WO2017088174A1 - 介质滤波器,收发信机及基站 - Google Patents

介质滤波器,收发信机及基站 Download PDF

Info

Publication number
WO2017088174A1
WO2017088174A1 PCT/CN2015/095791 CN2015095791W WO2017088174A1 WO 2017088174 A1 WO2017088174 A1 WO 2017088174A1 CN 2015095791 W CN2015095791 W CN 2015095791W WO 2017088174 A1 WO2017088174 A1 WO 2017088174A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric filter
blind hole
hole
coupling
depth
Prior art date
Application number
PCT/CN2015/095791
Other languages
English (en)
French (fr)
Inventor
张晓峰
袁本贵
刘止愚
沈振
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15909085.1A priority Critical patent/EP3319166B1/en
Priority to CN202110050984.4A priority patent/CN112886161B/zh
Priority to CN201580079291.0A priority patent/CN107534197B/zh
Priority to PCT/CN2015/095791 priority patent/WO2017088174A1/zh
Priority to JP2018530953A priority patent/JP6572391B2/ja
Publication of WO2017088174A1 publication Critical patent/WO2017088174A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2088Integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2053Comb or interdigital filters; Cascaded coaxial cavities the coaxial cavity resonators being disposed parall to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2056Comb filters or interdigital filters with metallised resonator holes in a dielectric block

Definitions

  • the present invention relates to a communication device component, and more particularly to a dielectric filter, a transceiver, and a base station.
  • dielectric filters have become an indispensable and important component, and are widely used in various mobile communication systems to filter out clutter or interference signals outside the frequency of communication signals.
  • Capacitive coupling is to form a transmission zero at the low end of the dielectric filter response, thus forming a high selectivity at the low end of the dielectric filter; inductive coupling is in the dielectric filter response.
  • the high end forms a transmission zero, resulting in high selectivity at the high end of the dielectric filter.
  • the transmission zero of the dielectric filter can only achieve inductive coupling.
  • the additional structure is implemented by another non-cross-coupled cavity structure.
  • the size of base stations is required to be miniaturized.
  • the size of the dielectric filter in the base station also requires miniaturization, and the existing dielectric filter capable of capacitive coupling can be realized due to the need to cascade the accessory structure outside the medium, so that the existing dielectric filter cannot It satisfies the requirements of existing communication technologies for miniaturization of base stations.
  • Embodiments of the present invention provide a dielectric filter that solves the problem that the existing dielectric filter that can achieve capacitive coupling accounts for a large volume.
  • an embodiment of the present application provides a dielectric filter including a body, at least three Each of the resonant cavities includes a debug hole, the debug hole is located on the body, each of the debug holes forms a single resonant cavity with the surrounding body; and the two adjacent resonator cavities also include a blind hole, blind The holes are not connected to the debug holes, which are used to achieve cross-coupling.
  • a conductive layer is also attached to the surface of the body of the resonant cavity.
  • the depth of the blind via is related to the transmission zero of the dielectric filter.
  • different blind hole depths may determine the polarity of the cross-coupling of the dielectric filter, which includes inductive or capacitive coupling.
  • different blind hole depths can determine the degree of cross-coupling of the dielectric filter.
  • the blind hole depth is related to the polarity of the cross-coupling, the depth of the blind hole is from shallow to deep, and the polarity of the cross-coupling can be changed from inductive coupling to capacitive coupling.
  • the shape of the blind hole includes any of the following: cylindrical, grooved, strip-shaped, hole-like.
  • the width of the blind hole is related to the transmission zero. Specifically, the larger the blind hole width is, the smaller the relative position of the transmission zero point is, and the relative position of the transmission zero point is greater than 1 with respect to the center frequency point position of the dielectric filter.
  • the different depths of the debug holes can be used to determine different resonant frequencies of the resonant cavity corresponding to the debug holes, and each of the debug holes can have different depths, so that the corresponding cavity of each debug hole can be According to the specific scene, the independent resonant frequencies are set, and the resonant frequencies can be the same.
  • embodiments of the present invention provide a transceiver including various possible dielectric filters as described above.
  • an embodiment of the present invention further provides a base station, including the transceiver as described above.
  • the dielectric filter, the transceiver and the base station provided by the embodiments of the invention realize capacitive coupling by a new internal configuration, which simplifies the manufacturing process and makes the structure of the dielectric filter more compact.
  • FIG. 1 is a perspective view showing the structure of a dielectric filter according to an embodiment of the present invention.
  • FIG. 2 is a top plan view showing a structure of a dielectric filter according to an embodiment of the present invention
  • FIG. 3 is a bottom view showing the structure of a dielectric filter according to an embodiment of the present invention.
  • FIG. 4 is a simulation diagram of implementing inductive coupling of a dielectric filter according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of capacitive coupling of a dielectric filter according to an embodiment of the present invention.
  • FIG. 6 is a perspective view showing the structure of a dielectric filter according to an embodiment of the present invention.
  • FIG. 7 is a perspective view showing the structure of a dielectric filter according to an embodiment of the present invention.
  • the embodiments of the present invention provide a dielectric filter, which creatively proposes a new structure, which can be realized without cascading additional structures through the medium. Sexual coupling.
  • the embodiments of the present invention are described in detail below with reference to the accompanying drawings.
  • the drawings provided in the embodiments of the present invention are only a schematic description of the embodiments of the present invention, and are not intended to limit the scope of the present invention.
  • the dielectric filter includes at least three resonant cavities, and an embodiment of the present invention is described by taking a dielectric filter including four resonant cavities as an example.
  • the main structure of the dielectric resonator comprises a body (1), and four debugging holes (11, 12, 13 and 14) are respectively arranged at four corners of the body (1), and between adjacent debugging holes Through holes (101 and 102) are provided.
  • the through holes penetrate through the upper and lower surfaces of the body (1).
  • the through holes (101 and 102) are both designed in the shape of a groove, and their ends are bent to face between the adjacent two debugging holes.
  • the through hole (101) is a groove shape having a depth penetrating the upper surface and the lower surface of the body (1), and the groove-shaped one end (1011) is bent toward the debugging hole (11) and Between the debug holes (12), the other end is bent between the debug hole (11) and the debug hole (14).
  • the through hole (101) isolates the debug hole (11) from other debug holes (such as 12 and 14) to form a resonant cavity around the debug hole (11).
  • the through hole (101) and the through hole (102) respectively isolate the four debugging holes, thereby forming a single resonant cavity around each of the debugging holes.
  • each debugging hole penetrates the upper surface of the body (1), and the other end penetrates into the body (1) to form a concave shape, and the depth thereof can be designed and manufactured according to requirements, and the resonance can be configured by setting the different debugging holes to different depths.
  • the cavity forms different resonant frequencies, and each of the debugging holes can be set to different depths according to specific application scenarios, and can be set to the same depth or to different depths.
  • the resonant cavity formed around the debug hole (12) is not adjacent to the resonant cavity formed around the debug hole (14).
  • a blind hole (100) is provided, the position is as shown in FIG. 1, and the blind hole (100) is disposed between the debugging hole (12) and the debugging hole (14).
  • the blind hole (100) in this embodiment is designed as a groove shape, and the upper end of the blind hole (100) penetrates the upper surface of the body (1), and the lower end of the blind hole can be set to a depth as needed.
  • One end of the blind hole (100) is adjacent to the cavity formed by the debug hole (12), and the other end is close to the cavity formed by the debug hole (14). Both ends of the blind hole (100) are not connected to the debug hole (12) and the debug hole (14).
  • the blind holes (100) are not in communication with the through holes (101 and 102) on either side thereof.
  • the shape of the through hole, the debugging hole and the blind hole in the embodiment of the present invention may be square, circular, strip, olive or other shape in the plane, which is not limited in the embodiment of the present invention.
  • the body (1) is generally made of a solid dielectric material, preferably a ceramic. Ceramics have a high dielectric constant, hardness and high temperature resistance, and therefore become a solid dielectric material commonly used in the field of dielectric filters.
  • the dielectric material may also be selected from other materials known to those skilled in the art, such as glass, electrically insulating high molecular polymers, and the like.
  • the body with the debugging hole, the through hole and the blind hole can be obtained by forming the integrated body (1), and then the surface is metallized, such as surface plating, to obtain the above dielectric filter.
  • the body of the dielectric resonator included in the dielectric filter is continuous.
  • the use of an integrated forming method to obtain a dielectric filter can make the processing process simpler.
  • a dielectric filter having a more resonant cavity by cascading based on a three-cavity (as shown in FIG. 6) or a four-cavity fixed structure.
  • blind holes are provided between non-adjacent resonators to achieve cross-coupling.
  • the blind hole (100) is related to the coupling of the dielectric filter, and the cross-coupling form of the dielectric filter can be determined by determining the depth of the blind hole (100).
  • the depth of the blind hole here refers to the depth of the blind hole from the upper surface of the dielectric filter to the inside of the dielectric filter body (1).
  • the blind hole depth is generally fixed according to the needs of the application scenario. Specifically, according to the cross-coupling characteristics to be realized by the dielectric filter, for example, to achieve a corresponding degree of inductive coupling, the corresponding depth of the blind hole is determined and fixed; correspondingly, the blindness may be determined according to the corresponding degree of capacitive coupling. The corresponding depth of the hole is fixed.
  • the quality can be controlled during manufacturing, and the parameters can be guaranteed to be deviated and the quality is more stable during subsequent use.
  • a dielectric filter with adjustable blind hole depth can also be designed to adapt to an application scenario requiring different parameters.
  • the depth of the blind hole can be set according to the needs of the actual application scenario, such as the frequency of transmitting the zero point, or the degree of inductive coupling or capacitive coupling, which is not limited herein.
  • the number of blind holes (100) connecting two non-adjacent resonators shown in FIG. 1 is one, but it may also be designed in multiple numbers, and the blind holes may be determined according to the number of zero points and/or frequencies actually needed to be transmitted. The number, location and specific depth size.
  • the width of the blind hole (100) is related to the transmission zero. Specifically, the larger the blind hole width is, the smaller the relative position of the transmission zero point is, and the relative position of the transmission zero point is greater than 1 with respect to the center frequency point position of the dielectric filter.
  • the blind hole itself also has a resonant frequency.
  • the resonant frequency of the blind hole generally does not participate in the resonance of the pass band of the filter body, that is, the resonant frequency of the blind hole can be higher than the resonant frequency of the pass band of the filter, or lower than the pass band of the filter.
  • Resonant frequency when the resonant frequency of the blind via is higher than the passband of the dielectric filter, the cross-coupling is shown as inductive coupling. When the resonant frequency of the blind via is lower than the passband of the dielectric filter, the cross-coupling is shown as capacitive. coupling.
  • the resonant frequency of the blind hole can be determined by the depth of the blind hole.
  • the resonant frequency of the blind hole gradually decreases.
  • the cross coupling is switched from inductive coupling to capacitive coupling.
  • a dielectric filter comprising four resonant cavities
  • the cross coupling is inductive coupling
  • the transmission zero point is on the right side of the pass band, as shown in FIG. 4 . Shown.
  • the cross coupling is capacitive coupling, and the transmission zero is on the left side of the pass band, as shown in FIG.
  • a conductive layer is attached to the surface of the dielectric resonator.
  • the concave surface of the blind hole, the through hole and the debugging hole may also be attached with a conductive layer.
  • the dielectric filter provided by the embodiment of the present invention, by connecting blind holes between non-adjacent resonant cavities, capacitive coupling can be realized inside the dielectric resonator without cascading external additional structures, thereby realizing dielectric filtering. Miniaturization of the device.
  • the dielectric filter that realizes capacitive coupling with respect to the cascaded external additional structure simplifies the manufacturing process of the structure that realizes the cross-coupling.
  • the dielectric filter provided by the embodiment of the invention is mainly used for the radio frequency front end of the high power wireless communication base station.
  • the embodiment of the invention further provides a transceiver, wherein the above embodiment is adopted in the transceiver
  • the dielectric filter provided in .
  • the dielectric filter can be used to filter RF signals.
  • the embodiment of the invention further provides a base station in which the transceiver provided in the above embodiment is used.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明实施例提供了一种介质滤波器,涉及通信设备组件技术领域,提供一种新的实现交叉耦合的介质滤波器结构。本发明实施例提供的介质滤波器包括至少三个介质谐振腔,每个谐振腔包括调试孔,调试孔位于本体上,每个调试孔与周围本体形成谐振腔;两两不相邻的谐振腔之间还包括有盲孔,盲孔用于实现交叉耦合。本发明实施例提供的介质谐振器简化了实现电容耦合的结构,使得结构更加小型化。

Description

介质滤波器,收发信机及基站 技术领域
本发明涉及通信设备组件,尤其涉及介质滤波器,收发信机及基站。
背景技术
现代移动通信技术中,介质滤波器已经成为必不可少的重要组成部分,被广泛应用于各种移动通信系统中,用于滤除通信信号频率外的杂波或干扰信号。
与金属滤波器一样,要实现介质滤波器的高选择性需要在介质滤波器中形成交叉耦合。交叉耦合分为容性耦合和感性耦合两种形式,容性耦合是在介质滤波器响应的低端形成传输零点,从而形成介质滤波器低端的高选择性;感性耦合是在介质滤波器响应的高端形成传输零点,从而形成介质滤波器高端的高选择性。目前,业界常用的介质滤波器中,介质滤波器的传输零点通常只能实现感性耦合,要实现介质滤波器的容性耦合则需要在介质外级联跨接PCB或跨接线缆等额外的附加结构,或通过另一种非交叉耦合的临腔结构来实现。这些附加的结构对于介质滤波器的加工、装配和调试都造成不便。
另外,随着无线通信技术的日益发展,要求基站的体积小型化。对于在基站中的介质滤波器所占的体积也要求小型化,而现有的可实现容性耦合的介质滤波器由于需要在介质外级联附件结构才能实现,导致现有的介质滤波器无法满足现有通信技术对于基站小型化的要求。
发明内容
本发明的实施例提供一种介质滤波器,解决了现有的可实现容性耦合的介质滤波器占体积大的问题。
第一方面,本申请的实施例提供一种介质滤波器,包括有本体,至少三 个谐振腔,每个谐振腔包括有一个调试孔,调试孔位于本体上,每个调试孔与周围的本体形成单个谐振腔;两两不相邻的谐振腔之间还包括有盲孔,盲孔与调试孔不相连,盲孔用于实现交叉耦合。谐振腔的本体表面上还附着有导电层。
在一种可能的设计中,盲孔的深度与介质滤波器的传输零点相关。
在一种可能的设计中,不同的盲孔深度可以确定介质滤波器的交叉耦合的极性,交叉耦合的极性包括感性耦合或容性耦合。
在一种可能的设计中,不同的盲孔深度可以确定介质滤波器的交叉耦合的不同程度。
在一种可能的设计中,盲孔深度与交叉耦合的极性相关,盲孔深度由浅到深,交叉耦合的极性相应的可以从感性耦合变为容性耦合。
在一种可能的设计中,盲孔的形状包括以下所述的任意一种:圆柱状,槽状,条状,孔状。
在一种可能的设计中,盲孔的宽度与传输零点相关。具体的,盲孔宽度越大,传输零点相对位置越小,所述传输零点的相对位置相对于介质滤波器的中心频点位置大于1。
一种可能的设计中,调试孔的不同深度可以用来确定该调试孔对应的谐振腔的不同谐振频率,每个调试孔可以有各自不同的深度,从而使得每个调试孔对应的谐振腔可以根据具体场景设置各自独立的谐振频率,各谐振频率也可相同。
另一方面,本发明实施例提供一种收发信机,包括如上所述的各种可能的介质滤波器。
另一方面,本发明实施例还提供一种基站,包括如上所述的收发信机。
发明的实施例提供的介质滤波器、收发信机和基站,通过内部新的构造实现了电容耦合,简化了制造工艺,使得介质滤波器的结构更加小型化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明实施例提供的一种介质滤波器的结构的透视图;
图2为本发明实施例提供的一种介质滤波器的结构的俯视图;
图3为本发明实施例提供的一种介质滤波器的结构的底视图;
图4为本发明实施例提供的一种介质滤波器的实现感性耦合的仿真图;
图5为本发明实施例提供的一种介质滤波器的实现容性耦合的仿真图;
图6为本发明实施例提供的一种介质滤波器的结构的透视图;
图7为本发明实施例提供的一种介质滤波器的结构的透视图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例描述的结构及应用场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信技术的发展,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
针对背景技术中提到的现有介质滤波器存在的问题,本发明实施例提供了一种介质滤波器,创造性的提出一种新的结构,无需通过介质外级联附加结构就可来实现容性耦合。下面具体结合附图,对本发明实施例进行详细说明。需要说明的是,本发明实施例提供的附图只是对本发明实施例的一种示意性的描述,并不用于限定本发明的保护范围。
如图1所示,该介质滤波器包括至少三个谐振腔,本发明实施例以包括四个谐振腔的介质滤波器为例来进行说明。该介质谐振器的主体结构包括本体(1),在该本体(1)的四个角上分别设置有4个调试孔(11,12,13和14),在相邻的调试孔之间还设置有通孔(101和102)。通孔贯穿本体(1)的上下表面。在本实施例中,通孔(101和102)都被设计为条槽状,其两端弯曲分别朝向相邻的两个调试孔之间。以通孔(101)为例,通孔(101)为条槽状,其深度贯穿本体(1)的上表面和下表面,其条槽状的一端(1011)弯曲朝向调试孔(11)和调试孔(12)之间,另一端弯曲朝向调试孔(11)和调试孔(14)之间。通孔(101)将调试孔(11)与其他调试孔(如12和14)隔离开,从而围绕着调试孔(11)形成一个谐振腔。同理,通孔(101)与通孔(102)分别将4个调试孔隔离开,从而围绕着每个调试孔分别形成单个谐振腔。由此,图1所示的介质谐振器包含4个谐振腔。每个调试孔的一端贯穿本体(1)的上表面,另一端深入本体(1),形成凹陷状,其深度可以根据需要进行设计制造,通过各个调试孔设置为不同的深度可以使得构成的谐振腔形成不同的谐振频率,每个调试孔均可根据具体应用场景设置为不同的深度,其中可以设置为相同的深度,也可以设置为不相同的深度。
如图1所示,围绕着调试孔(12)形成的谐振腔与围绕着调试孔(14)形成的谐振腔不相邻。针对这两个不相邻的谐振腔,设置盲孔(100),位置如图1中所示,盲孔(100)设置于调试孔(12)和调试孔(14)之间。本实施例中的盲孔(100)被设计为条槽状,盲孔(100)的上端贯穿本体(1)的上表面,盲孔的下端可以根据需要设置深度。盲孔(100)的一端靠近由调试孔(12)形成的谐振腔,另一端靠近由调试孔(14)形成的谐振腔。盲孔(100)的两端与调试孔(12)和调试孔(14)都不相通。盲孔(100)与位于其两边的通孔(101和102)不相通。
本发明实施例中的通孔,调试孔及盲孔的形状在平面上可以为方形,圆形,条形,橄榄形或其他形状,在本发明实施例中不予限定。
其中,本体(1)一般由固态介电材料制成,优选为陶瓷。陶瓷具有较高的介电常数,硬度及耐高温的性能也都较好,因此成为介质滤波器领域常用的固态介电材料。当然,介电材料也可以选用本领域技术人员所知的其它材料,如玻璃、电绝缘的高分子聚合物等。
在具体设计制造时,可以通过一体化本体(1)来成形来获得带有调试孔、通孔和盲孔的本体,再对本体进行表面金属化,比如表面电镀,来获得上述介质滤波器。这样,该介质滤波器所包括的介质谐振器的本体是连续的。采用一体化成形的方式来获得介质滤波器,可以使得其加工工艺更简单。
对于更多腔的介质滤波器,如图7所示,也可以三腔(如图6所示)或四腔的固定结构为基础,通过级联从而构成具有更谐振腔的介质滤波器。对于更多腔的介质滤波器,在不相邻的谐振腔之间设置盲孔,从而实现交叉耦合。包含三个谐振腔的介质滤波器或更多谐振腔的介质滤波器的结构实现方式,参考上述实施例,此处不再赘述。
盲孔(100)与介质滤波器的耦合相关,通过确定盲孔(100)的深度可以确定介质滤波器的交叉耦合形式。此处盲孔的深度是指盲孔从介质滤波器的上表面到介质滤波器本体(1)内部的深度。通过确定盲孔的深度由小到大,可以使得介质滤波器的交叉耦合的极性由感性耦合变为容性耦合。也可根据应用场景的需要,设置盲孔的深度,使得交叉耦合的程度发生不同程度的变化。
在具体设计制造时,一般根据应用场景的需要确定盲孔深度后就固定下来了。具体的,根据该介质滤波器要实现的交叉耦合特性,例如要实现感性耦合的相应程度,确定盲孔的相应深度后固定;相应的,也可以根据要实现容性耦合的相应程度,确定盲孔的相应深度后固定。通过固定的实现方式,在制造时品质可控,并在后续使用时可以保证参数不会发生偏差,品质更稳定。在实现中,也可以设计成盲孔深度可调节的介质滤波器以适应需要不同参数的应用场景。
盲孔的深度可以根据实际应用场景的需要进行设定,例如传输零点的频率,或要实现感性耦合或容性耦合的程度,此处不予限定。
图1中所示的连接两个不相邻谐振腔的盲孔(100)的个数为一个,但也可以设计成多个,可以根据实际需要传输的零点数和/或频率来决定盲孔的个数、位置和具体的深度大小等。
盲孔(100)的宽度与传输零点相关。具体的,盲孔宽度越大,传输零点相对位置越小,所述传输零点的相对位置相对于介质滤波器的中心频点位置大于1。
盲孔自身也具有谐振频率,盲孔的谐振频率一般不参与滤波器本体通带的谐振,即盲孔的谐振频率可以高于滤波器通带的谐振频率,也可以低于滤波器通带的谐振频率,当盲孔的谐振频率高于介质滤波器通带的频率时,交叉耦合显示为感性耦合,当盲孔的谐振频率低于介质滤波器通带的频率时,交叉耦合显示为容性耦合。盲孔的谐振频率可以由盲孔的深度确定。随着盲孔深度的增加,盲孔的谐振频率逐步降低,当频率从滤波器的通带的高端降低到低端时,交叉耦合从感性耦合切换成容性耦合。具体实现中,一个包含四个谐振腔的介质滤波器,当盲孔深度为介质滤波器的总高度的2/5时,交叉耦合为感性耦合,传输零点在通带的右侧,如图4所示。当盲孔深度变为总高度的3/5时,交叉耦合为容性耦合,传输零点在通带的左侧,如图5所示。
介质谐振器的表面附着导电层。盲孔,通孔及调试孔的凹陷表面也可以附着导电层。
本发明实施例提供的介质滤波器中,通过在不相邻的谐振腔之间连接盲孔,可以在介质谐振器内部就可以实现容性耦合,而无需级联外部附加结构,从而实现介质滤波器的小型化。同时,相对于级联外部附加结构实现容性耦合的介质滤波器,简化了实现交叉耦合的结构的制造工艺。
本发明实施例提供的介质滤波器主要用于大功率无线通信基站射频前端。
本发明实施例还提供了一种收发信机,该收发信机中采用了上述实施例 中所提供的介质滤波器。该介质滤波器可以用于对射频信号进行滤波。
本发明实施例还提供了一种基站,该基站中采用了上述实施例中所提供的收发信机。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (11)

  1. 一种介质滤波器,包括本体,其特征在于,还包括:
    至少三个谐振腔,所述每个谐振腔包括调试孔,所述调试孔位于所述本体上,所述每个调试孔与周围的本体形成单个谐振腔;所述两两不相邻的谐振腔之间还包括有盲孔,所述盲孔与所述调试孔不相连,所述盲孔用于实现交叉耦合。
  2. 根据权利要求1所述的介质滤波器,其特征在于,所述盲孔的深度与所述介质滤波器的传输零点相关。
  3. 根据权利要求1或2所述的介质滤波器,其特征在于,所述盲孔的深度确定介质滤波器的交叉耦合的极性,所述交叉耦合的极性包括感性耦合或容性耦合。
  4. 根据权利要求3所述的介质滤波器,其特征在于,所述盲孔的深度确定所述介质滤波器的交叉耦合的程度。
  5. 根据权利要求1至4任一项所述的介质滤波器,其特征在于,所述盲孔深度与交叉耦合的极性相关,所述盲孔的深度设置由浅到深,交叉耦合的极性由感性耦合变为容性耦合。
  6. 根据权利要求1至5任一项所述的介质滤波器,其特征在于,所述盲孔的形状包括以下所述的任意一种:圆柱状,槽状,条状,孔状。
  7. 根据权利要求1至6任一项所述的介质滤波器,其特征在于,所述盲孔的宽度与传输零点相关。
  8. 根据权利要求7所述的介质滤波器,其特征在于,所述盲孔的宽度与传 输零点相关,包括:
    盲孔宽度越大,传输零点相对位置越小,所述传输零点的相对位置相对于介质滤波器的中心频点位置大于1。
  9. 根据权利要求1至8任一项所述的介质滤波器,其特征在于,所述调试孔的深度用于确定所述调试孔所所对应的谐振腔的谐振频率。
  10. 一种收发信机,其特征在于,包括根据权利要求1至9任一项所述的介质滤波器。
  11. 一种基站,其特征在于,包括根据权利要求10所述的收发信机。
PCT/CN2015/095791 2015-11-27 2015-11-27 介质滤波器,收发信机及基站 WO2017088174A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15909085.1A EP3319166B1 (en) 2015-11-27 2015-11-27 Dielectric filter, transceiver and base station
CN202110050984.4A CN112886161B (zh) 2015-11-27 2015-11-27 介质滤波器,收发信机及基站
CN201580079291.0A CN107534197B (zh) 2015-11-27 2015-11-27 介质滤波器,收发信机及基站
PCT/CN2015/095791 WO2017088174A1 (zh) 2015-11-27 2015-11-27 介质滤波器,收发信机及基站
JP2018530953A JP6572391B2 (ja) 2015-11-27 2015-11-27 誘電体フィルタ、トランシーバ、および基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/095791 WO2017088174A1 (zh) 2015-11-27 2015-11-27 介质滤波器,收发信机及基站

Publications (1)

Publication Number Publication Date
WO2017088174A1 true WO2017088174A1 (zh) 2017-06-01

Family

ID=58762894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095791 WO2017088174A1 (zh) 2015-11-27 2015-11-27 介质滤波器,收发信机及基站

Country Status (4)

Country Link
EP (1) EP3319166B1 (zh)
JP (1) JP6572391B2 (zh)
CN (2) CN112886161B (zh)
WO (1) WO2017088174A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987863A (zh) * 2018-09-18 2018-12-11 苏州市协诚五金制品有限公司 一种双零点交叉耦合陶瓷滤波器
CN109149025A (zh) * 2018-08-22 2019-01-04 京信通信系统(中国)有限公司 介质波导滤波器及其调谐方法
CN109860966A (zh) * 2019-04-15 2019-06-07 江苏贝孚德通讯科技股份有限公司 介质滤波器及5g通信设备
CN110098456A (zh) * 2019-05-24 2019-08-06 武汉凡谷电子技术股份有限公司 一种容性耦合装置及含有该容性耦合装置的滤波器
CN110137638A (zh) * 2019-04-26 2019-08-16 摩比科技(深圳)有限公司 陶瓷波导滤波器
CN110265755A (zh) * 2019-07-19 2019-09-20 深圳市国人射频通信有限公司 一种介质波导滤波器
CN110429364A (zh) * 2019-08-27 2019-11-08 京信通信技术(广州)有限公司 滤波器及其滤波回路结构
CN110556613A (zh) * 2019-09-29 2019-12-10 江西一创新材料有限公司 一种用于调节传输零点对称性的交叉耦合结构
WO2020143814A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 一种滤波器
US10950918B1 (en) 2019-12-02 2021-03-16 The Chinese University Of Hong Kong Dual-mode monoblock dielectric filter
US11139548B2 (en) 2019-12-02 2021-10-05 The Chinese University Of Hong Kong Dual-mode monoblock dielectric filter and control elements
WO2022000590A1 (zh) * 2020-06-30 2022-01-06 瑞声声学科技(深圳)有限公司 容性、感性交叉耦合结构及介质波导滤波器
CN115066806A (zh) * 2019-11-13 2022-09-16 株式会社Kmw 介质陶瓷滤波器
CN117638435A (zh) * 2023-12-05 2024-03-01 南京林业大学 一种交叉耦合介质波导滤波器和通信设备

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461995A (zh) * 2018-12-27 2019-03-12 苏州艾福电子通讯有限公司 一种采用陶瓷介质的波导滤波器
WO2020145590A1 (ko) * 2019-01-08 2020-07-16 주식회사 케이엠더블유 도파관 필터
KR102319051B1 (ko) 2019-01-08 2021-11-02 주식회사 케이엠더블유 도파관 필터
CN109728385B (zh) * 2019-02-22 2023-12-08 江西一创新材料有限公司 一种具有对称零点特性的介质滤波器耦合结构
CN110224207A (zh) * 2019-07-04 2019-09-10 江苏灿勤科技股份有限公司 一种包含负耦合结构的介质滤波器
CN210778910U (zh) * 2019-07-11 2020-06-16 中兴通讯股份有限公司 一种滤波器耦合单元和滤波器
CN110336104A (zh) * 2019-07-30 2019-10-15 苏州市协诚五金制品有限公司 一种用于增加负耦合的陶瓷波导器及其实现方法
CN110380165A (zh) * 2019-08-16 2019-10-25 苏州艾福电子通讯有限公司 介质滤波器
EP4037093A4 (en) * 2019-09-27 2023-06-07 Mobi Antenna Technologies (Shenzhen) Co., Ltd. CERAMIC DIELECTRIC FILTER
WO2021175975A1 (en) * 2020-03-04 2021-09-10 Commscope Italy S.R.L. Metallized dielectric waveguide filters having irregular shaped resonant cavities, slanted metallized openings and/or spurious coupling windows
CN111628253A (zh) * 2020-06-30 2020-09-04 瑞声精密制造科技(常州)有限公司 容性耦合结构及介质波导滤波器
CN111816962A (zh) * 2020-08-11 2020-10-23 中国电子科技集团公司第二十六研究所 一种介质滤波器电磁混合耦合结构及通信设备
KR102448010B1 (ko) * 2020-11-24 2022-09-27 (주)파트론 웨이브가이드 필터
CN112909457B (zh) * 2021-01-28 2021-10-29 南通大学 一种基于双模介质波导谐振器的带通滤波器
CN115528395A (zh) * 2021-06-25 2022-12-27 华为技术有限公司 四角元件结构、介质滤波器及基站设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090231064A1 (en) * 2006-08-04 2009-09-17 Dielectric Laboratories, Inc. Wideband dielectric waveguide filter
CN102544658A (zh) * 2012-01-10 2012-07-04 深圳市大富科技股份有限公司 一种腔体滤波器及腔体滤波器的交叉耦合结构
CN202474159U (zh) * 2012-01-10 2012-10-03 深圳市大富科技股份有限公司 一种腔体滤波器及腔体滤波器的交叉耦合结构
CN202797211U (zh) * 2012-09-20 2013-03-13 武汉凡谷电子技术股份有限公司 滤波器容性交叉耦合结构
WO2014190536A1 (zh) * 2013-05-31 2014-12-04 华为技术有限公司 介质滤波器,收发信机及基站
CN104900951A (zh) * 2015-04-08 2015-09-09 华为技术有限公司 介质滤波器和通信设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246555A (en) * 1978-07-19 1981-01-20 Communications Satellite Corporation Odd order elliptic function narrow band-pass microwave filter
US4453146A (en) * 1982-09-27 1984-06-05 Ford Aerospace & Communications Corporation Dual-mode dielectric loaded cavity filter with nonadjacent mode couplings
JPS6119201A (ja) * 1984-07-05 1986-01-28 Murata Mfg Co Ltd 分布定数形フイルタ
JPS62161202A (ja) * 1986-01-10 1987-07-17 Tdk Corp アンテナ共用器
US5608363A (en) * 1994-04-01 1997-03-04 Com Dev Ltd. Folded single mode dielectric resonator filter with cross couplings between non-sequential adjacent resonators and cross diagonal couplings between non-sequential contiguous resonators
JP3389819B2 (ja) * 1996-06-10 2003-03-24 株式会社村田製作所 誘電体導波管型共振器
JP3506013B2 (ja) * 1997-09-04 2004-03-15 株式会社村田製作所 多重モード誘電体共振器装置、誘電体フィルタ、複合誘電体フィルタ、合成器、分配器および通信装置
JPH11220307A (ja) * 1998-01-30 1999-08-10 Toko Inc 誘電体フィルタ
SE9804354L (sv) * 1998-07-08 2000-01-09 Samsung Electro Mech Dielektriskt filter
JP3580162B2 (ja) * 1999-02-25 2004-10-20 株式会社村田製作所 誘電体フィルタ、誘電体デュプレクサ、通信機装置
JP2002158512A (ja) * 2000-09-08 2002-05-31 Murata Mfg Co Ltd 誘電体共振器、誘電体フィルタ、誘電体デュプレクサ、および通信装置
JP3788369B2 (ja) * 2001-04-10 2006-06-21 株式会社村田製作所 誘電体フィルタ、誘電体デュプレクサ、および通信装置
JP2004304761A (ja) * 2003-03-18 2004-10-28 Murata Mfg Co Ltd チップ型共振部品
DE10320620B3 (de) * 2003-05-08 2004-11-04 Kathrein-Werke Kg Hochfrequenzweiche
CN102361117B (zh) * 2011-09-29 2014-04-02 武汉虹信通信技术有限责任公司 一种基于容性交叉耦合飞杆的同轴腔体谐振器
CN202616376U (zh) * 2012-06-19 2012-12-19 成都赛纳赛德科技有限公司 一种可调带阻滤波器
CN103855448A (zh) * 2012-12-03 2014-06-11 武汉凡谷电子技术股份有限公司 Tm模介质滤波器
EP3565056B1 (en) * 2013-06-04 2022-03-02 Huawei Technologies Co., Ltd. Dielectric resonator, dielectric filter using dielectric resonator, transceiver, and base station
CN204088527U (zh) * 2014-10-13 2015-01-07 世达普(苏州)通信设备有限公司 具有正负可变换交叉耦合的波导双工器
CN105006615A (zh) * 2015-07-15 2015-10-28 南京航空航天大学 一种siw带通滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090231064A1 (en) * 2006-08-04 2009-09-17 Dielectric Laboratories, Inc. Wideband dielectric waveguide filter
CN102544658A (zh) * 2012-01-10 2012-07-04 深圳市大富科技股份有限公司 一种腔体滤波器及腔体滤波器的交叉耦合结构
CN202474159U (zh) * 2012-01-10 2012-10-03 深圳市大富科技股份有限公司 一种腔体滤波器及腔体滤波器的交叉耦合结构
CN202797211U (zh) * 2012-09-20 2013-03-13 武汉凡谷电子技术股份有限公司 滤波器容性交叉耦合结构
WO2014190536A1 (zh) * 2013-05-31 2014-12-04 华为技术有限公司 介质滤波器,收发信机及基站
CN104900951A (zh) * 2015-04-08 2015-09-09 华为技术有限公司 介质滤波器和通信设备

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149025A (zh) * 2018-08-22 2019-01-04 京信通信系统(中国)有限公司 介质波导滤波器及其调谐方法
CN108987863A (zh) * 2018-09-18 2018-12-11 苏州市协诚五金制品有限公司 一种双零点交叉耦合陶瓷滤波器
WO2020143814A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 一种滤波器
CN109860966A (zh) * 2019-04-15 2019-06-07 江苏贝孚德通讯科技股份有限公司 介质滤波器及5g通信设备
CN109860966B (zh) * 2019-04-15 2024-04-05 江苏贝孚德通讯科技股份有限公司 介质滤波器及5g通信设备
CN110137638A (zh) * 2019-04-26 2019-08-16 摩比科技(深圳)有限公司 陶瓷波导滤波器
CN110098456A (zh) * 2019-05-24 2019-08-06 武汉凡谷电子技术股份有限公司 一种容性耦合装置及含有该容性耦合装置的滤波器
CN110265755A (zh) * 2019-07-19 2019-09-20 深圳市国人射频通信有限公司 一种介质波导滤波器
CN110265755B (zh) * 2019-07-19 2024-01-23 深圳国人科技股份有限公司 一种介质波导滤波器
CN110429364A (zh) * 2019-08-27 2019-11-08 京信通信技术(广州)有限公司 滤波器及其滤波回路结构
CN110429364B (zh) * 2019-08-27 2024-05-24 京信通信技术(广州)有限公司 滤波器及其滤波回路结构
CN110556613A (zh) * 2019-09-29 2019-12-10 江西一创新材料有限公司 一种用于调节传输零点对称性的交叉耦合结构
CN110556613B (zh) * 2019-09-29 2024-06-04 江西一创新材料有限公司 一种介质滤波器及调节传输零点对称性的交叉耦合结构
CN115066806A (zh) * 2019-11-13 2022-09-16 株式会社Kmw 介质陶瓷滤波器
US10950918B1 (en) 2019-12-02 2021-03-16 The Chinese University Of Hong Kong Dual-mode monoblock dielectric filter
US11139548B2 (en) 2019-12-02 2021-10-05 The Chinese University Of Hong Kong Dual-mode monoblock dielectric filter and control elements
WO2022000590A1 (zh) * 2020-06-30 2022-01-06 瑞声声学科技(深圳)有限公司 容性、感性交叉耦合结构及介质波导滤波器
CN117638435A (zh) * 2023-12-05 2024-03-01 南京林业大学 一种交叉耦合介质波导滤波器和通信设备

Also Published As

Publication number Publication date
EP3319166A4 (en) 2018-09-12
EP3319166B1 (en) 2020-07-01
JP6572391B2 (ja) 2019-09-11
CN107534197A (zh) 2018-01-02
JP2018526949A (ja) 2018-09-13
CN112886161B (zh) 2022-03-29
EP3319166A1 (en) 2018-05-09
CN107534197B (zh) 2021-01-15
CN112886161A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2017088174A1 (zh) 介质滤波器,收发信机及基站
US11444647B2 (en) Filter and transceiver comprising dielectric body resonators having frequency adjusting holes and a negative coupling hole
KR102259051B1 (ko) 유전체 필터, 송수신 장치, 및 기지국
EP2993727B1 (en) Dielectric resonator and dielectric filter, transceiver and base station using same
US10483608B2 (en) RF dielectric waveguide duplexer filter module
KR20170112583A (ko) 유전체 도파관 필터
CN110911787A (zh) 介质滤波器及通信设备
CN110416669B (zh) 介质滤波器、信号收发装置及基站
JPH0369202B2 (zh)
JP3804481B2 (ja) デュアルモード・バンドパスフィルタ、デュプレクサ及び無線通信装置
US11081769B2 (en) RF dielectric waveguide duplexer filter module
CN111162356A (zh) 一种介质滤波器及具有该介质滤波器的通信装置
CN112382835B (zh) 一种全可调交叉耦合介质波导滤波器
CN210074111U (zh) 负耦合结构和介质滤波器
US20150372364A1 (en) Dielectric filter, duplexer, and communication device
CN210182542U (zh) 介质滤波器、信号收发装置及基站
KR102237980B1 (ko) 전달영점을 가지는 마이크로파 필터
CN210443647U (zh) 一种电容耦合结构及应用该结构的介质滤波器
KR101861137B1 (ko) 공진기 및 이를 포함하는 통신 컴포넌트
JP2005191983A (ja) 誘電体フィルタ、誘電体デュプレクサ、および通信装置
KR101670893B1 (ko) 유전체 필터
KR20160102732A (ko) 유전체 필터
KR20180058529A (ko) 유전체 도파관 소자 및 그 제조 방법
JP2002325002A (ja) 高周波用共振部品及びそのスプリアス抑制方法並びにデュプレクサ及び無線通信装置
CN116864953A (zh) 一种介质块、介质谐振器及滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015909085

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018530953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE