WO2014194477A1 - 介质谐振器、应用其的介质滤波器、收发信机及基站 - Google Patents

介质谐振器、应用其的介质滤波器、收发信机及基站 Download PDF

Info

Publication number
WO2014194477A1
WO2014194477A1 PCT/CN2013/076732 CN2013076732W WO2014194477A1 WO 2014194477 A1 WO2014194477 A1 WO 2014194477A1 CN 2013076732 W CN2013076732 W CN 2013076732W WO 2014194477 A1 WO2014194477 A1 WO 2014194477A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
dielectric filter
resonator
conductive layer
resonators
Prior art date
Application number
PCT/CN2013/076732
Other languages
English (en)
French (fr)
Inventor
袁本贵
王强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES13886199T priority Critical patent/ES2726131T3/es
Priority to EP13886199.2A priority patent/EP2993727B1/en
Priority to CN201380000666.0A priority patent/CN104364962B/zh
Priority to CN201910533745.7A priority patent/CN110224206B/zh
Priority to JP2016517108A priority patent/JP6535957B2/ja
Priority to EP19158729.4A priority patent/EP3565056B1/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA2914434A priority patent/CA2914434C/en
Priority to PCT/CN2013/076732 priority patent/WO2014194477A1/zh
Publication of WO2014194477A1 publication Critical patent/WO2014194477A1/zh
Priority to US14/960,139 priority patent/US10193205B2/en
Priority to US16/205,789 priority patent/US10741900B2/en
Priority to US16/924,746 priority patent/US11018405B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2088Integrated in a substrate

Definitions

  • the present invention relates to a communication device component, and more particularly to a dielectric resonator, a dielectric filter using the same, a transceiver, and a base station.
  • wireless communication base stations are becoming more and more densely distributed, and the demand for miniaturization of base stations is becoming more and more intense.
  • the RF front-end filter module in the base station occupies a large volume, so the use of a smaller-sized filter plays an important role in reducing the size of the base station.
  • the dielectric filter has a small volume.
  • 1 shows a conventional dielectric filter.
  • the main body of the dielectric filter is a rectangular parallelepiped medium 11 having a through hole 12 in the medium 11, and a front end of the medium 11 is exposed at one end of the through hole 12, and the front side of the medium 11 is carried out.
  • Partial metallization that is, only a square metal layer 13 is formed on the surface of the medium 11 around the end of the through hole 12, and adjacent square metal layers 13 are electrically insulated, and all surfaces of the medium 11 except the front surface are completely metallized ( In Fig. 1, the shaded portion is a metallized region, and the unshaded portion is a non-metallized region.
  • a through hole 12 and a square metal layer 13 on the front side of the dielectric 11 surrounding the through hole 12 constitute a dielectric resonator, and the resonant frequency of the dielectric resonator is adjusted by adjusting the area of the square metal layer 13, between adjacent dielectric resonators.
  • the coupling is adjusted by adjusting the distance between adjacent square metal layers 13.
  • the internal resonance mode of the dielectric resonator is a TEM (transverse electromagnetic wave) mode
  • the loss of the inner conductor is large, resulting in a large loss of the dielectric filter, so that the loss index of the dielectric filter cannot satisfy the base station filtering. Demand.
  • Embodiments of the present invention provide a dielectric resonator, a dielectric filter, a transceiver, and a base station, which solve the problem that the internal resonant mode of the dielectric resonator in the conventional dielectric filter is a TEM mode and causes a dielectric filter.
  • the loss indicator cannot meet the problem of base station filtering requirements.
  • an embodiment of the present invention provides a dielectric resonator including a body made of a solid dielectric material, the body surface is provided with a pit, and the surface of the body and the surface of the pit are covered with a conductive Floor.
  • the number of the pits is one.
  • the dielectric material is a ceramic.
  • an embodiment of the present invention provides a dielectric filter including at least two dielectric resonators; the dielectric resonator includes a body made of a solid dielectric material, and the body surface is provided with a pit. The body surface and the pit surface are covered with a conductive layer.
  • the adjacent dielectric resonators are fixedly connected by a connecting surface and the conductive layers of the connecting surfaces are joined together.
  • the adjacent dielectric resonators have a gap therebetween.
  • the shape of the void is a hole shape or a groove shape.
  • an embodiment of the present invention provides a dielectric filter including a body made of a solid dielectric material, the body surface being provided with at least two pits; adjacent to the pits The body is provided with holes and/or grooves, and the surface of the body is covered with a conductive layer.
  • one of the pits, the body surrounding the body, and the conductive layer constitute a dielectric resonator.
  • the holes and/or slots form a coupling between adjacent dielectric resonators structure.
  • the hole is a through hole or a blind hole.
  • an embodiment of the present invention provides a transceiver including the above-described dielectric filter.
  • an embodiment of the present invention provides a base station, including the foregoing transceiver.
  • the pits on the dielectric resonator body and the conductive layer covered by the body and the pit surface form a resonant cavity, and the internal resonance thereof
  • the mode is a TM (transverse magnetic wave) mode, and the direction of the mode electric field is perpendicular to the surface of the body where the pit is located. Since there is no inner conductor loss inside the cavity, the loss of the dielectric resonator is small, so that the medium using the dielectric resonator is used.
  • the loss index of the filter can meet the filtering requirements of the base station.
  • FIG. 1 is a schematic perspective view of a dielectric filter in the prior art
  • FIG. 2a is a top view of a dielectric resonator according to an embodiment of the present invention.
  • Figure 2b is a cross-sectional view taken along line A-A of Figure 2a;
  • 3a is a top view of a dielectric filter according to an embodiment of the present invention.
  • FIG. 3b is a top view of another dielectric filter according to an embodiment of the present invention.
  • FIG. 4 is a perspective perspective view of still another dielectric filter according to an embodiment of the present invention.
  • Embodiments of the present invention provide a dielectric resonator, as shown in FIGS. 2a and 2b, including a body 21 made of a solid dielectric material, the body 21 having pits 22, a surface of the body 21, and a recess 22 The surface is covered with a conductive layer 23.
  • the pits on the body and the conductive layer covered by the body and the pit surface form a resonant cavity
  • the internal resonance mode is a TM (transverse magnetic wave) mode
  • the direction of the mode electric field is perpendicular to the concave
  • the number of pits is preferably one.
  • each pit and the conductive layer covering the pit and the body form a sub-resonator of the resonator.
  • the size, shape and position of the IHJ pit determine the resonance of the sub-resonator.
  • the resonator combination is used to form the filter. Therefore, the commonly used resonator has only one pit.
  • the dielectric material is preferably ceramic, the ceramic has a high dielectric constant (36), and the hardness and high temperature resistance are also good, so it is a solid state commonly used in the field of radio frequency filters.
  • Dielectric material may also be selected from other materials known to those skilled in the art, such as glass, electrically insulating high molecular polymers, and the like.
  • the shape of the pit of the dielectric resonator provided by the above embodiment is not limited to the circular shape shown in FIG. 2a and FIG. 2b, and may be a square or irregular shape; and the shape of the body is not limited to FIG. 2a.
  • the cube shown in Figure 2b can also be a sphere, or an irregular shape; the shape of the pit and body can be selected according to the application of the dielectric resonator and the performance parameters.
  • the embodiment of the present invention further provides a dielectric filter.
  • the dielectric filter includes at least two dielectric resonators (31, 32, 33).
  • the structure of the dielectric resonator (31, 32, 33) is similar to that of the dielectric resonator shown in FIGS. 2a and 2b, and includes a body 21 made of a solid dielectric material, and a recess 22 is provided on the surface of the body 21.
  • the surface of the body 21 and the surface of the recess 22 are covered with a conductive layer 23.
  • connection faces 34 are fixedly connected by the connection faces 34 and the conductive layers 23 of the connection faces 34 are joined together.
  • a plurality of dielectric resonators are used, and adjacent dielectric resonators are fixedly connected by a connection surface to form a whole body, and the conductive layers of adjacent dielectric resonator connection faces are connected. Together, for example by soldering, the adjacent dielectric resonators are electrically connected so that electromagnetic wave signals can propagate between the dielectric resonators, due to the dielectric resonator and the medium shown in Figures 2a and 2b.
  • the internal harmonics are all TM modes, modes.
  • the direction of the electric field is perpendicular to the surface of the body where the pit is located, so that there is no inner conductor loss inside the cavity, so the loss index of the dielectric filter can be significantly reduced, so that the dielectric filter can be applied in the base station.
  • the dielectric filter composed of a plurality of dielectric resonators is a TM mode.
  • the TM mode dielectric filter has an advantage of a small insertion loss compared to the conventional TEM film dielectric filter.
  • the conductive layers 23 of the connection faces 34 of the adjacent dielectric resonators are fixed to each other.
  • the dielectric resonators constituting the dielectric filter may be fabricated such that the entire outer surface of the body 21 of each dielectric resonator is covered with the conductive layer 23, and then the adjacent dielectric resonator
  • the conductive layers 23 at the fixedly connected connecting faces 34 are joined together to not only achieve a fixed connection of adjacent dielectric resonators, but also to electrically connect adjacent dielectric resonators through the conductive layer 23.
  • the shape of the body of each dielectric resonator in the dielectric filter provided by the embodiment of the present invention may be arbitrarily selected according to requirements, and the connection faces of the adjacent dielectric resonators that are fixedly connected may have mutually matching grooves, wherein The mutually matching grooves may form a gap when adjacent dielectric resonators are connected, and the gap may be a through hole, a blind hole or a groove, and the shape and size of the gap are related to the coupling degree of the adjacent dielectric resonator. .
  • Figure 3b shows the gap (35, 36, 37).
  • the dielectric filter shown in Figure 3b adds a gap (35, 36, 37) to the dielectric filter shown in Figure 3a.
  • the outer surfaces of the dielectric resonators are in contact with each other, and the outer surfaces of the dielectric resonators at the gaps (35, 36, 37) are recessed and thus cannot be in contact with each other. Since the outer surface of the dielectric resonator is a conductive layer, the inner walls of these voids are all conductive layers 23.
  • the shape of the voids (35, 36, 37) may be the above-described hole shape or a groove shape, or other shapes known to those skilled in the art.
  • the embodiment of the present invention further provides a dielectric filter, as shown in FIG. 4, comprising a body 44 made of a solid dielectric material, the body 44 is provided with at least two pits 22 on the surface; adjacent pits 22 The body 44 is provided with holes (41, 42) and/or grooves 43, and the surface of the body 44 is covered with a conductive layer 23. Further, a pit 22, a body 44 therearound and a conductive layer 23 constitute a dielectric resonator. Further, the holes (41, 42) and/or the grooves 43 constitute a coupling structure between adjacent dielectric resonators.
  • the dielectric filter shown in FIG. 4 is a modified structure of the dielectric filter shown in FIG. 3b, which is different from the dielectric body of the dielectric filter shown in FIG. 3b, and the dielectric filter shown in FIG. 3b.
  • the body includes only one body 44.
  • the body 44 is provided with a plurality of recesses 22 on its surface, and the surface of the body 44 is covered with a conductive layer 23, a recess 22 on the surface of the body 44, a body around the recess 22, and a conductive body.
  • the layers can constitute a dielectric resonator, and three dielectric resonators (31, 32, 33) are shown in FIG.
  • the holes (41, 42) and the grooves 43 provided in the body 44 serve as coupling structures between adjacent dielectric resonators (31 and 32, 32 and 33, 33 and 31), and serve to separate adjacent dielectric resonators (31).
  • the degree of coupling between adjacent dielectric resonators also changes accordingly.
  • the body of each dielectric resonator in the dielectric filter is integrally formed, and the shape, size and position of the pits 22, the holes (41, 42) and the grooves 43 are filtered according to the medium.
  • the performance parameters of the device are pre-designed and formed at the same time as the body is integrally formed.
  • the raw material (such as clay) of the main body can be prepared, and the raw material is put into the designed mold to be fired to form an integrally formed dielectric filter body (ceramic), and finally burned.
  • the finished body surface is plated with a conductive layer 23 such that the surface of the body 44 covers the conductive layer 23.
  • the body 44 can be provided with holes (41, 42) and slots 43 at the same time, or only holes (41, 42) or only slots 43 can be selected according to the required performance parameters of the dielectric filter.
  • the surface of the body 44 covers the conductive layer 23.
  • the inner wall surfaces of the holes (41, 42) and the grooves 43 are the conductive layers 23.
  • the dielectric can be filtered by removing the conductive layer in the pit 22.
  • the resonant frequency of the device is adjusted, and the coupling between the dielectric resonators can also be adjusted by removing the conductive layer of the inner wall of the holes (41, 42), or by removing the conductive layer of the inner wall of the groove 43.
  • the coupling between the resonators or the coupling between the dielectric resonators is achieved by partially removing the holes (41, 42) and the conductive layers on the inner walls of the grooves 43.
  • the hole 41 is a through hole having a square cross section
  • the hole 42 is a blind hole having a circular cross section.
  • the cross-sectional shape of the hole may also be other irregular shapes, and the selection of the specific shape is determined according to the performance parameters of the dielectric filter.
  • the preparation process of the dielectric filter of the present invention can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former It is a better implementation.
  • the technical solution of the preparation process of the dielectric filter of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a readable storage medium.
  • the method of preparing a dielectric filter such as a floppy disk, a hard disk or an optical disk of a computer, and including a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) .
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the embodiment of the invention further provides a transceiver comprising the medium filter described in the above embodiments.
  • the dielectric filter described in the above embodiment since the dielectric filter described in the above embodiment is used, the loss is remarkably reduced, and the filtering performance is remarkably improved.
  • the embodiment of the invention further provides a base station, which comprises the medium filter or the transceiver described in the above embodiment.
  • the dielectric filter described in the above embodiment is used, the loss is remarkably reduced, and the filtering performance is remarkably improved.

Abstract

本发明实施例提供了一种介质谐振器、应用其的介质滤波器、收发信机及基站,涉及通信设备组件技术领域,解决了现有的介质滤波器损耗指标不能满足基站滤波需求的问题。介质谐振器包括由固态介电材料制成的本体,本体表面上设有凹坑,本体表面及凹坑表面覆盖有导电层;介质滤波器包括至少两个上述的介质谐振器;另一种介质滤波器包括由固态介电材料制成的本体,本体表面上设有至少两个凹坑;相邻凹坑之间的本体上设有孔和/或槽,本体表面覆盖有导电层;收发信机包含上述的介质滤波器;基站,包含上述的收发信机。

Description

介质谐振器、 应用其的介质滤波器、 收发信机及基站 技术领域
本发明涉及通信设备组件, 尤其涉及介质谐振器、 应用其的介质滤波器、 收发信机及基站。
背景技术
随着无线通信技术的日益发展, 无线通信基站分布越来越密集, 对基站 的体积小型化的需求越来越强烈。 基站中的射频前端滤波器模块所占的体积 较大, 因此釆用体积较小的滤波器对于减小基站体积有着重要的作用。
滤波器的种类和形式非常多, 其中的介质滤波器具有较小的体积。 图 1 示出了现有的介质滤波器,该介质滤波器的主体是一块长方体形状的介质 11 , 介质 11中开设有通孔 12, 介质 11正面露出通孔 12的一端, 介质 11正面进 行了局部金属化, 即只有通孔 12该端周围的介质 11表面形成了一个方形金 属层 13 , 相邻的方形金属层 13之间电绝缘, 介质 11的除正面之外的其它表 面全部金属化(图 1中阴影部分为金属化区,没有阴影的部分为非金属化区)。 一个通孔 12及介质 11正面围绕通孔 12—端的方形金属层 13构成了一个介 质谐振器, 该介质谐振器的谐振频率通过调节方形金属层 13的面积来调整, 相邻介质谐振器之间的耦合通过调节相邻方形金属层 13之间的距离来调整。
上述的介质滤波器中, 由于介质谐振器的内部谐振模式为 TEM (横电磁 波)模, 内导体的损耗大, 导致介质滤波器的损耗大, 从而使得该介质滤波 器的损耗指标不能满足基站滤波的需求。
发明内容
本发明的实施例提供一种介质谐振器、 应用其的介质滤波器、 收发信机 及基站,解决了现有的介质滤波器中的介质谐振器的内部谐振模式为 TEM模 而导致介质滤波器损耗指标不能满足基站滤波需求的问题。
为达到上述目的, 本发明的实施例釆用如下技术方案: 第一方面, 本发明的实施例提供一种介质谐振器, 包括由固态介电材料 制成的本体, 所述本体表面上设有凹坑, 所述本体表面及所述凹坑表面覆盖 有导电层。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述凹坑的个 数为一个。
结合第一方面或者第一方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述介电材料为陶瓷。
第二方面, 本发明的实施例提供一种介质滤波器, 包括至少两个介质谐 振器; 所述介质谐振器包括由固态介电材料制成的本体, 所述本体表面上设 有凹坑, 所述本体表面及所述凹坑表面覆盖有导电层。
结合第二方面, 在第二方面的第一种可能的实现方式中, 相邻的所述介 质谐振器通过连接面固定相接且连接面的导电层相接在一起。
结合第二方面或第二方面的第一种可能的实现方式, 在第二方面的第二 种可能的实现方式中, 相邻的所述介质谐振器的之间具有空隙。
结合第二方面的第二种可能的实现方式, 在第二方面的第三种可能的实 现方式中, 所述空隙的形状为孔形或者为槽形。
第三方面, 本发明的实施例提供一种介质滤波器, 包括由固态介电材料 制成的本体, 所述本体表面上设有至少两个凹坑; 相邻所述凹坑之间的所述 本体上设有孔和 /或槽, 所述本体表面覆盖有导电层。
结合第三方面, 在第三方面的第一种可能的实现方式中, 一个所述凹坑、 其周围的所述本体及所述导电层构成一个介质谐振器。
结合第三方面或第三方面的第一种可能的实现方式, 在第三方面的第二 种可能的实现方式中, 所述孔和 /或槽构成相邻所述介质谐振器之间的耦合结 构。
结合第三方面或第三方面的第一种或第二种可能的实现方式, 在第三方 面的第三种可能的实现方式中, 所述孔为通孔或盲孔。 第四方面, 本发明的实施例提供一种收发信机, 包含上述的介质滤波器。 第五方面, 本发明的实施例提供一种基站, 包含上述的收发信机。
本发明实施例提供的介质谐振器、 应用其的介质滤波器、 收发信机及基 站中, 介质谐振器本体上的凹坑和本体及凹坑表面覆盖的导电层形成谐振腔, 其内部的谐振模式为 TM (横磁波)模, 模式电场的方向垂直于凹坑所在的本 体表面, 由于谐振腔内部无内导体损耗, 因此, 该介质谐振器的损耗较小, 使得使用该介质谐振器的介质滤波器的损耗指标能达到基站的滤波需求。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍。
图 1为现有技术中介质滤波器的立体示意图;
图 2a为本发明实施例提供的一种介质谐振器的顶视图;
图 2b为图 2a中 A-A向的剖视图;
图 3a为本发明实施例提供的一种介质滤波器的顶视图;
图 3b为本发明实施例提供的另一种介质滤波器的顶视图;
图 4为本发明实施例提供的又一种介质滤波器的立体透视图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述。
本发明实施例提供了一种介质谐振器, 如图 2a及 2b所示, 包括由固态 介电材料制成的本体 21 , 该本体 21表面上设有凹坑 22 , 本体 21表面及凹坑 22表面覆盖有导电层 23。
本发明实施例提供的介质谐振器中, 本体上的凹坑和本体及凹坑表面覆 盖的导电层形成谐振腔, 其内部的谐振模式为 TM (横磁波)模, 模式电场的 方向垂直于凹坑所在的本体表面, 由于谐振腔内部无内导体损耗, 因此, 该 介质谐振器的损耗较小, 使得使用该介质谐振器的介质滤波器的损耗指标能 达到基站的滤波需求。
上述实施例提供的介质谐振器中, 凹坑的个数优选为一个。 当凹坑的个 数增加时, 每一个凹坑及覆盖在凹坑和本体上的导电层又会形成该谐振器的 一个子谐振器, IHJ坑的大小、 形状、 位置决定子谐振器的谐振频率和模式电 场方向, 子谐振器越多, 组合形成的谐振器的性能参数越不易控制, 通常会 用谐振器组合来形成滤波器, 因此, 一般使用的谐振器都只有一个凹坑。
上述实施例提供的介质谐振器中, 介电材料优选为陶瓷, 陶瓷具有较高 的介电常数(为 36 ), 硬度及耐高温的性能也都较好, 因此成为射频滤波器领 域常用的固态介电材料。 当然, 介电材料也可以选用本领域技术人员所知的 其它材料, 如玻璃、 电绝缘的高分子聚合物等。
需要说明的是: 上述实施例提供的介质谐振器的 坑形状并不限于图 2a 和图 2b中所示的圓形, 也可以是方形或不规则的形状; 而本体的形状也不限 于图 2a和图 2b中所示的立方体, 也可以是球体, 或不规则的形状; 凹坑和 本体的形状都可以根据介质谐振器的应用场合和性能参数需求进行选择。
本发明实施例还提供了一种介质滤波器, 如图 3a所示, 该介质滤波器包 括至少两个介质谐振器(31、 32、 33 )。 介质谐振器(31、 32、 33 ) 的结构与 图 2a和图 2b中所示的介质谐振器结构类似, 包括由固态介电材料制成的本 体 21 , 本体 21表面上设有凹坑 22, 本体 21表面及凹坑 22表面覆盖有导电 层 23。
进一步的, 相邻的介质谐振器 ( 31与 32 , 31与 33 , 32与 33 )通过连接 面 34固定相接且连接面 34的导电层 23相接在一起。
本发明实施例提供的介质滤波器中, 使用了多个介质谐振器, 且相邻的 介质谐振器通过连接面固定相接构成一个整体, 并且相邻的介质谐振器连接 面的导电层相接在一起, 比如通过焊接的方式相接在一起, 使得相邻的介质 谐振器电连接, 以使电磁波信号能在介质谐振器之间传播, 由于介质谐振器 与图 2a和图 2b所示的介质谐振器一样, 内部的谐^ ^莫式都为 TM模, 模式 电场的方向垂直于凹坑所在的本体表面, 使得谐振腔内部无内导体损耗, 因 此可显著减小介质滤波器的损耗指标, 从而使该介质滤波器能应用在基站中。
同时, 由于本发明实施例提供的介质谐振器的谐振模式为 TM模, 使得 由多个介质谐振器构成的介质滤波器为 TM模。 该 TM模介质滤波器相比于 现有的 TEM膜介质滤波器具有插入损耗小的优点。
上述实施例描述的介质滤波器中, 相邻的介质谐振器固定相接的连接面 34的导电层 23相接在一起。 实现这种固定相接方式时, 组成介质滤波器的各 介质谐振器可以先制作完成, 使得每个介质谐振器的本体 21的整个外表面都 覆盖有导电层 23 ,然后将相邻介质谐振器的固定相接的连接面 34处的导电层 23相接在一起, 不仅能实现相邻介质谐振器的固定相接, 同时还能实现相邻 介质谐振器通过导电层 23电连接。
需要说明的是: 本发明实施例提供的介质滤波器中各介质谐振器的本体 形状可以根据需要任意选择, 相邻的介质谐振器固定相接的连接面可以有相 互匹配的凹槽, 其中, 相互匹配的凹槽在相邻的介质谐振器相接时可以形成 一个空隙, 这个空隙可以为通孔、 盲孔或凹槽, 这个空隙的形状和大小都与 相邻介质谐振器的耦合程度相关。
图 3b示出了该空隙 (35 , 36, 37 ), 图 3b所示的介质滤波器在图 3a所 示的介质滤波器的基础上增加了空隙( 35 , 36, 37 )。 在连接面 34 , 介质谐振 器的外表面相互接触, 空隙 ( 35 , 36 , 37 )处的介质谐振器的外表面存在凹 槽, 因此不能相互接触。 由于介质谐振器的外表面为导电层, 所以这些空隙 的内壁都是导电层 23。 空隙 (35 , 36, 37 ) 的形状可以为上述的孔形或者为 槽形, 或是本领域技术人员所知的其它形状。
在上述实施例提供的介质滤波器制备完成时, 有可能存在性能参数不能 完全满足使用需求, 此时可以通过将凹坑 22里的导电层部分去除的方式对介 质滤波器的谐振频率进行调节, 还可以通过将空隙内壁的导电层部分去除的 方式调节介质谐振器之间的耦合。 本发明实施例还提供了一种介质滤波器, 如图 4 所示, 包括由固态介电 材料制成的本体 44, 本体 44表面上设有至少两个凹坑 22; 相邻凹坑 22之间 的本体 44上设有孔(41, 42)和 /或槽 43, 本体 44表面覆盖有导电层 23。 进 一步的, 一个凹坑 22、 其周围的本体 44及导电层 23构成一个介质谐振器。 进一步的, 孔(41, 42)和 /或槽 43构成相邻介质谐振器之间的耦合结构。
图 4所示的介质滤波器是图 3b所示的介质滤波器的一种变形结构, 与图 3b所示的介质滤波器中各介质谐振器具有独立的本体不同,图 3b所示的介质 滤波器中只包含一块本体 44, 该本体 44表面上设有多个凹坑 22, 且本体 44 表面覆盖有导电层 23, 由本体 44表面的一个凹坑 22、 该凹坑 22周围的本体 及导电层, 可构成一个介质谐振器, 图 4中示出了三个介质谐振器(31, 32, 33)。 本体 44上设置的孔(41, 42)和槽 43作为相邻介质谐振器(31与 32, 32与 33, 33与 31 )之间的耦合结构, 起到了分隔相邻的介质谐振器(31与 32, 32与 33, 33与 31 ) 的作用, 孔(41, 42 )或者槽 43的形状和大小有变 化时, 相邻介质谐振器之间的耦合程度也相应发生变化。
从图 4 可以看出, 该介质滤波器中各介质谐振器的本体是一体成型的, 其上的凹坑 22、 孔(41, 42)及槽 43的形状、 大小及位置都是根据介质滤波 器的性能参数预先设计好的, 并在本体一体成型的同时形成的。 实现这种结 构的介质滤波器时, 可以先准备制作本体的原料(如陶土), 将该原料放入设 计好的模具中烧制, 形成一体成型的介质滤波器本体(陶瓷), 最后将烧制完 的本体表面镀一层导电层 23, 使本体 44的表面覆盖导电层 23。
本体 44上可以同时设有孔( 41 , 42)及槽 43 , 也可以只设有孔( 41 , 42) 或只设有槽 43, 可以根据所需的介质滤波器的性能参数进行选择。
由于本体 44的表面覆盖导电层 23, 因此孔(41, 42)及槽 43的内壁表 面为导电层 23。
在图 4 所示的介质滤波器制备完成时, 有可能存在性能参数不能完全满 足使用需求, 此时可以通过将凹坑 22里的导电层部分去除的方式对介质滤波 器的谐振频率进行调节, 还可以通过将孔(41 , 42 ) 内壁的导电层部分去除 的方式调节介质谐振器之间的耦合, 也可以通过将槽 43内壁的导电层部分去 除的方式调节介质谐振器之间的耦合, 或者通过将孔(41 , 42 )和槽 43内壁 的导电层都部分去除的方式调节介质谐振器之间的耦合。
如图 4所示, 具体地, 孔 41为截面是方形的通孔, 孔 42为截面是圓形 的盲孔。 当然, 孔的截面形状也可以是其它不规则的形状, 具体形状的选择 依据介质滤波器的性能参数来决定。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明介质滤波器的制备过程可借助软件加必需的通用硬件的方式来实现, 当 然也可以通过硬件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明介质滤波器的制备过程的技术方案本质上或者说对现有技术做出贡献 的部分可以以软件产品的形式体现出来, 该计算机软件产品存储在可读取的 存储介质中, 如计算机的软盘, 硬盘或光盘等, 包括若干指令用以使得一台 计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各 个实施例所述的介质滤波器的制备方法。
本发明实施例又提供了一种收发信机, 其中包含有上述实施例描述的介 质滤波器。
本发明实施例提供的收发信机中, 由于使用了上述实施例描述的介质滤 波器, 损耗显著降低, 且滤波性能显著提升。
本发明实施例还提供了一种基站, 其中包含有上述实施例描述的介质滤 波器或收发信机。
本发明实施例提供的基站中, 由于使用了上述实施例描述的介质滤波器, 损耗显著降低, 且滤波性能显著提升。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 ,
WO 2014/194…47,7
护范围应以所述权利要求的保护范围为准'

Claims

权 利 要求 书
1、 一种介质谐振器, 其特征在于, 包括由固态介电材料制成的本体, 所述 本体表面上设有凹坑, 所述本体表面及所述凹坑表面覆盖有导电层。
2、 根据权利要求 1所述的介质谐振器, 其特征在于, 所述凹坑的个数为一 个。
3、 根据权利要求 1或 2任一项所述的介质谐振器, 其特征在于, 所述介电 材料为陶瓷。
4、 一种介质滤波器, 其特征在于, 包括至少两个介质谐振器; 所述介质谐 振器包括由固态介电材料制成的本体, 所述本体表面上设有凹坑, 所述本体表 面及所述凹坑表面覆盖有导电层。
5、 根据权利要求 4所述的介质滤波器, 其特征在于, 相邻的所述介质谐振 器通过连接面固定相接且连接面的导电层相接在一起。
6、 根据权利要求 4或 5所述的介质滤波器, 其特征在于, 相邻的所述介质 谐振器的之间具有空隙。
7、 根据权利要求 6所述的介质滤波器, 其特征在于, 所述空隙的形状为孔 形或者为槽形。
8、 一种介质滤波器, 其特征在于, 包括由固态介电材料制成的本体, 所述 本体表面上设有至少两个凹坑;相邻所述凹坑之间的所述本体上设有孔和 /或槽, 所述本体表面覆盖有导电层。
9、 根据权利要求 8所述的介质滤波器, 其特征在于, 一个所述凹坑、 其周 围的所述本体及所述导电层构成一个介质谐振器。
10、 根据权利要求 8或 9所述的介质滤波器, 其特征在于, 所述孔和 /或槽 构成相邻所述介质谐振器之间的耦合结构。
11、 根据权利要求 8至 10任一项所述的介质滤波器, 其特征在于, 所述孔 为通孔或盲孔。
12、 一种收发信机, 其特征在于, 包含权利要求 4-7或权利要求 8-11任一 项所述的介质滤波器。
13、 一种基站, 其特征在于, 包含权利要求 12所述的收发信机。
PCT/CN2013/076732 2013-06-04 2013-06-04 介质谐振器、应用其的介质滤波器、收发信机及基站 WO2014194477A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP13886199.2A EP2993727B1 (en) 2013-06-04 2013-06-04 Dielectric resonator and dielectric filter, transceiver and base station using same
CN201380000666.0A CN104364962B (zh) 2013-06-04 2013-06-04 介质谐振器、应用其的介质滤波器、收发信机及基站
CN201910533745.7A CN110224206B (zh) 2013-06-04 2013-06-04 介质谐振器、应用其的介质滤波器、收发信机及基站
JP2016517108A JP6535957B2 (ja) 2013-06-04 2013-06-04 誘電体共振器、誘電体共振器を用いた誘電体フィルタ、送受信機、および基地局
EP19158729.4A EP3565056B1 (en) 2013-06-04 2013-06-04 Dielectric resonator, dielectric filter using dielectric resonator, transceiver, and base station
ES13886199T ES2726131T3 (es) 2013-06-04 2013-06-04 Resonador dieléctrico y filtro dieléctrico, transceptor y estación base que utiliza los mismos
CA2914434A CA2914434C (en) 2013-06-04 2013-06-04 Dielectric resonator, dielectric filter using dielectric resonator, transceiver, and base station
PCT/CN2013/076732 WO2014194477A1 (zh) 2013-06-04 2013-06-04 介质谐振器、应用其的介质滤波器、收发信机及基站
US14/960,139 US10193205B2 (en) 2013-06-04 2015-12-04 Dielectric resonator, dielectric filter using dielectric resonator, transceiver, and base station
US16/205,789 US10741900B2 (en) 2013-06-04 2018-11-30 Dielectric resonator, dielectric filter using dielectric resonator, transceiver, and base station
US16/924,746 US11018405B2 (en) 2013-06-04 2020-07-09 Dielectric resonator, dielectric filter using dielectric resonator, transceiver, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/076732 WO2014194477A1 (zh) 2013-06-04 2013-06-04 介质谐振器、应用其的介质滤波器、收发信机及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/960,139 Continuation US10193205B2 (en) 2013-06-04 2015-12-04 Dielectric resonator, dielectric filter using dielectric resonator, transceiver, and base station

Publications (1)

Publication Number Publication Date
WO2014194477A1 true WO2014194477A1 (zh) 2014-12-11

Family

ID=52007406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076732 WO2014194477A1 (zh) 2013-06-04 2013-06-04 介质谐振器、应用其的介质滤波器、收发信机及基站

Country Status (7)

Country Link
US (3) US10193205B2 (zh)
EP (2) EP2993727B1 (zh)
JP (1) JP6535957B2 (zh)
CN (2) CN104364962B (zh)
CA (1) CA2914434C (zh)
ES (1) ES2726131T3 (zh)
WO (1) WO2014194477A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018148905A1 (zh) * 2017-02-16 2018-08-23 华为技术有限公司 介质滤波器、收发设备及基站
CN109546270A (zh) * 2019-01-11 2019-03-29 苏州艾福电子通讯有限公司 一种滤波器
CN109687072A (zh) * 2019-01-11 2019-04-26 苏州艾福电子通讯有限公司 滤波器
CN109728385A (zh) * 2019-02-22 2019-05-07 江西一创新材料有限公司 一种具有对称零点特性的介质滤波器耦合结构

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014194477A1 (zh) * 2013-06-04 2014-12-11 华为技术有限公司 介质谐振器、应用其的介质滤波器、收发信机及基站
CN106558747A (zh) * 2015-09-28 2017-04-05 中兴通讯股份有限公司 一种谐振腔及其构成的滤波器
WO2017088174A1 (zh) * 2015-11-27 2017-06-01 华为技术有限公司 介质滤波器,收发信机及基站
US10256518B2 (en) 2017-01-18 2019-04-09 Nokia Solutions And Networks Oy Drill tuning of aperture coupling
WO2020087378A1 (zh) * 2018-10-31 2020-05-07 华为技术有限公司 一种介质滤波器及通信设备
KR102193435B1 (ko) * 2018-11-26 2020-12-21 주식회사 에이스테크놀로지 세라믹 웨이브가이드 필터 및 이의 제조 방법
WO2020132915A1 (zh) 2018-12-26 2020-07-02 华为技术有限公司 一种介质双工器
CN111384548A (zh) * 2018-12-29 2020-07-07 深圳市大富科技股份有限公司 一种介质滤波器及通信设备
CN109860966B (zh) * 2019-04-15 2024-04-05 江苏贝孚德通讯科技股份有限公司 介质滤波器及5g通信设备
CN110148819B (zh) * 2019-06-20 2024-03-26 京信通信技术(广州)有限公司 介质波导滤波器的容性耦合结构及介质波导滤波器
CN112563693A (zh) * 2019-09-25 2021-03-26 深圳三星通信技术研究有限公司 介质滤波器
CN111066198B (zh) * 2019-09-27 2020-11-13 摩比天线技术(深圳)有限公司 陶瓷介质滤波器
US10950918B1 (en) * 2019-12-02 2021-03-16 The Chinese University Of Hong Kong Dual-mode monoblock dielectric filter
US11139548B2 (en) 2019-12-02 2021-10-05 The Chinese University Of Hong Kong Dual-mode monoblock dielectric filter and control elements
CN111540989A (zh) * 2020-02-26 2020-08-14 江苏灿勤科技股份有限公司 一种具有负耦合结构的滤波器及其制作方法
CN113097674A (zh) * 2021-03-22 2021-07-09 绵阳领益通信技术有限公司 环行滤波组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856902A2 (en) * 1997-01-29 1998-08-05 Murata Manufacturing Co., Ltd. Dielectric filter and dielectric duplexer
CN1236197A (zh) * 1998-04-17 1999-11-24 株式会社村田制作所 介电滤波器、介电双工器及其安装结构以及通信装置
JP2000165106A (ja) * 1998-11-25 2000-06-16 Murata Mfg Co Ltd 誘電体フィルタ、デュプレクサ及び通信機装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581301A (ja) 1981-06-26 1983-01-06 Fujitsu Ltd 導波管型誘電体フィルタ
US4691179A (en) * 1986-12-04 1987-09-01 Motorola, Inc. Filled resonant cavity filtering apparatus
JPH0633687Y2 (ja) * 1988-01-29 1994-08-31 太陽誘電株式会社 誘電体フイルタを構成するための誘電体ブロツク
JPH0828612B2 (ja) * 1990-04-09 1996-03-21 株式会社村田製作所 Tmモード誘電体共振器
JPH04103202A (ja) * 1990-08-22 1992-04-06 Murata Mfg Co Ltd 誘電体フィルタ
JPH04150101A (ja) 1990-10-08 1992-05-22 Murata Mfg Co Ltd 誘電体共振器
JPH06177608A (ja) 1991-03-20 1994-06-24 Fujitsu Ltd 誘電体フィルタ
US5537082A (en) * 1993-02-25 1996-07-16 Murata Manufacturing Co., Ltd. Dielectric resonator apparatus including means for adjusting the degree of coupling
JPH07135411A (ja) * 1993-11-10 1995-05-23 Murata Mfg Co Ltd 誘電体共振器
JP3368404B2 (ja) * 1995-01-31 2003-01-20 エヌイーシートーキン株式会社 共振器およびフィルタ
JPH10224115A (ja) 1997-02-03 1998-08-21 Murata Mfg Co Ltd 誘電体フィルタ
JPH11239006A (ja) 1998-02-20 1999-08-31 Toko Inc 誘電体フィルタ
US6670867B2 (en) 2000-10-26 2003-12-30 Sei-Joo Jang Dielectric filter for filtering out unwanted higher order frequency harmonics and improving skirt response
JP2002135003A (ja) 2000-10-27 2002-05-10 Toko Inc 導波管型誘電体フィルタ
JP3801058B2 (ja) 2002-01-31 2006-07-26 宇部興産株式会社 誘電体フィルタ
JP3565214B2 (ja) * 2002-06-03 2004-09-15 松下電器産業株式会社 ミリ波モジュール
JP3839410B2 (ja) 2003-02-12 2006-11-01 Tdk株式会社 フィルタおよび共振器の配置方法
JP2007184868A (ja) 2006-01-10 2007-07-19 Murata Mfg Co Ltd 誘電体導波管フィルタ
JP2007295361A (ja) * 2006-04-26 2007-11-08 Ube Ind Ltd デュプレクサ
WO2008019307A2 (en) * 2006-08-04 2008-02-14 Dielectric Laboratories, Inc. Wideband dielectric waveguide filter
US8008991B2 (en) * 2007-01-18 2011-08-30 D-Wave Systems Inc. Electrical filter having a dielectric substrate with wide and narrow regions for supporting capacitors and conductive windings
EP2144326A1 (en) * 2008-07-07 2010-01-13 Nokia Siemens Networks OY Filter for electronic signals and method for manufacturing it
US8823470B2 (en) * 2010-05-17 2014-09-02 Cts Corporation Dielectric waveguide filter with structure and method for adjusting bandwidth
CN202121036U (zh) 2011-05-26 2012-01-18 苏州市新诚氏电子有限公司 耦合介质波导滤波器
US20130049891A1 (en) * 2011-08-23 2013-02-28 Mesaplexx Pty Ltd Filter
CN102593560B (zh) * 2012-03-16 2015-03-18 深圳市大富科技股份有限公司 一种腔体滤波器及功放模块
CN102760923B (zh) * 2012-08-02 2015-04-29 深圳市国人射频通信有限公司 介质滤波器
CN202871951U (zh) * 2012-08-02 2013-04-10 深圳市国人射频通信有限公司 介质滤波器
WO2014194477A1 (zh) * 2013-06-04 2014-12-11 华为技术有限公司 介质谐振器、应用其的介质滤波器、收发信机及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856902A2 (en) * 1997-01-29 1998-08-05 Murata Manufacturing Co., Ltd. Dielectric filter and dielectric duplexer
CN1236197A (zh) * 1998-04-17 1999-11-24 株式会社村田制作所 介电滤波器、介电双工器及其安装结构以及通信装置
JP2000165106A (ja) * 1998-11-25 2000-06-16 Murata Mfg Co Ltd 誘電体フィルタ、デュプレクサ及び通信機装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2993727A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018148905A1 (zh) * 2017-02-16 2018-08-23 华为技术有限公司 介质滤波器、收发设备及基站
US11139546B2 (en) 2017-02-16 2021-10-05 Huawei Technologies Co., Ltd. Dielectric filter, transceiver device, and base station
US11664564B2 (en) 2017-02-16 2023-05-30 Huawei Technologies Co., Ltd. Dielectric filter, transceiver device, and base station
CN109546270A (zh) * 2019-01-11 2019-03-29 苏州艾福电子通讯有限公司 一种滤波器
CN109687072A (zh) * 2019-01-11 2019-04-26 苏州艾福电子通讯有限公司 滤波器
CN109687072B (zh) * 2019-01-11 2020-04-21 苏州艾福电子通讯股份有限公司 滤波器
WO2020143070A1 (zh) * 2019-01-11 2020-07-16 苏州艾福电子通讯有限公司 滤波器
WO2020143814A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 一种滤波器
CN109728385A (zh) * 2019-02-22 2019-05-07 江西一创新材料有限公司 一种具有对称零点特性的介质滤波器耦合结构
CN109728385B (zh) * 2019-02-22 2023-12-08 江西一创新材料有限公司 一种具有对称零点特性的介质滤波器耦合结构

Also Published As

Publication number Publication date
US20190097298A1 (en) 2019-03-28
US10741900B2 (en) 2020-08-11
US20200343617A1 (en) 2020-10-29
CA2914434A1 (en) 2014-12-11
EP2993727B1 (en) 2019-03-20
ES2726131T3 (es) 2019-10-01
CN110224206B (zh) 2021-10-26
EP2993727A1 (en) 2016-03-09
US10193205B2 (en) 2019-01-29
EP3565056A1 (en) 2019-11-06
US11018405B2 (en) 2021-05-25
EP2993727A4 (en) 2016-05-11
CN104364962A (zh) 2015-02-18
CA2914434C (en) 2019-09-10
EP3565056B1 (en) 2022-03-02
CN110224206A (zh) 2019-09-10
JP2016521092A (ja) 2016-07-14
JP6535957B2 (ja) 2019-07-03
CN104364962B (zh) 2019-06-21
US20160099492A1 (en) 2016-04-07

Similar Documents

Publication Publication Date Title
WO2014194477A1 (zh) 介质谐振器、应用其的介质滤波器、收发信机及基站
JP2019083576A (ja) 誘電体共振器、誘電体共振器を用いた誘電体フィルタ、送受信機、および基地局
CN107534197B (zh) 介质滤波器,收发信机及基站
JP3405140B2 (ja) 誘電体共振器
CN104064840B (zh) 小型化带阻型频率选择表面
US20100001815A1 (en) Filter for electronic signals and method for manufacturing it
Huang et al. Compact ridged half-mode substrate integrated waveguide bandpass filter
US20090256651A1 (en) Triple-mode cavity filter having a metallic resonator
CN111211387A (zh) 介质滤波器、无线电收发设备
Yang et al. A compact quarter-mode SIW bandpass filter with an extremely wide stopband
WO2021170119A1 (zh) 介质滤波器和通信设备
JP2006238027A (ja) 誘電体フィルタ、及び、誘電体フィルタの製造方法
JP3607886B2 (ja) 人工誘電体及びこれを用いた共振器
CN109546269B (zh) 介质波导滤波器
Rao et al. 3-D metal printed high-Q folded waveguide filter with folded antenna
JP2004266697A (ja) 積層型バンドパスフィルタ
JP2006222691A (ja) 電子部品
WO2023060438A1 (zh) 介质谐振器、介质滤波器、射频器件及基站
TWI478434B (zh) Three - dimensional filter and its making method
JP6011237B2 (ja) 誘電体共振部品及びその製造方法
TWI433457B (zh) Adjustable filter device
JP2006279597A (ja) 積層フィルタ
WO1998033229A1 (fr) Resonateur dielectrique, filtre dielectrique, duplexeur dielectrique et procede de fabrication d'un resonateur dielectrique
JPH10242720A (ja) 誘電体共振器および誘電体フィルタ
JPH10261907A (ja) 誘電体フィルタの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886199

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013886199

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2914434

Country of ref document: CA

Ref document number: 2016517108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE