WO2020240961A1 - 抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法 - Google Patents

抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法 Download PDF

Info

Publication number
WO2020240961A1
WO2020240961A1 PCT/JP2020/009011 JP2020009011W WO2020240961A1 WO 2020240961 A1 WO2020240961 A1 WO 2020240961A1 JP 2020009011 W JP2020009011 W JP 2020009011W WO 2020240961 A1 WO2020240961 A1 WO 2020240961A1
Authority
WO
WIPO (PCT)
Prior art keywords
nugget
resistance spot
region
spot welded
hardness
Prior art date
Application number
PCT/JP2020/009011
Other languages
English (en)
French (fr)
Inventor
玲子 遠藤
松下 宗生
松田 広志
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2021014596A priority Critical patent/MX2021014596A/es
Priority to JP2020526161A priority patent/JP6777270B1/ja
Priority to KR1020217037994A priority patent/KR102589430B1/ko
Priority to CN202080038973.8A priority patent/CN113891773B/zh
Priority to US17/614,424 priority patent/US20220228233A1/en
Priority to EP20812882.7A priority patent/EP3978178A4/en
Publication of WO2020240961A1 publication Critical patent/WO2020240961A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention relates to a resistance spot welded portion and a resistance spot welded method, and a method for manufacturing a resistance spot welded joint and a resistance spot welded joint.
  • HITEN high-strength steel sheets
  • resistance spot welding is mainly used for joining members, for example, structural members of automobiles having high-strength steel plates. Welded joints joined by resistance spot welding are required to have strength (tensile strength) that does not break even during collision deformation in order to ensure collision safety as described above.
  • the joint strength of the welded part is the shear tensile strength (TSS: Tensile shear strength) which is the tensile strength in the shear direction of the joint and the cross tensile strength (CTS:) which is the tensile strength in the peeling direction of the joint. It is evaluated by Cross tension (strength).
  • TSS shear tensile strength
  • CTS cross tensile strength
  • the TSS of the resistance spot weld tends to increase with the tensile strength of the base metal, but the CTS of the resistance spot weld may decrease when the tensile strength of the base metal is 780 MPa or more.
  • the CTS decreases, the fracture morphology changes from a plug fracture that ductilely fractures in the base metal or HAZ (heat-affected zone) around the resistance spot weld to an interface fracture or a partial plug fracture that brittlely fractures in the nugget. Transition.
  • the cause of the decrease in CTS is that brittle fracture occurs due to hardening of the nugget end portion after quenching.
  • Patent Document 1 describes that the nugget (melt-solidified zone) and the heat-affected zone in the base material of a specific steel type have a tempered martensite structure or a tempered bainite structure.
  • Patent Document 2 describes that the maximum temperature at the interface between the nugget and the corona bond when the post-energization process is performed is specified.
  • Patent Document 3 describes that the hardness on the outside of the nugget and the structure inside the nugget are specified.
  • Patent Document 4 describes that tempering is performed at a high current value.
  • Patent Document 1 only defines the component composition of the base material, and does not consider the welding conditions for the nugget and the heat-affected zone to obtain the above structure, specifically, the temperature range of post-energization. ..
  • Patent Document 2 makes it possible to reduce segregation by energizing after raising the temperature to a high temperature in a short time, thereby improving the joint strength.
  • a cooling time is set so that the temperature at the end of the nugget does not fall below the Ms point. For this reason, the structure is limited to those that do not undergo martensitic transformation in the cooling process after the main energization, and tempered martensite cannot be obtained. As a result, the toughness of the nugget end does not improve.
  • Patent Document 3 stipulates that the structure inside the nugget is an equiaxed martensite structure and that a softening region having a hardness lower than that of the base material exists outside the nugget in order to achieve both TSS and CTS. In addition, as post-energization, a high current about twice that of the main energization step is applied in a short time (0.1 seconds or less). However, since the tissue in the obtained nugget is a martensite structure, sufficient toughness cannot be obtained. That is, Patent Document 3 does not consider that the hardness is appropriately controlled by baking at a high temperature.
  • Patent Document 4 since tempering is performed at a current value higher than that of the main energization, there is a concern that the end of the nugget exceeds the melting point and melts. If the nugget end melts, it becomes martensite after cooling, and strength cannot be secured.
  • a resistance spot welding method with only single energization there is also a resistance spot welding method with only single energization.
  • a high-strength steel sheet having a tensile strength of 780 MPa or more and containing 1.5 to 10.0% by mass of Mn as a component composition of the steel sheet (hereinafter, this steel sheet is referred to as a medium Mn steel sheet) has a resistance spot of only this single energization.
  • the austenite structure contained in the medium Mn steel sheet becomes a martensite structure when the molten portion formed by energization melts and hardens. As a result, the tissue becomes hard and brittle, so that there is a problem that the CTS is low.
  • the present invention improves the joint strength by improving the toughness of the nugget end of the resistance spot weld even in the high-strength steel plate having a tensile strength of 780 MPa or more, particularly a medium Mn steel plate. It is an object of the present invention to provide a resistance spot welded portion and a resistance spot welded method capable of forming, and a method for manufacturing a resistance spot welded joint and a resistance spot welded joint.
  • a mechanism for lowering CTS and a method for improving CTS in resistance spot welding of a plate frame including a high-strength steel plate having a tensile strength of 780 MPa or more have been intensively studied.
  • the CTS decreases as the strength of the steel sheet increases.
  • the fracture mode changes from a plug fracture that ductilely fractures at the base metal or HAZ around the resistance spot weld to an interfacial fracture or a partial plug fracture that brittlely fractures in the nugget.
  • the cause of the interfacial fracture is the embrittlement of the nugget end due to the formation of a hardened structure by quenching after the nugget is formed. As a result, the nugget end is cracked and the interface is broken. Therefore, in order not to cause this brittle fracture, it is necessary to make the nugget end a tough structure.
  • the present inventors change the fracture surface from a ductile fracture surface to a brittle fracture surface due to the progress of tempering in the range where the above-mentioned brittle fracture occurs, and the fracture surface is brittle due to this. It was found that it causes brittleness. That is, it was clarified that the toughness of the nugget end can be improved by tempering the nugget end at a temperature higher or lower than the temperature range of the temper embrittlement region.
  • main energization is performed by heating to a temperature range above the melting point for nugget formation, and then cooling is performed to quench the temperature from the austenite structure to the martensite structure through solidification of the melting part.
  • the process is carried out, and then the nugget end is rebaked in an appropriate temperature range and then energized.
  • the metal structure at the end of the nugget becomes a structure having a tempered martensite structure as the main phase.
  • the nugget end when the hardness Hv in a specific region of the nugget end (nugget tip region described later) satisfies a predetermined relational expression with respect to the hardness Hmw of the martensite structure of the entire nugget, the nugget end becomes It has a tempered martensite structure with high toughness. As a result, it was found that the effect of avoiding the interface breakage of the resistance spot welded portion can be obtained. Further, in the above-mentioned tempered resistance spot welded portion having a high CTS, the hardness Hh in a specific region of HAZ (strong HAZ region described later) is also the hardness Hh of the martensite structure of the superposed steel sheet. It was found that the predetermined relational expression was satisfied.
  • the present invention has been made based on the above findings, and has the following gist.
  • a resistance spot welded portion of a welded member obtained by superimposing two or more steel plates and performing resistance spot welding. At least one of the steel sheets has a component composition of mass%. C: 0.05-0.6%, Si: 0.1-3.5%, A high-strength steel sheet satisfying the range of Mn: 1.5 to 10.0% and P: 0.1% or less. Two points on the boundary of the nugget that intersect the overlapping surfaces of the steel sheets are defined as the first end and the second end. Let D (mm) be the length of the line segment X connecting the first end and the second end.
  • the positions on the line segment X from the first end and the second end toward the center of the nugget are designated as points O and P, and from the first end to the point O and from the second end.
  • the region in the nugget where each distance L (mm) to the point P satisfies the following formula (1) is defined as the nugget tip region, one or more of the nugget tip regions corresponding to the overlapping surfaces
  • the metallographic structure of the nugget tip region has tempered martensite as the main phase.
  • the hardness Hv of the nugget tip region satisfies the following formula (4) with respect to the hardness Hmw of martensite of the entire nugget calculated by the following formulas (2) and (3).
  • Cw (% by mass): C content per volume from each steel sheet in the nugget
  • Ci (mass%): C content of each stacked steel sheet
  • Vi (mm 2 ): The molten area of each steel sheet in the region surrounded by the nugget boundary and each line X in the thickness direction cross section passing through the center of the nugget.
  • n The number of stacked steel plates.
  • M D / 20 ... (5) 0 ⁇ T ⁇ D / 10 ... (6)
  • Hmh 884 x Ch x (1-0.3 x Ch 2 ) +294 ... (7) Hh ⁇ Hmh-25 ...
  • Ch (mass%): C content of the steel plate on the upper side with respect to the overlapped surface, or C content of the steel plate on the lower side with respect to the overlapped surface.
  • two points on the boundary of the nugget located in the middle of the gap and intersecting the straight line Y parallel to the surface of the steel plate are the first end portion and the said. It is the second end.
  • the resistance spot welded portion according to [1] wherein the proportion of carbides in the tempered martensite exceeds 20% in terms of area ratio.
  • the resistance spot welded portion according to [2] wherein the carbide has an average crystal grain size of 300 nm or less.
  • the toughness is improved and the joint strength is increased by defining the metal structure and hardness of the nugget end portion and the hardness of the HAZ around the nugget end portion in the resistance spot welded portion of the high-strength steel plate. Can be improved.
  • FIG. 1 (A) and 1 (B) are cross-sectional views illustrating a resistance spot welded portion according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a case where there is a plate gap in the resistance spot welded portion shown in FIG. 1 (A).
  • 3 (A) and 3 (B) are cross-sectional views illustrating a resistance spot welded portion in another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating a state of resistance spot welding according to an embodiment of the present invention.
  • FIG. 1 (A) to 3 (B) show cross-sectional views in the plate thickness direction for explaining an example of the resistance spot welded portion obtained in the present invention.
  • FIG. 1 (A) shows the entire resistance spot welded portion obtained by superimposing and welding two steel plates
  • FIG. 1 (B) shows a partially enlarged portion of the resistance spot welded portion shown in FIG. 1 (A).
  • FIG. 2 shows an example in which a plate gap exists on the overlapping surface of the steel plates in the resistance spot welded portion shown in FIG. 1 (A).
  • FIG. 3A shows the entire resistance spot welded portion obtained by superimposing and welding three steel plates
  • FIG. 3B shows a partially enlarged portion of the resistance spot welded portion shown in FIG. 3A. The figure is shown.
  • the present invention is a resistance spot welded portion of a welded member in which two or more steel plates are superposed and joined by resistance spot welding.
  • the steel sheets to be stacked include at least one high-strength steel sheet described later.
  • the steel plate 1 arranged on the lower side and the steel plate 2 arranged on the upper side are overlapped with each other.
  • the lower steel plate 1 and / or the upper steel plate 2 is a high-strength steel plate.
  • the resistance spot welded portion (hereinafter referred to as a welded portion) of the present invention has a nugget 3 and a heat affected zone (HAZ) 6.
  • HZ heat affected zone
  • the cross-sectional shape in the thickness direction of the welded portion formed in a circular shape passing through the center of the nugget 3 is elliptical.
  • the welded portion in the plate assembly of the two steel plates will be described with reference to FIGS. 1 (A), 1 (B) and 2.
  • the welded portion has a tip region 31 having a highly tough metal structure in the nugget 3 and a strong HAZ region 61 having a predetermined hardness in the HAZ 6.
  • two points on the boundary of the elliptical nugget 3 intersecting the overlapping surfaces 7 of the stacked steel plates 1 and 2 are the first end 8a and the second end. Let it be part 8b.
  • the straight line connecting the first end portion 8a and the second end portion 8b is referred to as a line segment X, and the length of the line segment X is D (mm).
  • the position on the line segment X from the first end 8a toward the center of the nugget 3 is defined as the point O, and the distance from the first end 8a to the point O is L (mm).
  • nugget tip region 31 A region within the nugget 3 in which these distances L satisfy the following formula (1) is referred to as a nugget tip region 31 (hereinafter, may be referred to as a “tip region”). As shown in FIG. 1 (A), the tip region 31 exists at both ends of the nugget 3.
  • the tip region 31 can be defined for each of the overlapping surfaces 7 of the steel sheets. That is, in the case of a welded member in which three or more steel plates are overlapped and resistance spot welded, the welded member has two or more overlapped surfaces, and a nugget tip region can be defined for each overlapped surface. For example, as shown in FIG. 3A described later, when three steel plates are assembled, there are two overlapping surfaces, and a nugget tip region exists for each overlapping surface.
  • the tip region 31 is a region where the distance L from the first end portion 8a to the point O and the distance L from the second end portion 8b to the point P satisfy the equation (1).
  • the distance L does not satisfy the condition of the formula (1) (that is, 0 ⁇ L ⁇ 0.25 ⁇ D)
  • the metal structure of the present invention described later is provided in the region of the nugget end that affects the joint strength. There will be no.
  • the distance L is preferably 0 ⁇ L ⁇ 0.20 ⁇ D.
  • the metal structure of the central portion of the nugget (in the example shown in FIG. 1A, it refers to a region other than the tip region 31 in the nugget 3) does not affect the joint strength. No particular metal structure is specified.
  • the metal structure of the tip region 31 at both ends of the nugget has a tempered martensite structure as the main phase.
  • the main phase means that the tempered martensite structure has an area ratio of 60% or more with respect to the entire metal structure in the nugget 3.
  • the tempered martensite structure is less than 60%, it is considered that the tempering has not progressed or the metal structure contains a large amount of martensite structure that has appeared due to the tempering temperature being too high. As the martensite structure of the remaining structure, which will be described later, increases, the nugget end becomes a hard and brittle structure, resulting in brittle fracture, and thus the joint strength becomes low. Therefore, the tempered martensite structure is 60% or more. It is preferably 80% or more. More preferably, it is 90% or more. In the present invention, since it is desirable to have a large amount of tempered martensite structure having toughness at the nugget end, an upper limit of the tempered martensite structure is not particularly set. The tempered martensite structure is preferably 100% or less.
  • the metal structure in the tip region 31 may contain a martensite structure as a structure other than the tempered martensite structure (hereinafter, may be referred to as “residual structure”).
  • a martensite structure as a structure other than the tempered martensite structure (hereinafter, may be referred to as “residual structure”).
  • residual structure a martensite structure that can exist if the tempering temperature is too high. Since the martensite structure is a particularly brittle structure, there is a concern that it will greatly affect the decrease in joint strength. Therefore, the martensite structure is preferably reduced as much as possible, preferably less than 40%.
  • Carbides are deposited in the tempered martensite structure. It was found that when tempering was performed so that the hardness Hv of the tip region 31 secured the hardness desired in the present invention, the proportion of carbides in the tempered martensite structure exceeded 20% in terms of area ratio. .. As the tempering progresses, the carbides become coarser and the distance between adjacent carbides becomes narrower. Also, as tempering progresses, carbides increase. Therefore, by setting the ratio of carbides in the tempered martensite structure to more than 20% in terms of area ratio together with the above-mentioned hardness index, it can be determined that the temperature is not in the tempered embrittlement region more appropriately. That is, it can be determined that the tempering temperature is more appropriate.
  • the ratio of carbides in the tempered martensite structure is preferably more than 20% in terms of area ratio. It is more preferably 23% or more, and further preferably 40% or more. It is preferably 85% or less, more preferably 75% or less, and further preferably 50% or less.
  • Carbides appear by discharging supersaturated C by tempering. Therefore, it is shown that tempering is progressing depending on the proportion of carbides.
  • the ratio of carbides having an average crystal grain size (hereinafter, sometimes referred to as an average particle size) of 300 nm or less is specified. This is because if the average particle size of the carbide exceeds 300 nm, the tempering temperature may rise to the temperature range of the embrittlement range due to the growth of grains.
  • the structure of the nugget tip region and the carbides in the tempered martensite structure can be measured by the method described in Examples described later.
  • the hardness Hv of the tip region 31 satisfies the following formula (4) with respect to the hardness Hmw of the martensite of the entire nugget 3 calculated by the following formula (2) and the following formula (3). ..
  • Cw (% by mass): C content per volume from each steel sheet in the nugget
  • Ci mass%: C content of each stacked steel sheet
  • Vi (mm 2 ): The molten area of each steel sheet in the region surrounded by the nugget boundary and each line X in the thickness direction cross section passing through the center of the nugget.
  • n The number of stacked steel plates.
  • tempering proceeds, and the fracture surface changes from a ductile fracture surface to a brittle fracture surface, resulting in embrittlement. I found it to wake up. That is, it was found that when tempering progresses too much and causes embrittlement, the hardness of the nugget end may decrease as compared with proper tempering.
  • the present inventors performed SEM observation of the fracture surface of the joint in this embrittlement region. As a result, it was found that the entire nugget had a large number of grain boundary fracture surfaces, and the end of the nugget also occupied a large number of grain boundary fracture surfaces, indicating that the nugget was a brittle fracture surface.
  • a ductile fracture surface including dimples can be seen around the nugget end. From this, it was found that the embrittled region contained a large number of grain boundaries even on the fracture surface. That is, it was found that in this embrittlement region, P segregates at the grain boundaries, resulting in a brittle fractured form and a decrease in joint strength. Therefore, in the present invention, the tempered state is determined from both the metallographic structure and hardness of the nugget end.
  • the end portion of the nugget 3 is lower or higher than the embrittlement region and has a melting point. Since it is in a state of being tempered in the following temperature range, it can be seen that a good joint is obtained. Further, the smaller the value of the hardness Hv of the tip region 31, the more the tempering progresses. As the tempering progresses, the toughness of the nugget end is improved and the cracks proceed to the outside of the nugget, so that the cracks do not grow inside the nugget and the plug breaks. From this, it is considered that the joint strength is improved. Considering tempering to obtain a better joint, the hardness Hv of the tip region 31 is preferably (Hmw-55) or less.
  • the lower limit of the hardness Hv of the tip region 31 is not particularly specified. In order to properly obtain the metal structure of the present invention, it is considered that there is a limit to the decrease in hardness of the tip region 31 due to tempering. Therefore, the hardness Hv of the tip region 31 is set to (Hmv-700) or more. Is preferable.
  • a part of the nugget end having tempered martensite as the main phase may rise to the austenite region by an appropriate post-energization temperature, and the reverse-transformed tissue may become a martensite structure after the post-energization is completed.
  • the nugget end portion is configured as described above, and HAZ6 has a configuration described below. That is, the hardness Hh in a specific region (strong HAZ region 61 described later) in HAZ6 satisfies the following relational expression (formula (8)) with respect to the hardness Hm of the martensite structure of each steel sheet. As a result, it can be confirmed that the tempering has not progressed too much even in the region in HAZ which may affect the joint strength, so that the effect of the present invention can be appropriately obtained.
  • the strong HAZ region 61 in the steel plate 2 on the upper side and / or the steel plate 1 on the lower side with respect to the overlapping surface 7 has the following configuration.
  • the intersection of the boundary between the straight line Z parallel to the overlapping surface 7 (or the line segment X described above) and the nugget 3 is defined as a point q
  • the position in HAZ 6 on the straight line Z is defined as a point r.
  • HAZ6 in which the distance M (mm) between the straight line Z and the overlapping surface 7 in the plate thickness direction satisfies the following formula (5), and each distance T (mm) from the point q to the point r satisfies the following formula (6).
  • the inner region is defined as the strong HAZ region 61.
  • the line segment X (overlapping surface 7) and the straight line Z are lines perpendicular to the thickness direction of the steel sheet.
  • a strong HAZ region 61 exists on the upper steel plate 2 and the lower steel plate 1 on the outside of the tip region 31, respectively.
  • the strong HAZ region 61 may exist only in the upper steel plate 2 or only in the lower steel plate 1.
  • the hardness Hh in the strong HAZ region 61 satisfies the following formula (8) with respect to the hardness Hm of the martensite of the steel sheet calculated by the following formula (7), respectively.
  • M D / 20 ... (5) 0 ⁇ T ⁇ D / 10 ... (6)
  • Hmh 884 x Ch x (1-0.3 x Ch 2 ) +294 ... (7) Hh ⁇ Hmh-25 ... (8)
  • the hardness Hh of the strong HAZ region 61 does not satisfy the above formula (8), that is, when it is (Hmh-25) or more, the tempering of the strong HAZ region 61 proceeds too much and rises to the melting point. There may be. As a result, the structure of the strong HAZ region 61 becomes martensite and the toughness is lowered, so that the joint strength may be lowered. Therefore, from the viewpoint of performing appropriate tempering to HAZ6, the hardness Hh of the strong HAZ region 61 is set to less than (Hmh-25). It is preferably (Hmh-40) or less.
  • the lower limit of the hardness Hh of the strong HAZ region 61 is not particularly specified. Since it is considered that there is a limit for reducing the hardness by tempering, the hardness Hh of the strong HAZ region 61 is preferably (Hmh-700) or more.
  • FIG. 2 shows an example of a welded portion having a plate gap G.
  • a straight line equidistant from two straight lines formed by the surface of the steel plate on the side where the steel plates 1 and 2 face each other that is, located in the middle of the plate gap G in the plate thickness direction, and the steel plates 1 and 2
  • the two points on the boundary of the nugget 3 intersecting the straight line Y) parallel to the surface of the steel plate are defined as the first end portion 8a and the second end portion 8b.
  • the region in the nugget 3 where the distance L from the first end 8a to the point O and the distance L from the second end 8b to the point P satisfy the equation (1) is the tip region 31. ..
  • the straight line Y may be regarded as an "overlapping surface", and the strong HAZ region 61 may be defined in the same manner as described above.
  • the number of overlapping surfaces 7 is two or more, and each overlapping surface 7 has a tip region 31 and a strong HAZ region 61.
  • the tip region 31 corresponding to the overlapping surfaces has the above-mentioned metal structure and hardness Hv
  • the strong HAZ region 61 has the above-mentioned hardness. If it has Hh, the effect of the present invention can be obtained in the same manner.
  • D 1 be the length of.
  • the region in the nugget 3 where the distance L 1 satisfies the above equation (1) is the tip region 31.
  • the intersection of the boundary between the straight line Z 1 parallel to the overlapping surface 7 and the nugget 3 is set as a point q 1
  • the straight line Z 1 the point r 1 the position in HAZ6 above.
  • the distance M 1 (mm) in the plate thickness direction between the straight line Z 1 and the first overlapping surface 7a satisfies the above formula (5)
  • the distance T 1 (mm) between the point q 1 and the point r 1 is the above formula ( The region in HAZ6 that satisfies 6) becomes strong HAZ61.
  • the second lap surface 7b and two points of the first end portion 8a 2 on the boundary of the nugget 3, the second end portion 8b 2 and to a line connecting the first end portion 8a 2 of the second end portion 8b 2 Let the length of the minute X 2 be D 2 .
  • the distance between the point O 2 on the line X 2 and the first end portion 8a 2, and the point P 2 on the line segment X 2 the distance between the second end 8b 2, and each of L 2.
  • the region in the nugget 3 where the distance L 2 satisfies the above equation (1) is the tip region 31.
  • the intersection of the boundary between the straight line Z 2 parallel to the second overlapping surface 7b and the nugget 3 is set as a point q 2 .
  • the position in HAZ 6 on the straight line Z 2 is defined as point r 2 .
  • the distance M 2 (mm) between the straight line Z 2 and the second overlapping surface 7b in the plate thickness direction satisfies the above formula (5), and the distance T 2 (mm) between the point q 2 and the point r 2 is the above formula ( The region satisfying 6) is the strong HAZ61.
  • the tip region 31 and the strong HAZ region 61 corresponding to either one of the first overlapping surface 7a and the second overlapping surface 7b correspond to both the first overlapping surface 7a and the second overlapping surface 7b.
  • the hardness of the nugget tip region and the hardness of the heat-affected zone (HAZ) can be measured by the method described in Examples described later.
  • the high-strength steel sheet used in the present invention will be described.
  • at least one of the steel sheets to be overlapped is a high-strength steel sheet having the following composition. That is, the component composition of the high-strength steel sheet may satisfy C, Si, Mn, and P in the ranges shown below. If this range is satisfied, the resistance spot welding method according to the embodiment of the present invention can be effectively applied.
  • “mass%" in the component composition is simply described as "%".
  • C 0.05-0.6% C is an element that contributes to the strengthening of steel. If the C content is less than 0.05%, the strength of the steel becomes low, and it is extremely difficult to produce a steel sheet having a tensile strength of 780 MPa or more. On the other hand, when the C content exceeds 0.6%, the strength of the steel sheet increases, but the amount of hard martensite becomes excessive and microvoids increase. Further, the nugget and its surrounding heat-affected zone (HAZ) are excessively hardened and embrittled, so that it is difficult to improve the cross tensile strength (CTS). Therefore, the C content is set to 0.05 to 0.6%. The C content is more preferably 0.1% or more, and more preferably 0.3% or less.
  • the Si content 0.1-3.5%
  • the Si content is set to 0.1 to 3.5%.
  • the Si content is more preferably 0.2% or more, and more preferably 2.0% or less.
  • Mn 1.5 to 10.0%
  • the Mn content is set to 1.5% or more and 10.0% or less.
  • the Mn content is more preferably 2.0% or more, and more preferably 8.0% or less.
  • P 0.1% or less
  • P is an unavoidable impurity, but if the P content exceeds 0.1%, strong segregation appears at the nugget end of the weld, making it difficult to improve the joint strength. Therefore, the P content is set to 0.1% or less. More preferably, the P content is 0.05% or less, and more preferably, the P content is 0.02% or less.
  • one or more elements selected from Cu, Ni, Mo, Cr, Nb, V, Ti, B, Al, and Ca may be added. ..
  • Cu, Ni, and Mo are elements that can contribute to improving the strength of steel.
  • Cr is an element whose strength can be improved by improving hardenability.
  • Nb and V are elements that can reinforce steel by controlling the structure by precipitation hardening.
  • Ti and B are elements that can improve hardenability and strengthen steel.
  • Al is an element capable of controlling the structure for austenite granulation.
  • Ca is an element that can contribute to improving the workability of steel.
  • one or more elements selected from Cu, Ni, Mo, Cr, Nb, V, Ti, B, Al, and Ca if necessary. May be added. If these elements are excessively contained, toughness deterioration and cracks may occur. Therefore, when these elements are added, a total content of 5% or less is acceptable.
  • composition of components other than these is Fe and unavoidable impurities.
  • the tensile strength of the high-strength steel sheet having the above-mentioned component composition is preferably 780 MPa or more.
  • CTS may decrease, especially when the tensile strength of the base metal is 780 MPa or more.
  • a high-strength steel plate having a tensile strength of 780 MPa or more becomes a structure having toughness by tempering the metal structure such as the tip region of the nugget into martensite. Can prevent brittle fracture.
  • the welded portion can suppress the decrease in CTS.
  • the above effect can be obtained even with a high-strength steel sheet having a tensile strength of less than 780 MPa.
  • the galvanized steel sheet refers to a steel sheet having a plating layer containing zinc as a main component.
  • the zinc-based plating layer shall include all known zinc plating layers.
  • the zinc-based plating layer includes a hot-dip galvanizing layer, an electrogalvanizing layer, a Zn—Al plating layer, a Zn—Ni layer, and the like.
  • the steel plate to be stacked a plurality of steel plates of the same type may be stacked, or a plurality of steel plates of different types may be stacked.
  • a surface-treated steel sheet having a plating layer and a steel sheet not having a plating layer may be overlapped.
  • the thickness of each steel plate is the same or different.
  • the thickness of the steel sheet is preferably 0.4 mm to 2.2 mm because it targets a general steel sheet for automobiles.
  • FIG. 4 shows, as an example, a schematic view illustrating a state in which resistance spot welding is performed on two steel plates.
  • the steel plate 1 arranged on the lower side and the steel plate 2 arranged on the upper side are overlapped.
  • one or more of the steel sheets to be stacked are high-strength steel sheets having the above-mentioned component composition.
  • the lower steel plate 1 and / or the upper steel plate 2 is a high-strength steel plate.
  • the pair of upper and lower electrodes 4 and 5 sandwich the lower steel plate 1 and the upper steel plate 2 that are overlapped with each other, and energize while pressurizing.
  • the steel plates 1 and 2 are sandwiched between the electrode 4 (lower electrode) arranged on the lower side and the electrode 5 (upper electrode) arranged on the upper side.
  • the above-mentioned energization is an energization step described below.
  • a nugget 3 having a required size is formed to obtain a welded member having the resistance spot welded portion described above.
  • the process of energizing the lower steel plate 1 and the upper steel plate 2 by using the lower electrode 4 and the upper electrode 5 is controlled as follows.
  • a main energization step of energizing with a current value I w (kA) is performed.
  • a cooling process for cooling with a cooling time t c (ms) represented by the following formula (13) is given.
  • the step tempering by the following equation (14) shows the current value I t (kA), during the energization time t p (ms) shown in the following equation (15), to energize. 400 ⁇ t c ...
  • the main energization step is an energization step for forming a nugget 3 by melting the superposed portions of the superposed steel plates (in the example shown in FIG. 4, the lower steel plate 1 and the upper steel plate 2).
  • the current value I w (kA) is applied to generate a welded portion.
  • the energization conditions and pressurization conditions for forming the nugget 3 in the main energization step are not particularly limited. Welding conditions that have been used conventionally can be adopted.
  • the energization conditions for the main energization are preferably such that the energization time t w is 120 to 400 ms and the current value I w is 4 to 8 kA.
  • the pressurization condition is preferably 2.0 to 4.0 kN.
  • the lower limit of the current value is preferably a current value that can secure a nugget diameter of 3 ⁇ t (t: plate thickness) (mm) or more, and the upper limit of the current value is the occurrence of scattering in order to obtain a stable nugget diameter. It is preferable that the current value is not accompanied by.
  • a cooling process is provided between the main energization process and the tempering process described later.
  • the structure of the tip region 31 is cooled to a temperature at which martensitic transformation occurs.
  • cooling is performed with a cooling time t c (ms) represented by the above formula (13). If the cooling time t c is less than 400 ms, the nugget end cannot be cooled to a temperature at which martensitic transformation occurs. As a result, the retained austenite structure that could not be transformed into martensite in the tip region 31 becomes one or two types of martensite structure and retained austenite structure by re-energization and recooling in the tempering step described later.
  • the cooling time t c is set to 400 ms or more.
  • the cooling time t c is set. It is preferably 600 ms or more. More preferably, it is 800 ms or more. Even more preferably, it is 1000 ms or more.
  • the upper limit of the cooling time t c is not particularly specified.
  • the cooling time t c (ms) is preferably 8000 ms or less in order to shorten the workability. It is more preferably 4000 ms or less, further preferably 2000 ms or less, and even more preferably 1000 ms or less.
  • the tempering step is a post-heat treatment step for tempering the tip region 31 of the nugget 3 formed in the main energization step to improve toughness.
  • the tempering step is performed in an appropriate temperature range.
  • the structure at the end of the nugget after welding will not be tempered, and a large amount of brittle martensite structure will remain. Further, when tempering is performed in the embrittlement region, impurities such as P remain at the grain boundaries. From these facts, the tip region 31 becomes an embrittled metal structure. As a result, the joint strength is low.
  • the joint strength is improved. For this reason, it is necessary to control the temperature of the tempering process so that it becomes an appropriate temperature. Therefore, in the present invention, it is important to control the welding conditions in the tempering process as follows.
  • the tempering step a current value shown in Equation (14) mentioned above I t (kA), during the energization time t p (ms) shown in equation (15) described above, to energize.
  • the current value I t of the current tempering process exceeds (0.95 ⁇ I w) kA, since the current value of the energization tempering too high, the martensitic transformation tissue again in the cooling process, remelting or austenite The temperature rises to the region and eventually becomes a martensitic structure. As a result, the tip region 31 becomes a brittle structure, and the joint strength is not improved. Therefore, the current value I t and (0.95 ⁇ I w) kA or less.
  • the current value I t is preferably set to (0.9 ⁇ I w) kA or less. More preferably, it is (0.8 ⁇ I w ) kA or less.
  • the lower limit of the current value I t is not specifically defined. However, since the tip region 31 is tempered so that the metal structure as described above, the current value I t is preferably set to (0.4 ⁇ I w) kA or more. It is more preferably (0.5 ⁇ I w ) kA or more. It is even more preferable that it is (0.6 ⁇ I w ) kA or less.
  • Is less than the energization time t p of the tempering process is 400 ms, it is impossible to martensitic structure tempered martensite structure of the tip region 31 generated in the cooling process. As a result, the tempered martensite structure cannot be produced in an area ratio of 60% or more in the tempering step. Further, the tip region 31 does not have the hardness Hv described above.
  • the strong HAZ region 61 in order for the strong HAZ region 61 to have the above-mentioned hardness Hh, it is necessary to temper the HAZ at a temperature higher than the embrittlement region, but if the temperature becomes too high, the melting point will be exceeded and the martensite structure will be formed. It becomes a metal structure in which many appear. Therefore, the tempering process must not rise above an appropriate temperature that can be tempered. That is, it is not desirable to raise the current value too much. The longer the tempering process is, the more the tempering is promoted, but if it is too long, the temperature may rise above an appropriate temperature.
  • the energization time t p is the least 400 ms.
  • Energization time t p is more preferably not less than 600 ms, even more preferably at least 800 ms.
  • the upper limit of the conduction time t p is not particularly defined. If a short time of for workability improvement, is preferably not more than energization time t p is 3000 ms, more preferably to less 2000 ms, more preferably to less 1500 ms, to be lower than or equal to 1000ms Is even more preferable.
  • the average particle size of the carbides generated in the tempering step in the tip region 31 is 300 nm or less. It was found that in the above-mentioned target steel sheet of the present invention, an embrittlement region exists depending on the tempering temperature, and the joint strength does not improve in a temperature region exceeding the melting point. Therefore, it suffices to be able to bake in a temperature range below the melting point and below the embrittlement range, or in a temperature range below the melting point and above the embrittlement range. In the present invention, tempered martensite can be obtained and toughness can be maintained in either temperature range, so that the joint strength can be improved.
  • the energization conditions for example, pressing force, electrodes, holding time, etc.
  • the energization conditions are not particularly limited because they change depending on the plate assembly and plate thickness of the steel plate, and the number of times of energization is not limited.
  • a pair of upper and lower electrodes may be provided, and a portion to be welded by the pair of electrodes may be sandwiched between them to pressurize and energize.
  • a pressurizing control device and a welding current control device capable of arbitrarily controlling the pressurizing force and the welding current during welding, respectively.
  • the pressurizing mechanism for example, air cylinder, servomotor, etc.
  • current control mechanism for example, AC, DC, etc.
  • type for example, stationary type, robot gun, etc.
  • the type of power supply is not particularly limited.
  • the shape of the electrode is also not particularly limited. Examples of the type of the tip of the electrode include DR type (dome radius type), R type (radius type), and D type (dome type) described in JIS C 9304: 1999.
  • the present invention is a resistance spot welded joint having the above-mentioned resistance spot welded portion.
  • the resistance spot welded joint of the present invention is, for example, a joint in which two or more stacked steel plates are joined by a molten portion defined by the above-mentioned metal structure and hardness and a resistant spot welded portion having HAZ.
  • the steel plate, welding conditions, metal structure of the welded portion, etc. are the same as those described above, and are therefore omitted.
  • the present invention is a method for manufacturing a resistance spot welded joint by using the above-mentioned resistance spot welding method.
  • a plate set in which two or more steel plates are stacked is sandwiched by a pair of electrodes, and resistance spot welding is performed while applying pressure under the above-mentioned welding conditions.
  • the tip region 31 has the above-mentioned metal structure and hardness.
  • the strong HAZ region obtains the hardness Hh described above.
  • the hardness Hh of the strong HAZ region 61 it is possible to determine the possibility that the nugget end portion and the HAZ are at the temperature of the embrittlement region. As a result, the toughness of the welded portion can be improved, and the CTS can be further improved. That is, both TSS and CTS can be compatible.
  • the joint strength of the obtained welded joint can also be improved. Therefore, even when the plate assembly contains a medium Mn steel plate (high-strength steel plate) having the above-mentioned steel plate component, the effect of further improving the joint strength (particularly CTS) can be obtained.
  • a plate assembly in which two steel plates (lower steel plate 1 and upper steel plate 2) are superposed is spot-welded by a resistance welding machine which is a servomotor pressure type and has a DC power supply attached to a C gun.
  • a resistance spot welded joint was produced by forming a nugget 3 having a required size.
  • test piece high-strength steel plates (steel plates A to H) having a plate thickness of 0.8 mm and a plate thickness of 1.2 mm from 780 MPa class to 1180 MPa class were used.
  • the size of the test piece was 150 mm on the long side and 50 mm on the short side.
  • steel sheets A to H those having the following component compositions were used.
  • % representing the component composition of the steel sheet means “mass%" unless otherwise specified.
  • the plate thicknesses of the plate sets a to h and the board set j were all the same 1.2 mm.
  • the plate set i three medium-Mn steel plates A of the same type were laminated, and the plate thickness was 0.8 mm each.
  • the structure and hardness of the nugget end, the hardness of the heat-affected zone (HAZ), and CTS were evaluated by the methods described below.
  • the sample used for observing the tissue at the nugget end was obtained as follows.
  • the prepared resistance spot welded joint was cut into a test piece, and the test piece was ultrasonically cleaned, then resin-filled, the cross section was polished, and etching was performed using a nital solution to obtain a sample.
  • SEM was used for observing the tissue, and the observation was performed at a magnification of 1000 to 100,000.
  • Hardness was measured by a Vickers hardness tester by the method specified in JISZ2244.
  • Tables 3-1 and 3-2 show the structure of the nugget tip region in the resistance spot welded joint after welding, and the hardness of the nugget tip region, the entire nugget, and the heat-affected zone, respectively.
  • the measurement positions of the hardness of the "nugget tip region" shown in Tables 3-1 and 3-2 are the boundary between the nugget 3 having an elliptical cross-sectional shape in the plate thickness direction and the steel plate.
  • the position was 0.02 mm away from the point P in the HAZ6 direction. Indentations were made at these two points, and their values were measured.
  • the measurement of carbides in the tempered martensite structure of the nugget tip region was performed as follows. For the observation of the cross section of the welded portion, a thin tital etching was performed on the cross section sample for observation, and an image was taken at 30,000 times using an SEM (Scanning Electron Microscope). The size of the carbide was measured using image processing software based on SEM photographs. For the ratio of carbides (area ratio), the ratio of carbides (area ratio) was calculated using image binarization software. As described above, the ratio (area ratio) of carbides was calculated for those having an average particle size of carbides of 300 nm or less.
  • the hardness measurement positions of the "strong HAZ region 61" shown in Tables 3-1 and 3-2 were determined as shown in FIG. 1 (A).
  • an indentation was made at a position 0.3 mm away from the point q toward the HAZ6 side, and the value was measured.
  • the same region as above was set as the strong HAZ region, and indentations were made at a position 0.3 mm away from the point q toward the HAZ6 side, and the value was measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Resistance Welding (AREA)

Abstract

抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法の提供を目的とする。本発明の抵抗スポット溶接部は、鋼板のうち少なくとも1枚の鋼板が所定の成分組成の高強度鋼板であり、ナゲット内の所定領域をナゲット先端領域とするとき、重ね面に対応するナゲット先端領域のうち1つ以上で、ナゲット先端領域の金属組織が焼き戻しマルテンサイトを主相とし、ナゲット先端領域の硬さHvが所定のナゲット全体のマルテンサイトの硬さHmwに対して式(4)を満たし、熱影響部内の所定の領域を強HAZ領域とするとき、重ね面に対応する強HAZ領域のうち1つ以上で、強HAZ領域における硬さHhが所定の鋼板のマルテンサイトの硬さHmhに対して式(8)を満たす。 Hv≦Hmw-40・・・(4) Hh<Hmh-25・・・(8)

Description

抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法
 本発明は、抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法に関する。
 近年、自動車車体には、燃費改善のための軽量化、および衝突安全性の確保の観点から、種々の高強度鋼板(ハイテン)の適用が進められている。自動車の組み立てラインでは、部材、例えば高強度鋼板を有する自動車の構造部材の接合として、主に抵抗スポット溶接が用いられている。抵抗スポット溶接で接合された溶接継手は、上述のように衝突安全性を確保するため、衝突変形時でも破断しない強度(引張強度)が要求される。溶接継手の抵抗スポット溶接部の継手強度は、継手のせん断方向への引張強度であるせん断引張強度(TSS:Tensile shear strength)と、継手の剥離方向への引張強度である十字引張強度(CTS:Cross tension strength)で評価される。
 抵抗スポット溶接部のTSSは母材の引張強度と共に増加する傾向があるが、抵抗スポット溶接部のCTSは母材の引張強度が780MPa以上では低下する場合があるとされている。CTSが低下する場合、破断形態は、抵抗スポット溶接部の周囲の母材またはHAZ(熱影響部)で延性的に破断するプラグ破断からナゲット内に脆性的に破断する界面破断もしくは部分プラグ破断へ遷移する。一般に、CTSが低下する原因としては、急冷後のナゲット端部の硬化により脆性的な破壊が起こること等とされている。
 そこで、この脆性的な破壊を解決するため、本通電後に再度通電を行う後通電法の検討が様々になされている。本通電後に再度通電を行う後通電法として、例えば特許文献1~4に記載の技術が挙げられる。
 特許文献1には、特定の鋼種の母材におけるナゲット(溶融凝固部)と熱影響部が、焼き戻しマルテンサイト組織あるいは焼き戻しベイナイト組織であることが記載されている。
 特許文献2には、後通電工程を実施した際のナゲットとコロナボンド界面の最高温度を規定することが記載されている。
 特許文献3には、ナゲット外側の硬度とナゲット内の組織について規定することが記載されている。
 特許文献4には、高い電流値で焼き戻しを行うことが記載されている。
特許第5182855号公報 特開2013-103273号公報 特開2013-78782号公報 特開2010-172946号公報
 しかしながら、特許文献1は、母材の成分組成を規定するのみであり、ナゲットおよび熱影響部が上記組織を得るための溶接条件、具体的には後通電の温度範囲については何ら考慮されていない。
 特許文献2は、短時間で高温にする後通電を行うことで偏析の低減を可能とし、これにより継手強度を向上させている。しかし、特許文献2では、継手強度を向上させるため短時間の通電により偏析を緩和することから、ナゲット端部の温度がMs点を下回らない冷却時間を設定している。このことから、主通電後の冷却過程ではマルテンサイト変態をしない組織に限定しており、焼き戻しマルテンサイトを得ることができない。その結果、ナゲット端部の靱性は向上しない。
 特許文献3は、TSSとCTSを両立するために、ナゲット内の組織を等軸状マルテンサイト組織とし、更にナゲットの外側に母材より硬度が低い軟化域が存在することを条件としている。また、後通電として、短時間(0.1秒以下)に主通電工程の約2倍の高電流を与える。しかし、得られるナゲット内の組織はマルテンサイト組織であるため、十分な靭性を得られない。すなわち、特許文献3は、高い温度で焼き戻すことで硬さを適正に制御することについては何ら考慮されていない。
 特許文献4は、本通電より高い電流値で焼き戻しを行うことから、ナゲット端部が融点を超え、溶融してしまうことが懸念される。ナゲット端部が溶融すると冷却後にマルテンサイトになってしまい強度を確保できない。
 また、脆性的な破壊を解決するその他の方法として、単通電のみの抵抗スポット溶接方法もある。しかし、引張強度が780MPa以上で、鋼板の成分組成としてMnを1.5~10.0質量%含有する高強度鋼板(以下、この鋼板を中Mn鋼板と称する)にこの単通電のみの抵抗スポット溶接方法を適用する場合には、通電により形成される溶融部が溶けて固まる際に、中Mn鋼板に含有されるオーステナイト組織がマルテンサイト組織になる。その結果、硬く脆い組織となるため、CTSが低いという問題があった。
 本発明は係る課題に鑑み、上記した引張強度が780MPa以上の高強度鋼板、特に中Mn鋼板であっても、抵抗スポット溶接部のナゲット端部の靱性を向上させることで継手強度を向上させることができる抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法の提供を目的とする。
 本発明では、上記した課題を解決するために、引張強度が780MPa以上の高強度鋼板を含む板組みの抵抗スポット溶接における、CTSが低下するメカニズムおよびCTSが向上する方法について、鋭意検討した。
 上述のように、鋼板の高強度化が進むにつれ、CTSは低下する。CTSが低い場合の破断形態は、抵抗スポット溶接部の周囲の母材またはHAZで延性的に破断するプラグ破断からナゲット内で脆性的に破断する界面破断もしくは部分プラグ破断へ遷移する。その結果、高強度鋼板ではCTSを確保することが困難となる。界面破断となる原因は、ナゲット形成後の急冷により硬化組織が形成されることによるナゲット端部の脆化である。これにより、ナゲット端部に亀裂が入り、界面破断となる。したがって、この脆性破壊を起こさないためには、ナゲット端部が靱性を備えた組織にすることが必要である。
 そこで、本発明では、このような高強度鋼板の抵抗スポット溶接部のCTSを向上させるために、ナゲット端部の靱性を向上させる方法について、さらに鋭意検討した。その結果、本発明者らは、上記した脆性破壊を起こす範囲では、焼き戻しが進むことによって、破断面が延性的な破面から脆性的な破面へと変化し、これに起因して脆化を起こすことを知見した。すなわち、ナゲット端部は、焼き戻し脆化域となる温度域より高温あるいは低温で焼き戻しを行うことで、ナゲット端部の靱性を向上できることが明らかになった。
 具体的には、まず、ナゲット形成のために溶融点以上の温度域まで加熱を行う主通電を行い、その後に溶融部の凝固を経て、オーステナイト組織からマルテンサイト組織へ変態する温度まで急冷する冷却過程を行い、引き続き、ナゲット端部を適正な温度域で焼き戻す後通電を行う。この通電工程により、ナゲット端部の金属組織は、焼き戻しマルテンサイト組織を主相とした組織となる。これにより、ナゲット端部の特定の領域(後述するナゲット先端領域)における硬さHvが、ナゲット全体のマルテンサイト組織の硬さHmwに対して、所定の関係式を満たす時に、このナゲット端部が高い靱性を有する焼き戻しマルテンサイト組織となる。その結果、抵抗スポット溶接部の界面破断を回避する効果を得られることがわかった。また、上記した焼き戻しを行った抵抗スポット溶接部においてCTSが高いものは、HAZの特定の領域(後述する強HAZ領域)における硬さHhも、重ね合わせた鋼板のマルテンサイト組織の硬さHmhに対して、所定の関係式を満たすことがわかった。
 本発明は、上述の知見に基づいてなされたものであり、以下を要旨とするものである。
[1] 2枚以上の鋼板を重ね合わせて抵抗スポット溶接した溶接部材の抵抗スポット溶接部であって、
 前記鋼板のうち少なくとも1枚の鋼板は、成分組成が、質量%で、
C:0.05~0.6%、
Si:0.1~3.5%、
Mn:1.5~10.0%、および
P:0.1%以下
の範囲を満足する高強度鋼板であり、
 前記鋼板の重ね面と交わるナゲットの境界上の二点を第1端部および第2端部とし、
前記第1端部および前記第2端部を結ぶ線分Xの長さをD(mm)とし、
前記第1端部および前記第2端部から前記ナゲットの中心方向に向けた線分X上の位置を点Oおよび点Pとし、前記第1端部から点Oまでおよび前記第2端部から点Pまでの各距離L(mm)が下記式(1)を満たす、前記ナゲット内の領域をナゲット先端領域とするとき、前記重ね面に対応する前記ナゲット先端領域のうち1つ以上で、
前記ナゲット先端領域の金属組織が、焼き戻しマルテンサイトを主相とし、
前記ナゲット先端領域の硬さHvが、下記式(2)および下記式(3)で算出される前記ナゲット全体のマルテンサイトの硬さHmwに対して、下記式(4)を満たし、
 前記重ね面に対して上側および/または下側の鋼板では、
前記重ね面に平行な直線Zと前記ナゲットの境界の交点を点qとし、直線Z上で熱影響部内の位置を点rとし、
直線Zと前記重ね面の板厚方向の距離M(mm)が下記式(5)を満たし、かつ、点qから点rまでの各距離T(mm)が下記式(6)を満たす、前記熱影響部内の領域を強HAZ領域とするとき、前記重ね面に対応する前記強HAZ領域のうち1つ以上で、
前記強HAZ領域における硬さHhが、下記式(7)で算出される鋼板のマルテンサイトの硬さHmhに対して、下記式(8)を満たす、抵抗スポット溶接部。
Figure JPOXMLDOC01-appb-M000002
 ここで、式(2)~式(3)において、
     Cw(質量%):ナゲット内における各鋼板からの体積当たりのC含有量、
     Ci(質量%):重ね合わせた各鋼板のC含有量、
     Vi(mm):ナゲットの中心を通る板厚方向断面において、ナゲットの境界と各線分Xにより囲まれた領域における各鋼板の溶融面積、
     n:重ね合わせた鋼板の数、とする。
M=D/20  ・・・・・・・(5)
0<T≦D/10・・・・・・・(6)
Hmh=884×Ch×(1-0.3×Ch)+294・・・(7)
Hh<Hmh-25・・・・・(8)
 ここで、式(7)において、Ch(質量%):重ね面に対して上側の鋼板のC含有量、あるいは、重ね面に対して下側の鋼板のC含有量、とする。
ただし、前記重ね面において前記鋼板間の隙間がある場合には、前記隙間の中間に位置し前記鋼板表面に平行な直線Yと交わる前記ナゲットの境界上の二点を前記第1端部および前記第2端部とする。
[2] 前記焼き戻しマルテンサイト中の炭化物の割合は、面積率で20%超えである、[1]に記載の抵抗スポット溶接部。
[3] 前記炭化物は、平均結晶粒径が300nm以下である、[2]に記載の抵抗スポット溶接部。
[4] 前記高強度鋼板は、引張強度が780MPa以上である、[1]~[3]のいずれか1つに記載の抵抗スポット溶接部。
[5] [1]~[4]のいずれか1つに記載の抵抗スポット溶接部を生成する抵抗スポット溶接方法であって、
 主通電工程として、電流値I(kA)で通電し、溶接部を生成し、
 その後、下記式(13)に示す冷却時間t(ms)で冷却し、
 その後、焼き戻し工程として、下記式(14)に示す電流値I(kA)で、下記式(15)に示す通電時間t(ms)の間、通電を行う、抵抗スポット溶接方法。
400≦t        ・・・(13)
≦0.95×I    ・・・(14)
400≦t        ・・・(15)
[6] [1]~[4]のいずれか1つに記載の抵抗スポット溶接部を有する、抵抗スポット溶接継手。
[7] [5]に記載の抵抗スポット溶接方法を用いて抵抗スポット溶接継手を製造する、抵抗スポット溶接継手の製造方法。
 本発明によれば、高強度鋼板の抵抗スポット溶接部における、ナゲット端部の金属組織および硬さと、該ナゲット端部周辺のHAZの硬さとを規定することにより、靱性を向上し、継手強度を向上することができる。
図1(A)および図1(B)は、本発明の一実施形態における抵抗スポット溶接部を説明する断面図である。 図2は、図1(A)に示す抵抗スポット溶接部に板隙がある場合を説明する断面図である。 図3(A)および図3(B)は、本発明の他の実施形態における抵抗スポット溶接部を説明する断面図である。 図4は、本発明の一実施形態における抵抗スポット溶接の状態を説明する断面図である。
 以下、各図を参照して、本発明を説明する。なお、本発明はこの実施形態に限定されない。
 図1(A)~図3(B)を用いて、本発明の抵抗スポット溶接部について説明する。
 図1(A)~図3(B)には、本発明で得られる抵抗スポット溶接部の一例を説明する板厚方向断面図を示す。図1(A)には、2枚の鋼板を重ね合わせて溶接した抵抗スポット溶接部の全体を示し、図1(B)には、図1(A)に示す抵抗スポット溶接部の一部拡大図を示す。図2には、図1(A)に示す抵抗スポット溶接部において、鋼板の重ね面に板隙が存在する例を示す。図3(A)には、3枚の鋼板を重ね合わせて溶接した抵抗スポット溶接部の全体を示し、図3(B)には、図3(A)に示す抵抗スポット溶接部の一部拡大図を示す。
 本発明は、2枚以上の鋼板を重ね合わせて抵抗スポット溶接で接合した溶接部材の抵抗スポット溶接部である。重ね合わせる鋼板は、後述する高強度鋼板を少なくとも1枚以上含む。図1(A)および図1(B)に示す例では、下側に配置される鋼板1と上側に配置される鋼板2とを重ね合わせる。下側の鋼板1および/または上側の鋼板2が高強度鋼板である。
 図1(A)~図3(B)に示すように、本発明の抵抗スポット溶接部(以下、溶接部と称する)は、ナゲット3と熱影響部(HAZ)6を有する。図示は省略するが、上側の鋼板2を鋼板表面から平面視したとき、円状に形成された溶接部におけるナゲット3の中心を通る板厚方向の断面形状は、楕円形となる。
 まず、図1(A)、図1(B)および図2を用いて、2枚の鋼板の板組における溶接部について説明する。各図に示すように、溶接部は、ナゲット3内に靭性が高い金属組織を有する先端領域31と、HAZ6内に所定の硬さを備える強HAZ領域61とを有する。
 図1(A)および図1(B)に示す例では、重ね合わせた鋼板1、2の重ね面7と交わる楕円形のナゲット3の境界上の二点を第1端部8aおよび第2端部8bとする。第1端部8aおよび第2端部8bを結ぶ直線を線分Xと称し、線分Xの長さをD(mm)とする。第1端部8aからナゲット3の中心方向に向けた線分X上の位置を点Oとし、第1端部8aから点Oまでの距離をL(mm)とする。第2端部8bからナゲット3の中心方向に向けた線分X上の位置を点Pとし、第2端部8bから点Pまでの距離をL(mm)とする。これらの距離Lが下記式(1)を満たす、ナゲット3内の領域をナゲット先端領域31(以下、「先端領域」と称する場合もある。)とする。図1(A)に示すように、先端領域31はナゲット3の両端に存在する。
 なお、この先端領域31は、鋼板の重ね面7ごとに規定することができる。すなわち、3枚以上の鋼板を重ね合わせて抵抗スポット溶接した溶接部材の場合には、2つ以上の重ね面を有することになり、各重ね面ごとにナゲット先端領域を規定することができる。例えば、後述の図3(A)に示すように、3枚の鋼板の板組とするときには、重ね面は2つになり、各重ね面ごとにナゲット先端領域が存在する。
 0<L≦0.25×D・・・・・・・・・・・・・(1)
 上記のように、第1端部8aから点Oまでの距離L、および第2端部8bから点Pまでの距離Lが、式(1)を満たす領域が先端領域31である。距離Lが式(1)の条件(すなわち、0<L≦0.25×D)を満たさない場合、継手強度に影響を及ぼすナゲット端部の領域に、後述する本発明の金属組織を有さないことになる。継手強度をより向上させる観点から、距離Lは、0<L≦0.20×Dとすることが好ましい。
 なお、本発明では、ナゲットの中央部(図1(A)に示す例では、ナゲット3内の先端領域31以外の領域を指す。)の金属組織は、継手強度に影響を及ぼさないことから、特に金属組織の規定は行わない。
 ナゲット両端の先端領域31の金属組織は、焼き戻しマルテンサイト組織を主相とする。本発明において主相とは、焼き戻しマルテンサイト組織が、ナゲット3内の金属組織全体に対して、面積率で60%以上有することを意味する。
 焼き戻しマルテンサイト組織が60%未満の場合、焼き戻しが進んでいないか、あるいは焼き戻しの温度が高過ぎることによって出現したマルテンサイト組織を多く含む金属組織になっている、と考えられる。後述する残部組織のマルテンサイト組織が多くなることによって、ナゲット端部は硬くて脆い組織となり脆性的な破断になることから、継手強度は低くなる。したがって、焼き戻しマルテンサイト組織は60%以上とする。好ましくは80%以上とする。より好ましくは90%以上とする。本発明では、ナゲット端部において、靭性を有する焼き戻しマルテンサイト組織を多く有することが望ましいことから、焼き戻しマルテンサイト組織の上限は特に設けない。焼き戻しマルテンサイト組織は100%以下とすることが好ましい。
 なお、先端領域31における金属組織に、焼き戻しマルテンサイト組織以外の組織(以下、「残部組織」と称することもある。)として、マルテンサイト組織を含有する場合もある。例えば、冷却時間が短すぎてマルテンサイト組織が焼戻されていない場合(すなわち、焼き戻しが進み切らなかった場合)や、焼き戻しの温度が高過ぎて再度マルテンサイト変態した場合(すなわち、焼き戻し温度が高過ぎた場合)に、存在しうるマルテンサイト組織である。マルテンサイト組織は特に脆い組織であるため、継手強度の低下に大きく影響することが懸念される。そのため、マルテンサイト組織は可能な限り低減することが好ましく、40%未満とすることが好ましい。
 焼き戻しマルテンサイト組織中には、炭化物が析出する。先端領域31の硬さHvが本発明で目的とする硬さを確保するように焼き戻しを行うと、焼き戻しマルテンサイト組織に占める炭化物の割合が面積率で20%超えとなることが分かった。焼き戻しが進行するにつれて炭化物は粗大化し、隣接する炭化物の間隔が狭くなる。また、焼き戻しが進行するにつれて、炭化物は増加する。そのため、上記した硬さの指標とともに焼き戻しマルテンサイト組織中の炭化物の割合を面積率で20%超えとすることで、より適切に焼き戻し脆化域の温度になっていないことが判断できる。すなわち、より適切な焼戻し温度となっていることが判断できる。よって、焼き戻しマルテンサイト組織中に占める、炭化物の割合は、面積率で20%超えとすることが好ましい。より好ましくは23%以上とし、さらに好ましくは40%以上とする。好ましくは85%以下とし、より好ましくは75%以下とし、さらに好ましくは50%以下とする。
 なお、炭化物は、焼き戻しにより過飽和なCを排出することで現れる。このため、炭化物の割合によって焼き戻しが進行していることが示される。
 ここでは、炭化物の平均結晶粒径(以下、平均粒径と称する場合もある。)が300nm以下のものの割合を規定している。炭化物の平均粒径が300nm超えでは、粒が成長していることにより、脆化域の温度域まで焼き戻し温度が上昇している恐れがあるためである。なお、本発明では、ナゲット先端領域の組織、および、焼き戻しマルテンサイト組織中の炭化物は、後述する実施例に記載の方法で測定することができる。
 また本発明では、先端領域31の硬さHvは、下記式(2)および下記式(3)で算出されるナゲット3全体のマルテンサイトの硬さHmwに対して、下記式(4)を満たす。
Figure JPOXMLDOC01-appb-M000003
 ここで、式(2)~式(3)において、
     Cw(質量%):ナゲット内における各鋼板からの体積当たりのC含有量、
     Ci(質量%):重ね合わせた各鋼板のC含有量、
     Vi(mm):ナゲットの中心を通る板厚方向断面において、ナゲットの境界と各線分Xにより囲まれた領域における各鋼板の溶融面積、
     n:重ね合わせた鋼板の数、とする。
 なお、本発明によれば、先端領域31の硬さHvが脆化域の範囲では、焼き戻しが進み、破断面が延性的な破面から脆性的な破面へと変化し、脆化を起こすことがわかった。すなわち、焼き戻しが進行し過ぎて脆化を引き起こしている場合は、適正な焼戻しに比べて、ナゲット端部の硬さが低下する恐れがあることがわかった。
 そこで、本発明者らは、この脆化域において、接合部の破面観察をSEMで行った。その結果、ナゲット全体において粒界破面を多く有し、またナゲット端部においても粒界破面が多く占めており、脆性的な破面であることがわかった。一方で、高温での焼き戻しの場合は、ナゲット端部の周辺ではディンプルを含む延性的な破面が見られる。このことから、脆化域では破面においても粒界を多く含むことが分かった。すなわち、この脆化域では粒界にPが偏析することによって脆性的な破断形態となり、継手強度が低下することが分かった。そのため、本発明では、ナゲット端部の金属組織と硬さの両方から焼き戻しの状態を判断する。
 上述のとおり、先端領域31の硬さHvは、Hv≦Hmw-40の関係式(式(4))を満たしていれば、ナゲット3の端部が脆化域より低温あるいは高温で、かつ融点以下の温度域で焼き戻しされた状態にあるため、良好な継手を得られていることが分かる。更に先端領域31の硬さHvの値が小さい程、焼き戻しが進行している。焼き戻しが進行することにより、ナゲット端部の靭性が向上し、き裂がナゲットの外部へ進むことから、ナゲット内部へはき裂が進展せず、プラグ破断となる。このことから、継手強度は向上すると考えられる。より良好な継手が得られる焼き戻しを考慮すると、先端領域31の硬さHvは、(Hmw-55)以下とすることが好ましい。
 先端領域31の硬さHvの下限は特に規定しない。本発明の金属組織を適切に得るためには、焼き戻しによる先端領域31の硬さの低下に限界があると考えることから、先端領域31の硬さHvは、(Hmv-700)以上とすることが好ましい。
 なお、適切な後通電温度によって焼き戻しマルテンサイトを主相とするナゲット端部の一部は、オーステナイト域まで温度上昇し、逆変態した組織が後通電終了後にマルテンサイト組織となる場合がある。
 また本発明では、上記したナゲット端部の構成を有するとともに、HAZ6が以下に説明する構成を有する。すなわち、HAZ6内の特定の領域(後述する強HAZ領域61)における硬さHhが、各鋼板のマルテンサイト組織の硬さHmhに対して、下記の関係式(式(8))を満たす。これにより、継手強度に影響を及ぼす可能性があるHAZ内の領域でも、焼き戻しが進行し過ぎていないことを確認できるため、本発明の効果を適正に得られる。
 以下に本発明のHAZ6の構成を説明する。図1(A)および図1(B)に示す例では、重ね面7に対して上側の鋼板2および/または下側の鋼板1における強HAZ領域61が、次の構成を有する。
 図1(B)に示すように、重ね面7(あるいは上記した線分X)に平行な直線Zとナゲット3の境界の交点を点qとし、直線Z上でHAZ6内の位置を点rとする。直線Zと重ね面7の板厚方向の距離M(mm)が下記式(5)を満たし、かつ、点qから点rまでの各距離T(mm)が下記式(6)を満たす、HAZ6内の領域を強HAZ領域61とする。なお、線分X(重ね面7)と直線Zは、鋼板の板厚方向に対して垂直な線である。
 図1(A)および図1(B)に示す例では、先端領域31の外側で、上側の鋼板2および下側の鋼板1に、それぞれ強HAZ領域61が存在する。なお、強HAZ領域61は、上側の鋼板2のみ、あるいは下側の鋼板1のみに存在しても良い。
 強HAZ領域61における硬さHhが、それぞれ下記式(7)で算出される鋼板のマルテンサイトの硬さHmhに対して、下記式(8)を満たす。
M=D/20  ・・・・・・・(5)
0<T≦D/10・・・・・・・(6)
Hmh=884×Ch×(1-0.3×Ch)+294・・・(7)
Hh<Hmh-25・・・・・(8)
 ここで、式(7)において、Ch(質量%):重ね面に対して上側の鋼板のC含有量、あるいは、重ね面に対して下側の鋼板のC含有量、とする。
 強HAZ領域61が上記式(5)および上記式(6)を満たさない場合、HAZ6内の母材に近い位置(領域)を示すことになる。この母材に近い位置は、継手強度に影響を及ぼしにくい。上述のように、本発明は、継手強度に影響を与えるHAZ内の特定の領域の硬さを規定することにより、焼き戻しの度合いが適正に制御可能となる。したがって、強HAZ領域61は、上記式(5)および上記式(6)を満たす。なお、上記式(5)は、M=D/15とすることがより好ましい。上記式(6)は、0<T≦D/8とすることがより好ましい。
 また、強HAZ領域61の硬さHhが上記式(8)を満たさない場合、すなわち(Hmh-25)以上の場合には、強HAZ領域61の焼き戻しが進行し過ぎ、融点まで上昇している可能性がある。その結果、強HAZ領域61の組織がマルテンサイトとなり靱性が低下するため、継手強度が低くなる恐れがある。したがって、HAZ6への適切な焼き戻しを行う観点から、強HAZ領域61の硬さHhは、(Hmh-25)未満とする。好ましくは、(Hmh-40)以下とする。
 なお、強HAZ領域61の硬さHhの下限は、特に規定しない。焼き戻しによって硬さが低下する限界が存在すると考えられることから、強HAZ領域61の硬さHhは、(Hmh-700)以上とすることが好ましい。
 ただし、重ね合わせた鋼板の重ね面において、鋼板間に隙間(板隙)が生じる場合もある。この場合には、次の説明により規定される先端領域31が上記した金属組織および硬さHvを有し、かつ、強HAZ領域61が上記した硬さHhを有していれば、本発明の効果を得られる。図2には、板隙Gを有する溶接部の一例を示す。
 図2に示す例では、鋼板1、2がそれぞれ向き合う面側の鋼板表面が成す2つの直線から等距離にある直線(すなわち、板厚方向で板隙Gの中間に位置し、鋼板1、2の鋼板表面に平行な直線Y)と交わるナゲット3の境界上の二点を第1端部8aおよび第2端部8bとする。上記と同様に、第1端部8aから点Oまでの距離L、および第2端部8bから点Pまでの距離Lが、式(1)を満たすナゲット3内の領域が先端領域31となる。また、直線Yを「重ね面」と見做して、上記と同様に、強HAZ領域61を規定すればよい。
 次に、図3(A)および図3(B)を用いて、3枚の鋼板の板組の溶接部の一例について説明する。
 上述のように、本発明では3枚以上の鋼板を重ね合わせてもよい。3枚以上の鋼板を重ね合わせて抵抗スポット溶接した溶接部材の場合には、重ね面7が2つ以上となり、重ね面7ごとに先端領域31および強HAZ領域61が存在する。この場合には、2つ以上の重ね面のうち1つ以上で、その重ね面に対応する先端領域31が上記した金属組織および硬さHvを有し、かつ強HAZ領域61が上記した硬さHhを有していれば、同様に本発明の効果は得られる。
 図3(A)および図3(B)に示す例では、重ね面が2つあり、上から順に第1の重ね面7a、第2の重ね面7bとする。
 第1の重ね面7aとナゲット3の境界上の二点を第1端部8a、第2端部8bとし、第1端部8aと第2端部8bを結ぶ線分Xの長さをDとする。線分X上の点Oと第1端部8aとの距離、および線分X上の点Pと第2端部8bとの距離を、それぞれLとする。この距離Lが上記式(1)を満たすナゲット3内の領域が、先端領域31となる。
 また、第1の重ね面7aに対して上側の鋼板2および/または下側の鋼板10では、重ね面7に平行な直線Zとナゲット3の境界の交点を点qとし、直線Z上でHAZ6内の位置を点rとする。直線Zと第1の重ね面7aの板厚方向の距離M(mm)が上記式(5)を満たし、かつ、点qと点rの距離T(mm)が上記式(6)を満たす、HAZ6内の領域が強HAZ61となる。
 同様に、第2の重ね面7bとナゲット3の境界上の二点を第1端部8a、第2端部8bとし、第1端部8aと第2端部8bを結ぶ線分Xの長さをDとする。線分X上の点Oと第1端部8aとの距離、および線分X上の点Pと第2端部8bとの距離を、それぞれLとする。この距離Lが上記式(1)を満たすナゲット3内の領域が、先端領域31となる。
 また、第2の重ね面7bに対して上側の鋼板10および/または下側の鋼板1では、第2の重ね面7bに平行な直線Zとナゲット3の境界の交点を点qとし、直線Z上でHAZ6内の位置を点rとする。直線Zと第2の重ね面7bの板厚方向の距離M(mm)が上記式(5)を満たし、かつ、点qと点rの距離T(mm)が上記式(6)を満たす領域が強HAZ61となる。
 第1の重ね面7aおよび第2の重ね面7bのどちらか1つに対応する先端領域31および強HAZ領域61が、あるいは第1の重ね面7aおよび第2の重ね面7bの両方に対応する先端領域31および強HAZ領域61が、上記した条件を満足することにより、ナゲット端部の靱性が向上するため、本発明の効果を得られる。
 なお、本発明では、ナゲット先端領域の硬さ、熱影響部(HAZ)の硬さは、後述する実施例に記載の方法で測定することができる。
 次に、本発明に用いる高強度鋼板について説明する。上述のように、本発明では、重ね合わせる鋼板のうち少なくとも1枚の鋼板が、以下の成分組成を有する高強度鋼板とする。すなわち、高強度鋼板の成分組成は、C、Si、Mn、Pをそれぞれ以下に示す範囲で満足していればよい。この範囲を満足していれば、本発明の一実施形態に係る抵抗スポット溶接方法を有効に適用することができる。以下、特に断りがない限り、成分組成における「質量%」は単に「%」で記す。
 C:0.05~0.6%
 Cは鋼の強化に寄与する元素である。C含有量が0.05%未満では、鋼の強度が低くなり、引張強度780MPa以上の鋼板を製作することは極めて困難である。一方、C含有量が0.6%を超えると、鋼板の強度は高くなるものの、硬質なマルテンサイト量が過大となり、マイクロボイドが増加する。更にナゲットとその周辺の熱影響部(HAZ)が過度に硬化し、脆化も進むため、十字引張強度(CTS)を向上させることは困難である。そのため、C含有量は0.05~0.6%とする。C含有量は、より好ましくは0.1%以上であり、より好ましくは0.3%以下である。
 Si:0.1~3.5%
 Si含有量が0.1%以上であると、鋼の強化に有効に作用する。一方、Si含有量が3.5%を超えると、鋼は強化されるものの、靱性に悪影響を与えることがある。そのため、Si含有量は0.1~3.5%とする。Si含有量は、より好ましくは0.2%以上であり、より好ましくは2.0%以下である。
 Mn:1.5~10.0%
 Mn含有量が1.5%未満であると、本発明のように長時間の冷却を与えずとも、高い継手強度を得ることができる。一方、Mn含有量が10.0%を超えると、溶接部の脆化あるいは脆化に伴う割れが顕著に現れるため、継手強度を向上させることは困難である。そのため、Mn含有量は1.5%以上10.0%以下とする。Mn含有量は、より好ましくは2.0%以上であり、より好ましくは8.0%以下である。
 P:0.1%以下
 Pは不可避的不純物であるが、P含有量が0.1%を超えると、溶接部のナゲット端に強偏析が現れるため継手強度を向上させることは困難である。そのため、P含有量は0.1%以下とする。より好ましくは、P含有量は0.05%以下であり、より好ましくは、P含有量は0.02%以下である。
 なお、本発明では、必要に応じて、さらに、Cu、Ni、Mo、Cr、Nb、V、Ti、B、Al、およびCaから選択される1種または2種以上の元素を加えてもよい。
 Cu、Ni、Moは、鋼の強度向上に寄与することができる元素である。Crは、焼き入れ性の向上により強度を向上させることができる元素である。Nb、Vは、析出硬化により組織制御をして鋼を強化することができる元素である。Ti、Bは、焼き入れ性を改善して鋼を強化することができる元素である。Alは、オーステナイト細粒化のため組織制御をすることができる元素である。Caは、鋼の加工性向上に寄与することができる元素である。この効果を得るため、上記成分組成に加えて、必要に応じて、Cu、Ni、Mo、Cr、Nb、V、Ti、B、Al、およびCaから選択される1種または2種以上の元素を加えてもよい。なお、これらの元素は過剰に含有すると靱性劣化や割れが生じる恐れがあることから、これらの元素を加える場合には、含有量は合計で5%以下であれば許容できる。
 なお、これら以外の成分組成は、Feおよび不可避的不純物である。
 また、上記した成分組成を有する高強度鋼板の引張強度は、780MPa以上とすることが好ましい。上述のように、特に母材の引張強度が780MPa以上の場合、CTSが低下する恐れがある。本発明によれば、引張強度が780MPa以上の高強度鋼板であっても、ナゲット先端領域等の金属組織を焼き戻しマルテンサイトにすることにより、靱性を有する組織となることから、ナゲット端部の脆性的な破壊を防止できる。これにより、溶接部はCTSの低下を抑制できる。なお、引張強度が780MPa未満の高強度鋼板でも、当然に上記効果は得られる。
 重ね合わせる鋼板のうち、少なくとも1枚の鋼板が亜鉛めっき鋼板であっても、上記効果を得ることができる。ここで、亜鉛めっき鋼板とは、亜鉛を主成分とするめっき層を有する鋼板を指す。亜鉛を主成分とするめっき層には、公知の亜鉛めっき層をすべて含むものとする。例えば、亜鉛を主成分とするめっき層として、溶融亜鉛めっき層、電気亜鉛めっき層、Zn-Alめっき層およびZn-Ni層等が含まれる。
 また、重ね合わせる鋼板は、同種の鋼板を複数枚重ねてもよく、あるいは異種の鋼板を複数枚重ねてもよい。めっき層を有する表面処理鋼板とめっき層を有さない鋼板を重ね合わせてもよい。また、各鋼板の板厚は同じでも異なっていても何ら問題はない。例えば、一般的な自動車用鋼板を対象とすることから、鋼板の板厚は0.4mm~2.2mmが好ましい。
 次に、図4を用いて、本発明の抵抗スポット溶接方法について説明する。図4には、一例として、2枚の鋼板に抵抗スポット溶接を行っている状態を説明する概略図を示す。
 本発明の抵抗スポット溶接方法は、図4に示すように、まず、下側に配置される鋼板1と上側に配置される鋼板2を重ね合わせる。本発明では、重ね合わせる鋼板の1枚以上が上述した成分組成を有する高強度鋼板である。図4に示す例では、下側の鋼板1および/または上側の鋼板2を高強度鋼板とする。
 次いで、上下一対の電極4、5で、重ね合わせた下側の鋼板1と上側の鋼板2を挟持して、加圧しながら通電する。図4に示す例では、下側に配置される電極4(下の電極)と上側に配置される電極5(上の電極)で鋼板1、2を挟持する。上記した通電は、以下に説明する通電工程である。そして、必要サイズのナゲット3を形成し、上述した抵抗スポット溶接部を有する溶接部材を得る。
 ここで、本発明における通電工程について詳細に説明する。本発明では、下の電極4と上の電極5を用いて、下の鋼板1と上の鋼板2に通電する工程を、以下のように制御する。
 まず、電流値I(kA)で通電する主通電工程を行う。次いで、下記の式(13)に示す冷却時間t(ms)で冷却する冷却過程を与える。その後、焼き戻し工程として、下記の式(14)に示す電流値I(kA)で、下記の式(15)に示す通電時間t(ms)の間、通電を行う。
400≦t       ・・・(13)
≦0.95×I   ・・・(14)
400≦t       ・・・(15)
 〔主通電工程〕
 主通電工程とは、重ね合わせた鋼板(図4に示す例では、下の鋼板1と上の鋼板2)の重ね合わせ部を溶融してナゲット3を生成するための通電工程である。本発明では、電流値I(kA)で通電を行い、溶接部を生成する。
 なお、本発明では、主通電工程におけるナゲット3を形成するための通電条件、加圧条件は特に限定しない。従来から用いられている溶接条件を採用することができる。主通電の通電条件は、好ましくは、通電時間tを120~400msとし、電流値Iを4~8kAとする。加圧条件は、好ましくは2.0~4.0kNとする。電流値の下限は、3√t(t:板厚)(mm)以上のナゲット径を確保できる電流値であることが好ましく、電流値の上限は、安定したナゲット径を得るために散りの発生が伴わない電流値であることが好ましい。
 〔冷却過程〕
 主通電工程と後述する焼き戻し工程の間に冷却過程を設ける。この冷却過程において、先端領域31の組織がマルテンサイト変態を生じる温度まで冷却を行う。本発明では、上記の式(13)に示す冷却時間t(ms)で冷却する。冷却時間tが400ms未満では、ナゲット端部をマルテンサイト変態が生じる温度まで冷却できない。その結果、先端領域31のマルテンサイト変態することができなかった残留オーステナイト組織は、後述する焼き戻し工程における再通電、再冷却によりマルテンサイト組織および残留オーステナイト組織の1種または2種となる。これらの組織は、靱性を有する焼き戻しマルテンサイト組織ではないため、硬い組織のままである。またこれらの組織は、焼き戻しマルテンサイト組織ではなく、靱性の無い組織であることから、先端領域31は脆化した組織となる。したがって、冷却時間tは400ms以上とする。
 先端領域31の組織をより十分にマルテンサイト組織にし、後述の焼き戻し工程において先端領域31の組織を焼き戻しマルテンサイト組織とすることによって、継手強度を向上させるためには、冷却時間tを600ms以上にすることが好ましい。より好ましくは800ms以上とする。より一層好ましくは1000ms以上とする。
 なお、冷却時間tの上限は特に規定しない。施工性向上のために短時間化を目指すには、冷却時間t(ms)を8000ms以下とすることが好ましい。より好ましくは4000ms以下とし、さらに好ましくは2000ms以下とし、さらに一層好ましくは1000ms以下とする。
 〔焼き戻し工程〕
 焼き戻し工程とは、主通電工程で形成されたナゲット3における先端領域31を焼き戻し、靱性を向上させるための後熱処理工程である。本発明では、冷却過程でマルテンサイト組織となった先端領域31の組織を焼戻すために、適切な温度域で焼き戻し工程を行う。
 本発明の効果を得るためには、上述した本発明の鋼板成分では、ナゲットを生成した後の先端領域31のマルテンサイト組織が焼き戻しマルテンサイト組織になるように、焼き戻す必要がある。
 焼き戻し工程での温度が低ければ、溶接後のナゲット端部の組織は焼き戻されず、脆いマルテンサイト組織が多く残存する。また、脆化域で焼き戻しを行うと粒界にPなどの不純物が残存する。これらのことから、先端領域31は脆化した金属組織となる。その結果、継手強度は低くなる。
 一方、焼き戻し工程での温度が高くなるに従い、主通電工程後の冷却によりマルテンサイトとなった組織の逆変態が進み、オーステナイトに戻る組織の割合が増加する。このため、後通電(焼き戻し工程)終了後にマルテンサイト組織が多く残存することになる。焼き戻しの温度が低い場合と同様にマルテンサイト組織の割合が多いことから、継手強度が低くなる。
 そこで、先端領域31の組織を脆化域より高温あるいは低温で焼き戻し、組織が焼き戻しマルテンサイトを主相とする組織とすれば、継手強度は向上する。このことから、焼き戻し工程の温度は適切な温度となるように制御することが必要である。したがって、本発明では、焼き戻し工程の溶接条件を以下のように制御することが重要である。
 焼き戻し工程では、上記した式(14)に示す電流値I(kA)で、上記した式(15)に示す通電時間t(ms)の間、通電を行う。
 焼き戻し工程の通電の電流値Iが(0.95×I)kAを超えると、焼き戻し通電の電流値が大きすぎるため、冷却過程でマルテンサイト変態した組織が再度、再溶融あるいはオーステナイト域まで温度が上昇し、最終的にはマルテンサイト組織になる。その結果、先端領域31が脆い組織となり、継手強度は向上しない。したがって、電流値Iは(0.95×I)kA以下とする。焼き戻し工程において、先端領域31が再溶融し、これによりオーステナイト域まで温度上昇することを防ぐためには、電流値Iは(0.9×I)kA以下とすることが好ましい。より好ましくは(0.8×I)kA以下とする。
 なお、電流値Iの下限は特に規定しない。ただし、先端領域31が上記した金属組織となるように焼き戻すためには、電流値Iは(0.4×I)kA以上とすることが好ましい。(0.5×I)kA以上とすることがより好ましい。(0.6×I)kA以下とすることがより一層好ましい。
 焼き戻し工程の通電時間tが400ms未満では、冷却過程で生成した先端領域31のマルテンサイト組織を焼き戻しマルテンサイト組織にすることができない。その結果、焼き戻し工程において焼き戻しマルテンサイト組織を面積率で60%以上生成することができない。また先端領域31が上記した硬さHvにならない。
 さらに、強HAZ領域61が上記した硬さHhを有するためには、脆化域以上の温度でHAZを焼き戻すことが必要であるが、高温に成りすぎると融点を超えてしまい、マルテンサイト組織が多く出現した金属組織になる。そのため、焼き戻し工程は、焼き戻しできる適正な温度以上に上昇してはならない。すなわち、電流値を上げ過ぎることは望ましくない。焼き戻し工程の時間は、長い程、焼戻しが促進されるが、長過ぎると、適正な温度以上に上昇する恐れがある。
 したがって、通電時間tは400ms以上とする。通電時間tは、より好ましくは600ms以上とし、より一層好ましくは800ms以上とする。なお、通電時間tの上限は特に規定しない。施工性向上のために短時間化を行う場合は、通電時間tは3000ms以下とすることが好ましく、2000ms以下とすることがより好ましく、1500ms以下とすることがさらに好ましく、1000ms以下とすることがさらに一層好ましい。
 また、先端領域31において焼き戻し工程で発生する炭化物の粒径は平均粒径が300nm以下であることが望ましい。本発明における上述の対象鋼板では、焼き戻しの温度によって脆化域が存在し、更に融点を超えた温度域では、継手強度が向上しないことがわかった。そのため、融点以下でかつ脆化域以下の温度域、あるいは、融点以下でかつ脆化域以上の温度域で、焼き戻すことができればよい。本発明では、どちらの温度域であっても、焼き戻しマルテンサイトを得られ、靭性を保つことができることから、継手強度を向上させることができる。
 なお、焼き戻し工程の通電条件(例えば、加圧力、電極、保持時間等)は、鋼板の板組み、板厚によっても変化するため特に限定せず、また通電回数についての制限は行わない。
 本発明では、上述の抵抗スポット溶接方法を実施する好適な溶接装置として、上下一対の電極を備え、一対の電極で溶接する部分を挟んで、加圧および通電ができるものであればよい。さらに、溶接中の加圧力および溶接電流をそれぞれ任意に制御可能な加圧力制御装置および溶接電流制御装置を有していればよい。加圧機構(例えばエアシリンダやサーボモータ等)や、電流制御機構(例えば交流や直流等)、形式(例えば定置式、ロボットガン等)等は特に限定されない。電源の種類(単相交流、交流インバータ、直流インバータ)等も特に限定されない。電極の形状も特に限定されない。電極の先端の形式は、例えばJIS C 9304:1999に記載されるDR形(ドームラジアス形)、R形(ラジアス形)、D形(ドーム形)が挙げられる。
 次に、本発明の抵抗スポット溶接継手について説明する。
 本発明は、上述した抵抗スポット溶接部を有する抵抗スポット溶接継手である。本発明の抵抗スポット溶接継手は、例えば、重ね合わせた2枚以上の鋼板を、上述の金属組織および硬度で規定される溶融部およびHAZを有する抵抗するスポット溶接部で接合した継手である。なお、鋼板、溶接条件、溶接部の金属組織等は上述の説明と同様であるため、省略する。
 次に、本発明の抵抗スポット溶接継手の製造方法について説明する。
 本発明は、上述した抵抗スポット溶接方法を用いて抵抗スポット溶接継手を製造する方法である。本発明の抵抗スポット溶接継手の製造方法では、例えば、2枚以上の鋼板を重ね合わせた板組を一対の電極で狭持し、加圧しながら上述した溶接条件で通電する抵抗スポット溶接を行い、必要サイズのナゲットを形成して抵抗スポット溶接継手を得る。なお、鋼板、溶接条件、溶接部の金属組織等は上述の説明と同様であるため、省略する。
 以上説明したように、本発明によれば、接合部を焼き戻し工程で適切な温度域となるように制御してナゲット端部を焼き戻すことにより、先端領域31が上記した金属組織および硬さHvを得るとともに、強HAZ領域が上記した硬さHhを得る。さらに、強HAZ領域61の硬さHhも所定の範囲となるように制御することにより、ナゲット端部およびHAZが脆化域の温度になっている可能性を判断することができる。これにより、溶接部の靱性を向上させ、さらにCTSを向上させることができる。すなわち、TSSとCTSを両立することができる。
 そして、本発明の溶接部を有する溶接継手を製造することにより、得られる溶接継手の継手強度も向上させることができる。そのため、板組に上記した鋼板成分を有する中Mn鋼板(高強度鋼板)を含む場合でも、継手強度(特にCTS)をより向上させる効果を得ることができる。
 なお、本発明では、後述の実施例にも記載のように、CTSの基準で測定値がJIS A級(3.4kN)以上であったものを良好(継手強度に優れる)と評価する。
 以下、本発明の作用および効果について、実施例を用いて説明する。なお、本発明は以下の実施例に限定されない。
 本実施例では、2枚の鋼板(下の鋼板1と上の鋼板2)を重ね合わせた板組を、Cガンに取付けられたサーボモータ加圧式で直流電源を有する抵抗溶接機で抵抗スポット溶接を行い、必要サイズのナゲット3を形成して抵抗スポット溶接継手を作製した。
 試験片には、780MPa級~1180MPa級までの板厚0.8mmと板厚1.2mmの高強度鋼板(鋼板A~鋼板H)を使用した。試験片のサイズは、長辺:150mm、短辺:50mmとした。鋼板A~鋼板Hには、次に示す成分組成のものを用いた。以下、鋼板の成分組成を表す「%」は、特に明記しない限り「質量%」を意味する。
[鋼板Aの成分組成]
 C:0.20%、Si:0.6%、Mn:4.0%、P:0.01%を含有し、残部がFeおよび不可避的不純物を含有する鋼板
[鋼板Bの成分組成]
 C:0.10%、Si:0.2%、Mn:6.0%、P:0.01%を含有し、残部がFeおよび不可避的不純物を含有する鋼板
[鋼板Cの成分組成]
 C:0.10%、Si:1.1%、Mn:1.2%、P:0.01%、Ti:0.03%、B:0.002%、Cr:0.40%を含有し、残部がFeおよび不可避的不純物を含有する鋼板
[鋼板Dの成分組成]
 C:0.13%、Si:0.8%、Mn:1.2%、P:0.01%、Cu:0.50%、Ni:0.51%、Mo:0.19%、Al:0.03%を含有し、残部がFeおよび不可避的不純物を含有する鋼板
[鋼板Eの成分組成]
 C:0.58%、Si:0.25%、Mn:0.75%、P:0.03%を含有し、残部がFeおよび不可避的不純物を含有する鋼板
[鋼板Fの成分組成]
C:0.30%、Si:3.5%、Mn:2.5%、P:0.01%、Nb:0.04%、V:0.03%、Ca:0.004%を含有し、残部がFeおよび不可避的不純物を含有する鋼板
[鋼板Gの成分組成]
C:0.60%、Si:2.0%、Mn:1.5%、P:0.01%を含有し、残部がFeおよび不可避的不純物を含有する鋼板
[鋼板Hの成分組成]
C:0.20%、Si:0.3%、Mn:1.5%、P:0.01%を含有し、残部がFeおよび不可避的不純物を含有する鋼板
 表1に示すように、上記の鋼板A~鋼板Hより2枚以上の鋼板を選び、重ね合わせて各板組とした。板組a~板組hおよび板組jの板厚は、全て同じ1.2mmとした。板組iは、同一種類の中Mn鋼板Aを3枚重ね合わせ、板厚はそれぞれ0.8mmとした。
 次に、各板組を用いて、表2に示す溶接条件の抵抗スポット溶接を行い、必要サイズのナゲット3を形成して、抵抗スポット溶接継手を得た。なお、この時の通電は、以下に示す条件で行った。通電中の加圧力は一定とし、ここでは3.5kNで行った。また、下の電極4と上の電極5は、いずれも先端の直径:6mm、先端の曲率半径:40mmとし、クロム銅製のDR型電極を用いた。ナゲット径は、板厚:t(mm)とするとき5.5√t(mm)以下となるように形成した。
 得られた抵抗スポット溶接継手を用いて、以下に記載の方法で、ナゲット端部の組織および硬さ、熱影響部(HAZ)の硬さ、CTSの評価をそれぞれ行った。
 〔ナゲットの組織および硬さ〕
 ナゲット端部(ナゲット先端領域)の組織の観察に用いたサンプルは、次のように得た。作製した抵抗スポット溶接継手を切断して試験片とし、試験片を超音波洗浄した後に樹脂埋めを行い、断面を研磨し、ナイタール溶液を用いてエッチングを行ってサンプルを得た。組織の観察にはSEMを用い、1000倍~100000倍で観察を行った。硬さはヴィッカース硬度計により、JISZ2244に規定の方法で測定した。表3-1および表3-2に、溶接後の抵抗スポット溶接継手におけるナゲット先端領域の組織、およびナゲット先端領域、ナゲット全体、熱影響部の硬さをそれぞれ示す。
 表3-1および表3-2に示す「ナゲット先端領域」の硬さの測定位置は、図1(A)に示すように、板厚方向の断面形状が楕円形のナゲット3の境界と鋼板同士の重ね面7の線とが交わる二点(第1端部8a、第2端部8b)を結んだ線分X上において、第2端部8bからナゲット中心方向へ0.02mm離れた位置と、点PからHAZ6方向へ0.02mm離れた位置とした。この2点において圧痕を打ち、その値をそれぞれ測定した。
 また、ナゲット先端領域の焼き戻しマルテンサイト組織中における炭化物の測定は、次のように行った。溶接部断面の観察は、断面サンプルに対して観察用に薄くナイタールエッチングを行い、SEM(Scanning Electron Microscope)を用いて30000倍で撮影を行った。炭化物の大きさは画像処理ソフトを用いて、SEMの写真に基づき計測した。炭化物の割合(面積率)は、画像の二値化ソフトを用いて炭化物の割合(面積率)を算出した。なお、上述のように、炭化物の平均粒径が300nm以下のものを対象にして炭化物の割合(面積率)を算出した。
 〔熱影響部の硬さ〕
 熱影響部として、上記した強HAZ領域の硬さを測定した。「強HAZ領域61」の硬さの測定は、上記したナゲット端部(ナゲット先端領域)の組織の観察と同様の方法でサンプルを作製し、測定を行った。また、「強HAZ領域61」の硬さはヴィッカース硬度計により、JISZ2244に規定の方法で測定した。
 表3-1および表3-2に示す「強HAZ領域61」の硬さの測定位置は、図1(A)に示すように定めた。なお本実施例において、上側の鋼板では、重ね面7から板厚方向の距離M(mm)=D/20だけ離間した直線Zと、この直線Zとナゲット3との境界の交点の点qとし、この直線Z上でHAZ内の位置を点rとし、点qから点qまでの距離T(mm)=D/10を満たすHAZ内の領域を強HAZ領域とした。そして、点qからHAZ6側に向かって0.3mm離れた位置に圧痕を打ち、その値を測定した。なお、下側の鋼板でも上記と同様の領域を強HAZ領域とし、点qからHAZ6側に向かって0.3mm離れた位置に圧痕を打ち、その値を測定した。
 〔CTSの評価〕
 CTSの評価は、作製した抵抗スポット溶接継手に対し、JISZ3137に規定の方法で十字引張試験を行い、CTS(十字引張力)を測定して行った。CTSの基準は、測定値がJIS A級(3.4kN)以上であったものに対して記号○を付し、JIS A級未満であったものに対して記号×を付した。なお、本実施例では、記号○の場合を良好(継手強度に優れる)と評価し、記号×の場合を劣ると評価する。表4に、溶接後の抵抗スポット溶接継手におけるCTSの評価結果を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表4に示すように、本発明の方法に従い抵抗スポット溶接を行った本発明例では、引張強度が780MPa以上の高強度鋼板、特に中Mn鋼板であっても、抵抗スポット溶接部のナゲット端部が靱性を有する、良好な抵抗スポット溶接継手が得られた。これに対し、本発明の方法の溶接条件を外れる比較例では良好な継手が得られなかったことが分かる。
 1   鋼板
 2   鋼板
 3   ナゲット
 31   ナゲット先端領域
 4   下の電極
 5   上の電極
 6   熱影響部(HAZ)
 61   強HAZ領域
 7   重ね面
 8a  第1端部
 8b  第2端部
 10  鋼板

Claims (7)

  1.  2枚以上の鋼板を重ね合わせて抵抗スポット溶接した溶接部材の抵抗スポット溶接部であって、
     前記鋼板のうち少なくとも1枚の鋼板は、成分組成が、質量%で、
    C:0.05~0.6%、
    Si:0.1~3.5%、
    Mn:1.5~10.0%、および
    P:0.1%以下
    の範囲を満足する高強度鋼板であり、
     前記鋼板の重ね面と交わるナゲットの境界上の二点を第1端部および第2端部とし、
    前記第1端部および前記第2端部を結ぶ線分Xの長さをD(mm)とし、
    前記第1端部および前記第2端部から前記ナゲットの中心方向に向けた線分X上の位置を点Oおよび点Pとし、前記第1端部から点Oまでおよび前記第2端部から点Pまでの各距離L(mm)が下記式(1)を満たす、前記ナゲット内の領域をナゲット先端領域とするとき、前記重ね面に対応する前記ナゲット先端領域のうち1つ以上で、
    前記ナゲット先端領域の金属組織が、焼き戻しマルテンサイトを主相とし、
    前記ナゲット先端領域の硬さHvが、下記式(2)および下記式(3)で算出される前記ナゲット全体のマルテンサイトの硬さHmwに対して、下記式(4)を満たし、
     前記重ね面に対して上側および/または下側の鋼板では、
    前記重ね面に平行な直線Zと前記ナゲットの境界の交点を点qとし、直線Z上で熱影響部内の位置を点rとし、
    直線Zと前記重ね面の板厚方向の距離M(mm)が下記式(5)を満たし、かつ、点qから点rまでの各距離T(mm)が下記式(6)を満たす、前記熱影響部内の領域を強HAZ領域とするとき、前記重ね面に対応する前記強HAZ領域のうち1つ以上で、
    前記強HAZ領域における硬さHhが、下記式(7)で算出される鋼板のマルテンサイトの硬さHmhに対して、下記式(8)を満たす、抵抗スポット溶接部。
    Figure JPOXMLDOC01-appb-M000001

     ここで、式(2)~式(3)において、
         Cw(質量%):ナゲット内における各鋼板からの体積当たりのC含有量、
         C(質量%):重ね合わせた各鋼板のC含有量、
         V(mm):ナゲットの中心を通る板厚方向断面において、ナゲットの境界と各線分Xにより囲まれた領域における各鋼板の溶融面積、
         n:重ね合わせた鋼板の数、とする。
    M=D/20  ・・・・・・・(5)
    0<T≦D/10・・・・・・・(6)
    Hmh=884×Ch×(1-0.3×Ch)+294・・・(7)
    Hh<Hmh-25・・・・・(8)
     ここで、式(7)において、Ch(質量%):重ね面に対して上側の鋼板のC含有量、あるいは、重ね面に対して下側の鋼板のC含有量、とする。
     ただし、前記重ね面において前記鋼板間の隙間がある場合には、前記隙間の中間に位置し前記鋼板表面に平行な直線Yと交わる前記ナゲットの境界上の二点を前記第1端部および前記第2端部とする。
  2.  前記焼き戻しマルテンサイト中の炭化物の割合は、面積率で20%超えである、請求項1に記載の抵抗スポット溶接部。
  3.  前記炭化物は、平均結晶粒径が300nm以下である、請求項2に記載の抵抗スポット溶接部。
  4.  前記高強度鋼板は、引張強度が780MPa以上である、請求項1~3のいずれか1項に記載の抵抗スポット溶接部。
  5.  請求項1~4のいずれか1項に記載の抵抗スポット溶接部を生成する抵抗スポット溶接方法であって、
     主通電工程として、電流値I(kA)で通電し、溶接部を生成し、
     その後、下記式(13)に示す冷却時間t(ms)で冷却し、
     その後、焼き戻し工程として、下記式(14)に示す電流値I(kA)で、下記式(15)に示す通電時間t(ms)の間、通電を行う、抵抗スポット溶接方法。
    400≦t        ・・・(13)
    ≦0.95×I    ・・・(14)
    400≦t        ・・・(15)
  6.  請求項1~4のいずれか1項に記載の抵抗スポット溶接部を有する、抵抗スポット溶接継手。
  7.  請求項5に記載の抵抗スポット溶接方法を用いて抵抗スポット溶接継手を製造する、抵抗スポット溶接継手の製造方法。
PCT/JP2020/009011 2019-05-28 2020-03-04 抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法 WO2020240961A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2021014596A MX2021014596A (es) 2019-05-28 2020-03-04 Soldadura por puntos de resistencia, metodo de soldadura por puntos de resistencia, junta soldada por puntos de resistencia y metodo para fabricar la junta soldada por puntos de resistencia.
JP2020526161A JP6777270B1 (ja) 2019-05-28 2020-03-04 抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法
KR1020217037994A KR102589430B1 (ko) 2019-05-28 2020-03-04 저항 스폿 용접부 및 저항 스폿 용접 방법, 그리고 저항 스폿 용접 조인트 및 저항 스폿 용접 조인트의 제조 방법
CN202080038973.8A CN113891773B (zh) 2019-05-28 2020-03-04 电阻点焊部和电阻点焊方法、以及电阻点焊接头和电阻点焊接头的制造方法
US17/614,424 US20220228233A1 (en) 2019-05-28 2020-03-04 Resistance spot weld, resistance spot welding method, resistance spot welded joint, and method for manufacturing resistance spot welded joint
EP20812882.7A EP3978178A4 (en) 2019-05-28 2020-03-04 RESISTANCE SPOT WELDING UNIT AND RESISTANCE SPOT WELDING PROCESS AND RESISTANCE SPOT WELDING JOINT AND PROCESS FOR MAKING A RESISTANCE SPOT WELDING JOINT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019099371 2019-05-28
JP2019-099371 2019-05-28
JP2019-203134 2019-11-08
JP2019203134 2019-11-08

Publications (1)

Publication Number Publication Date
WO2020240961A1 true WO2020240961A1 (ja) 2020-12-03

Family

ID=73552907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009011 WO2020240961A1 (ja) 2019-05-28 2020-03-04 抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法

Country Status (1)

Country Link
WO (1) WO2020240961A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021922A1 (ja) * 2021-08-19 2023-02-23 Jfeスチール株式会社 抵抗スポット溶接継手およびその抵抗スポット溶接方法
WO2023063098A1 (ja) * 2021-10-12 2023-04-20 Jfeスチール株式会社 抵抗スポット溶接継手およびその抵抗スポット溶接方法
WO2023181564A1 (ja) * 2022-03-25 2023-09-28 日本製鉄株式会社 プロジェクション溶接継手の製造方法、プロジェクション溶接継手、及び自動車部品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172946A (ja) 2009-01-30 2010-08-12 Jfe Steel Corp 高強度薄鋼板の抵抗スポット溶接方法
WO2011025015A1 (ja) * 2009-08-31 2011-03-03 新日本製鐵株式会社 スポット溶接継手およびスポット溶接方法
JP5182855B2 (ja) 2007-11-28 2013-04-17 日産自動車株式会社 抵抗溶接鋼板
JP2013078782A (ja) 2011-10-04 2013-05-02 Jfe Steel Corp 高強度薄鋼板の抵抗スポット溶接継手および抵抗スポット溶接方法
JP2013103273A (ja) 2011-11-17 2013-05-30 Jfe Steel Corp 高張力鋼板の抵抗スポット溶接方法
JP2013128945A (ja) * 2011-12-21 2013-07-04 Jfe Steel Corp 抵抗スポット溶接方法
JP2016055337A (ja) * 2014-09-11 2016-04-21 高周波熱錬株式会社 溶接方法及び溶接構造物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182855B2 (ja) 2007-11-28 2013-04-17 日産自動車株式会社 抵抗溶接鋼板
JP2010172946A (ja) 2009-01-30 2010-08-12 Jfe Steel Corp 高強度薄鋼板の抵抗スポット溶接方法
WO2011025015A1 (ja) * 2009-08-31 2011-03-03 新日本製鐵株式会社 スポット溶接継手およびスポット溶接方法
JP2013078782A (ja) 2011-10-04 2013-05-02 Jfe Steel Corp 高強度薄鋼板の抵抗スポット溶接継手および抵抗スポット溶接方法
JP2013103273A (ja) 2011-11-17 2013-05-30 Jfe Steel Corp 高張力鋼板の抵抗スポット溶接方法
JP2013128945A (ja) * 2011-12-21 2013-07-04 Jfe Steel Corp 抵抗スポット溶接方法
JP2016055337A (ja) * 2014-09-11 2016-04-21 高周波熱錬株式会社 溶接方法及び溶接構造物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021922A1 (ja) * 2021-08-19 2023-02-23 Jfeスチール株式会社 抵抗スポット溶接継手およびその抵抗スポット溶接方法
JP7473009B2 (ja) 2021-08-19 2024-04-23 Jfeスチール株式会社 抵抗スポット溶接継手およびその抵抗スポット溶接方法
WO2023063098A1 (ja) * 2021-10-12 2023-04-20 Jfeスチール株式会社 抵抗スポット溶接継手およびその抵抗スポット溶接方法
WO2023181564A1 (ja) * 2022-03-25 2023-09-28 日本製鉄株式会社 プロジェクション溶接継手の製造方法、プロジェクション溶接継手、及び自動車部品
JP7399360B1 (ja) 2022-03-25 2023-12-15 日本製鉄株式会社 プロジェクション溶接継手の製造方法、プロジェクション溶接継手、及び自動車部品

Similar Documents

Publication Publication Date Title
JP5987982B2 (ja) スポット溶接継手及びスポット溶接方法
JP5924058B2 (ja) 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
WO2020240961A1 (ja) 抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法
KR101846759B1 (ko) 강판 및 그 제조 방법
EP2813596A1 (en) High tensile steel plate having excellent low-temperature toughness in weld heat-affected zones, and method for producing same
JP6658764B2 (ja) スポット溶接継手およびスポット溶接方法
JP7276614B2 (ja) 自動車用部材およびその抵抗スポット溶接方法
US7967923B2 (en) Steel plate that exhibits excellent low-temperature toughness in a base material and weld heat-affected zone and has small strength anisotropy, and manufacturing method thereof
JPH05186823A (ja) 高靱性Cu含有高張力鋼の製造方法
JP6777270B1 (ja) 抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法
JP5070866B2 (ja) 熱延鋼板およびスポット溶接部材
JP6958036B2 (ja) 高強度鋼板とその製造方法
WO2023021922A1 (ja) 抵抗スポット溶接継手およびその抵抗スポット溶接方法
JP7332065B1 (ja) 抵抗スポット溶接継手およびその抵抗スポット溶接方法
JP7480929B1 (ja) 抵抗スポット溶接継手およびその抵抗スポット溶接方法
JP7453600B2 (ja) スポット溶接継手及びスポット溶接継手の製造方法
JP7347716B1 (ja) 抵抗スポット溶接継手および抵抗スポット溶接方法
WO2023063097A1 (ja) 抵抗スポット溶接継手およびその抵抗スポット溶接方法
WO2022107580A1 (ja) スポット溶接用めっき鋼板、接合部材、及び自動車用部材、並びに接合部材の製造方法
WO2023080076A1 (ja) 抵抗スポット溶接部材およびその抵抗スポット溶接方法
JP2001131679A (ja) 超細粒鋼からなる継手及び構造体
JP7311808B2 (ja) 鋼板及びその製造方法
WO2024063010A1 (ja) 溶接部材およびその製造方法
WO2024111224A1 (ja) 抵抗スポット溶接方法
JP6958037B2 (ja) 高強度めっき鋼板とその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020526161

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217037994

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020812882

Country of ref document: EP

Effective date: 20220103