unit 20. Is desirable.
  • a flying object having a plurality of propellers can freely change its direction during flight, so that it can fly freely, for example, front, rear, left and right when maneuvering from behind
  • the front / rear / left / right directions of the flying vehicle from the front are completely reversed, which is a major cause of misoperation.
  • a control system for an aircraft having multiple propellers that can fly for a long time provides two levels of steering, removing many restrictions for advanced users.
  • the general user is not allowed to use the rotation operation.
  • the gimbal 5 mounted on the flying object 10 is a three-axis type so that the surroundings can be freely photographed by the rotation of the camera 6.
  • the front-rear and left-right directions of the flying object 10 can be arbitrarily changed. Therefore, for example, when the aerial imaging apparatus according to the present invention is placed on the roof of a television broadcasting station's coverage vehicle or the like, the platform 40 may be a rotary type. Thereby, for example, when arriving at an accident site or the like and stopping the car, there is no need to worry about the stopping direction of the car. Regardless of the stop direction of the vehicle, the flying object 10 can be moved to the photographing position very simply by changing the direction of the platform 40 and adjusting the front-rear direction to the direction in which the target object is located.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

La présente invention aborde le problème visant à concevoir un aéronef sans pilote pouvant voler de manière stable pendant une longue durée même sans la présence d'un opérateur expert. Afin de résoudre ce problème, la présente invention capture d'abord des images d'au moins trois points de référence fixés sur la section inférieure de l'aéronef (10) télécommandé sans pilote au moyen d'une caméra (30) placée au sol, et puis identifie la position et l'orientation en l'air de l'aéronef (10) télécommandé sans pilote sur la base des images des trois points de référence. Une unité d'alimentation (24) est placée au sol et l'aéronef (10) télécommandé sans pilote est relié à l'unité d'alimentation (24) par l'intermédiaire d'un câble. Par conséquent, il est possible de commander facilement l'aéronef (10) télécommandé sans pilote sans avoir besoin d'un opérateur expert. Par ailleurs, il est possible de voler pendant une longue durée et de réduire la probabilité de perte de contrôle du véhicule suite à une erreur d'opération.
PCT/JP2014/059811 2013-06-21 2014-04-03 Système de commande pour aéronef télécommandé sans pilote WO2014203593A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014561219A JPWO2014203593A1 (ja) 2013-06-21 2014-04-03 遠隔操縦無人飛行体の制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-130171 2013-06-21
JP2013130171 2013-06-21

Publications (1)

Publication Number Publication Date
WO2014203593A1 true WO2014203593A1 (fr) 2014-12-24

Family

ID=52104337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059811 WO2014203593A1 (fr) 2013-06-21 2014-04-03 Système de commande pour aéronef télécommandé sans pilote

Country Status (2)

Country Link
JP (1) JPWO2014203593A1 (fr)
WO (1) WO2014203593A1 (fr)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105059554A (zh) * 2015-07-30 2015-11-18 珠海市双捷科技有限公司 大功率高电压电驱动有线无人机动力系统
CN105083556A (zh) * 2015-09-18 2015-11-25 施中天 外部电源供电遥控旋翼飞行扫雷装置
CN105109676A (zh) * 2015-09-18 2015-12-02 上海长语信息科技有限公司 遥控飞行器超高速清洁装置
US9214022B1 (en) * 2014-07-07 2015-12-15 Google Inc. Enhanced accuracy for tracking tethered airborne vehicles
CN105173107A (zh) * 2015-09-18 2015-12-23 施中天 外部电源供电遥控旋翼飞行喷药装置
CN105235905A (zh) * 2015-09-18 2016-01-13 上海长语信息科技有限公司 外部电源地效飞行器方法及设备
JP2016132267A (ja) * 2015-01-15 2016-07-25 国立大学法人 名古屋工業大学 陸上走行可能な飛行体
WO2016121072A1 (fr) * 2015-01-29 2016-08-04 株式会社自律制御システム研究所 Dispositif de robot volant
WO2016121008A1 (fr) * 2015-01-27 2016-08-04 株式会社自律制御システム研究所 Dispositif de robot volant
JP2016165215A (ja) * 2015-02-04 2016-09-08 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 無人式空中移動体を係留して充電するシステム及び方法
JP2016179742A (ja) * 2015-03-24 2016-10-13 株式会社フジタ ケーブルを有する飛行体
JP2016210229A (ja) * 2015-04-30 2016-12-15 株式会社テクノスヤシマ 照明システム
JP2016218010A (ja) * 2015-05-26 2016-12-22 株式会社リコー 飛行型点検装置
WO2017031697A1 (fr) * 2015-08-25 2017-03-02 深圳市大疆创新科技有限公司 Système de commande de mode et procédé, et élément portatif de panoramique et d'inclinaison et plateforme mobile utilisant cet élément
WO2017038809A1 (fr) * 2015-09-04 2017-03-09 株式会社プロドローン Dispositif de commande de position de vol
JP2017074821A (ja) * 2015-10-13 2017-04-20 独立行政法人国立高等専門学校機構 水難救助装置
WO2017077348A1 (fr) * 2015-11-06 2017-05-11 Squarehead Technology As Détection d'uav
CN106882391A (zh) * 2017-03-17 2017-06-23 四川建筑职业技术学院 一种无人机用的球形三轴联控矢量电机座
WO2017124840A1 (fr) * 2016-01-22 2017-07-27 深圳泰山体育科技股份有限公司 Procédé et système de commande optique pour aéronef
JP2017149402A (ja) * 2015-10-02 2017-08-31 インサイツ インク. 無人航空機のための空中発射及び/又は回収、並びに関連するシステム及び方法
JP2017169395A (ja) * 2016-03-17 2017-09-21 株式会社空撮技研 無人飛行体用の線状体繰出装置
JP2017165363A (ja) * 2016-03-18 2017-09-21 株式会社Ihiエアロスペース 着陸補助装置と方法
CN107244414A (zh) * 2017-06-27 2017-10-13 深圳市雷凌广通技术研发有限公司 一种用于婚庆的多功能无人机
KR101850892B1 (ko) 2016-05-02 2018-04-20 태원건설(주) 구조물 수직 벽면의 크랙 진단장치
CN108349586A (zh) * 2015-11-05 2018-07-31 南良祐 飞行器
GB2559185A (en) * 2017-01-31 2018-08-01 Aquila Aerospace Ltd Surveillance apparatus
WO2018165192A1 (fr) * 2017-03-06 2018-09-13 Hoverfly Technologies, Inc. Système de gestion de ligne d'amarre à tension constante pour aéronef captif
WO2019001662A1 (fr) * 2017-06-30 2019-01-03 Vestas Wind Systems A/S Système et procédé de positionnement d'éléments d'éolienne
CN109442241A (zh) * 2018-10-01 2019-03-08 江苏师范大学 一种空中舞台灯光音响装置
JP2019050007A (ja) * 2018-11-01 2019-03-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 移動体の位置を判断する方法および装置、ならびにコンピュータ可読媒体
JP2019095963A (ja) * 2017-11-21 2019-06-20 日本ニューマチック工業株式会社 移動体の位置制御システム
JP2019144052A (ja) * 2018-02-19 2019-08-29 株式会社フジタ 検査対象物の点検装置及び点検方法
US10486831B2 (en) 2015-10-27 2019-11-26 Walmart Apollo, Llc Method and apparatus for an airborne drone training track
JP2019218779A (ja) * 2018-06-21 2019-12-26 前田建設工業株式会社 検査装置
JP2020006800A (ja) * 2018-07-09 2020-01-16 パナソニックIpマネジメント株式会社 制御装置、情報処理方法及び係留装置
JP2020501969A (ja) * 2016-12-26 2020-01-23 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 変形可能装置
KR20200031755A (ko) * 2018-09-15 2020-03-25 한남대학교 산학협력단 기계식 브레이크 장치 및 이를 이용한 기계식 브레이크 시스템
IT201800010924A1 (it) * 2018-12-10 2020-06-10 E Novia S P A Sistema e metodo per controllare cavi sospesi in sistemi aeromobili a pilotaggio remoto
WO2020140295A1 (fr) * 2019-01-04 2020-07-09 深圳市大疆创新科技有限公司 Procédé de commande de cardan portatif et cardan portatif
CN112896528A (zh) * 2019-11-19 2021-06-04 通用电气公司 具有电压调节器的飞行器推进系统
CN113682227A (zh) * 2020-05-19 2021-11-23 马自达汽车株式会社 车辆周边监视系统
JP7046405B1 (ja) 2021-10-13 2022-04-04 株式会社空撮技研 無人飛行体の線状体繰出装置
WO2022118365A1 (fr) * 2020-12-01 2022-06-09 株式会社東広ライフクリエイツ Dispositif publicitaire flottant
WO2023062751A1 (fr) * 2021-10-13 2023-04-20 株式会社Acsl Dispositif de commande et système de drone
US11713118B1 (en) 2017-03-06 2023-08-01 Hoverfly Technologies. Inc. Constant tension tether management system for a tethered aircraft

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161304B2 (ja) * 2018-03-30 2022-10-26 大和ハウス工業株式会社 位置同定システム
JP6803625B2 (ja) * 2019-06-11 2020-12-23 株式会社東広ライフクリエイツ 浮遊広告装置
CN114476065B (zh) * 2022-03-28 2022-11-22 黄河水利职业技术学院 一种测绘工程测量用无人机遥感装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666201U (ja) * 1993-02-23 1994-09-16 株式会社椿本チエイン 定軌道上の移動体に対する非接触給電装置
JPH0870506A (ja) * 1994-08-26 1996-03-12 Ichiro Maekawa 送電線から電力の供給をうけて電動回転翼により飛行する浮力補助用ガス槽を備えた輸送機のシステム
JP2003042730A (ja) * 2001-07-30 2003-02-13 Topcon Corp 表面形状測定装置、及びその方法、並びに表面状態図化装置
JP2006051893A (ja) * 2004-08-12 2006-02-23 Seiko Epson Corp 位置・姿勢検出システム
JP2009031086A (ja) * 2007-07-26 2009-02-12 Shimadzu Corp マーカー像識別装置及びマーカー像識別方法
JP2009522563A (ja) * 2006-01-05 2009-06-11 インターナショナル・ビジネス・マシーンズ・コーポレーション モバイル機器追跡
JP2009294048A (ja) * 2008-06-04 2009-12-17 Yokohama Rubber Co Ltd:The 移動体の挙動計測装置および移動体の挙動計測方法
JP2010096752A (ja) * 2008-09-16 2010-04-30 Adoin Kenkyusho:Kk 樹木情報計測方法、樹木情報計測装置、プログラム
JP2011252917A (ja) * 2011-07-20 2011-12-15 Japan Atomic Energy Agency 現場作業支援システムにおけるマーカ配置方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7631834B1 (en) * 2006-02-24 2009-12-15 Stealth Robotics, Llc Aerial robot with dispensable conductive filament

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666201U (ja) * 1993-02-23 1994-09-16 株式会社椿本チエイン 定軌道上の移動体に対する非接触給電装置
JPH0870506A (ja) * 1994-08-26 1996-03-12 Ichiro Maekawa 送電線から電力の供給をうけて電動回転翼により飛行する浮力補助用ガス槽を備えた輸送機のシステム
JP2003042730A (ja) * 2001-07-30 2003-02-13 Topcon Corp 表面形状測定装置、及びその方法、並びに表面状態図化装置
JP2006051893A (ja) * 2004-08-12 2006-02-23 Seiko Epson Corp 位置・姿勢検出システム
JP2009522563A (ja) * 2006-01-05 2009-06-11 インターナショナル・ビジネス・マシーンズ・コーポレーション モバイル機器追跡
JP2009031086A (ja) * 2007-07-26 2009-02-12 Shimadzu Corp マーカー像識別装置及びマーカー像識別方法
JP2009294048A (ja) * 2008-06-04 2009-12-17 Yokohama Rubber Co Ltd:The 移動体の挙動計測装置および移動体の挙動計測方法
JP2010096752A (ja) * 2008-09-16 2010-04-30 Adoin Kenkyusho:Kk 樹木情報計測方法、樹木情報計測装置、プログラム
JP2011252917A (ja) * 2011-07-20 2011-12-15 Japan Atomic Energy Agency 現場作業支援システムにおけるマーカ配置方法

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9214022B1 (en) * 2014-07-07 2015-12-15 Google Inc. Enhanced accuracy for tracking tethered airborne vehicles
JP2016132267A (ja) * 2015-01-15 2016-07-25 国立大学法人 名古屋工業大学 陸上走行可能な飛行体
JPWO2016121008A1 (ja) * 2015-01-27 2017-12-07 株式会社自律制御システム研究所 飛行ロボット装置
WO2016121008A1 (fr) * 2015-01-27 2016-08-04 株式会社自律制御システム研究所 Dispositif de robot volant
WO2016121072A1 (fr) * 2015-01-29 2016-08-04 株式会社自律制御システム研究所 Dispositif de robot volant
JPWO2016121072A1 (ja) * 2015-01-29 2017-12-21 株式会社自律制御システム研究所 飛行ロボット装置
JP2016165215A (ja) * 2015-02-04 2016-09-08 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 無人式空中移動体を係留して充電するシステム及び方法
JP2016179742A (ja) * 2015-03-24 2016-10-13 株式会社フジタ ケーブルを有する飛行体
JP2016210229A (ja) * 2015-04-30 2016-12-15 株式会社テクノスヤシマ 照明システム
JP2016218010A (ja) * 2015-05-26 2016-12-22 株式会社リコー 飛行型点検装置
CN105059554A (zh) * 2015-07-30 2015-11-18 珠海市双捷科技有限公司 大功率高电压电驱动有线无人机动力系统
CN107430407A (zh) * 2015-08-25 2017-12-01 深圳市大疆灵眸科技有限公司 模式控制系统及方法,及使用其的手持云台、可移动平台
WO2017031697A1 (fr) * 2015-08-25 2017-03-02 深圳市大疆创新科技有限公司 Système de commande de mode et procédé, et élément portatif de panoramique et d'inclinaison et plateforme mobile utilisant cet élément
CN107430407B (zh) * 2015-08-25 2019-08-02 深圳市大疆灵眸科技有限公司 模式控制系统及方法,及使用其的手持云台、可移动平台
JPWO2017038809A1 (ja) * 2015-09-04 2017-11-24 株式会社プロドローン 滞空位置制御装置
US10246188B2 (en) 2015-09-04 2019-04-02 Prodrone Co., Ltd. Apparatus for controlling still position in air
WO2017038809A1 (fr) * 2015-09-04 2017-03-09 株式会社プロドローン Dispositif de commande de position de vol
CN105173107A (zh) * 2015-09-18 2015-12-23 施中天 外部电源供电遥控旋翼飞行喷药装置
CN105235905A (zh) * 2015-09-18 2016-01-13 上海长语信息科技有限公司 外部电源地效飞行器方法及设备
CN105109676A (zh) * 2015-09-18 2015-12-02 上海长语信息科技有限公司 遥控飞行器超高速清洁装置
CN105083556A (zh) * 2015-09-18 2015-11-25 施中天 外部电源供电遥控旋翼飞行扫雷装置
US11858631B2 (en) 2015-10-02 2024-01-02 Insitu, Inc. Aerial launch and/or recovery for unmanned aircraft with submersible devices, and associated systems and methods
US10933997B2 (en) 2015-10-02 2021-03-02 Insitu, Inc. Aerial launch and/or recovery for unmanned aircraft, and associated systems and methods
JP2017149402A (ja) * 2015-10-02 2017-08-31 インサイツ インク. 無人航空機のための空中発射及び/又は回収、並びに関連するシステム及び方法
JP2017074821A (ja) * 2015-10-13 2017-04-20 独立行政法人国立高等専門学校機構 水難救助装置
US10486831B2 (en) 2015-10-27 2019-11-26 Walmart Apollo, Llc Method and apparatus for an airborne drone training track
EP3372496A4 (fr) * 2015-11-05 2019-05-08 Yang Woo Nam Engin volant
AU2016348095B2 (en) * 2015-11-05 2020-10-01 Yang Woo Nam Flying object
CN108349586A (zh) * 2015-11-05 2018-07-31 南良祐 飞行器
AU2016348095C1 (en) * 2015-11-05 2021-01-14 Yang Woo Nam Flying object
WO2017077348A1 (fr) * 2015-11-06 2017-05-11 Squarehead Technology As Détection d'uav
US10557916B2 (en) 2015-11-06 2020-02-11 Squarehead Technology As UAV detection
WO2017124840A1 (fr) * 2016-01-22 2017-07-27 深圳泰山体育科技股份有限公司 Procédé et système de commande optique pour aéronef
JP2017169395A (ja) * 2016-03-17 2017-09-21 株式会社空撮技研 無人飛行体用の線状体繰出装置
JP2017165363A (ja) * 2016-03-18 2017-09-21 株式会社Ihiエアロスペース 着陸補助装置と方法
KR101850892B1 (ko) 2016-05-02 2018-04-20 태원건설(주) 구조물 수직 벽면의 크랙 진단장치
JP2020501969A (ja) * 2016-12-26 2020-01-23 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 変形可能装置
GB2559185A (en) * 2017-01-31 2018-08-01 Aquila Aerospace Ltd Surveillance apparatus
WO2018165192A1 (fr) * 2017-03-06 2018-09-13 Hoverfly Technologies, Inc. Système de gestion de ligne d'amarre à tension constante pour aéronef captif
US11713118B1 (en) 2017-03-06 2023-08-01 Hoverfly Technologies. Inc. Constant tension tether management system for a tethered aircraft
CN106882391A (zh) * 2017-03-17 2017-06-23 四川建筑职业技术学院 一种无人机用的球形三轴联控矢量电机座
CN107244414B (zh) * 2017-06-27 2019-11-22 中高(泰州)知识产权管理咨询有限公司 一种用于婚庆的多功能无人机
CN107244414A (zh) * 2017-06-27 2017-10-13 深圳市雷凌广通技术研发有限公司 一种用于婚庆的多功能无人机
WO2019001662A1 (fr) * 2017-06-30 2019-01-03 Vestas Wind Systems A/S Système et procédé de positionnement d'éléments d'éolienne
JP2019095963A (ja) * 2017-11-21 2019-06-20 日本ニューマチック工業株式会社 移動体の位置制御システム
JP7105579B2 (ja) 2018-02-19 2022-07-25 株式会社フジタ 検査対象物の点検装置及び点検方法
JP2019144052A (ja) * 2018-02-19 2019-08-29 株式会社フジタ 検査対象物の点検装置及び点検方法
JP2019218779A (ja) * 2018-06-21 2019-12-26 前田建設工業株式会社 検査装置
JP7018594B2 (ja) 2018-07-09 2022-02-14 パナソニックIpマネジメント株式会社 制御装置、情報処理方法及び係留装置
JP2020006800A (ja) * 2018-07-09 2020-01-16 パナソニックIpマネジメント株式会社 制御装置、情報処理方法及び係留装置
KR20200031755A (ko) * 2018-09-15 2020-03-25 한남대학교 산학협력단 기계식 브레이크 장치 및 이를 이용한 기계식 브레이크 시스템
KR102159524B1 (ko) 2018-09-15 2020-09-24 한남대학교 산학협력단 기계식 브레이크 장치 및 이를 이용한 기계식 브레이크 시스템
CN109442241A (zh) * 2018-10-01 2019-03-08 江苏师范大学 一种空中舞台灯光音响装置
JP2019050007A (ja) * 2018-11-01 2019-03-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 移動体の位置を判断する方法および装置、ならびにコンピュータ可読媒体
IT201800010924A1 (it) * 2018-12-10 2020-06-10 E Novia S P A Sistema e metodo per controllare cavi sospesi in sistemi aeromobili a pilotaggio remoto
WO2020140295A1 (fr) * 2019-01-04 2020-07-09 深圳市大疆创新科技有限公司 Procédé de commande de cardan portatif et cardan portatif
CN112896528A (zh) * 2019-11-19 2021-06-04 通用电气公司 具有电压调节器的飞行器推进系统
CN113682227A (zh) * 2020-05-19 2021-11-23 马自达汽车株式会社 车辆周边监视系统
CN113682227B (zh) * 2020-05-19 2023-12-01 马自达汽车株式会社 车辆周边监视系统
WO2022118365A1 (fr) * 2020-12-01 2022-06-09 株式会社東広ライフクリエイツ Dispositif publicitaire flottant
JP7046405B1 (ja) 2021-10-13 2022-04-04 株式会社空撮技研 無人飛行体の線状体繰出装置
WO2023062751A1 (fr) * 2021-10-13 2023-04-20 株式会社Acsl Dispositif de commande et système de drone
JP2023058162A (ja) * 2021-10-13 2023-04-25 株式会社空撮技研 無人飛行体の線状体繰出装置

Also Published As

Publication number Publication date
JPWO2014203593A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
WO2014203593A1 (fr) Système de commande pour aéronef télécommandé sans pilote
US11001395B2 (en) Payload mounting platform
US20220048623A1 (en) Systems and methods for uav transport and data acquisition
US9765926B2 (en) Systems and methods for payload stabilization
JP6123032B2 (ja) 支援された離陸
JP5618840B2 (ja) 飛行体の飛行制御システム
JP5775632B2 (ja) 飛行体の飛行制御システム
JP6569881B2 (ja) 無人航空機用端末装置、該無人航空機用端末装置によって制御される無人航空機、及び、無人航空機用端末装置用通信ユニット
US20200148352A1 (en) Portable integrated uav
JP2019507924A (ja) Uav軌道を調整するシステム及び方法
CN115220475A (zh) 用于uav飞行控制的系统和方法
US11104434B2 (en) Roaming airborne explorer system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014561219

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813730

Country of ref document: EP

Kind code of ref document: A1