WO2014196499A1 - スポット溶接継手及びスポット溶接方法 - Google Patents

スポット溶接継手及びスポット溶接方法 Download PDF

Info

Publication number
WO2014196499A1
WO2014196499A1 PCT/JP2014/064616 JP2014064616W WO2014196499A1 WO 2014196499 A1 WO2014196499 A1 WO 2014196499A1 JP 2014064616 W JP2014064616 W JP 2014064616W WO 2014196499 A1 WO2014196499 A1 WO 2014196499A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
energization
steel plate
mass
post
Prior art date
Application number
PCT/JP2014/064616
Other languages
English (en)
French (fr)
Inventor
千智 若林
史徳 渡辺
古迫 誠司
康信 宮▲崎▼
裕之 川田
岡田 徹
秀樹 濱谷
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MYPI2015704012A priority Critical patent/MY183966A/en
Priority to MX2015015832A priority patent/MX2015015832A/es
Priority to RU2015155581A priority patent/RU2633414C2/ru
Priority to ES14807362.0T priority patent/ES2663500T3/es
Priority to CA2912591A priority patent/CA2912591C/en
Priority to BR112015028782A priority patent/BR112015028782A2/pt
Priority to US14/889,111 priority patent/US20160082543A1/en
Priority to EP14807362.0A priority patent/EP3006154B1/en
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2015521438A priority patent/JP5987982B2/ja
Priority to KR1020157032845A priority patent/KR101805284B1/ko
Priority to CN201480030432.5A priority patent/CN105263663B/zh
Publication of WO2014196499A1 publication Critical patent/WO2014196499A1/ja
Priority to ZA2015/08065A priority patent/ZA201508065B/en
Priority to US16/145,696 priority patent/US11027361B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a joint formed by superposing and spot welding a plurality of steel plates.
  • Tensile strength is an important property in joints formed by superposing multiple steel sheets and spot welding (hereinafter also referred to as “spot weld joints”). Such tensile strength includes a tensile shear force (TSS) measured by applying a tensile load in the shear direction and a cross tensile force (CTS) measured by applying a tensile load in the peeling direction. Note that the methods for measuring the tensile shear force and the cross tensile force are defined in JIS Z 3136 and JIS Z 3137.
  • CTS of a spot welded joint formed by a plurality of steel plates having a tensile strength of 270 MPa to 600 MPa increases as the strength of the steel plate increases. Therefore, in a spot welded joint formed of a steel plate having a tensile strength of 270 MPa to 600 MPa, a problem related to the joint strength hardly occurs.
  • CTS in a spot welded joint formed by a plurality of steel plates including at least one steel plate having a tensile strength of 750 MPa or more does not increase or decreases even if the tensile strength of the steel plate increases.
  • CTS is likely to be lowered.
  • the reason is that the stress concentration on the welded portion is increased due to the lowering of the deformability, and the toughness of the welded portion is lowered due to quenching in the welded portion.
  • the improvement of CTS in the spot-welded joint formed of a plurality of steel plates including at least one steel plate having a tensile strength of 750 MPa or more is required.
  • Patent Document 1 discloses a method of reducing the hardness by annealing a spot welded joint (nugget portion and heat affected zone) by performing temper energization after a certain period of time has elapsed after the main energization is completed. Are listed.
  • Patent Document 2 describes a method of heating and tempering the welded portion after welding.
  • this method requires a separate process after welding and complicates the work procedure.
  • this method requires a special device for using high frequency.
  • the nugget is softened and the shearing force is reduced.
  • Patent Document 3 describes a method in which post-energization is performed at a current equal to or higher than the main welding current after the nugget is formed by main welding.
  • this method when the post-energization time is lengthened, the nugget diameter is only enlarged, and the structure becomes the same as that of normal welding.
  • Patent Document 4 describes a method of spot welding a steel plate having a tensile strength of 440 MPa or more.
  • the component composition of the steel sheet is restricted to C ⁇ P ⁇ 0.0025, P: 0.015% or less, and S: 0.01% or less.
  • heat treatment is performed on the welded portion at about 300 ° C. for about 20 minutes.
  • this method applicable steel plates are limited. Furthermore, this method requires a long time for welding and has low productivity.
  • Patent Document 5 discloses a high-strength steel sheet (tensile strength: 750 to 1850 MPa, carbon equivalent Ceq: 0.22 to ”) that defines the microstructure of the nugget outer layer region and the average particle size and number density of carbides in the microstructure. 0.55% by weight) spot welded joints are described. However, in the case of fracture on the outside of the nugget, the structure of the nugget makes no contribution, so the provisions relating to the microstructure are meaningless.
  • Patent Document 6 describes a method of spot welding a steel plate having a tensile strength of 900 to 1850 MPa and a plate thickness of 1.8 to 2.8 mm. In this method, after welding, post-energization is continuously performed at a current 0.5 to 0.9 times the welding current for a time 0.3 to 0.5 times the welding time. However, this method does not sufficiently study the time between the main welding and the post-energization, and does not contribute to the improvement of joint strength.
  • JP 2002-103048 A JP 2009-125801 A JP 2010-115706 A JP 2010-059451 A International Publication No. 2011-025015 JP 2011-5544 A
  • an object of the present invention is to improve the cross tensile force of a spot welded joint formed by a plurality of steel plates including at least one steel plate of 750 MPa to 2500 MPa.
  • the spot welded joint of the present invention is a spot welded joint formed by stacking a plurality of steel plates and performing spot welding, and at least one of the plurality of steel plates has a tensile strength of 750 MPa to 750 MPa.
  • the high-strength steel plate of 2500 MPa, the carbon equivalent Ceq represented by the following formula (A) of the high-strength steel plate is 0.20% by mass to 0.55% by mass, and is formed on the surface of the steel plate by the spot welding.
  • iron-based carbides having a longest length of 0.1 ( ⁇ m) or more in a square region having a side of 10 ( ⁇ m) as a direction, and the center position of the square region is In the cross section
  • the position of the end of the nugget is 100 ( ⁇ m) away from the position of the line indicating the end of the nugget in the direction perpendicular to the tangent at the position, and the position of the end of the nugget is the end of the nugget
  • the position is within a range having a length four times as long.
  • Ceq [C] + [Si] / 30 + [Mn] / 20 + 2 [P] +4 [S] (A)
  • [C], [Si], [Mn], [P], and [S] in the formula (A) are contents (mass%) of C, Si, Mn, P, and S, respectively.
  • a first example of the spot welding method of the present invention is a spot welding method in which a plurality of steel plates are overlapped and spot welded, and at least one of the plurality of steel plates has a tensile strength of 750 MPa to 750 MPa.
  • the high-strength steel plate of 2500 MPa, the carbon equivalent Ceq represented by the following formula (A) of the high-strength steel plate is 0.20 mass% to 0.55 mass%.
  • a step of performing a main welding in which a main welding current I W (kA) is energized to the welding electrode in a state in which the welding electrode is pressed with a pressing force F E (N) satisfying the following formula (B):
  • a main welding current I W (kA) is energized to the welding electrode in a state in which the welding electrode is pressed with a pressing force F E (N) satisfying the following formula (B):
  • the applied pressure F E (N) satisfying the following equation (B) is maintained, and the post-main welding cooling time t S (msec) satisfying the following equation (C) is cooled for cooling the plurality of steel plates.
  • the applied pressure F E (N) that satisfies the equation (B) satisfies the following equation (F): And after releasing the holding time t H (msec), releasing the pressurization with the applied pressure F E (N).
  • a second example of the spot welding method of the present invention is a spot welding method in which a plurality of steel plates are overlapped and spot welded, and at least one of the plurality of steel plates has a tensile strength of 750 MPa to 750 MPa.
  • the high-strength steel plate of 2500 MPa, the carbon equivalent Ceq represented by the following formula (A) of the high-strength steel plate is 0.20 mass% to 0.55 mass%.
  • the pre-energization current I f (kA) satisfying the following formula (C) is satisfied with the welding pressure F E (N) satisfying the following formula (B) by the welding electrode, and the following formula (D) is satisfied.
  • the cross tension force of a spot welded joint formed by a plurality of steel plates including at least one steel plate of 750 MPa to 2500 MPa can be improved.
  • FIG. 1 is a diagram illustrating an example of the arrangement of two steel plates and welding electrodes when spot welding is started.
  • FIG. 2 is a diagram schematically showing an example of a nugget formed by spot welding and a heat affected zone.
  • FIG. 3 is a diagram illustrating a first example of the energization pattern.
  • FIG. 4 is a diagram schematically illustrating an example of an aspect in the middle of solidification of a melted portion that solidifies to become a nugget.
  • FIG. 5 is a diagram illustrating an example of the relationship between the cooling time after the main welding and the plate thickness of the steel plate.
  • FIG. 1 is a diagram illustrating an example of the arrangement of two steel plates and welding electrodes when spot welding is started.
  • FIG. 2 is a diagram schematically showing an example of a nugget formed by spot welding and a heat affected zone.
  • FIG. 3 is a diagram illustrating a first example of the energization pattern.
  • FIG. 4 is a diagram schematically
  • FIG. 6 is a diagram showing a first example of the relationship between the post-energization time and the value obtained by squaring the value obtained by dividing the post-energization current by the main welding current.
  • FIG. 7 is a diagram conceptually showing an example of the relationship between the post-energization time and the degree of embrittlement of the outer periphery and the heat affected zone of the nugget.
  • FIG. 8 is a diagram illustrating a second example of the energization pattern.
  • FIG. 9 is a diagram illustrating an example of the relationship between the cooling time after pre-energization and the plate thickness of the steel plate.
  • FIG. 10 is a diagram illustrating a second example of the relationship between the post-energization time and the value obtained by squaring the value obtained by dividing the post-energization current by the main welding current.
  • FIG. 11A is a diagram (photograph) showing an example of a structure of a heat affected zone of a welded joint of non-normal welding.
  • FIG. 11B is a diagram (photograph) showing an example of a structure of a heat affected zone of a welded joint of normal welding.
  • FIG. 12A is a diagram illustrating an example of iron-based carbide precipitation conditions.
  • FIG. 12B is an enlarged view showing a region A in FIG. 12A.
  • the inventors of the present invention have a cross tensile force (CTS) of a spot welded joint formed by a plurality of steel plates including at least one steel plate having a tensile strength of 750 MPa to 2500 MPa.
  • CTS cross tensile force
  • the reason why it was not possible to sufficiently improve the quality of the metal was investigated from a metallurgical viewpoint and a mechanical viewpoint.
  • a steel plate having a tensile strength of 750 MPa to 2500 MPa is referred to as a “high strength steel plate” as necessary.
  • the heat-affected zone around the nugget ( It has been found that the low load break caused by HAZ) cannot be sufficiently suppressed.
  • the nugget is a portion of the steel sheet that is melted by energization between the welding electrodes and then solidified.
  • a heat-affected zone is a portion of a steel sheet heated to a temperature higher than Ac1 and lower than the melting temperature.
  • the present inventors need to improve not only the inside of the nugget but also the breaking load at the periphery of the nugget. I found it. Therefore, in this embodiment, after a solidification zone is formed on the inner periphery of the melting portion, the solidification zone and the heat-affected zone surrounding the solidification zone are held at a high temperature for a long time.
  • the steel type is not particularly limited.
  • a two-phase structure type for example, a structure containing martensite in ferrite, a structure containing bainite in ferrite), a processing-induced transformation type (structure containing residual austenite in ferrite), a quenching type (martensite structure), Any type of steel such as a fine crystal type (ferrite main structure) may be used.
  • the steel type of the steel sheet to be superposed on the high-strength steel sheet is not particularly limited.
  • a steel plate of a steel type different from that of the high-strength steel plate may be used.
  • a steel plate that is superposed on a high-strength steel plate may be a mild steel plate.
  • the steel plate overlapped with the high-strength steel plate may be a steel plate of the same steel type as that of the high-strength steel plate.
  • the tensile strength of at least one steel plate (high-strength steel plate) out of a plurality of stacked steel plates is 750 MPa to 2500 MPa.
  • the cross tensile force (CTS) of the spot welded joint increases in proportion to the strength of the steel plate in the 590 MPa to 780 MPa class steel plate, but decreases in the steel plate having a strength of 780 MPa or more.
  • the tensile strength of the high-strength steel sheet is less than 750 MPa, the cross tensile force is originally high and the load on the spot welded joint is small. Therefore, it is hard to produce the problem regarding the deterioration of the fracture form in a welding part, or joint strength. Therefore, the tensile strength of the high-strength steel plate is set to 750 MPa or more.
  • the tensile strength of the high-strength steel sheet exceeds 2500 MPa, it becomes difficult to suppress “decrease and variation” in joint strength. Further, along with this, it becomes difficult to suppress the deterioration of the fracture form in the weld and the occurrence of defects and cracks inside the nugget. Therefore, the tensile strength of the high-strength steel plate is set to 2500 MPa or less.
  • the tensile strength of the steel sheet to be overlapped with the high-strength steel sheet is not particularly limited.
  • the steel plate to be overlapped with the high-strength steel plate may be a high-strength steel plate having a tensile strength of 750 MPa to 2500 MPa, or a steel plate having a tensile strength of less than 750 MPa.
  • the tensile strength may be selected according to the steel member used.
  • the plate thickness of the high-strength steel plate is not particularly limited. For example, it may be about the thickness (0.5 mm to 3.2 mm) of a high-strength steel plate generally used for the body of an automobile. However, since the stress concentration around the nugget increases as the plate thickness of the high strength steel plate increases, the plate thickness of the high strength steel plate is preferably 2.6 mm or less.
  • the thickness of the steel sheet to be overlaid with the high-strength steel sheet is not particularly limited.
  • the plate thicknesses of the plurality of steel plates to be stacked may be different from each other. For example, when three or more steel plates are overlapped, the thickness of each of the three or more steel plates may be different. Of the three or more steel plates, at least one may be a high-strength steel plate, and the other may be a mild steel plate. When three or more steel plates are overlapped, the thickness of at least two steel plates may be the same. In general, the thickness of the steel plate is 6 mm or less.
  • the carbon equivalent Ceq represented by the following formula (1) of the high-strength steel plate is preferably in the range of 0.20 mass% to 0.55 mass%.
  • a tensile strength of 750 MPa or more which is the lower limit value of the tensile strength of the high-strength steel plate described above, cannot be obtained.
  • the carbon equivalent Ceq is more than 0.55% by mass, the tensile strength exceeds 2500 MPa, which is the upper limit value of the tensile strength of the high-strength steel plate, which is not preferable.
  • Ceq of the steel sheet to be overlapped with the high-strength steel sheet may be any value.
  • Ceq [C] + [Si] / 30 + [Mn] / 20 + 2 [P] +4 [S] (1)
  • [C], [Si], [Mn], [P], and [S] are the contents (mass%) of C, Si, Mn, P, and S, respectively.
  • the component composition of the high-strength steel sheet is preferably the following component composition.
  • % means mass%.
  • C ((C: 0.07 mass% to 0.45 mass%)) is an element that increases the tensile strength of steel.
  • the C content in the steel is less than 0.07% by mass, it is difficult to obtain a tensile strength of 750 MPa or more.
  • the C content of the high-strength steel plate is preferably 0.07% by mass to 0.45% by mass.
  • Si ((Si: 0.001% to 2.50% by mass)) Si is an element that increases the strength of steel by solid solution strengthening and structure strengthening. However, if the Si content in the steel exceeds 2.50 mass%, the workability of the steel is lowered. On the other hand, it is technically difficult to industrially reduce the Si content in steel to less than 0.001% by mass. Therefore, the Si content of the high-strength steel plate is preferably 0.001% by mass to 2.50% by mass.
  • Mn is an element that increases the strength of steel. However, if the Mn content in the steel exceeds 5.0 mass%, the workability of the steel deteriorates. On the other hand, if the Mn content in the steel is less than 0.8% by mass, it is difficult to obtain a tensile strength of 750 MPa or more. Accordingly, the Mn content of the high-strength steel plate is preferably 0.8% by mass to 5.0% by mass.
  • the P content in the high-strength steel plate is preferably 0.03% by mass or less.
  • the content of P in the high-strength steel plate is preferably 0.001% by mass or more.
  • the P content of the high-strength steel plate may be less than 0.001% by mass.
  • S is an element that embrittles the nugget.
  • S is an element that binds to Mn to form coarse MnS and inhibits the workability of steel. If the S content in the steel exceeds 0.01% by mass, cracks in the nugget are likely to occur, and it becomes difficult to obtain sufficiently high joint strength. Furthermore, the workability of steel is reduced. Therefore, the content of S in the high-strength steel plate is preferably 0.01% by mass or less. In addition, it is not preferable in terms of cost to reduce the S content in the steel to less than 0.0001% by mass. Therefore, the content of S in the high-strength steel plate is preferably 0.0001% by mass or more. However, the S content of the high-strength steel plate may be less than 0.0001% by mass.
  • N is an element that forms coarse nitrides and degrades the workability of steel.
  • N is an element that causes blowholes during welding.
  • the N content of the high-strength steel plate is preferably 0.01% by mass or less. Note that it is not preferable in terms of cost to reduce the N content in the steel to less than 0.0005 mass%. Therefore, the N content of the high-strength steel plate is preferably 0.0005% by mass or more. However, the N content of the high-strength steel plate may be less than 0.0005 mass%.
  • O is an element that forms an oxide and degrades the workability of steel.
  • the O content of the high-strength steel plate is preferably 0.01% by mass or less.
  • the O content of the high-strength steel plate is preferably 0.0005% by mass or more.
  • the O content of the high-strength steel plate may be less than 0.0005 mass%.
  • Al ((Al: 1.00 mass% or less))
  • Al is a ferrite stabilizing element and has effects such as suppression of cementite precipitation during bainite transformation. For this reason, it is contained for the control of the steel structure.
  • Al also functions as a deoxidizer.
  • Al is easy to oxidize. If the Al content exceeds 1.00% by mass, inclusions increase, and the workability of the steel tends to deteriorate. Therefore, the Al content of the high-strength steel plate is preferably 1.00% by mass or less.
  • the high-strength steel sheet may selectively contain the following elements as necessary in addition to the above main elements.
  • Ti, Nb, and V contribute to an increase in steel strength by at least one of precipitation strengthening, fine grain strengthening by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization.
  • Element if any element has a content in steel of less than 0.005% by mass, the effect of addition hardly appears. On the other hand, if the content in the steel exceeds 0.20% by mass, the workability of the steel is impaired. Accordingly, the content of these elements in the high-strength steel plate is preferably 0.005% by mass to 0.20% by mass.
  • B ((B: 0.0001 mass% to 0.01 mass%)) B is an element that strengthens steel by controlling the steel structure. However, if the content of B in the steel is less than 0.0001% by mass, the effect of addition is hardly exhibited. On the other hand, when the content of B in the steel exceeds 0.01% by mass, the addition effect is saturated. Therefore, the content of B in the high-strength steel plate is preferably 0.0001% by mass to 0.01% by mass.
  • Cr, Ni, Cu, and Mo are elements that contribute to improving the strength of steel. These elements can be used in place of a part of Mn (strength improving element), for example. However, any element does not contribute to the improvement of strength when the content in steel is less than 0.01% by mass.
  • the content of these elements in the high-strength steel plate is preferably 0.01% by mass or more.
  • the content of Cr, Ni, and Cu in the steel exceeds 2.0% by mass
  • the content of Mo in the steel exceeds 0.8% by mass.
  • the content of Cr, Ni, and Cu in the high-strength steel plate is preferably 2.0% by mass or less.
  • the Mo content in the high-strength steel plate is preferably 0.8% by mass or less.
  • Ca, Ce, Mg, and REM are elements that contribute to improving the workability of steel by reducing the size of the oxide after deoxidation and the size of the sulfide present in the hot-rolled steel sheet.
  • the content of these elements in the steel is less than 0.0001% by mass in total, the effect of addition is hardly exhibited.
  • the content of these elements in the steel exceeds 1.0% by mass in total, the workability of the steel decreases. Accordingly, the total content of these elements in the high-strength steel plate is preferably 0.0001% by mass to 1.0% by mass.
  • REM is an element belonging to the lanthanoid series
  • REM and Ce can be added to molten steel as misch metal at the stage of steelmaking.
  • lanthanoid series elements may be contained in a composite.
  • the balance other than the above elements in the high-strength steel plate may be Fe and inevitable impurities.
  • Ca, Ce, Mg, La, and REM are allowed to contain a trace amount less than the lower limit of the total amount as impurities.
  • the component composition of the high-strength steel plate has been described above.
  • the component composition of the steel plate to be superposed on the high-strength steel plate may be any component composition.
  • a plating layer may be formed on the surface of the high-strength steel plate. Furthermore, a plating layer may be formed on the surface of the steel sheet to be overlaid with the high-strength steel sheet. Examples of the plating layer include Zn-based, Zn-Fe-based, Zn-Ni-based, Zn-Al-based, Zn-Mg-based, Pb-Sn-based, Sn-Zn-based, and Al-Si-based.
  • Examples of the high-strength steel plate provided with the Zn-based plating layer include alloyed hot-dip galvanized steel plate, hot-dip galvanized steel plate, and electrogalvanized steel plate.
  • the plating layer is formed on the surface of the high-strength steel plate, the spot welded joint exhibits excellent corrosion resistance.
  • the plating layer is a galvanized layer alloyed on the surface of a high-strength steel plate, excellent corrosion resistance is obtained, and the adhesion of the paint is improved.
  • the basis weight of the plating layer is not particularly limited. It is preferable that the basis weight of the plating layer on one side of the high-strength steel plate is 100 g / m 2 or less. If the basis weight on one side of the high-strength steel plate exceeds 100 g / m 2 , the plating layer may become an obstacle during welding.
  • the plating layer may be formed on only one side of the high-strength steel plate or may be formed on both sides. Note that an inorganic or organic film (for example, a lubricating film) or the like may be formed on the surface layer of the plating layer.
  • the conditions regarding the above plating layer are the same also about the steel plate piled up with a high strength steel plate.
  • FIG. 1 is a diagram showing an example of the arrangement of two steel plates including at least one high-strength steel plate and welding electrodes when spot welding is started. As shown in FIG. 1, the steel plates 1A and 1B are overlapped so that the plate surfaces face each other. The superposed steel plates 1A and 1B are sandwiched between the welding electrodes 2A and 2B from above and below, and a predetermined pressure is applied to energize the welding electrodes 2A and 2B.
  • FIG. 2 is a diagram schematically showing an example of a nugget formed by spot welding and a heat affected zone.
  • FIG. 3 is a diagram illustrating a first example of an energization pattern when energizing a welding electrode.
  • spot welding can be performed by the same method as described below.
  • the steel plates 1A and 1B and the welding electrodes 2A and 2B are arranged.
  • the nugget 3 is formed at the boundary between the steel plates 1 ⁇ / b> A and 1 ⁇ / b> B as shown in FIG. 2.
  • the heat affected zone 4 is formed around the nugget 3. Note that at least one of the steel plates 1A and 1B is the high-strength steel plate described above.
  • the energization pattern shown in FIG. 3 is as follows.
  • the following current is a current flowing between the welding electrode 2A and the welding electrode 2B.
  • the current value is gradually increased (upslope) from 0 (zero) until the current value reaches the main welding current I W (kA).
  • the main welding is performed with the current value set to the main welding current I W (kA).
  • the current value is set to 0 (zero), and the state where the current value is 0 (zero) is maintained after the main welding cooling time (solidification time) t S (msec).
  • the current value rear energization current I P (kA) rear energization time the state of t P (msec) retention is set to 0 (zero).
  • the holding time t H (msec) shown in FIG. 3 is a time for holding the applied pressure F E (N) after the end of energization, as will be described later.
  • the current value becomes the welding current I W (kA)
  • the current value without causing 0 increasing from (zero) (up-slope) may immediately present the welding current I W a current value (kA) .
  • Pressure F E is lower than "1960 ⁇ h" (N), is possible to suppress the occurrence of defects and cracks in the inside and the heat affected zone 4 of the nugget 3 becomes difficult. As a result, the fracture form of the spot welded joint cannot be improved, and it is difficult to improve the joint strength and reduce the variation in joint strength.
  • the tip diameter of the welding electrodes 2A and 2B is preferably about 6 mm to 8 mm.
  • h is the plate thickness (mm) of the steel plate.
  • the thicknesses of the two steel plates are different (in the example shown in FIG. 2, the thicknesses of the steel plates 1A and 1B are different).
  • the arithmetic average value of the plate thicknesses of the two steel plates may be used as “h” in the equation (2).
  • spot welding three or more steel plates for example, the sum of the thicknesses of the steel plates is obtained, and the value obtained by dividing the sum into two is used as “h” in equation (2). That's fine.
  • This welding current IW and the welding time (time that the flow of the welding current I W) is not particularly limited. Conventionally, a welding current and energization time comparable to the welding current and energization time employed to stably obtain a nugget of a required size may be employed as the main welding current IW and the main welding time.
  • the square root of the average value in the main welding time (that is, the effective value of the main welding current) of the value obtained by squaring the main welding current in the main welding time, or the maximum value of the main welding current is the main welding current I W.
  • the main welding current I W the main welding current
  • the conventional general spot welding equipment can be used as it is.
  • the conventional welding electrode can be used as it is also about a welding electrode.
  • the power source is not particularly limited, and an AC power source, a DC inverter, an AC inverter, or the like can be used.
  • FIG. 4 is a diagram schematically illustrating an example of an aspect in the middle of solidification of a melted portion that solidifies to become a nugget.
  • Steel plates 1A while pressing the welding electrodes 2A in pressure F E in 1B, when energized the welding current I W to 2B, the molten portion is formed solidified in the nugget.
  • the energization is terminated, the solidification from a molten boundary 3a starts and the post-weld cooling time t S has elapsed, the solidification zone 5 are formed.
  • the unsolidified region 6 remains inside the solidified region 5.
  • a heat affected zone 4 is formed around the solidification zone 5.
  • the unsolidified region 6 is solidified to form a nugget.
  • the post-energization is started when the unsolidified region 6 exists. That is, the cooling time t S after the main welding determines the width (length in the plate surface direction) of the solidified region 5 at the start of post-energization.
  • the post-weld cooling time t S exceeds 300 (msec)
  • the temperature decreases and the solidified region 5 expands. Therefore, long-time post-energization is required in order to obtain the effect of post-energization (effect of improving the structure and improving segregation), which will be described later, at the outer peripheral portion of the nugget 3 and the heat-affected zone 4 around the nugget 3. Therefore, the productivity of the spot welded joint is reduced.
  • the post-weld cooling time t S exceeding 300 (msec) is not realistic.
  • the cooling time t S after the main welding is less than “7 ⁇ h + 5” (msec)
  • the melted portion is not sufficiently solidified and the width of the solidified region 5 is narrowed.
  • the post-weld cooling time t S is less than “7 ⁇ h + 5” (msec)
  • the prior austenite grains become excessively large, and the toughness of the heat-affected zone 4 is lowered by post-energization described later. Therefore, the effect of post-energization (structure improvement / segregation improvement effect) to be described later cannot be obtained, and it is difficult to sufficiently improve the joint strength.
  • the cooling rate of the steel plates 1A and 1B becomes slower as the plate thickness h of the steel plate is larger.
  • the cooling time of the steel plates 1A and 1B increases exponentially as the plate thickness h of the steel plate increases.
  • the relationship between the cooling time of the steel plates 1A and 1B and the plate thickness h of the steel plate is linearly approximated. can do. Therefore, in the present embodiment, as shown in the equation (3), the lower limit value of the post-weld cooling time t S is expressed in a line format using the plate thickness h of the steel plate.
  • a spot welded joint having the same nugget diameter as the weld joint of the first non-normal welding is overlapped with two steel plates having the carbon equivalent and the plate thickness, and cooling after the main welding is performed.
  • spot welding was performed by the same method as described above except that no post-energization was performed.
  • CTS cross tensile force
  • FIG. 5 is a diagram illustrating an example of the relationship between the post-weld cooling time t S and the steel sheet thickness h.
  • a plot based on h is indicated by ⁇ .
  • the CTS in the first non-normal welding weld joint is improved compared with the CTS in the first normal welding weld joint, but the improvement allowance is less than 20%, or the main welding in the case where it has not improved.
  • a plot based on the post-cooling time t S and the plate thickness h of the steel sheet is shown by ⁇ . As shown in FIG. 5, the horizontal axis h (mm) is and the vertical axis is t S (msec). In FIG. 5, the boundary line between ⁇ and ⁇ was determined as a regression curve. From the result, a linear format for determining the lower limit of the equation (3) was obtained.
  • the post-weld cooling time t S is set to “7 ⁇ h + 5” (msec) or more and 300 (msec) or less.
  • the post-weld cooling time tS is set to “7 ⁇ h + 5” (msec) or more and 250 (msec) or less.
  • no current is supplied during the cooling time t S after the main welding.
  • the post-weld cooling time t S 0.5 times or less of the current of the welding current I W, the welding electrodes 2A, it may be energized 2B.
  • the same value as the thickness h of the steel sheet of the formula (2) is adopted as the thickness h of the steel sheet of the formula (3).
  • the post-weld cooling time t S if keep the pressure F E when the main welding, the working efficiency, preferred.
  • the pressure F E in the post-weld cooling time t S within a range satisfying the equation (2) may be different from the pressure F E when the main welding.
  • the pressing force F E at the rear energization time t P a pressure that satisfies the equation (2).
  • the pressure F E is usually (when energizing the main welding current I W) when the main welding, and the melting portion solidifying from the molten boundary, when forming a solidification zone 5 of the shell-like (after the welding If the same as pressure F E at cooling time t S), the working efficiency, preferred.
  • the (2) as long as it satisfies the equation, not necessarily the same as in these pressure F E at the rear energization time t P.
  • Rear energization current I P Rear energization current I P, the tissue and the segregation of shell-like solidification zone 5, organizations and the segregation of the nugget 3 solidification is completed, a large effect on the organization or segregation of the heat affected zone 4.
  • the rear energization current I P is less than "0.66 ⁇ I W" (kA)
  • the coagulation zone 5 and the heat-affected zone 4 is heat input is insufficient, the effect of improving the tissue and segregation (tissue ameliorating and segregation Improvement effect) is not obtained.
  • the rear energization current I P when the rear energization current I P is in the welding current I W (kA) above, the solidification zone 5 and the heat-affected zone 4 is excessively heated. Furthermore, the solidified zone 5 is remelted. Therefore, the effect of improving the structure and segregation (effect of improving the structure and improving segregation) cannot be obtained. Therefore, in the present embodiment, the rear energization current I P, and less than "0.66 ⁇ I W" (kA) or "I W" (kA).
  • the rear energization current I P equal to or less than "0.70 ⁇ I W" (kA) or "0.98 ⁇ I W" (kA) Is preferred.
  • an effective value as the welding current I W is a rear energizing current I P is also preferred to employ an effective value.
  • a rear energizing current I P is also preferred to employ the maximum value.
  • the post-energization current I P is energized to the welding electrodes 2A and 2B for a time that satisfies the formula (5) (post-energization time t P (msec)).
  • Patent Document 5 The rear energization time t P, Paragraph [0087] of Patent Document 5, "exceeds 200 msec, the effect of the variation reduction improved and joint strength of the joint strength is reduced, also, productivity is reduced. Is described. That is, Patent Document 5, that which should be a post-energization time t P to 200 (msec) or less is disclosed.
  • Patent Document 5 describes a structure inside a nugget. However, there is no description of measures for improving CTS in the case of plug rupture. Therefore, the present inventors conducted a systematic experiment on post-energization for further increasing the CTS in the case of plug rupture.
  • a spot welded joint having the same nugget diameter as that of the weld joint of the first non-normal welding is used as the carbon equivalent and the carbon Spot welding was performed in the same manner as described above, except that two steel plates having a plate thickness were overlapped and cooling after main welding and post-energization were not performed.
  • the CTS (cross tension force) of the spot welded joint was measured by the method prescribed in JIS Z 3137.
  • this spot welded joint is referred to as a first normal welded joint as necessary.
  • FIG. 6 shows a rear energization time and t P, a first example of the relationship between the square value of the value obtained by dividing the post-energization current I P in the welding current I W ((I P / I W) 2) FIG.
  • the post-energization time t P the post-energization current I P
  • the CTS in the first non-normal welding weld joint is improved by 20% or more compared to the CTS in the first normal welding weld joint
  • the CTS in the first non-normal welding weld joint is improved as compared with the CTS in the first normal welding weld joint, but the improvement is less than 20%, or the post-energization is not improved.
  • a plot based on the time t P , the post-energizing current I P , and the main welding current I W is indicated by ⁇ . As shown in FIG. 6, the horizontal axis is (I P / I W ) 2 and the vertical axis is t P (ms).
  • Plug breakage in the spot welded joint occurs in the heat affected zone 4. Therefore, it was estimated that the difference in plug rupture strength was caused by a difference in resistance to propagation of cracks in the heat affected zone 4, that is, a difference in toughness of the heat affected zone 4. Therefore, the concentration distribution of P and S that greatly affects the toughness of the heat affected zone 4 was measured by FE-EPMA. As a result, in the heat-affected zone 4 of the first non-normal weld joint obtained by the conditions indicated by ⁇ in FIG.
  • post-energization current I P is solidified zone 5 is required to be a current value which does not melt. That is, it is required that I W> I P.
  • I P / I W is an index that determines the amount of heat input (the size of the nugget 3) during post-energization. Therefore, I P / I W is expressed as ⁇ ( ⁇ 1).
  • FIG. 7 is a rear energization time t P, is a diagram conceptually illustrating an example of the relationship between the outer peripheral portion and the degree of embrittlement of the heat-affected zone 4 of the nugget 3.
  • FIG. 7 conceptually shows how the segregation of P and S is reduced and the toughness is improved.
  • the vertical axis indicates the degree of embrittlement due to segregation or insufficient automatic tempering. As the value is below the vertical axis, segregation is reduced and automatic tempering is sufficiently performed to improve toughness.
  • the temperature reaches a substantially steady temperature ( ⁇ melting point) by the main welding for forming the welded portion, and the temperature is increased.
  • the heat affected zone 4 the temperature is not sufficiently raised by the main welding.
  • the temperature of the heat affected zone 4 is lower than the temperature of the outer periphery of the hot nugget 3 immediately after solidification. Therefore, in order to heat-treat the heat-affected zone 4 at a high temperature by post-energization, it takes a long time compared to heat-treating the outer periphery of the nugget 3. This is presumed to be the reason why the result shown in FIG. 6 is obtained.
  • the upper limit of the rear energization time t P is not particularly defined, considering the productivity of the spot welded joint, preferably 2000 (msec) or less.
  • the pressing force F E (N) when the steel plates 1A and 1B are held under pressure by the welding electrodes 2A and 2B with the holding time t H in the range shown in the formula (9) is, for example, the formula (2). This is the range to be specified.
  • the holding time t H affects the structure of the nugget 3 and the heat affected zone 4 and the occurrence of defects and cracks in the nugget 3.
  • the holding time t H exceeds 300 (msec)
  • the productivity of the spot welded joint is lowered. Therefore, in this embodiment, the holding time t H is set to 300 (msec) or less. It is desirable that the holding time t H be short in order to start air cooling at an early stage and stably obtain the desired effect.
  • the holding time t H is usually longer than the retention time set t H. Therefore, it is necessary to set the holding time t H taking this into consideration. Further, the temperature of the nugget 3 also decreases during post-energization. Therefore, the retention time t H a Shortened even shrinkage defects and cracks hardly occur when. Therefore, welding electrodes 2A, 2B and steel plates 1A, if it is possible to spaced immediately from 1B, the holding time t H may be 0 (zero). When the holding time is not set to 0 (zero), the equation (9) becomes the following equation (9a). 0 ⁇ t H ⁇ 300 (9a)
  • the steel plates 1A and 1B are overlapped so that the plate surfaces face each other.
  • the superposed steel plate 1A and steel plate 1B are sandwiched between the welding electrode 2A and the welding electrode 2B from above and below, and a predetermined pressure is applied to energize.
  • a case where two steel plates including at least one high-strength steel plate are spot welded will be described as an example.
  • spot welding can be performed by the same method as described below.
  • at least two high-strength steel plates can be overlapped and the three or more steel plates can be spot welded.
  • high-strength steel plates tend to generate heat during main welding because of their large electrical resistance.
  • One of the purposes of pre-energization is to suppress the occurrence of this scattering.
  • FIG. 8 is a diagram illustrating a second example of the energization pattern when the welding electrode is energized.
  • the current value before flowing current I f (kA) state the previous energization time t f (msec) holding the current value before the supply current I f (kA), performs pre energized.
  • the pre-energization time t f (msec) elapses, the current value is set to 0 (zero), and the state where the current value is 0 (zero) is held after the pre-energization cooling time t C (msec).
  • the current value is set to the main welding current I W (kA) and the main welding is performed.
  • the current value is set to 0 (zero), and the state where the current value is 0 (zero) is maintained after the main welding cooling time (solidification time) t S (msec). If after the welding cooling time t S (msec) has elapsed, the rear electric current I P (kA) the current value, the current value rear energization current I P (kA) rear energization time the state of t P (msec) retention Then, after energization.
  • the current value is set to 0 (zero).
  • the holding time t H (msec) shown in FIG. 8 is the time for holding the pressurizing force F E (N) after the post-energization is completed, as described in the first example.
  • the current value is not immediately changed to the pre-energization current If (kA), but the current value is gradually increased from 0 (zero) until the current value becomes the pre-energization current If (kA). ).
  • I W Main welding current (kA) 20 ⁇ t f (11)
  • the pre-energization current I f When the pre-energization current I f than the welding current I W, scattered upon before the supply there is a possibility to occur.
  • the pre-energization current I f when the pre-energization current I f to less than 0.4 times the main welding current I W, steel plates 1A, the amount of heat given to 1B is not sufficient. Then, the steel plates 1A and 1B cannot be softened, and the gap between the steel plates 1A and 1B cannot be sufficiently reduced by the pressurization described above, and there is a possibility that scattering occurs during the main welding. . From the above, in the present embodiment, the pre-energization current I f, 0.4 times or more of the welding current I W, and less than the welding current I W.
  • the pre-energization current I f 0.6 times or more of the welding current I W, that the range of 0.95 times or less of the welding current I W preferable.
  • an effective value as the welding current I W is before the supply current I f is also preferred to employ an effective value.
  • the maximum value as the welding current I W is before the supply current I f is also preferable to adopt the maximum value.
  • the front energization time t f is less than 20 (msec)
  • steel plates 1A, the amount of heat given to 1B is not sufficient. Then, the steel plates 1A and 1B cannot be softened, and the gap between the steel plates 1A and 1B cannot be sufficiently reduced by the pressurization described above, and there is a possibility that scattering occurs during the main welding. .
  • the welding current I W in the regions shown in the equation (10) even long before the energization time t f, it is possible to suppress the scattering upon before welding occurs. Therefore, the upper limit value before the energization time t f is not particularly defined, considering the productivity of the spot welded joint, preferably 300 (msec) or less.
  • the cooling time t C after the pre-energization can be set to a time exceeding 0 (zero). However, if there is no scattering during pre-energization, the cooling time t C after pre-energization can be set to 0 (zero). Further, if the cooling time t C after the pre-energization becomes “200 + 7 ⁇ h” (msec) or more, the steel plates 1A and 1B are excessively cooled, and there is a possibility that the steel plates 1A and 1B become unfamiliar during the main welding. The cooling rate of the steel plates 1A and 1B decreases as the plate thickness h of the steel plate increases.
  • the upper limit value of the cooling time t C after the pre-energization is expressed in a line format using the plate thickness h of the steel plate.
  • Two steel plates with various plate thicknesses having a carbon equivalent Ceq of 0.3% by mass or more shown in the formula (1) are overlapped, and various aspects are provided in a part or all of the region between the two steel plates.
  • a gap was provided at, and spot welding was performed using a servo gun type welding machine in various energization patterns in this order: pre-energization, cooling, main welding, cooling, and post-energization. Then, it was investigated whether or not scattering occurred during the main welding.
  • FIG. 9 is a diagram illustrating an example of the relationship between the post-pre-energization cooling time t C and the steel sheet thickness h.
  • a plot based on the cooling time after pre-energization t C and the plate thickness h of the steel plate when no scattering occurs in the above-described investigation is indicated by ⁇ .
  • a plot based on the cooling time after pre-energization t C and the thickness h of the steel sheet when scatter occurs in the above-described investigation is indicated by ⁇ .
  • the horizontal axis h (mm) is and the vertical axis is t C (msec).
  • the boundary line between ⁇ and ⁇ was determined as a regression curve. From the result, a line format for determining the upper limit value of the equation (12) was obtained.
  • the post-pre-energization cooling time t C is set to 0 (zero) or more and 200 + 7 ⁇ h ”(msec) or less.
  • the same value as the thickness h of the steel sheet of the formula (2) is adopted as the thickness h of the steel sheet of the formula (12).
  • the pressure F E before after power cooling time t C in a range satisfying the equation (2) may be different from the pressure F E when the pre-energization.
  • the equation (12) becomes the following equation (12a). 0 ⁇ t C ⁇ 200 + 7 ⁇ h (12a)
  • main welding current I W (Main welding current: I W ) Immediately before or after energizing cooling time t C has elapsed, while maintaining the pressure F E when before the supply as, welding electrodes 2A, between 2B, energized the main welding current I W, it performs the welding.
  • the main welding current IW and the main welding time are not particularly limited. Incidentally, the main welding time, if holding the pressure F E when before the supply it, the working efficiency, preferred. However, the pressure F E in the welding time in the range satisfying the equation (2) may be different from the pressure F E when the pre-energization.
  • the cooling time t after the main welding is set. to S, 0.5 times or less of the current of the welding current I W may be energized.
  • the present post-weld cooling time t S if keep the pressure F E when before the supply and the welding, the working efficiency, preferred.
  • the pressure F E in the post-weld cooling time t S within a range satisfying the equation (2) may be different from the pressure F E when before the supply and the welding.
  • the expression (13) is the same as the expression (4). That is, the method of determining the post-energization current I P is the same as the first example. As described in the first example, in order to obtain the effect of improving the structure and segregation more reliably, the post-energization current I P is set to “0.70 ⁇ I W ” (kA) or more and “0.98”. ⁇ I W ”(kA) or less is preferable. Further, the rear energization time t P, if keep the pressure F E when before the supply and the welding, the working efficiency, preferred. However, the pressure F E at the rear energization time t P, in a range satisfying the equation (2) may be different from the pressure F E when before the supply and the welding.
  • a spot welded joint having the same nugget diameter as that of the second non-normal welded joint is overlapped with two steel plates having the carbon equivalent and the plate thickness, and cooling and post-main welding are performed. Spot welding was performed in the same manner as described above, except that energization was not performed. And the CTS (cross tensile force) of the spot welded joint was measured by the method prescribed in JIS Z 3137. In the following description, this spot welded joint is referred to as a second normal welded joint as necessary.
  • FIG. 10 shows a rear energization time t P, a second example of the relationship between the rear energization current I P the value obtained by squaring the value obtained by dividing the welding current I W ((I P / I W) 2)
  • FIG. 10 shows a rear energization time t P, a second example of the relationship between the rear energization current I P the value obtained by squaring the value obtained by dividing the welding current I W ((I P / I W) 2)
  • the post-energization time t P , post-energization current I P when the CTS in the second non-normal welding weld joint is improved by 20% or more compared to the CTS in the second normal welding weld joint, and a plot in accordance with the present welding current I W in ⁇ . Further, the CTS in the second non-normal welding weld joint is improved as compared with the CTS in the second normal welding weld joint, but the improvement is less than 20%, or the post-energization is not improved.
  • a plot based on the time t P , the post-energizing current I P , and the main welding current I W is indicated by ⁇ . As shown in FIG. 10, the horizontal axis is (I P / I W ) 2 and the vertical axis is t P (msec).
  • FIG. 10 corresponds to FIG.
  • the boundary line between ⁇ and ⁇ was determined as a regression curve (that is, the coefficients A and ⁇ in equation (8) were determined). From the result, the formula (14) was obtained.
  • the expression (14) corresponds to the expression (5).
  • the coefficient ⁇ is “0.44”.
  • the coefficient ⁇ is “0.4”.
  • the lower limit of the rear energization time t P is reduced. It is thought that this is because the total heat input to the heat affected zone 4 is increased by performing the pre-energization.
  • the upper limit of the rear energization time t P is not particularly defined, considering the productivity of the spot welded joint, preferably 2000 (msec) or less.
  • (14) By employing the equation, it is possible to reduce the lower limit of the rear energization time t P.
  • the method for determining the holding time t H is the same as in the first example.
  • the actual holding time t H is, taking into account the fact that longer than the holding time set t H, it is necessary to set the holding time t H. Further, as described in the first example, the holding time t H may be set to 0 (zero).
  • the spot welded joint was formed as in the first and second examples of the spot welding method, an improvement in toughness in the heat affected zone (HAZ) was observed.
  • HZ heat affected zone
  • the inventors observed the structure of the heat-affected zone of the weld joint for normal welding and the weld joint for non-normal weld with an electron microscope.
  • the non-normal welding welded joint in which the CTS is improved by 20% or more of the CTS of the normal welding welded joint, is adopted.
  • FIG. 11A is a diagram (photograph) showing an example of a structure of a heat affected zone of the non-normal welding weld joint (the first non-normal welding weld joint).
  • FIG. 11B is a figure (photograph) which shows an example of the structure
  • tissue of the heat affected zone of the weld joint of the said normal welding welding joint of the said 1st normal welding.
  • the iron-based carbide is mainly cementite (Fe 3 C).
  • the iron-based carbide is not limited to cementite.
  • ⁇ carbide Fe 2.4 C
  • other metals such as Mn and Cr may be included in the iron-based carbide.
  • the heat input to the heat affected zone 4 is increased, and the highest in the heat affected zone 4
  • the ultimate temperature can be increased. Therefore, since the prior austenite grains become large, the apparent martensitic transformation temperature rises. As the apparent martensitic transformation temperature rises, transformation in the heat affected zone 4 occurs at a relatively high temperature in the cooling process after post-energization, and automatic tempering (autotempering) is likely to occur. Thereby, precipitation of fine iron-based carbide is often observed. Thus, the present inventors have found that the precipitation of fine iron carbide in the heat affected zone 4 contributes to the improvement of toughness in the heat affected zone 4.
  • the present inventors investigated the precipitation state of iron-based carbides in the heat-affected zone of a plurality of non-normal welded joints where the CTS is improved by 20% or more of the CTS of the welded welded joints. As a result, it was confirmed that if the CTS is a non-normal welding welded joint that improves by 20% or more of the CTS of the normal welded joint, the iron carbide precipitation conditions described below are surely satisfied.
  • FIG. 12A is a diagram illustrating an example of iron-based carbide precipitation conditions.
  • FIG. 12B is an enlarged view showing a region A in FIG. 12A.
  • FIG. 12A is a diagram schematically showing a cross-section cut along the thickness direction of the steel plates 1A and 1B through the center of the welding marks formed on the surfaces of the steel plates 1A and 1B by spot welding.
  • a target position (spot position) of the welding electrodes 2A and 2B at the most advanced region
  • the contour of the actually formed welding mark can be approximated by a circle, and the center of the circle can be used as the welding mark.
  • the iron-based carbide precipitation condition is that 10 or more iron-based carbides having a length of 0.1 ( ⁇ m) or more are precipitated (present).
  • the center position of the square region 123 is 100 ( ⁇ m) in a direction perpendicular to the tangent line 121 at the position 120 of the line indicating the end of the nugget 3 from the position 120 of the end of the nugget 3 in the cross section. ) A distant position 102.
  • the position 120 of the end portion of the nugget 3 is the position on the line indicating the end portion of the nugget 3 before the spot welding is performed along the plate thickness direction with the center in the plate thickness direction of the spot weld joint as the center. It is a position within a range (within a range indicated by t sum / 4 in FIG. 12A) having a length that is 1 ⁇ 4 times the total plate thickness t sum that is the total thickness of the steel plates 1A and 1B.
  • a length including a gap portion between the steel plates 1A and 1B is expressed as a total thickness t sum .
  • the total thickness t of the steel plates 1A and 1B before spot welding is calculated without including the length of the gap between the steel plates 1A and 1B. Sum .
  • the position of the center in the plate thickness direction of the spot welded joint for example, the center position of the length in the plate thickness direction of the portion passing through the center of the weld mark in the cross section described above can be adopted.
  • the length of the longest part of the iron-based carbide for example, the maximum value of the distance between any two points on the line indicating the end of the iron-based carbide in the cross section can be adopted.
  • the length of the straight line which passes along the position of the gravity center of iron-based carbide Comprising: The maximum value of the length of the straight line between the two points of the line which comprises the edge part of iron-based carbide is set to iron-based carbide. You may employ
  • the square area 123 is defined as described above. This area 123 is an area inside the heat-affected zone 4, and when the plug break occurs in the cross tension test, the crack can be cracked at the initial stage. This is because it occurs.
  • At least one of the steel plates 1A and 1B is the above-described high-strength steel plate.
  • the case where the two steel plates 1A and 1B were spot-welded was mentioned as an example, and was demonstrated.
  • the aforementioned iron-based carbide precipitation conditions can be applied.
  • an example of a method for observing iron carbide will be described.
  • the cross section is polished.
  • an electron micrograph of an area including the square area 123 is taken. From this electron micrograph, the length of the longest part of each iron-based carbide is measured, and the number of iron-based carbides having a longest part length of 0.1 ( ⁇ m) or more is counted. From the number of iron-based carbides, it can be determined whether or not the iron-based carbide precipitation conditions described above are satisfied.
  • the above-described square region 123 is referred to as an iron-based carbide counting region as necessary.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Steel plates A, B, and C shown in Table 1 were prepared.
  • Steel plate A is obtained by applying Al plating to the surface of a hot stamped steel plate having a thickness of 2.0 (mm) and a tensile strength of 1470 MPa.
  • the steel plate B is obtained by applying Al plating to the surface of a hot stamped steel plate having a thickness of 1.6 (mm) and a tensile strength of 1470 MPa.
  • the steel plate C is obtained by applying Zn plating to the surface of a hot stamped steel plate having a thickness of 1.4 (mm) and a tensile strength of 1470 MPa.
  • the steel plates D and E shown in Table 1 were prepared.
  • the steel plate D is obtained by applying Zn plating to the surface of a cold rolled steel plate having a thickness of 1.2 (mm) and a tensile strength of 1180 MPa.
  • the steel plate E is a cold-rolled steel plate having a thickness of 1.4 (mm) and a tensile strength of 980 MPa.
  • Ceq shown in Table 1 is a carbon equivalent shown by the formula (1).
  • Only C content is shown on account of description.
  • Steel plates A to E are steel plates containing the above-described component composition within the above-described upper and lower limits.
  • the strength ratio of normal welded joints is based on CTS of spot welded joints (CTS of welded joints of non-normal welds) formed under the welding conditions indicated by numbers 1-1 to 33 and 2-1 to 18.
  • CTS of the spot welded joint for normal welding The value obtained by subtracting the CTS of the spot welded joint formed under the same conditions as the welding conditions (CTS of the welded joint for normal welding) is used, except that cooling after the main welding and post-energization are not performed.
  • the value obtained by dividing the value by the CTS of the spot welded joint formed by (CTS of the welded joint of non-normal welding) is multiplied by 100.
  • FIG. 5, FIG. 6, and FIG. 10 the type of plot is changed depending on whether or not the normal welded joint strength ratio is improved by 20% or more.
  • the criterion for determining whether or not the normal weld joint strength ratio has improved by 20% or more is that if the normal weld joint strength ratio has improved by 20% or more, the CTS of the non-normal weld joint and the normal weld weld This is because it can be said that there is a significant difference in the CTS of the joint.
  • the length of the longest portion existing in the iron carbide counting region of the spot welded joint formed by performing welding under the welding conditions shown in Tables 2 to 6 is 0.1 ( ⁇ m) or more.
  • the number of iron-based carbides was counted with a scanning electron microscope (SEM). The results are shown in the columns of the number of precipitated iron carbides in Tables 7 and 8.
  • the target position of the electrode was the center of the welding mark.
  • the said 2 steel plate was cut
  • the position of the nugget end portion of the cut surface after the polishing, from the center in the plate thickness direction of the spot welded joint to the plate thickness direction 1/8 times the total plate thickness before welding of the two steel plates.
  • a region in the heat-affected zone of the cut surface after polishing is located at a position 100 ( ⁇ m) away from this position in a direction perpendicular to the tangent at the position of the line indicating the end of the nugget (line indicating the outline of the nugget). Identified from.
  • a copper dome radius type electrode having a radius of curvature of the tip 40 (mm) was used.
  • Steel plates A, B, and C were welded at an applied pressure of 5000 (N) using an electrode having a tip diameter of 8 (mm).
  • Steel plates D and E were welded at an applied pressure of 3500 (N) using an electrode having a tip diameter of 6 (mm). During pressurization, the applied pressure was not changed.
  • the present invention can be used, for example, in industries that use spot welding as a manufacturing technique.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 複数枚の鋼板(1A、1B)を重ね合わせてスポット溶接することにより形成されるスポット溶接継手であって、前記複数枚の鋼板のうち少なくとも1枚の鋼板は、引張強度が750(MPa)~2500(MPa)の高強度鋼板であり、前記高強度鋼板の炭素当量Ceq は、0.20質量%~0.55質量%であり、溶接痕の中心を通り、且つ、鋼板(1A、1B)の板厚方向に沿って切った断面における熱影響部4内の正方形の領域103内に、最長部の長さが0.1(μm)以上である鉄系炭化物が10個以上存在するスポット溶接継手を得ることで、形成されるスポット溶接継手の十字引張力を向上させる。

Description

スポット溶接継手及びスポット溶接方法
 本発明は、複数枚の鋼板を重ね合せてスポット溶接することにより形成される継手に関するものである。
 近年、自動車分野では、低燃費化やCO排出量の削減のため、車体を軽量化することが求められている。また、衝突安全性の向上のため、車体部材を高強度化することが求められている。これらの要求を満たすためには、車体や部品等に高強度鋼板を使用することが有効である。車体の組立や部品の取付け等には、主として、スポット溶接が使われている。引張強度が750MPa以上の鋼板を少なくとも1枚含む複数枚の鋼板をスポット溶接する場合には、溶接継手の強度が問題となる。
 複数枚の鋼板を重ね合わせ、スポット溶接して形成した継手(以下「スポット溶接継手」とも言う。)において、引張強度は重要な特性である。かかる引張強度には、せん断方向に引張荷重を負荷して測定する引張せん断力(TSS)と、剥離方向に引張荷重を負荷して測定する十字引張力(CTS)と、がある。なお、引張せん断力と十字引張力の測定方法は、JIS Z 3136及びJIS Z 3137に規定されている。
 引張強度が270MPa~600MPaの複数枚の鋼板により形成されるスポット溶接継手のCTSは、鋼板の強度の増加に伴い増加する。したがって、引張強度が270MPa~600MPaの鋼板により形成されるスポット溶接継手では、継手強度に関する問題は生じ難い。しかし、引張強度が750MPa以上の鋼板を少なくとも1枚含む複数枚の鋼板により形成されるスポット溶接継手におけるCTSは、鋼板の引張強度が増加しても、増加しないか、又は、減少する。
 一般に、引張強度が750MPa以上の鋼板を少なくとも1枚含む複数枚の鋼板により形成されるスポット溶接継手では、CTSが低下し易い。変形能の低下により溶接部への応力集中が高まることと、溶接部に焼きが入ることにより溶接部の靱性が低下することが、その理由である。このため、引張強度が750MPa以上の鋼板を少なくとも1枚含む複数枚の鋼板により形成されるスポット溶接継手におけるCTSの向上が求められる。
 引張強度が750MPa以上の鋼板を少なくとも1枚含む複数枚の鋼板により形成されるスポット溶接継手における強度と靭性を確保する方法として、本通電の後に、後通電を行う2段通電方法がある。
 特許文献1には、本通電が終了してから一定時間が経過した後に、テンパー通電を行うことにより、スポット溶接継手(ナゲット部及び熱影響部)を焼鈍して、硬さを低下させる方法が記載されている。
 しかし、この方法では、テンパー通電を行う前に、マルテンサイト変態をほぼ完了させる必要がある。このため、本通電の終了後、長い冷却時間が必要になる。さらに、この方法では、ナゲットが軟化してせん断力が低下する。
 また、引張強度が750MPa以上の鋼板を少なくとも1枚含む複数枚の鋼板により形成されるスポット溶接継手における強度と靭性を確保する方法として、溶接後に、溶接とは別の加熱手段で溶接部を加熱する方法がある。特許文献2には、溶接後に、溶接部を高周波で加熱して焼戻し処理する方法が記載されている。
 しかし、この方法では、溶接後に別工程が必要となり作業手順が煩雑になる。また、この方法では、高周波を利用するための特殊な装置が必要となる。さらに、この方法では、ナゲットが軟化してせん断力が低下する。
 また、特許文献3には、本溶接によりナゲットを形成した後に、本溶接電流以上の電流で後通電する方法が記載されている。
 しかし、この方法では、後通電時間を長くすると、ナゲット径が拡大するだけで、組織が通常の溶接と同じになる。
 特許文献4には、引張強度が440MPa以上の鋼板をスポット溶接する方法が記載されている。この方法では、鋼板の成分組成を、C×P≦0.0025、P:0.015%以下、S:0.01%以下に規制する。そして、溶接後、溶接部に300℃×20分程度の熱処理を施す。
 しかし、この方法では、適用可能な鋼板が限定される。さらに、この方法では、溶接に長時間を要して生産性が低い。
 特許文献5には、ナゲット外層域のミクロ組織と、ミクロ組織中の炭化物の平均粒径及び個数密度と、を規定した高強度鋼板(引張強度:750~1850MPa、炭素当量Ceq:0.22~0.55質量%)のスポット溶接継手が記載されている。
 しかし、ナゲットの外側で破断する場合には、ナゲットの組織は何の寄与もしないので、ミクロ組織に係る規定は意味がない。
 特許文献6には、引張強度が900~1850MPa、板厚が1.8~2.8mmの鋼板をスポット溶接する方法が記載されている。この方法では、溶接後、引き続き、溶接電流の0.5倍~0.9倍の電流で、溶接時間の0.3倍~0.5倍の時間、後通電を行う。
 しかし、この方法では、本溶接と後通電との間の時間についての検討が十分になされておらず、継手強度の向上に寄与するものではない。
特開2002-103048号公報 特開2009-125801号公報 特開2010-115706号公報 特開2010-059451号公報 国際公開第2011-025015号 特開2011-5544号公報
 以上のような背景から、従来、引張強度が750MPa~2500MPaの鋼板を少なくとも1枚含む複数枚の鋼板により形成されるスポット溶接継手においては、靱性が不足し易く、十分に高い十字引張力を確保することが難しい。
 そこで、本発明は、750MPa~2500MPaの鋼板を少なくとも1枚含む複数枚の鋼板により形成されるスポット溶接継手の十字引張力を向上させることを目的とする。
 本発明のスポット溶接継手は、複数枚の鋼板を重ね合わせてスポット溶接することにより形成されるスポット溶接継手であって、前記複数枚の鋼板のうち少なくとも1枚の鋼板は、引張強度が750MPa~2500MPaの高強度鋼板であり、前記高強度鋼板の下記(A)式で表される炭素当量Ceqは、0.20質量%~0.55質量%であり、前記スポット溶接により前記鋼板の表面に形成された溶接痕の中心を通り、且つ、前記鋼板の板厚方向に沿って切った断面における熱影響部内の領域であって、前記鋼板の板厚方向、板面方向をそれぞれ縦方向、横方向とする一辺が10(μm)の正方形の領域内に、最長部の長さが0.1(μm)以上である鉄系炭化物が10個以上存在し、前記正方形の領域の中心の位置は、前記断面において、ナゲットの端部の位置から、当該ナゲットの端部を示す線の当該位置における接線に垂直な方向に100(μm)離れた位置であり、前記ナゲットの端部の位置は、当該ナゲットの端部を示す線上の位置のうち、前記スポット溶接継手の前記板厚方向の中心を中心とし、前記板厚方向に沿って、前記複数枚の鋼板の板厚の合計値である総板厚の1/4倍の長さを有する範囲内にある位置であることを特徴とする。
 Ceq=[C]+[Si]/30+[Mn]/20+2[P]+4[S] ・・・(A)
 前記(A)式における[C]、[Si]、[Mn]、[P]、及び[S]は、それぞれC、Si、Mn、P、及びSの各含有量(質量%)である。 
 本発明のスポット溶接方法の第1の例は、複数枚の鋼板を重ね合わせてスポット溶接するスポット溶接方法であって、前記複数枚の鋼板のうち少なくとも1枚の鋼板は、引張強度が750MPa~2500MPaの高強度鋼板であり、前記高強度鋼板の下記(A)式で表される炭素当量Ceqは、0.20質量%~0.55質量%であり、前記重ね合わせた複数枚の鋼板を、溶接電極により、下記(B)式を満たす加圧力F(N)で加圧した状態で、本溶接電流I(kA)を、前記溶接電極に通電する本溶接を行う工程と、前記本溶接が終了すると、下記(B)式を満たす加圧力F(N)を保持して、下記(C)式を満たす本溶接後冷却時間t(msec)、前記複数枚の鋼板を冷却する本溶接後冷却を行う工程と、前記本溶接後冷却が終了すると、下記(B)式を満たす加圧力F(N)を保持して、下記(D)式を満たす後通電電流I(kA)を、下記(E)式を満たす後通電時間t(msec)、前記溶接電極に通電する後通電を行う工程と、前記後通電が終了すると、前記(B)式を満たす加圧力F(N)を、下記(F)式を満たす保持時間t(msec)保持した後、前記加圧力F(N)での加圧を解放する工程と、を有することを特徴とする。
 Ceq=[C]+[Si]/30+[Mn]/20+2[P]+4[S] ・・・(A)
 1960×h≦F≦3920×h ・・・(B)
 7×h+5≦t≦300 ・・・(C)
 0.66×I≦I<I ・・・(D)
 48/{(I/I-0.44}≦t ・・・(E)
 0≦t≦300 ・・・(F)
 前記(A)式における[C]、[Si]、[Mn]、[P]、及び[S]は、それぞれC、Si、Mn、P、及びSの各含有量(質量%)であり、前記(B)式及び前記(C)式におけるhは、前記鋼板の板厚(mm)である。 
 本発明のスポット溶接方法の第2の例は、複数枚の鋼板を重ね合わせてスポット溶接するスポット溶接方法であって、前記複数枚の鋼板のうち少なくとも1枚の鋼板は、引張強度が750MPa~2500MPaの高強度鋼板であり、前記高強度鋼板の下記(A)式で表される炭素当量Ceqは、0.20質量%~0.55質量%であり、前記重ね合わせた複数枚の鋼板を、溶接電極により、下記(B)式を満たす加圧力F(N)で加圧した状態で、下記(C)式を満たす前通電電流I(kA)を、下記(D)式を満たす前通電時間t(msec)、前記溶接電極に通電する前通電を行う工程と、前記前通電が終了すると、下記(B)式を満たす加圧力F(N)を保持して、下記(E)式を満たす前通電後冷却時間t(msec)、前記複数枚の鋼板を冷却する前通電後冷却を行う工程と、前記前通電後冷却が終了すると、下記(B)式を満たす加圧力F(N)を保持して、本溶接電流I(kA)を、前記溶接電極に通電する本溶接を行う工程と、前記本溶接が終了すると、下記(B)式を満たす加圧力F(N)を保持して、下記(F)式を満たす本溶接後冷却時間t(msec)、前記複数枚の鋼板を冷却する本溶接後冷却を行う工程と、前記本溶接後冷却が終了すると、下記(B)式を満たす加圧力F(N)を保持して、下記(G)式を満たす後通電電流I(kA)を、下記(H)式を満たす後通電時間t(msec)、前記溶接電極に通電する後通電を行う工程と、前記後通電が終了すると、前記(B)式を満たす加圧力F(N)を、下記(I)式を満たす保持時間t(msec)保持した後、前記加圧力F(N)での加圧を解放する工程と、を有することを特徴とする。
 Ceq=[C]+[Si]/30+[Mn]/20+2[P]+4[S] ・・・(A)
 1960×h≦F≦3920×h ・・・(B)
 0.40×I≦I<I ・・・(C)
 20≦t ・・・(D)
 0≦t<200+7×h ・・・(E)
 7×h+5≦t≦300 ・・・(F)
 0.66×I≦I<I ・・・(G)
 48/{(I/I-0.4}≦t ・・・(H)
 0≦t≦300  ・・・(I)
 前記(A)式における[C]、[Si]、[Mn]、[P]、及び[S]は、それぞれC、Si、Mn、P、及びSの各含有量(質量%)であり、前記(B)式、前記(E)式、及び前記(F)式におけるhは、前記鋼板の板厚(mm)である。
 本発明によれば、750MPa~2500MPaの鋼板を少なくとも1枚含む複数枚の鋼板により形成されるスポット溶接継手の十字引張力を向上させることができる。
図1は、スポット溶接を開始する際の、2枚の鋼板と溶接電極の配置の一例を示す図である。 図2は、スポット溶接により形成されたナゲットと熱影響部の一例を模式的に示す図である。 図3は、通電パターンの第1の態様例を示す図である。 図4は、凝固してナゲットとなる溶融部の凝固途中の態様の一例を模式的に示す図である。 図5は、本溶接後冷却時間と鋼板の板厚との関係の一例を示す図である。 図6は、後通電時間と、後通電電流を本溶接電流で除した値を自乗した値との関係の第1の例を示す図である。 図7は、後通電時間と、ナゲットの外周部及び熱影響部の脆化の程度との関係の一例を概念的に示す図である。 図8は、通電パターンの第2の態様例を示す図である。 図9は、前通電後冷却時間と鋼板の板厚との関係の一例を示す図である。 図10は、後通電時間と、後通電電流を本溶接電流で除した値を自乗した値との関係の第2の例を示す図である。 図11Aは、非通常溶接の溶接継手の熱影響部の組織の一例を示す図(写真)である。 図11Bは、通常溶接の溶接継手の熱影響部の組織の一例を示す図(写真)である。 図12Aは、鉄系炭化物析出条件の一例を説明する図である。 図12Bは、図12Aの領域Aの部分を拡大して示す図である。
 本発明者らは、本溶接の後に後通電を行う従来の技術では、引張強度が750MPa~2500MPaの鋼板を少なくとも1枚含む複数枚の鋼板により形成されるスポット溶接継手の十字引張力(CTS)を十分に向上させることができない理由について、冶金学的視点及び力学的視点から鋭意調査した。なお、以下の説明では、引張強度が750MPa~2500MPaの鋼板を必要に応じて「高強度鋼板」と称する。 
その結果、前記従来の技術のように、ナゲット内の靱性を改善するだけでは、十字引張試験の際に、ナゲットの内部で生じる低荷重破断を抑制できても、ナゲットの周辺の熱影響部(HAZ)で生じる低荷重破断を十分に抑制できないことが判明した。
 ここで、ナゲットとは、溶接電極間の通電で溶融し、その後、凝固した鋼板の部位のことである。熱影響部とは、Ac1点以上、溶融温度未満に加熱された鋼板の部位のことである。
 このように、本発明者らは、信頼性の高いスポット溶接継手を得るためには、ナゲットの内部だけでなく、ナゲットの周辺部の破断荷重をも併せて改善することが必要であることを見出した。そのために、本実施形態では、溶融部の内周に凝固域が形成された後、凝固域と、凝固域を囲む熱影響部を、高温に、長時間、保持する。
 以下、本発明の実施形態について説明する。以下に説明する各実施形態は、溶融部の内周に形成された凝固域と、当該凝固域を囲む熱影響部とを、高温に長時間保持することを基本とする。ただし、単に、従来の保持時間を超えて長時間保持するだけでは、信頼性の高い溶接継手を得ることはできない。
[高強度鋼板]
まず、スポット溶接に使用する鋼板について説明する。
 (鋼種)
 鋼種は特に限定されない。例えば、2相組織型(例えば、フェライト中にマルテンサイトを含む組織、フェライト中にベイナイトを含む組織)、加工誘起変態型(フェライト中に残留オーステナイトを含む組織)、焼入れ型(マルテンサイト組織)、微細結晶型(フェライト主体組織)等、何れの型の鋼種でもよい。
 本実施形態では、いずれの鋼種の高強度鋼板を用いたスポット溶接継手でも、継手強度の“低下及びばらつき”を抑制して、破断形態を良好なものとするので、信頼性の高い溶接継手を得ることができる。
 なお、高強度鋼板と重ね合わせる鋼板の鋼種も特に限定されない。高強度鋼板の鋼種と異なる鋼種の鋼板でもよい。例えば、高強度鋼板と重ね合わせる鋼板を軟鋼板としてもよい。また、高強度鋼板と重ね合わせる鋼板を、当該高強度鋼板の鋼種と同じ鋼種の鋼板でもよい。
 (引張強度)
 複数枚重ね合せた鋼板のうち少なくとも1枚の鋼板(高強度鋼板)の引張強度は、750MPa~2500MPaとする。通常、高強度鋼板の引張強度が増加するほど、高い継手強度が必要である。スポット溶接継手の十字引張力(CTS)は、590MPa~780MPa級鋼板では、鋼板の強度に比例して増加するが、780MPa以上の強度の鋼板では、減少する。
 高強度鋼板の引張強度が750MPa未満であると、元々、十字引張力が高く、また、スポット溶接継手に対する負荷が小さい。したがって、溶接部における破断形態の劣化や、継手強度に関する問題は生じ難い。よって、高強度鋼板の引張強度を750MPa以上とする。
 高強度鋼板の引張強度が2500MPaを超えると、継手強度の“低下とばらつき”を抑制することが難しくなる。さらに、このことに伴い、溶接部における破断形態の劣化、及び、ナゲット内部での欠陥や割れの発生を抑制することが難しくなる。よって、高強度鋼板の引張強度を2500MPa以下とする。
 なお、高強度鋼板と重ね合せる鋼板の引張強度も特に限定されない。高強度鋼板と重ね合わせる鋼板を、引張強さが750MPa~2500MPaの高強度鋼板としてもよいし、引張強度が750MPa未満の鋼板としてもよい。例えば、自動車分野等で使用される鋼部材である場合、使用される鋼部材に応じて、引張強度を選択すればよい。
 (板厚)
 高強度鋼板の板厚は特に限定されない。例えば、自動車の車体等に一般に用いられている高強度鋼板の板厚(0.5mm~3.2mm)程度であればよい。ただし、高強度鋼板の板厚の増加に伴ってナゲットの周囲での応力集中が増加するので、高強度鋼板の板厚は2.6mm以下が好ましい。
 高強度鋼板と重ね合わせる鋼板の板厚は特に限定されない。重ね合わせる複数枚の鋼板の板厚が、相互に異なっていてもよい。例えば、3枚以上の鋼板を重ね合せる場合、3枚以上の鋼板の各々の板厚が異なっていてもよい。3枚以上の鋼板のうち、少なくとも一枚が高強度鋼板であればよく、その他は軟鋼板でもよい。また、3枚以上の鋼板を重ね合せる場合、少なくとも2枚の鋼板の板厚が同じでもよい。なお、一般に、鋼板の厚さは6mm以下である。
 (炭素当量Ceq)
 高強度鋼板の、以下の(1)式で表される炭素当量Ceqは、0.20質量%~0.55質量%の範囲であるのが好ましい。炭素当量Ceqが0.20質量%未満では、引張強度が、前述した高強度鋼板の引張強度の下限値である750MPa以上の引張強度が得られない。一方、炭素当量Ceqが0.55質量%超では、引張強度が、前述した高強度鋼板の引張強度の上限値である2500MPaを超えるので、好ましくない。高強度鋼板と重ね合せる鋼板のCeqは、どのような値でもよい。
 Ceq=[C]+[Si]/30+[Mn]/20+2[P]+4[S] ・・・(1)
 [C]、[Si]、[Mn]、[P]、及び[S]は、それぞれC、Si、Mn、P、及びSの各含有量(質量%)である。
 (成分組成)
 前述した高強度鋼板の引張強度(750MPa~2500MPa)を確保できる成分組成を選択すればよい。スポット溶接後の鋼部材が、主として、自動車分野等で使用されることを考慮すれば、高強度鋼板の成分組成は、以下の成分組成が好ましい。なお、以下において、%は質量%を意味する。
 ((C:0.07質量%~0.45質量%))
 Cは、鋼の引張強度を高める元素である。鋼中のCの含有量が多いほど、ナゲットの強度を高めることができる。しかし、鋼中のCの含有量が0.07質量%未満であると、750MPa以上の引張強度を得ることが難しい。一方、鋼中のCの含有量が0.45質量%を超えると、高強度鋼板の加工性が低下する。したがって、高強度鋼板のCの含有量は、0.07質量%~0.45質量%が好ましい。
 ((Si:0.001質量%~2.50質量%))
 Siは、固溶強化及び組織強化により、鋼の強度を高める元素である。しかし、鋼中のSiの含有量が2.50質量%を超えると、鋼の加工性が低下する。一方、鋼中のSiの含有量を工業的に0.001質量%未満に低減することは技術的に難しい。したがって、高強度鋼板のSiの含有量は、0.001質量%~2.50質量%が好ましい。
 ((Mn:0.8質量%~5.0質量%))
 Mnは、鋼の強度を高める元素である。しかし、鋼中のMnの含有量が5.0質量%を超えると、鋼の加工性が劣化する。一方、鋼中のMnの含有量が0.8質量%未満であると、750MPa以上の引張強度を得るのが難しい。したがって、高強度鋼板のMnの含有量は、0.8質量%~5.0質量%が好ましい。
 ((P:0.03質量%以下))
 Pは、ナゲットを脆化する元素である。鋼中のPの含有量が0.03質量%を超えると、ナゲット内の割れが生じ易くなり、十分に高い継手強度を得ることが難しい。したがって、高強度鋼板のPの含有量は、0.03質量%以下が好ましい。なお、鋼中のPの含有量を0.001質量%未満に低減することは、コストの点で、好ましくない。したがって、高強度鋼板のPの含有量は、0.001質量%以上が好ましい。ただし、高強度鋼板のPの含有量を、0.001質量%未満にしてもよい。
 ((S:0.01質量%以下))
 Sは、ナゲットを脆化する元素である。また、Sは、Mnと結合して粗大なMnSを形成し、鋼の加工性を阻害する元素である。鋼中のSの含有量が0.01質量%を超えると、ナゲット内の割れが生じ易くなることにより、十分に高い継手強度を得ることが難しくなる。さらに、鋼の加工性が低下する。したがって、高強度鋼板のSの含有量は、0.01質量%以下が好ましい。なお、鋼中のSの含有量を0.0001質量%未満に低減することは、コストの点で、好ましくない。したがって、高強度鋼板のSの含有量は、0.0001質量%以上が好ましい。ただし、高強度鋼板のSの含有量を、0.0001質量%未満にしてもよい。
 ((N:0.01質量%以下))
 Nは、粗大な窒化物を形成し、鋼の加工性を劣化させる元素である。また、Nは、溶接時のブローホールの発生原因になる元素である。鋼中のNの含有量が0.01質量%を超えると、鋼の加工性の劣化やブローホールの発生が顕著となる。したがって、高強度鋼板のNの含有量は、0.01質量%以下が好ましい。なお、鋼中のNの含有量を0.0005質量%未満に低減することは、コストの点で、好ましくない。したがって、高強度鋼板のNの含有量は、0.0005質量%以上が好ましい。ただし、高強度鋼板のNの含有量を、0.0005質量%未満にしてもよい。
 ((O:0.01質量%以下))
 Oは、酸化物を形成し、鋼の加工性を劣化させる元素である。鋼中のOの含有量が0.01質量%を超えると、鋼の加工性の劣化が顕著となる。したがって、高強度鋼板のOの含有量は0.01質量%以下が好ましい。なお、高強度鋼板のOの含有量を0.0005質量%未満に低減することは、コストの点で、好ましくない。したがって、高強度鋼板のOの含有量は、0.0005質量%以上が好ましい。ただし、高強度鋼板のOの含有量を、0.0005質量%未満にしてもよい。
 ((Al:1.00質量%以下))
 Alは、フェライト安定化元素であり、ベイナイト変態時のセメンタイト析出抑制等の効果がある。このため、鋼組織の制御のために含有されている。また、Alは脱酸材としても機能する。その一方で、Alは酸化しやすい。Alの含有量が1.00質量%を超えていると、介在物が増加することにより、鋼の加工性が劣化しやすくなる。したがって、高強度鋼板のAlの含有量は、1.00質量%以下であることが好ましい。
 高強度鋼板は、以上の主要元素の他に、必要に応じて、以下の元素を選択的に含有してもよい。
 ((Ti:0.005質量%~0.20質量%))
 ((Nb:0.005質量%~0.20質量%))
 ((V :0.005質量%~0.20質量%))
 Ti、Nb、及び、Vは、析出強化と、フェライト結晶粒の成長の抑制による細粒強化と、再結晶の抑制による転位強化と、の少なくとも何れか1つにより、鋼の強度の上昇に寄与する元素である。しかし、いずれの元素も、鋼中の含有量が0.005質量%未満であると、添加効果が発現し難い。一方、鋼中の含有量が0.20質量%を超えると、鋼の加工性を阻害する。したがって、高強度鋼板におけるこれらの元素の含有量は、いずれも、0.005質量%~0.20質量%が好ましい。
 ((B:0.0001質量%~0.01質量%))
 Bは、鋼組織を制御して鋼を強化する元素である。しかし、鋼中のBの含有量が0.0001質量%未満であると、添加効果が発現し難い。一方、鋼中のBの含有量が0.01質量%を超えると、添加効果が飽和する。したがって、高強度鋼板のBの含有量は、0.0001質量%~0.01質量%が好ましい。
 ((Cr:0.01質量%~2.0質量%))
 ((Ni:0.01質量%~2.0質量%))
 ((Cu:0.01質量%~2.0質量%))
 ((Mo:0.01質量%~0.8質量%))
 Cr、Ni、Cu、及びMoは、鋼の強度の向上に寄与する元素である。これらの元素は、例えば、Mn(強度向上元素)の一部に代えて用いることができる。しかし、いずれの元素も、鋼中の含有量が0.01質量%未満であると、強度の向上に寄与しない。
 したがって、高強度鋼板におけるこれらの元素の含有量は、いずれも、0.01質量%以上が好ましい。一方、Cr、Ni、及びCuの鋼中の含有量が2.0質量%を超えると、鋼中のMoの含有量が0.8質量%を超えている場合に、酸洗時や熱間加工時に支障が生じることがある。したがって、高強度鋼板のCr、Ni、及びCuの含有量は、2.0質量%以下が好ましい。また、高強度鋼板のMoの含有量は、0.8質量%以下が好ましい。
 ((Ca、Ce、Mg、及びREM(rare earth metal)の少なくとも1種:合計で0.0001質量%~1.0質量%))
 Ca、Ce、Mg、及びREMは、脱酸後の酸化物の大きさや、熱延鋼板中に存在する硫化物の大きさを小さくして、鋼の加工性の向上に寄与する元素である。しかし、鋼中におけるこれらの元素の含有量が合計で0.0001質量%未満であると、添加効果が発現し難い。一方、鋼中におけるこれらの元素の含有量が合計で1.0質量%を超えると、鋼の加工性が低下する。したがって、高強度鋼板におけるこれらの元素の含有量は、合計で、0.0001質量%~1.0質量%が好ましい。
 なお、REMは、ランタノイド系列に属する元素であり、REM及びCeは、製鋼の段階でミッシュメタルとして溶鋼に添加することができる。また、LaやCeの他に、ランタノイド系列の元素が複合で含有されていてもよい。
 高強度鋼板における以上の各元素以外の残部は、Fe及び不可避的不純物とすればよい。なお、前述のCr、Ni、Cu、Mo、B、Ti、Ni、及びVについては、いずれも前記下限値未満の微量を不純物として含有することが許容される。また、Ca、Ce、Mg、La、及びREMについても、その合計量の前記下限値未満の微量を不純物として含有することが許容される。
 以上、高強度鋼板の成分組成について説明したが、高強度鋼板と重ね合わせる鋼板の成分組成は、どのような成分組成でもよい。
 (めっき)
 高強度鋼板の表面にめっき層が形成されていてもよい。さらに、高強度鋼板と重ね合わせる鋼板の表面にめっき層が形成されていてもよい。めっき層の種類は、例えば、Zn系、Zn-Fe系、Zn-Ni系、Zn-Al系、Zn-Mg系、Pb-Sn系、Sn-Zn系、Al-Si系等が挙げられる。
 Zn系めっき層を備えた高強度鋼板としては、例えば、合金化溶融亜鉛めっき鋼板、溶融亜鉛めっき鋼板、及び電気亜鉛めっき鋼板、等が挙げられる。高強度鋼板の表面にめっき層が形成されていると、スポット溶接継手が優れた耐食性を示す。めっき層が、高強度鋼板の表面に合金化した亜鉛めっき層である場合、優れた耐食性が得られ、また、塗料の密着性が良好になる。
 めっき層の目付け量も特に限定されない。高強度鋼板の片面におけるめっき層の目付け量を100g/m以下とすることが好ましい。高強度鋼板の片面における目付け量が100g/mを超えると、めっき層が溶接の際の障害となる場合がある。めっき層は、高強度鋼板の片面だけに形成されていても、両面に形成されていてもよい。なお、めっき層の表層に無機系又は有機系の皮膜(例えば、潤滑皮膜等)等が形成されていてもよい。以上のめっき層に関する条件は、高強度鋼板と重ね合わせられる鋼板についても同じである。
 次に、スポット溶接方法の例を説明する。
<スポット溶接方法の第1の例>
 まず、スポット溶接方法の第1の例を説明する。
[スポット溶接]
 図1は、スポット溶接を開始する際の、少なくとも1枚の高強度鋼板を含む2枚の鋼板と溶接電極の配置の一例を示す図である。図1に示すように、鋼板1A、1Bを、板面が互いに向き合うように重ね合わせる。重ね合わせられた鋼板1A、1Bを、上下から溶接電極2A、2Bで挟み、所要の加圧力を加えて、溶接電極2A、2Bを通電する。
 図2は、スポット溶接により形成されたナゲットと熱影響部の一例を模式的に示す図である。図3は、溶接電極に通電する際の通電パターンの第1の態様例を示す図である。なお、ここでは、説明を簡単にするために、少なくとも1枚の高強度鋼板を含む2枚の鋼板をスポット溶接する場合を例に挙げて示す。しかし、前述したように、少なくとも1枚の高強度鋼板を含む3枚以上の鋼板をスポット溶接する場合であっても、以下に示す方法と同一の方法でスポット溶接を行うことができる。
 図1に示すようにして、鋼板1A、1Bと、溶接電極2A、2Bを配置する。そして、例えば、図3に示す通電パターンで通電すると、図2に示すように、鋼板1A、1Bの境界に、ナゲット3が形成される。さらに、ナゲット3の周囲に、熱影響部4が形成される。なお、鋼板1A、1Bの少なくとも何れか一方は、前述した高強度鋼板である。
 図3に示す通電パターンは、以下の通りである。なお、以下の電流は、溶接電極2A及び溶接電極2Bの間を流れる電流である。
 まず、電流値が本溶接電流I(kA)になるまで、電流値を0(ゼロ)から漸増(アップスロープ)させる。そして、電流値を本溶接電流I(kA)にして本溶接を行う。本溶接が終了すると、電流値を0(ゼロ)にし、電流値が0(ゼロ)の状態を本溶接後冷却時間(凝固時間)t(msec)保持する。本溶接後冷却時間t(msec)が経過すると、電流値を後通電電流I(kA)にし、電流値が後通電電流I(kA)の状態を後通電時間t(msec)保持し、後通電を行う。後通電時間t(msec)が経過すると、電流値を0(ゼロ)にする。
 なお、図3に示す保持時間t(msec)は、後述するように、後通電を終了した後、加圧力F(N)を保持する時間である。
 また、電流値が本溶接電流I(kA)になるまで、電流値を0(ゼロ)から漸増(アップスロープ)させずに、電流値を直ちに本溶接電流I(kA)にしてもよい。
 (加圧力:F
 重ね合わせた複数枚の鋼板を、溶接電極2A及び2Bにより、以下の(2)式を満たす加圧力Fで加圧しながら、本溶接電流Iを通電する。
  1960×h≦F≦3920×h ・・・(2)
   h:鋼板の板厚(mm)
 溶接電極2A、2Bの鋼板1A、1Bに対する加圧力Fは、ナゲット3の内部及び熱影響部4での欠陥や割れの発生に大きく影響する。加圧力Fが、「1960×h」(N)未満であると、ナゲット3の内部及び熱影響部4での欠陥及び割れの発生を抑制することが難しくなる。その結果、スポット溶接継手の破断形態を改善できず、継手強度の向上、及び継手強度のばらつきの低減を達成し難い。
 一方、加圧力Fが「3920×h」(N)を超えると、鋼板1A、1Bの領域のうち、溶接電極2A、2Bが接触する領域が大きくへこむ。したがって、外観が損なわれるだけでなく、継手強度が低下する。また、「3430×h」(N)を超える加圧力Fを得るには、溶接ガン(溶接電極2A、2Bに加圧力を加えて通電する装置)が、剛性の高いロボットアームを有する必要がある。したがって、本実施形態では、溶接電極2A、2Bの鋼板1A、1Bに対する加圧力Fを、「1960×h」(N)以上「3920×h」(N)以下とする。
 なお、溶接電極2A、2Bの先端径が大きくなり過ぎると、溶接電極2A、2Bの先端での面圧が低下する。これにより、破断形態の改善が難しくなる。さらに、破断形態の改善に伴う、継手強度の向上、及び、継手強度のばらつきの低減を達成することが難しくなる。したがって、溶接電極2A、2Bの先端径は6mm~8mm程度が好ましい。
 前記(2)式において、hは、鋼板の板厚(mm)である。2枚の鋼板の板厚が異なる(図2に示す例では、鋼板1A、1Bの板厚が異なる)場合がある。この場合、例えば、2枚の鋼板の板厚の算術平均値(鋼板1Aの板厚と鋼板1Bの板厚の算術平均値)を前記(2)式中の「h」として用いればよい。3枚以上の複数枚の鋼板をスポット溶接する場合には、例えば、当該複数枚の鋼板の板厚の総和を求め、当該総和を2分した値を前記(2)式の「h」として用いればよい。
 (本溶接電流:I
 以上の加圧力Fで鋼板1A、1Bを加圧しながら、溶接電極2A、2Bに、本溶接電流Iを通電し、本溶接を行う。本溶接電流IW及び本溶接時間(本溶接電流Iを流している時間)は特に限定されない。従来、所要の大きさのナゲットを安定して得るのに採用している溶接電流、通電時間と同程度の溶接電流、通電時間を、本溶接電流I及び本溶接時間として採用すればよい。
 なお、例えば、本溶接時間における本溶接電流を自乗した値の本溶接時間における平均値の平方根(すなわち、本溶接電流の実効値)、又は、本溶接電流の最大値を、本溶接電流Iとして採用することができる。
 スポット溶接設備については、従来の一般的なスポット溶接設備をそのまま用いることができる。また、溶接電極等についても、従来の溶接電極をそのまま用いることができる。電源についても特に限定されず、交流電源、直流インバータ、交流インバータ等を用いることができる。
 (本溶接後冷却時間:t
 本溶接電流Iを、所定の時間、溶接電極2A、2Bに通電し、当該通電が終了した直後、本溶接のとき(本溶接電流Iを通電しているとき)の加圧力Fをそのまま保持しながら、通電を止める。そして、以下の式(3)を満たす本溶接後冷却時間t(msec)、その状態を保持する。これにより、溶融部を、当該溶融部の外周(すなわち溶融部の他の領域との境界)から凝固させて、内側に未凝固域が残る殻状の凝固域を形成する。なお、以下の説明では、溶融部の他の領域との境界を、必要に応じて溶融境界と称する。
  7×h+5≦t≦300 ・・・(3)
   h:鋼板の板厚(mm)
 本溶接電流Iの通電が終了した直後から、溶融部の凝固が、溶融境界から始まる。図4は、凝固してナゲットとなる溶融部の凝固途中の態様の一例を模式的に示す図である。
 鋼板1A、1Bに加圧力Fで加圧しながら溶接電極2A、2Bに本溶接電流Iを通電すると、凝固してナゲットとなる溶融部が形成される。その後、通電が終了すると、溶融境界3aから凝固が始まり、本溶接後冷却時間tが経過すると、凝固域5が形成される。この時点で、凝固域5の内部には、未凝固域6が残る。凝固域5の周囲には、熱影響部4が形成される。
 未凝固域6が凝固してナゲットが形成される。本実施形態では、未凝固域6が存在しているときに、後通電を開始する。即ち、本溶接後冷却時間tが、後通電の開始時の凝固域5の幅(板面方向の長さ)を決定することになる。
 炭素量が比較的多い高強度鋼板では、本溶接後の本溶接後冷却時間tで冷却される過程でマルテンサイト変態が生じる。このとき、旧オーステナイト粒が大きいと、見かけのマルテンサイト変態温度が上昇する。このマルテンサイト変態温度が上昇することによって、自動焼戻し(オートテンパー)が生じやすくなる。したがって、後述する後通電によって熱影響部4の靱性が向上する。この効果を得るためには、熱影響部4がオーステナイト単相である必要がある。そのために、本溶接後冷却時間tを、300(msec)以下にする必要がある。
 また、本溶接後冷却時間tが300(msec)を超えると、温度が低下して凝固域5が拡大する。したがって、ナゲット3の外周部及びナゲット3の周辺の熱影響部4で後述する後通電の効果(組織改善・偏析改善の効果)を得るために、長時間の後通電を要する。よって、スポット溶接継手の生産性が低下する。このように、300(msec)を超える本溶接後冷却時間tは現実的でない。
 一方、本溶接後冷却時間tが「7×h+5」(msec)未満であると、溶融部の凝固が十分でなくなり、凝固域5の幅が狭くなる。また、本溶接後冷却時間tが、「7×h+5」(msec)未満であると、旧オーステナイト粒が大きくなり過ぎ、後述する後通電によって熱影響部4の靱性が逆に低下する。したがって、後述する後通電の効果(組織改善・偏析改善の効果)が得られず、継手強度を十分に向上することが難しくなる。また、鋼板1A、1Bの冷却速度は、鋼板の板厚hが大きいほど、遅くなる。一般に、鋼板1A、1Bの冷却時間は、鋼板の板厚hが大きいほど、指数関数的に長くなる。しかしながら、スポット溶接継手で採用される鋼板の一般的な厚みの範囲(例えば、0.5mm~3.2mm)では、鋼板1A、1Bの冷却時間と、鋼板の板厚hとの関係を線形近似することができる。そこで、本実施形態では、(3)式に示すように、本溶接後冷却時間tの下限値を鋼板の板厚hを用いた線形式で表現する。
 前記(1)式に示す炭素当量Ceqが0.3質量%以上である種々の板厚の鋼板を2枚重ね合わせて、サーボガンタイプの溶接機を用い、種々の通電パターンで、本溶接、冷却、後通電をこの順で行ってスポット溶接を行った。そして、JIS Z 3137に規定の方法で、スポット溶接継手のCTS(十字引張力)を測定した。以下の説明では、このスポット溶接継手を必要に応じて第1の非通常溶接の溶接継手と称する。
 また、この第1の非通常溶接の溶接継手のナゲット径と同一のナゲット径を有するスポット溶接継手を、前記炭素当量及び前記板厚を有する2枚の鋼板を重ね合わせて、本溶接後の冷却と後通電とを行わない他は、前記と同じ方法でスポット溶接を行った。そして、JIS Z 3137に規定の方法で、スポット溶接継手のCTS(十字引張力)を測定した。以下の説明では、このスポット溶接継手を必要に応じて第1の通常溶接の溶接継手と称する。
 第1の非通常溶接の溶接継手におけるCTSと、後通電をしていない第1の通常溶接の溶接継手におけるCTSとを比較した。
 図5は、本溶接後冷却時間tと鋼板の板厚hとの関係の一例を示す図である。
 図5において、第1の非通常溶接の溶接継手におけるCTSが、第1の通常溶接の溶接継手におけるCTSに比べ、20%以上向上した場合の、本溶接後冷却時間t及び鋼板の板厚hに基づくプロットを○で示す。また、第1の非通常溶接の溶接継手におけるCTSが、第1の通常溶接の溶接継手におけるCTSに比べ、向上するが向上代が20%未満の場合、又は向上しなかった場合の、本溶接後冷却時間t及び鋼板の板厚hに基づくプロットを▲で示す。図5に示すように、横軸h(mm)はであり、縦軸はt(msec)である。
 図5において、○と▲の境界線を回帰曲線として求めた。その結果から、前記(3)式の下限値を定める線形式を得た。
 以上のことから、本実施形態では、本溶接後冷却時間tを、「7×h+5」(msec)以上、300(msec)以下とする。
 ただし、スポット溶接継手の生産性の低下を避けるため、本溶接後冷却時間tSを、「7×h+5」(msec)以上250(msec)以下にするのがより好ましい。また、凝固域5の形成を促すには、本溶接後冷却時間tの間、無通電とすることが好ましい。ただし、凝固域5の形成速度と温度を調整するため、本溶接後冷却時間t、本溶接電流Iの0.5倍以下の電流を、溶接電極2A、2Bに通電してもよい。
 なお、(3)式の鋼板の板厚hとして、例えば、前記(2)式の鋼板の板厚hと同じ値を採用する。また、本溶接後冷却時間t、本溶接のときの加圧力Fをそのまま保持すれば、作業効率上、好ましい。しかしながら、本溶接後冷却時間tにおける加圧力Fを、前記(2)式を満たす範囲で、本溶接のときの加圧力Fと異ならせてもよい。
 (後通電電流:I、後通電時間:t
 本溶接後冷却時間tが経過して、所要の幅の凝固域5が形成された直後、本溶接のときの加圧力F(N)を保持して、以下の(4)式を満たす後通電電流IP(kA)を、以下の(5)式を満たす後通電時間t(msec)、溶接電極2A、2Bに通電し、後通電を行う。
  0.66×I≦I<I ・・・(4)
   I:本溶接電流(kA)
  48/(α-0.44)≦t ・・・(5)
   α=I/I
 したがって、(5)式を、以下のように書き換えることができる。
  48/(I/I-0.44)≦t ・・・(5)
 前述したように、後通電時間tにおける加圧力Fを、前記(2)式を満たす加圧力とする。この加圧力Fは、通常、本溶接のとき(本溶接電流Iを通電するとき)、及び溶融部を溶融境界から凝固させて、殻状の凝固域5を形成するとき(本溶接後冷却時間t)における加圧力Fと同じにすると、作業効率上、好ましい。しかし、前記(2)式を満たす範囲であれば、後通電時間tにおける加圧力Fを必ずしもこれらのときと同じにする必要はない。
 後通電電流Iは、殻状の凝固域5の組織や偏析と、凝固が完了したナゲット3の組織や偏析と、熱影響部4の組織や偏析とに大きく影響する。
 後通電電流Iが「0.66×I」(kA)未満であると、凝固域5及び熱影響部4は入熱が十分でなく、組織や偏析を改善する効果(組織改善・偏析改善の効果)が得られない。
 一方、後通電電流Iが本溶接電流I(kA)以上であると、凝固域5及び熱影響部4が昇温しすぎる。さらに、凝固域5が再溶融する。したがって、組織や偏析を改善する効果(組織改善・偏析改善の効果)が得られない。
 よって、本実施形態では、後通電電流Iを、「0.66×I」(kA)以上「I」(kA)未満とする。ただし、組織や偏析を改善する効果をより確実に得るために、後通電電流Iを、「0.70×I」(kA)以上「0.98×I」(kA)以下にするのが好ましい。なお、本溶接電流Iとして実効値を採用する場合には、後通電電流Iも実効値を採用するのが好ましい。また、本溶接電流Iとして最大値を採用する場合には、後通電電流Iも最大値を採用するのが好ましい。
 本実施形態のスポット溶接方法では、後通電電流Iを、前記式(5)を満たす時間(後通電時間t(msec))、溶接電極2A、2Bに通電する。これにより、凝固域5及び熱影響部4における組織と偏析を改善し、溶接継手の信頼性を高める。
 後通電時間tについては、特許文献5の段落[0087]に、「200msecを超えると、継手強度の向上及び継手強度のばらつき低減の効果が小さくなり、また、生産性が低下してしまう。」と記載されている。即ち、特許文献5には、後通電時間tを200(msec)以下にすべきである旨が開示されている。
 しかし、近年、高強度鋼板のCTSの向上は喫緊の重要課題である。そこで、本発明者らは、従来の常識や偏見にとらわれず、スポット溶接継手の継手強度をさらに高める方法について、鋭意検討した。
 特許文献5には、ナゲット内部の組織について記載されている。しかしながら、プラグ破断する場合におけるCTSの改善策については記載されていない。そこで、本発明者らは、プラグ破断する場合において、さらにCTSをより高くする後通電について、系統的な実験を行った。
 (本溶接後冷却時間:t)の欄で述べたように、前記(1)式に示す炭素当量Ceqが0.3質量%以上である種々の板厚の鋼板を2枚重ね合わせて、サーボガンタイプの溶接機を用い、種々の通電パターンで、本溶接、冷却、後通電をこの順で行ってスポット溶接を行った。そして、JIS Z 3137に規定の方法で、スポット溶接継手のCTS(十字引張力)を測定した。(本溶接後冷却時間:t)の欄で述べたように、以下の説明では、このスポット溶接継手を必要に応じて第1の非通常溶接の溶接継手と称する。
 また、(本溶接後冷却時間:t)の欄で述べたように、この第1の非通常溶接の溶接継手のナゲット径と同一のナゲット径を有するスポット溶接継手を、前記炭素当量及び前記板厚を有する2枚の鋼板を重ね合わせて、本溶接後の冷却と後通電とを行わない他は、前記と同じ方法でスポット溶接を行った。そして、JIS Z 3137に規定の方法で、スポット溶接継手のCTS(十字引張力)を測定した。(本溶接後冷却時間:t)の欄で述べたように、以下の説明では、このスポット溶接継手を必要に応じて第1の通常溶接の溶接継手と称する。
 第1の非通常溶接の溶接継手におけるCTSと、後通電をしていない第1の通常溶接の溶接継手におけるCTSとを比較した。
 図6は、後通電時間tと、後通電電流Iを本溶接電流Iで除した値の自乗した値((I/I)との関係の第1の例を示す図である。
 図6において、第1の非通常溶接の溶接継手におけるCTSが、第1の通常溶接の溶接継手におけるCTSに比べ、20%以上向上した場合の、後通電時間t、後通電電流I、及び本溶接電流Iに基づくプロットを○で示す。また、第1の非通常溶接の溶接継手におけるCTSが、第1の通常溶接の溶接継手におけるCTSに比べ、向上するが向上代が20%未満の場合、又は向上しなかった場合の、後通電時間t、後通電電流I、及び本溶接電流Iに基づくプロットを▲で示す。図6に示すように、横軸は(I/Iであり、縦軸はt(ms)である。
 スポット溶接継手におけるプラグ破断は、熱影響部4で生じる。したがって、プラグ破断強度の差異は、熱影響部4でのき裂の伝搬に対する抵抗力の差、すなわち、熱影響部4の靭性の差に起因すると推定した。そこで、熱影響部4の靱性に大きく影響するPとSの濃度分布をFE-EPMAで測定した。その結果、図6において、○で示される条件(後通電時間t、後通電電流I、及び本溶接電流I)により得られた第1の非通常溶接継手の熱影響部4では、第1の通常溶接の溶接継手の熱影響部4に比べ、PとSの偏析が大幅に軽減されていることが解った。すなわち、後通電で発生する熱により、ナゲット3の外周部及び熱影響部4が高温に保持されて、PとSの偏析が大幅に軽減されたと推測される。
 後通電によって、溶融境界の内周に形成された凝固域5が再溶融すると、再凝固した再凝固域においてPとSの偏析が増大し、ナゲット3の靭性が低下する。その結果、低荷重でも、ナゲット3の内部で破断する。それ故、後通電電流Iは、凝固域5が溶融しない値の電流であることが要求される。すなわち、I>Iであることが要求される。I/Iは、後通電時の入熱量(ナゲット3の大きさ)を決める指標である。そこで、I/Iをα(<1)と表現する。
 後通電で発生する熱は、後通電電流Iの自乗に比例する。それ故、図6においては、横軸に(I/Iを採用した。また、後通電で発生する熱の一部は、溶接電極2A、2B、及び鋼板1A、1B全体に逃げていく。この逃げていく熱量をβとおく。そうすると、後通電時におけるナゲット3及び熱影響部4の昇温に作用する熱量Qは、以下の(6)式で表すことができる。
  Q∝(α-β)×t ・・・(6)
   α=I/I
 前述したように、(3)式のようにして本溶接後冷却時間tを定めることにより、後通電による自動焼戻しが起こりやすくなる。この自動焼戻しによる熱影響部4の靱性の向上のために必要な時間、後通電電流Iを通電する必要がある。
 そして、ナゲット3の外周部、及びその周囲の熱影響部4におけるP、Sの偏析を軽減し、ナゲット3及び熱影響部4の靭性を十分に改善するためには、一定量の熱量Aを超える熱量が必要である。
 したがって、スポット溶接部の靭性を改善するための条件は、以下の(7)式を変形して(8)式となる。
  A<(α-β)×t ・・・(7)
  A/(α-β)<t ・・・(8)
 図6において、○と▲の境界線を回帰曲線として求めた(すなわち、(8)式の係数A及びβを求めた)。その結果から、前記(5)式を得た。
 ナゲット3の外周部及び熱影響部4で、PとSが拡散して偏析が低減するためには、この領域を1050℃以上に加熱する必要がある。そのため、α≧0.66なる条件が必要である。
 図7は、後通電時間tと、ナゲット3の外周部及び熱影響部4の脆化の程度との関係の一例を概念的に示す図である。図7では、PとSの偏析が軽減し、靱性が向上する経緯を概念的に示す。図7において、縦軸は、偏析や不十分な自動焼戻しによる脆化の程度を示す。縦軸の下の値であるほど、偏析が軽減するとともに自動焼戻しが十分に行われ、靭性が向上する。ナゲット3の外周部では,溶接部の形成のための本溶接により、ほぼ定常的な温度(≒融点)に達し、昇温しきっている。これに対し、熱影響部4では、本溶接により十分に昇温されていない。
 さらに、後通電の開始時、熱影響部4の温度は、凝固直後で高温のナゲット3の外周部の温度よりも低い。そのため,後通電により、熱影響部4を高温に保持して熱処理するためには,ナゲット3の外周部を熱処理するのに比べ長時間を要する。このことが、図6に示す結果が得られる理由であると推定される。
 後通電時間tが、200(msec)未満であると、前述したα(=I/I)の選択の範囲が狭くなる(図6を参照)。したがって、後通電時間tを、200(msec)以上にするのが好ましく、400(msec)以上にするのがより好ましい。後通電時間tの上限値は、特に定めないが、スポット溶接継手の生産性を考慮すれば、2000(msec)以下が好ましい。
 (保持時間:t
 以上の条件で後通電を行った後、相互に重ね合わせた鋼板1A、1Bを、溶接電極2A、2Bで、以下の(9)式で規定する保持時間t(msec)、加圧保持した後、加圧を解放する。
  0≦t≦300 ・・・(9)
 なお、(9)式に示す範囲の保持時間tで、鋼板1A、1Bを溶接電極2A、2Bで加圧保持する際の加圧力F(N)は、例えば、前記(2)式で規定する範囲である。
 保持時間tは、ナゲット3及び熱影響部4の組織や、ナゲット3内の欠陥や割れの発生に影響する。保持時間tが300(msec)を超えると、スポット溶接継手の生産性が低下する。したがって、本実施形態では、保持時間tを300(msec)以下とする。保持時間tは、空冷を早期に開始して、所期の効果を安定して得るためには短い方が望ましい。
 なお、現存の溶接機では、溶接ガンの動作に遅れが生じるため、実際の保持時間tは、通常、設定した保持時間tより長くなる。したがって、このことを考慮に入れて、保持時間tを設定する必要がある。
 また、後通電のときにもナゲット3の温度が低下する。このため、保持時間tを短くした場合でも収縮欠陥や割れが生じにくい。したがって、溶接電極2A、2Bを鋼板1A、1Bから即時に離隔させることが可能であれば、保持時間tを0(ゼロ)にしてもよい。保持時間を0(ゼロ)にしない場合には、(9)式は、以下の(9a)式になる。
  0<t≦300 ・・・(9a)
<スポット溶接方法の第2の例>
 次に、スポット溶接方法の第2の例を説明する。スポット溶接方法の第1の例では、本溶接と後通電との2回の通電を行う場合を例に挙げて説明した。これに対し、スポット溶接方法の第2の例では、前通電を行った後に、本溶接と後通電とを行う場合を例に挙げて説明する。このように、本例は、第1の例に対し、前通電が追加されたことと、前通電が追加されたことにより、前記(5)式を変更することが可能になったこととが異なる。したがって、本例の説明において、第1の例と同一の部分については、図1~図7に付した符号と同一の符号を付す等して詳細な説明を省略する。
 本例においても、図1に示すように、鋼板1Aと鋼板1Bを、板面が互いに向き合うように重ね合わせる。重ね合わせられた鋼板1Aと鋼板1Bを、上下から溶接電極2Aと溶接電極2Bで挟み、所要の加圧力を加えて通電する。本例でも、説明を簡単にするために、少なくとも1枚の高強度鋼板を含む2枚の鋼板をスポット溶接する場合を例に挙げて示す。ただし、少なくとも1枚の高強度鋼板を含む3枚以上の鋼板をスポット溶接する場合であっても、以下に示す方法と同一の方法でスポット溶接を行うことができる。例えば、少なくとも2枚の高強度鋼板を含む3枚以上の鋼板のうち、少なくとも2枚の高強度鋼板同士を重ねた状態にして、当該3枚以上の鋼板をスポット溶接することができる。
 一般に高強度鋼板は、電気抵抗が大きいため、本溶接の際に、発熱しやすい。また、本溶接の際に、相互に隣り合う2枚の鋼板の間の隙間が存在し得る。本溶接の際に、溶融金属の内圧が、コロナボンドに作用する外圧を超えると、散りが発生する。前通電の目的の一つは、この散りの発生を抑制することである。
 図8は、溶接電極に通電する際の通電パターンの第2の態様例を示す図である。
 まず、電流値を前通電電流I(kA)にし、電流値が前通電電流I(kA)の状態を前通電時間t(msec)保持し、前通電を行う。前通電時間t(msec)が経過すると、電流値を0(ゼロ)にし、電流値が0(ゼロ)の状態を前通電後冷却時間t(msec)保持する。前通電後冷却時間tが経過すると、電流値を本溶接電流I(kA)にして本溶接を行う。本溶接が終了すると、電流値を0(ゼロ)にし、電流値が0(ゼロ)の状態を本溶接後冷却時間(凝固時間)t(msec)保持する。本溶接後冷却時間t(msec)が経過すると、電流値を後通電電流I(kA)にし、電流値が後通電電流I(kA)の状態を後通電時間t(msec)保持し、後通電を行う。後通電時間t(msec)が経過すると、電流値を0(ゼロ)にする。なお、図8に示す保持時間t(msec)は、第1の例で説明したように、後通電を終了した後、加圧力F(N)を保持する時間である。また、前通電の開始時に、電流値を直ちに前通電電流I(kA)にせず、電流値が前通電電流I(kA)になるまで、電流値を0(ゼロ)から漸増(アップスロープ)させてもよい。
 (加圧力:F
 重ね合わせた複数枚の鋼板を、溶接電極2A及び2Bにより、前記(2)式を満たす加圧力Fで加圧しながら、前通電電流Iを通電する。前通電においては、隣り合う2枚の鋼板1A、1Bの隙間を抑制するために、重ね合わせた複数枚の鋼板を加圧する。本実施形態では、前通電における加圧力Fの範囲を、本溶接及び後通電における加圧力Fの範囲と同じ範囲にすることにより、作業効率を高めるようにする。
 (前通電電流:I、前通電時間:t
 以上の加圧力Fで鋼板1A、1Bを加圧しながら、溶接電極2A、2B間に、以下の(10)式を満たす前通電電流I(kA)を、以下の(11)式を満たす前通電時間t(msec)、通電し、前通電を行う。
  0.40×I≦I<I ・・・(10)
   I:本溶接電流(kA)
  20≦t ・・・(11)
 前通電電流Iを本溶接電流I以上にすると、前通電の際に散りが発生する虞がある。一方、前通電電流Iを本溶接電流Iの0.4倍未満にすると、鋼板1A、1Bに与える熱量が十分でなくなる。そうすると、鋼板1A、1Bを軟化させることができず、前述した加圧により、鋼板1A、1Bの間の隙間を十分に低減することができなくなり、本溶接の際に散りが発生する虞がある。
 以上のことから、本実施形態では、前通電電流Iを、本溶接電流Iの0.4倍以上、本溶接電流I未満とする。ただし、散りの発生をより確実に抑制するために、前通電電流Iを、本溶接電流Iの0.6倍以上、本溶接電流Iの0.95倍以下の範囲にするのが好ましい。
 なお、本溶接電流Iとして実効値を採用する場合には、前通電電流Iも実効値を採用するのが好ましい。また、本溶接電流Iとして最大値を採用する場合には、前通電電流Iも最大値を採用するのが好ましい。
 前通電時間tが20(msec)未満であると、鋼板1A、1Bに与える熱量が十分でなくなる。そうすると、鋼板1A、1Bを軟化させることができず、前述した加圧により、鋼板1A、1Bの間の隙間を十分に低減することができなくなり、本溶接の際に散りが発生する虞がある。
 前記(10)式に示す範囲の本溶接電流Iであれば、前通電時間tが長くても、前溶接の際に散りが発生することを抑制することができる。したがって、前通電時間tの上限値は、特に定めないが、スポット溶接継手の生産性を考慮すれば、300(msec)以下が好ましい。
 (前通電後冷却時間:t
 前通電電流Iを、前通電時間t、通電し、当該通電が終了した直後、前通電のとき(前通電電流Iを通電しているとき)の加圧力Fをそのまま保持しながら、通電を止める。そして、以下の(12)式を満たす前通電後冷却時間t(msec)、その状態を保持する。
  0≦t<200+7×h ・・・(12)
   h:鋼板の板厚(mm)
 コロナボンドの成長のために、前通電後冷却時間tを0(ゼロ)超の時間とすることができる。ただし、前通電の際に散りの発生がなければ、前通電後冷却時間tを0(ゼロ)にすることができる。また、前通電後冷却時間tが「200+7×h」(msec)以上になると、鋼板1A、1Bが冷却され過ぎ、本溶接の際に、鋼板1A、1Bが馴染まなくなる虞がある。鋼板1A、1Bの冷却速度は、鋼板の板厚hが大きいほど、遅くなる。第1の例の(本溶接後冷却時間:t)の欄で説明したように、スポット溶接継手で採用される鋼板の一般的な厚みの範囲(例えば、0.5mm~3.2mm)では、鋼板1A、1Bの冷却時間と、鋼板の板厚hとの関係を線形近似することができる。そこで、本実施形態では、(12)式に示すように、前通電後冷却時間tの上限値を鋼板の板厚hを用いた線形式で表現する。
 前記(1)式に示す炭素当量Ceqが0.3質量%以上である種々の板厚の鋼板を2枚重ね合わせて、それら2枚の鋼板の間の一部又は全部の領域に種々の態様で隙間を設け、サーボガンタイプの溶接機を用い、種々の通電パターンで、前通電、冷却、本溶接、冷却、後通電をこの順で行ってスポット溶接を行った。そして、本溶接の際において散りが発生するか否かを調査した。
 図9は、前通電後冷却時間tと鋼板の板厚hとの関係の一例を示す図である。
 図9において、前述した調査において散りが発生しなかった場合の、前通電後冷却時間t及び鋼板の板厚hに基づくプロットを○で示す。また、前述した調査において散りが発生した場合の、前通電後冷却時間t及び鋼板の板厚hに基づくプロットを▲で示す。図9に示すように、横軸h(mm)はであり、縦軸はt(msec)である。
 図9において、○と▲の境界線を回帰曲線として求めた。その結果から、前記(12)式の上限値を定める線形式を得た。
 以上のことから、本実施形態では、前通電後冷却時間tを、0(ゼロ)以上、200+7×h」(msec)以下とする。
 なお、(12)式の鋼板の板厚hとして、例えば、前記(2)式の鋼板の板厚hと同じ値を採用する。また、前通電後冷却時間tに、前通電のときの加圧力Fをそのまま保持すれば、作業効率上、好ましい。しかしながら、前通電後冷却時間tにおける加圧力Fを、前記(2)式を満たす範囲で、前通電のときの加圧力Fと異ならせてもよい。
 また、前通電後冷却時間tを確保する場合には、(12)式は、以下の(12a)式になる。
  0<t<200+7×h ・・・(12a)
 (本溶接電流:I
 前通電後冷却時間tが経過した直後、前通電のときの加圧力Fをそのまま保持しながら、溶接電極2A、2B間に、本溶接電流Iを通電し、本溶接を行う。第1の例で説明したように、本溶接電流I及び本溶接時間(本溶接電流Iを通電している時間)は特に限定されない。なお、本溶接時間に、前通電のときの加圧力Fをそのまま保持すれば、作業効率上、好ましい。しかしながら、本溶接時間における加圧力Fを、前記(2)式を満たす範囲で、前通電のときの加圧力Fと異ならせてもよい。
 (本溶接後冷却時間:t
 本溶接電流Iを、所定の時間、通電し、当該通電が終了した直後、前通電及び本溶接のときの加圧力Fをそのまま保持しながら、通電を止める。そして、前記(3)式を満たす本溶接後冷却時間t(msec)、その状態を保持する。
 本溶接後冷却時間tを決定する方法は、第1の例と同じである。なお、第1の例で説明したように、スポット溶接継手の生産性の低下を避けるため、本溶接後冷却時間tを、「7×h+5」(msec)以上250(msec)以下にするのがより好ましい。また、凝固域5の形成を促すには、本溶接後冷却時間tの間、無通電とすることが好ましいが、凝固域5の形成速度と温度を調整するため、本溶接後冷却時間tに、本溶接電流Iの0.5倍以下の電流を通電してもよい。また、本溶接後冷却時間tに、前通電及び本溶接のときの加圧力Fをそのまま保持すれば、作業効率上、好ましい。しかしながら、本溶接後冷却時間tにおける加圧力Fを、前記(2)式を満たす範囲で、前通電及び本溶接のときの加圧力Fと異ならせてもよい。
 (後通電電流:I、後通電時間:t
 本溶接後冷却時間tが経過して、所要の幅の凝固域5が形成された直後、前通電及び本溶接のときの加圧力F(N)を保持して、以下の(13)式を満たす後通電電流I(kA)を、以下の(14)式を満たす後通電時間t(msec)、通電し、後通電を行う。
  0.66×I≦I<I ・・・(13)
   I:本溶接電流(kA)
  48/(α-0.4)≦t ・・・(14)
   α=I/I
 したがって、(14)式は、以下の式のように書き換えることができる。
  48/(I/I-0.4)≦t ・・・(14)
 (13)式は、前記(4)式と同じである。すなわち、後通電電流Iを決定する方法は、第1の例と同じである。なお、第1の例で説明したように、組織や偏析を改善する効果をより確実に得るために、後通電電流Iを、「0.70×I」(kA)以上「0.98×I」(kA)以下にするのが好ましい。また、後通電時間tに、前通電及び本溶接のときの加圧力Fをそのまま保持すれば、作業効率上、好ましい。しかしながら、後通電時間tにおける加圧力Fを、前記(2)式を満たす範囲で、前通電及び本溶接のときの加圧力Fと異ならせてもよい。
 前記(1)式に示す炭素当量Ceqが0.3質量%以上である種々の板厚の鋼板を2枚重ね合わせて、サーボガンタイプの溶接機を用い、種々の通電パターンで、前通電、冷却、本溶接、冷却、後通電をこの順で行ってスポット溶接を行った。そして、JIS Z 3137に規定の方法で、スポット溶接継手のCTS(十字引張力)を測定した。以下の説明では、このスポット溶接継手を必要に応じて第2の非通常溶接の溶接継手と称する。
 この第2の非通常溶接の溶接継手のナゲット径と同一のナゲット径を有するスポット溶接継手を、前記炭素当量及び前記板厚を有する2枚の鋼板を重ね合わせて、本溶接後の冷却と後通電とを行わない他は、前記と同じ方法でスポット溶接を行った。そして、JIS Z 3137に規定の方法で、スポット溶接継手のCTS(十字引張力)を測定した。以下の説明では、このスポット溶接継手を必要に応じて第2の通常溶接の溶接継手と称する。
 第2の非通常溶接の溶接継手におけるCTSと、後通電をしていない第2の通常溶接の溶接継手におけるCTSとを比較した。
 図10は、後通電時間tと、後通電電流Iを本溶接電流Iで除した値を自乗した値((I/I)との関係の第2の例を示す図である。
 図10において、第2の非通常溶接の溶接継手におけるCTSが、第2の通常溶接の溶接継手におけるCTSに比べ、20%以上向上した場合の、後通電時間t、後通電電流I、及び本溶接電流Iに基づいたプロットを○で示す。また、第2の非通常溶接の溶接継手におけるCTSが、第2の通常溶接の溶接継手におけるCTSに比べ、向上するが向上代が20%未満の場合、又は向上しなかった場合の、後通電時間t、後通電電流I、及び本溶接電流Iに基づいたプロットを▲で示す。図10に示すように、横軸は(I/Iであり、縦軸はt(msec)である。
 図10は、図6に対応する図である。第1の例と同様に、図10において、○と▲の境界線を回帰曲線として求めた(すなわち、(8)式の係数A及びβを求めた)。その結果から、前記(14)式を得た。
 (14)式は、前記(5)式に対応する。前記(5)式では係数βは「0.44」である。これに対し、(14)式では係数βは「0.4」である。したがって、第1の例に比べて第2の例の方が、後通電時間tの下限値が小さくなる。前通電を行うことにより熱影響部4に対する総入熱量が大きくなるためであると考えられる。
 なお、第1の例で説明したように、後通電時間tが、200(msec)未満であると、前述したα(=I/I)の選択の範囲が狭くなる(図10を参照)。したがって、後通電時間tを、200(msec)以上にするのが好ましく、400(msec)以上にするのがより好ましい。後通電時間tの上限値は、特に定めないが、スポット溶接継手の生産性を考慮すれば、2000(msec)以下が好ましい。
 また、本例のように、(14)式を採用すれば、後通電時間tの下限値を小さくすることができる。ただし、例えば、前通電を行う場合と行わない場合の後通電時間tを統一することにより、後通電時間tの設定の間違いを防止するために、本例においても(14)式ではなく、前記(5)式を採用してもよい。
 (保持時間:t
 以上の条件で後通電を行った後、相互に重ね合わせた鋼板1A、1Bを、溶接電極2A、2Bで、前記(9)式で規定される保持時間t(msec)、加圧保持した後、加圧を解放する。
  0≦t≦300 ・・・(9)
 保持時間tを決定する方法は、第1の例と同じである。なお、第1の例で説明したように、実際の保持時間tが、設定した保持時間tより長くなることを考慮に入れて、保持時間tを設定する必要がある。また、第1の例で説明したように、保持時間tを0(ゼロ)にしてもよい。
<スポット溶接継手>
 次に、本実施形態のスポット溶接継手について説明する。なお、以下の説明では、前記第1の通常溶接の溶接継手と前記第2の通常溶接の溶接継手を総称する場合、これらを必要に応じて通常溶接の溶接継手と称する。また、前記第1の非通常溶接の溶接継手と前記第2の非通常溶接の溶接継手を総称する場合、これらを必要に応じて非通常溶接の溶接継手と称する。
 スポット溶接方法の第1の例及び第2の例のようにしてスポット溶接継手を形成すると、熱影響部(HAZ)における靱性の向上が認められた。本発明者らは、その原因を探るために、前記通常溶接の溶接継手と、前記非通常溶接の溶接継手の熱影響部の組織を電子顕微鏡で観察した。ただし、ここでは、前記非通常溶接の溶接継手のうち、CTSが、前記通常溶接の溶接継手のCTSの20%以上向上する前記非通常溶接の溶接継手を採用した。
 図11Aは、前記非通常溶接の溶接継手(前記第1の非通常溶接の溶接継手)の熱影響部の組織の一例を示す図(写真)である。また、図11Bは、前記通常溶接(前記第1の通常溶接の溶接継手)の溶接継手の熱影響部の組織の一例を示す図(写真)である。図11A及び図11Bに示すように、CTSが、前記通常溶接の溶接継手のCTSの20%以上向上する前記非通常溶接の溶接継手の熱影響部では、前記通常溶接の溶接継手に比べ、鉄系炭化物が多く存在することが確認できた。このことは、前記第1の非通常溶接でも、前記第2の非通常溶接でも確認できた。ここでいう鉄系炭化物は、主にセメンタイト(FeC)である。ただし、鉄系炭化物は、セメンタイトに限定されない。例えば、ε炭化物(Fe2.4C)等が鉄系炭化物に含まれる場合がある。また、MnやCr等の他の金属が鉄系炭化物に含まれる場合がある。
 前記(4)式及び(5)式(前記(13)式又は(14)式)の条件で後通電を行うことにより、熱影響部4への入熱が大きくなり、熱影響部4における最高到達温度を高くすることができる。したがって、旧オーステナイト粒が大きくなるため、見かけのマルテンサイト変態温度が上昇する。この見かけのマルテンサイト変態温度が上昇することによって、後通電後の冷却過程において、比較的高温で、熱影響部4における変態が生じ、自動焼戻し(オートテンパー)が生じやすくなる。これにより、微細な鉄系炭化物の析出が多くみられることになる。このように、本発明者らは、熱影響部4における微細な鉄系炭化物の析出が、熱影響部4における靱性の向上に寄与していることを見出した。
 そこで、本発明者らは、CTSが、通常溶接の溶接継手のCTSの20%以上向上する複数の非通常溶接の溶接継手の熱影響部における鉄系炭化物の析出状態を調査した。その結果、CTSが、通常溶接の溶接継手のCTSの20%以上向上する非通常溶接の溶接継手であれば、以下に説明する鉄系炭化物析出条件を必ず満たすことを確認した。
 図12Aは、鉄系炭化物析出条件の一例を説明する図である。図12Bは、図12Aの領域Aの部分を拡大して示す図である。
 図12Aは、スポット溶接により鋼板1A、1Bの表面に形成された溶接痕の中心を通り、且つ、鋼板1A、1Bの板厚方向に沿って切った断面を模式的に示す図である。溶接痕の中心としては、例えば、溶接電極2A、2Bの(最先端の領域の)狙い位置(打点位置)を採用することができる。また、実際に形成された溶接痕の輪郭を円で近似し、当該円の中心を溶接痕とすることができる。
 このような断面における熱影響部4内の領域であって、鋼板1、2の板厚方向、板面方向をそれぞれ縦方向、横方向とする一辺が10μmの正方形の領域123内に、最長部の長さが0.1(μm)以上である鉄系炭化物が10個以上析出されている(存在している)ことを、前記鉄系炭化物析出条件とする。
 ここで、正方形の領域123の中心の位置は、前記断面において、ナゲット3の端部の位置120から、ナゲット3の端部を示す線の当該位置120における接線121に垂直な方向に100(μm)離れた位置102である。
 また、ナゲット3の端部の位置120は、ナゲット3の端部を示す線上の位置のうち、スポット溶接継手の板厚方向の中心を中心とし、板厚方向に沿って、スポット溶接を行う前の鋼板1A、1Bの板厚の合計値である総板厚tsumの1/4倍の長さを有する範囲内(図12Aのtsum/4で示す範囲内)の位置である。なお、図12Aでは、表記の都合上、鋼板1A、1Bの間の隙間の部分を含めた長さを総板厚tsumとして表記する。しかし、実際には、前述したように、鋼板1A、1Bの間の隙間の部分の長さを含めずに、スポット溶接を行う前の鋼板1A、1Bの板厚の合計値を総板厚tsumとする。
 スポット溶接継手の板厚方向の中心の位置としては、例えば、前述した断面における、溶接痕の中心を通る部分の板厚方向の長さの中央の位置を採用することができる。
 また、鉄系炭化物の最長部の長さとしては、例えば、前記断面において、鉄系炭化物の端部を示す線の任意の2点間の距離の最大値を採用することができる。また、前記断面において、鉄系炭化物の重心の位置を通る直線の長さであって、鉄系炭化物の端部を構成する線の2点間の直線の長さの最大値を、鉄系炭化物の最長部の長さとして採用してもよい。
 以上のようにして正方形の領域123を定めるのは、かかる領域123は、熱影響部4の内部の領域であり、かつ、十字引張試験において、プラグ破断が生じる際に、初期の段階でき裂が発生する領域だからである。
 なお、鋼板1A、1Bの少なくとも何れか一方は、前述した高強度鋼板である。また、図12A、図12Bに示す例では、2枚の鋼板1A、1Bをスポット溶接する場合を例に挙げて説明した。しかしながら、少なくとも1枚の高強度鋼板を含む3枚以上の鋼板をスポット溶接する場合でも、前述した鉄系炭化物析出条件を適用することができる。
 鉄系炭化物の観察の方法の一例を説明する。まず、前記断面を研磨する。その後、正方形の領域123を含む領域の電子顕微鏡写真を撮影する。この電子顕微鏡写真から、各鉄系炭化物の最長部の長さを測定し、最長部の長さが0.1(μm)以上である鉄系炭化物の個数を数える。この鉄系炭化物の個数から、前述した鉄系炭化物析出条件を満たすか否かを判断することができる。なお、以下の説明では、前述した正方形の領域123を必要に応じて鉄系炭化物計数領域と称する。
 なお、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実現することができる。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1に示す鋼板A、B、Cを準備した。鋼板Aは、板厚:2.0(mm)、引張強度:1470MPa級のホットスタンプ鋼板の表面にAlめっきを施したものである。鋼板Bは、板厚:1.6(mm)、引張強度:1470MPa級のホットスタンプ鋼板の表面にAlめっきを施したものである。鋼板Cは、板厚:1.4(mm)、引張強度:1470MPa級のホットスタンプ鋼板の表面にZnめっきを施したものである。また、表1に示す鋼板D、Eを準備した。鋼板Dは、板厚:1.2(mm)、引張強度:1180MPa級の冷延鋼板の表面にZnめっきを施したものである。鋼板Eは、板厚:1.4(mm)、引張強度:980MPa級の冷延鋼板である。
 なお、表1に示すCeqは、(1)式で示される炭素当量である。また、表1では、表記の都合上、Cの含有量のみを示す。鋼板A~Eは、前述した成分組成を、前述した上下限の範囲内で含有する鋼板である。
Figure JPOXMLDOC01-appb-T000001
 同鋼種、同板厚の組み合わせで、2枚の鋼板を重ね合わせ、表2~6に示す番号1-1~33、2-1~18の溶接条件にて、サーボガンタイプの溶接機を用いてスポット溶接を行った。そして、JIS Z 3137に規定の方法で、スポット溶接継手のCTS(十字引張力)を測定した。測定結果を表7、8のCTSの欄及び通常溶接継手強度比の欄に示す。
 表7、8において、通常溶接継手強度比は、番号1-1~33、2-1~18に示す溶接条件にて形成されたスポット溶接継手のCTS(非通常溶接の溶接継手のCTS)から、本溶接後の冷却と後通電とを行わない他は、当該溶接条件と同じ条件にて形成されたスポット溶接継手のCTS(通常溶接の溶接継手のCTS)を減算した値を、当該溶接条件にて形成されたスポット溶接継手のCTS(非通常溶接の溶接継手のCTS)で割った値に、100を掛けたものである。尚、図5、図6、及び図10においても、この通常溶接継手強度比が20%以上向上したか否かによってプロットの種別を変えている。通常溶接継手強度比が20%以上向上したか否かを判定基準としているのは、通常溶接継手強度比が20%以上向上していれば、非通常溶接の溶接継手のCTSと通常溶接の溶接継手のCTSに有意差があるといえるからである。
 また、表2~6に示す溶接条件にて溶接を行うことにより形成されたスポット溶接継手の前記鉄系炭化物計数領域内に存在する、最長部の長さが0.1(μm)以上である鉄系炭化物の数を走査型電子顕微鏡(SEM)にて数えた。その結果を表7、8の鉄系炭化物析出個数の欄に示す。
 前記鉄系炭化物計数領域を得るために、電極の狙い位置を溶接痕の中心とした。そして、当該溶接痕の中心を通り、且つ、2枚の鋼板の板厚方向に沿うように、当該2枚の鋼板を切断し、切断面を研磨した。この研磨後の切断面を走査型電子顕微鏡で観察し、前記鉄系炭化物計数領域を確定した。まず、前記研磨後の切断面のナゲットの端部の位置であって、スポット溶接継手の板厚方向の中心から板厚方向に、2枚の鋼板の溶接前の総板厚の1/8倍の長さだけ離れた2つの位置のうちの1つを特定した。この位置から、ナゲットの端部を示す線(ナゲットの輪郭を示す線)の当該位置における接線に垂直な方向に100(μm)離れた位置を、前記研磨後の切断面の熱影響部内の領域から特定した。そして、この位置を中心とする領域であって、2枚の鋼板の板厚方向、板面方向をそれぞれ縦方向、横方向とする一辺が10μmの正方形の領域を前記鉄系炭化物計数領域とした。また、鉄系炭化物の端部を示す線の任意の2点間の距離の最大値を最長部とした。
 全ての溶接において、先端の曲率半径:40(mm)の銅製のドームラジアス型の電極を用いた。鋼板A、B、及びCは、先端径8(mm)の電極を用い、加圧力:5000(N)で溶接した。鋼板D、Eは、先端径6(mm)の電極を用い、加圧力:3500(N)で溶接した。なお、加圧中は、加圧力を変えないようにした。
 また、表5、6に示す番号2-1~20の溶接条件(前通電を行う溶接条件)でスポット溶接を行う際には、2枚の鋼板の間に隙間を挿入し、本溶接時における散りの発生の有無を調査した。調査結果を表8の「隙間を入れた場合の散りの有無」の欄に示す。厚みが2(mm)の2枚のスペーサを、電極の狙い位置を介して、間隔を有して相互に対向するように、2枚の鋼板の間に配置する。スペーサと電極の狙い位置との間隔を20(mm)とした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表7、8に示すように、番号1-4~8、1-12~18、1-20~29、及び、1-31~33、2-5~7、2-12、2-13の発明例では、前述したようにして規定する要件が満たされている(表7、8参照)。したがって、通常のスポット溶接による溶接継手の継手強度に比べて高い継手強度(20%以上の通常溶接継手強度比)を有する溶接継手が得られている。
 なお、鋼板中のPの含有量が0.03質量%を超える場合と、Sの含有量が0.01質量%を超える場合には、溶接条件に関わらず、20%以上の通常溶接継手強度比が得られなかった。また、炭素当量Ceq及びその他の成分組成については、前述した範囲でない場合に、高強度鋼板の特性(引張強度、加工性等)が低下することが確認された。
 本発明は、例えば、スポット溶接を製造技術として用いる産業に利用することができる。

Claims (3)

  1.  複数枚の鋼板を重ね合わせてスポット溶接することにより形成されるスポット溶接継手であって、
     前記複数枚の鋼板のうち少なくとも1枚の鋼板は、引張強度が750MPa~2500MPaの高強度鋼板であり、
     前記高強度鋼板の下記(A)式で表される炭素当量Ceqは、0.20質量%~0.55質量%であり、
     前記スポット溶接により前記鋼板の表面に形成された溶接痕の中心を通り、且つ、前記鋼板の板厚方向に沿って切った断面における熱影響部内の領域であって、前記鋼板の板厚方向、板面方向をそれぞれ縦方向、横方向とする一辺が10(μm)の正方形の領域内に、最長部の長さが0.1(μm)以上である鉄系炭化物が10個以上存在し、
     前記正方形の領域の中心の位置は、前記断面において、ナゲットの端部の位置から、当該ナゲットの端部を示す線の当該位置における接線に垂直な方向に100(μm)離れた位置であり、
     前記ナゲットの端部の位置は、当該ナゲットの端部を示す線上の位置のうち、前記スポット溶接継手の前記板厚方向の中心を中心とし、前記板厚方向に沿って、前記複数枚の鋼板の板厚の合計値である総板厚の1/4倍の長さを有する範囲内にある位置であることを特徴とするスポット溶接継手。
     Ceq=[C]+[Si]/30+[Mn]/20+2[P]+4[S] ・・・(A)
     前記(A)式における[C]、[Si]、[Mn]、[P]、及び[S]は、それぞれC、Si、Mn、P、及びSの各含有量(質量%)である。
  2.  複数枚の鋼板を重ね合わせてスポット溶接するスポット溶接方法であって、
     前記複数枚の鋼板のうち少なくとも1枚の鋼板は、引張強度が750MPa~2500MPaの高強度鋼板であり、
     前記高強度鋼板の下記(A)式で表される炭素当量Ceqは、0.20質量%~0.55質量%であり、
     前記重ね合わせた複数枚の鋼板を、溶接電極により、下記(B)式を満たす加圧力F(N)で加圧した状態で、本溶接電流I(kA)を、前記溶接電極に通電する本溶接を行う工程と、
     前記本溶接が終了すると、下記(B)式を満たす加圧力F(N)を保持して、下記(C)式を満たす本溶接後冷却時間t(msec)、前記複数枚の鋼板を冷却する本溶接後冷却を行う工程と、
     前記本溶接後冷却が終了すると、下記(B)式を満たす加圧力F(N)を保持して、下記(D)式を満たす後通電電流I(kA)を、下記(E)式を満たす後通電時間t(msec)、前記溶接電極に通電する後通電を行う工程と、
     前記後通電が終了すると、前記(B)式を満たす加圧力F(N)を、下記(F)式を満たす保持時間t(msec)保持した後、前記加圧力F(N)での加圧を解放する工程と、を有することを特徴とするスポット溶接方法。
     Ceq=[C]+[Si]/30+[Mn]/20+2[P]+4[S] ・・・(A)
     1960×h≦F≦3920×h ・・・(B)
     7×h+5≦t≦300 ・・・(C)
     0.66×I≦I<I ・・・(D)
     48/{(I/I-0.44}≦t ・・・(E)
     0≦t≦300 ・・・(F)
     前記(A)式における[C]、[Si]、[Mn]、[P]、及び[S]は、それぞれC、Si、Mn、P、及びSの各含有量(質量%)であり、前記(B)式及び前記(C)式におけるhは、前記鋼板の板厚(mm)である。
  3.  複数枚の鋼板を重ね合わせてスポット溶接するスポット溶接方法であって、
     前記複数枚の鋼板のうち少なくとも1枚の鋼板は、引張強度が750MPa~2500MPaの高強度鋼板であり、
     前記高強度鋼板の下記(A)式で表される炭素当量Ceqは、0.20質量%~0.55質量%であり、
     前記重ね合わせた複数枚の鋼板を、溶接電極により、下記(B)式を満たす加圧力F(N)で加圧した状態で、下記(C)式を満たす前通電電流I(kA)を、下記(D)式を満たす前通電時間t(msec)、前記溶接電極に通電する前通電を行う工程と、
     前記前通電が終了すると、下記(B)式を満たす加圧力F(N)を保持して、下記(E)式を満たす前通電後冷却時間t(msec)、前記複数枚の鋼板を冷却する前通電後冷却を行う工程と、
     前記前通電後冷却が終了すると、下記(B)式を満たす加圧力F(N)を保持して、本溶接電流I(kA)を、前記溶接電極に通電する本溶接を行う工程と、
     前記本溶接が終了すると、下記(B)式を満たす加圧力F(N)を保持して、下記(F)式を満たす本溶接後冷却時間t(msec)、前記複数枚の鋼板を冷却する本溶接後冷却を行う工程と、
     前記本溶接後冷却が終了すると、下記(B)式を満たす加圧力F(N)を保持して、下記(G)式を満たす後通電電流I(kA)を、下記(H)式を満たす後通電時間t(msec)、前記溶接電極に通電する後通電を行う工程と、
     前記後通電が終了すると、前記(B)式を満たす加圧力F(N)を、下記(I)式を満たす保持時間t(msec)保持した後、前記加圧力F(N)での加圧を解放する工程と、を有することを特徴とするスポット溶接方法。
     Ceq=[C]+[Si]/30+[Mn]/20+2[P]+4[S] ・・・(A)
     1960×h≦F≦3920×h ・・・(B)
     0.40×I≦I<I ・・・(C)
     20≦t ・・・(D)
     0≦t<200+7×h ・・・(E)
     7×h+5≦t≦300 ・・・(F)
     0.66×I≦I<I ・・・(G)
     48/{(I/I-0.4}≦t ・・・(H)
     0≦t≦300  ・・・(I)
     前記(A)式における[C]、[Si]、[Mn]、[P]、及び[S]は、それぞれC、Si、Mn、P、及びSの各含有量(質量%)であり、前記(B)式、前記(E)式、及び前記(F)式におけるhは、前記鋼板の板厚(mm)である。
     
PCT/JP2014/064616 2013-06-05 2014-06-02 スポット溶接継手及びスポット溶接方法 WO2014196499A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US14/889,111 US20160082543A1 (en) 2013-06-05 2014-06-02 Spot-welded joint and spot welding method
RU2015155581A RU2633414C2 (ru) 2013-06-05 2014-06-02 Точечно-сварное соединение и способ точечной сварки
ES14807362.0T ES2663500T3 (es) 2013-06-05 2014-06-02 Estructura unida soldada por puntos y método de soldadura por puntos
CA2912591A CA2912591C (en) 2013-06-05 2014-06-02 Spot-welded joint and spot welding method
BR112015028782A BR112015028782A2 (pt) 2013-06-05 2014-06-02 junta soldada por pontos e método de soldagem
MYPI2015704012A MY183966A (en) 2013-06-05 2014-06-02 Spot-welded joint and spot welding method
EP14807362.0A EP3006154B1 (en) 2013-06-05 2014-06-02 Spot welded joined structure and spot welding method
MX2015015832A MX2015015832A (es) 2013-06-05 2014-06-02 Junta soldada por punto y metodo de soldadura por puntos.
JP2015521438A JP5987982B2 (ja) 2013-06-05 2014-06-02 スポット溶接継手及びスポット溶接方法
KR1020157032845A KR101805284B1 (ko) 2013-06-05 2014-06-02 스폿 용접 조인트 및 스폿 용접 방법
CN201480030432.5A CN105263663B (zh) 2013-06-05 2014-06-02 点焊接头以及点焊方法
ZA2015/08065A ZA201508065B (en) 2013-06-05 2015-10-30 Spot welded joint and spot welding method
US16/145,696 US11027361B2 (en) 2013-06-05 2018-09-28 Spot-welded joint and spot welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-118886 2013-06-05
JP2013118886 2013-06-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/889,111 A-371-Of-International US20160082543A1 (en) 2013-06-05 2014-06-02 Spot-welded joint and spot welding method
US16/145,696 Division US11027361B2 (en) 2013-06-05 2018-09-28 Spot-welded joint and spot welding method

Publications (1)

Publication Number Publication Date
WO2014196499A1 true WO2014196499A1 (ja) 2014-12-11

Family

ID=52008141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064616 WO2014196499A1 (ja) 2013-06-05 2014-06-02 スポット溶接継手及びスポット溶接方法

Country Status (14)

Country Link
US (2) US20160082543A1 (ja)
EP (1) EP3006154B1 (ja)
JP (1) JP5987982B2 (ja)
KR (1) KR101805284B1 (ja)
CN (1) CN105263663B (ja)
BR (1) BR112015028782A2 (ja)
CA (1) CA2912591C (ja)
ES (1) ES2663500T3 (ja)
MX (1) MX2015015832A (ja)
MY (1) MY183966A (ja)
RU (1) RU2633414C2 (ja)
TW (1) TWI587954B (ja)
WO (1) WO2014196499A1 (ja)
ZA (1) ZA201508065B (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047475A (ja) * 2015-09-03 2017-03-09 新日鐵住金株式会社 スポット溶接方法
WO2017038981A1 (ja) * 2015-09-03 2017-03-09 新日鐵住金株式会社 スポット溶接方法
JP2017047476A (ja) * 2015-09-03 2017-03-09 新日鐵住金株式会社 スポット溶接方法
WO2017073793A1 (ja) * 2015-10-30 2017-05-04 新日鐵住金株式会社 可動加圧部材を有するスポット溶接電極、及びそれを用いたスポット溶接方法
CN107921572A (zh) * 2015-08-27 2018-04-17 杰富意钢铁株式会社 电阻点焊方法及焊接构件的制造方法
CN108136535A (zh) * 2015-10-16 2018-06-08 新日铁住金株式会社 点焊接头和点焊方法
WO2019054116A1 (ja) * 2017-09-13 2019-03-21 Jfeスチール株式会社 抵抗スポット溶接方法
WO2021210541A1 (ja) * 2020-04-15 2021-10-21 株式会社神戸製鋼所 抵抗溶接部材の製造方法
WO2022215103A1 (ja) * 2021-04-05 2022-10-13 日本製鉄株式会社 抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法
JP7513229B1 (ja) 2023-01-30 2024-07-09 Jfeスチール株式会社 溶接継手の製造方法および溶接継手
WO2024162195A1 (ja) * 2023-01-30 2024-08-08 Jfeスチール株式会社 溶接継手の製造方法および溶接継手

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2014012776A (es) * 2012-04-25 2014-11-21 Nippon Steel & Sumitomo Metal Corp Junta de soldadura por puntos.
JP5987982B2 (ja) * 2013-06-05 2016-09-07 新日鐵住金株式会社 スポット溶接継手及びスポット溶接方法
KR101906084B1 (ko) * 2014-12-01 2018-10-08 제이에프이 스틸 가부시키가이샤 저항 스폿 용접 방법
KR101979558B1 (ko) * 2015-10-21 2019-05-16 닛폰세이테츠 가부시키가이샤 저항 스폿 용접 방법
DE102016208026A1 (de) * 2016-05-10 2017-11-16 Volkswagen Aktiengesellschaft Schweißelektrode, Verfahren zum Widerstandspunktschweißen und Kraftfahrzeug
MX2018015129A (es) * 2016-06-09 2019-08-01 Jfe Steel Corp Metodo de soldadura por puntos de resistencia.
JP6055154B1 (ja) * 2016-08-29 2016-12-27 オリジン電気株式会社 接合部材の製造方法及び接合部材製造装置
ES2845692T3 (es) * 2016-12-22 2021-07-27 Outokumpu Oy Método de fabricación de un compuesto multicapa de metal-polímero soldable
KR102279421B1 (ko) * 2017-06-30 2021-07-20 아뻬랑 마르텐사이트계 스테인레스 강판의 스폿 용접 방법
JP6963282B2 (ja) * 2018-04-20 2021-11-05 株式会社神戸製鋼所 アルミニウム材の抵抗スポット溶接継手、及びアルミニウム材の抵抗スポット溶接方法
CN112368101B (zh) * 2018-06-29 2022-03-11 杰富意钢铁株式会社 电阻点焊方法和焊接构件的制造方法
CN111683787A (zh) * 2018-08-01 2020-09-18 深圳配天智能技术研究院有限公司 一种自动焊接装置的标定件、标定组件以及标定系统
CN109079304A (zh) * 2018-10-10 2018-12-25 鞍钢股份有限公司 一种高碳当量冷轧双相钢的点焊工艺方法
JP7267770B2 (ja) * 2019-02-25 2023-05-02 株式会社神戸製鋼所 めっき鋼板の接合方法及び接合構造体
CN113891773B (zh) * 2019-05-28 2022-11-08 杰富意钢铁株式会社 电阻点焊部和电阻点焊方法、以及电阻点焊接头和电阻点焊接头的制造方法
US20230339037A1 (en) * 2020-03-05 2023-10-26 Jfe Steel Corporation Resistance spot welding method and method for manufacturing resistance spot welded joint
CN112695249A (zh) * 2020-12-11 2021-04-23 马鞍山钢铁股份有限公司 一种1800MPa级双面非等厚铝-硅镀层热成形钢及其电阻点焊的方法
CN112620906B (zh) * 2020-12-11 2022-08-16 马鞍山钢铁股份有限公司 一种提高1500MPa级热成形钢电阻点焊焊点耐蚀性的方法
CN112695250A (zh) * 2020-12-11 2021-04-23 马鞍山钢铁股份有限公司 一种1500MPa级双面非等厚铝-硅镀层热成形钢及其电阻点焊的方法
CN112846470A (zh) * 2021-01-05 2021-05-28 中国科学院上海光学精密机械研究所 含超强热成型钢板匹配的电阻点焊方法
CN113442458A (zh) * 2021-06-30 2021-09-28 高宜张 伞带加工工艺
CN113441826A (zh) * 2021-07-16 2021-09-28 上海交通大学 抑制镀锌高强钢电阻点焊接头液态金属脆裂纹的点焊工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103048A (ja) 2000-09-29 2002-04-09 Nippon Steel Corp 高強度鋼板のスポット溶接方法
JP2009125801A (ja) 2007-11-28 2009-06-11 Nissan Motor Co Ltd 溶接方法
JP2010059451A (ja) 2008-09-02 2010-03-18 Sumitomo Metal Ind Ltd 溶接継手およびその製造方法
JP2010115706A (ja) 2008-10-16 2010-05-27 Jfe Steel Corp 高強度鋼板の抵抗スポット溶接方法
JP2011005544A (ja) 2009-05-27 2011-01-13 Nippon Steel Corp 高強度鋼板のスポット溶接方法
WO2011025015A1 (ja) 2009-08-31 2011-03-03 新日本製鐵株式会社 スポット溶接継手およびスポット溶接方法
JP2011177794A (ja) * 2011-05-18 2011-09-15 Okuchi Kensan Kk 抵抗溶接方法
JP2012192455A (ja) * 2012-05-30 2012-10-11 Nippon Steel Corp 高強度鋼板のスポット溶接方法
US20130020288A1 (en) * 2011-07-21 2013-01-24 Ford Global Technologies, Llc System and Method of Welding a Workpiece

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072843A (en) * 1976-06-16 1978-02-07 General Dynamics Corporation Apparatus and method for weld bonding
DE3005083A1 (de) * 1980-02-12 1981-08-20 GME Entwicklungsgesellschaft für Maschinenbau und Elektronik mbH, 7320 Göppingen Verfahren zur herstellung von laengsnahtgeschweissten, gerundeten zargen
GB2249981B (en) * 1990-10-08 1994-05-18 Sg Kabushiki Kaisha Method for checking a spot welded portion and spot welding machine
US8058584B2 (en) * 2007-03-30 2011-11-15 Nissan Motor Co., Ltd. Bonding method of dissimilar materials made from metals and bonding structure thereof
US8263234B2 (en) * 2007-12-05 2012-09-11 Honda Motor Co., Ltd. High-strength steel sheet, strength member for vehicles using the same, and method for producing strength member for vehicles
JP5151615B2 (ja) * 2008-03-28 2013-02-27 新日鐵住金株式会社 高強度鋼板のスポット溶接方法
US8450634B2 (en) * 2008-09-23 2013-05-28 Honda Motor Co., Ltd. Resistance welding apparatus and resistance welding method
JP5415896B2 (ja) * 2009-01-29 2014-02-12 Jfeスチール株式会社 インダイレクトスポット溶接方法
JP5467480B2 (ja) * 2009-07-31 2014-04-09 高周波熱錬株式会社 溶接構造部材及び溶接方法
JP5468350B2 (ja) * 2009-10-23 2014-04-09 マツダ株式会社 異種金属板の接合方法
JP2011152574A (ja) * 2010-01-28 2011-08-11 Honda Motor Co Ltd 抵抗溶接方法
DE112010005316T5 (de) * 2010-04-07 2012-12-20 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zum Steuern der Eindrücktiefe einer Elektrode in ein Metallsubstrat während des Schweißens
US9969026B2 (en) * 2011-08-25 2018-05-15 GM Global Technology Operations LLC Weld schedule for resistance spot welding of aluminum alloy workpieces
JP5333560B2 (ja) * 2011-10-18 2013-11-06 Jfeスチール株式会社 高張力鋼板の抵抗スポット溶接方法及び抵抗スポット溶接継手
JP5267640B2 (ja) * 2011-11-25 2013-08-21 Jfeスチール株式会社 抵抗スポット溶接継手の評価方法
CN102581459B (zh) * 2012-03-07 2014-06-25 上海交通大学 一种不等厚超高强热成形钢板与低碳钢板电阻焊方法
IN2015DN00600A (ja) * 2012-09-24 2015-06-26 Nippon Steel & Sumitomo Metal Corp
JP5609966B2 (ja) * 2012-12-28 2014-10-22 Jfeスチール株式会社 抵抗スポット溶接方法
JP5987982B2 (ja) * 2013-06-05 2016-09-07 新日鐵住金株式会社 スポット溶接継手及びスポット溶接方法
US9737956B2 (en) * 2013-06-14 2017-08-22 GM Global Technology Operations LLC Resistance spot welding thin gauge steels
DE102013108563A1 (de) * 2013-08-08 2015-02-12 Thyssenkrupp Steel Europe Ag Verfahren und Vorrichtung zum Widerstandsschweißen von Sandwichblechen
US9999938B2 (en) * 2013-08-23 2018-06-19 GM Global Technology Operations LLC Multi-step direct welding of an aluminum-based workpiece to a steel workpiece
DE102013112436A1 (de) * 2013-11-12 2015-05-13 Thyssenkrupp Ag Mehrstufiges Widerstandsschweißen von Sandwichblechen
CN106255566B (zh) * 2014-05-07 2018-12-18 新日铁住金株式会社 点焊方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103048A (ja) 2000-09-29 2002-04-09 Nippon Steel Corp 高強度鋼板のスポット溶接方法
JP2009125801A (ja) 2007-11-28 2009-06-11 Nissan Motor Co Ltd 溶接方法
JP2010059451A (ja) 2008-09-02 2010-03-18 Sumitomo Metal Ind Ltd 溶接継手およびその製造方法
JP2010115706A (ja) 2008-10-16 2010-05-27 Jfe Steel Corp 高強度鋼板の抵抗スポット溶接方法
JP2011005544A (ja) 2009-05-27 2011-01-13 Nippon Steel Corp 高強度鋼板のスポット溶接方法
WO2011025015A1 (ja) 2009-08-31 2011-03-03 新日本製鐵株式会社 スポット溶接継手およびスポット溶接方法
JP2011177794A (ja) * 2011-05-18 2011-09-15 Okuchi Kensan Kk 抵抗溶接方法
US20130020288A1 (en) * 2011-07-21 2013-01-24 Ford Global Technologies, Llc System and Method of Welding a Workpiece
JP2012192455A (ja) * 2012-05-30 2012-10-11 Nippon Steel Corp 高強度鋼板のスポット溶接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3006154A4

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107921572A (zh) * 2015-08-27 2018-04-17 杰富意钢铁株式会社 电阻点焊方法及焊接构件的制造方法
CN107921572B (zh) * 2015-08-27 2021-03-05 杰富意钢铁株式会社 电阻点焊方法及焊接构件的制造方法
US10835986B2 (en) 2015-08-27 2020-11-17 Jfe Steel Corporation Resistance spot welding method and welded member production method
EP3342524A4 (en) * 2015-08-27 2019-05-01 JFE Steel Corporation RESISTANT SPOT WELDING METHOD AND METHOD FOR PRODUCING A WELDED ELEMENT
EP3345711A4 (en) * 2015-09-03 2019-05-01 Nippon Steel & Sumitomo Metal Corporation METHOD OF STITCH WELDING
WO2017038981A1 (ja) * 2015-09-03 2017-03-09 新日鐵住金株式会社 スポット溶接方法
JP2017047476A (ja) * 2015-09-03 2017-03-09 新日鐵住金株式会社 スポット溶接方法
US11007598B2 (en) 2015-09-03 2021-05-18 Nippon Steel Corporation Spot welding method
US20180243853A1 (en) * 2015-09-03 2018-08-30 Nippon Steel & Sumitomo Metal Corporation Spot welding method
JP2017047475A (ja) * 2015-09-03 2017-03-09 新日鐵住金株式会社 スポット溶接方法
CN108136535B (zh) * 2015-10-16 2020-06-12 日本制铁株式会社 点焊接头和点焊方法
JPWO2017064817A1 (ja) * 2015-10-16 2018-09-20 新日鐵住金株式会社 スポット溶接継手およびスポット溶接方法
CN108136535A (zh) * 2015-10-16 2018-06-08 新日铁住金株式会社 点焊接头和点焊方法
US10994364B2 (en) 2015-10-16 2021-05-04 Nippon Steel Corporation Spot welded joint and spot welding method
JPWO2017073793A1 (ja) * 2015-10-30 2018-08-02 新日鐵住金株式会社 可動加圧部材を有するスポット溶接電極、及びそれを用いたスポット溶接方法
US10888949B2 (en) 2015-10-30 2021-01-12 Nippon Steel Corporation Spot welding electrode having movable pressing members and spot welding method using same
WO2017073793A1 (ja) * 2015-10-30 2017-05-04 新日鐵住金株式会社 可動加圧部材を有するスポット溶接電極、及びそれを用いたスポット溶接方法
US11498150B2 (en) 2017-09-13 2022-11-15 Jfe Steel Corporation Resistance spot welding method
WO2019054116A1 (ja) * 2017-09-13 2019-03-21 Jfeスチール株式会社 抵抗スポット溶接方法
KR20200039744A (ko) * 2017-09-13 2020-04-16 제이에프이 스틸 가부시키가이샤 저항 스폿 용접 방법
KR102253193B1 (ko) 2017-09-13 2021-05-17 제이에프이 스틸 가부시키가이샤 저항 스폿 용접 방법
JP6493641B1 (ja) * 2017-09-13 2019-04-03 Jfeスチール株式会社 抵抗スポット溶接方法
WO2021210541A1 (ja) * 2020-04-15 2021-10-21 株式会社神戸製鋼所 抵抗溶接部材の製造方法
JP2021169113A (ja) * 2020-04-15 2021-10-28 株式会社神戸製鋼所 抵抗溶接部材の製造方法
CN115379915A (zh) * 2020-04-15 2022-11-22 株式会社神户制钢所 电阻焊接构件的制造方法
JP7299192B2 (ja) 2020-04-15 2023-06-27 株式会社神戸製鋼所 抵抗溶接部材の製造方法
CN115379915B (zh) * 2020-04-15 2024-02-02 株式会社神户制钢所 电阻焊接构件的制造方法
WO2022215103A1 (ja) * 2021-04-05 2022-10-13 日本製鉄株式会社 抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法
JP7545096B2 (ja) 2021-04-05 2024-09-04 日本製鉄株式会社 抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法
JP7513229B1 (ja) 2023-01-30 2024-07-09 Jfeスチール株式会社 溶接継手の製造方法および溶接継手
WO2024162195A1 (ja) * 2023-01-30 2024-08-08 Jfeスチール株式会社 溶接継手の製造方法および溶接継手

Also Published As

Publication number Publication date
CN105263663B (zh) 2017-07-21
JP5987982B2 (ja) 2016-09-07
EP3006154B1 (en) 2018-01-17
KR101805284B1 (ko) 2017-12-05
RU2015155581A (ru) 2017-07-20
BR112015028782A2 (pt) 2017-07-25
KR20150143818A (ko) 2015-12-23
CA2912591A1 (en) 2014-12-11
ZA201508065B (en) 2018-05-30
MY183966A (en) 2021-03-17
US20190030637A1 (en) 2019-01-31
CA2912591C (en) 2017-12-19
JPWO2014196499A1 (ja) 2017-02-23
ES2663500T3 (es) 2018-04-13
US20160082543A1 (en) 2016-03-24
US11027361B2 (en) 2021-06-08
EP3006154A4 (en) 2016-12-14
EP3006154A1 (en) 2016-04-13
MX2015015832A (es) 2016-03-04
TW201509575A (zh) 2015-03-16
TWI587954B (zh) 2017-06-21
RU2633414C2 (ru) 2017-10-12
CN105263663A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5987982B2 (ja) スポット溶接継手及びスポット溶接方法
JP6409470B2 (ja) スポット溶接方法
JP6658764B2 (ja) スポット溶接継手およびスポット溶接方法
JP5641158B2 (ja) スポット溶接継手
JP6036438B2 (ja) 高強度抵抗溶接継手およびその製造方法
WO2020240961A1 (ja) 抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法
WO2022210749A1 (ja) スポット溶接継手及びスポット溶接継手の製造方法
JP2010115678A (ja) ナットプロジェクション溶接継手
WO2020105266A1 (ja) 接合構造体及び接合構造体の製造方法
JP5070866B2 (ja) 熱延鋼板およびスポット溶接部材
JP2010214466A (ja) 高強度薄鋼板の溶接方法
JP2007308743A (ja) 抵抗溶接用高張力鋼板及びその接合方法
JP6777270B1 (ja) 抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法
JP2001131679A (ja) 超細粒鋼からなる継手及び構造体
WO2024029626A1 (ja) スポット溶接継手の製造方法及びスポット溶接継手
WO2024111224A1 (ja) 抵抗スポット溶接方法
JP5515629B2 (ja) 高強度薄鋼板の溶接方法
JP7103923B2 (ja) 接合構造体及び接合構造体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480030432.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521438

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14889111

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2912591

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20157032845

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/015832

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2014807362

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201508213

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015028782

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015155581

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015028782

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151117