WO2020143070A1 - 滤波器 - Google Patents

滤波器 Download PDF

Info

Publication number
WO2020143070A1
WO2020143070A1 PCT/CN2019/071863 CN2019071863W WO2020143070A1 WO 2020143070 A1 WO2020143070 A1 WO 2020143070A1 CN 2019071863 W CN2019071863 W CN 2019071863W WO 2020143070 A1 WO2020143070 A1 WO 2020143070A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
hole
ceramic body
resonant cavities
filter according
Prior art date
Application number
PCT/CN2019/071863
Other languages
English (en)
French (fr)
Inventor
陈荣达
谢懿非
欧阳洲
Original Assignee
苏州艾福电子通讯有限公司
陈荣达
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州艾福电子通讯有限公司, 陈荣达 filed Critical 苏州艾福电子通讯有限公司
Publication of WO2020143070A1 publication Critical patent/WO2020143070A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/212Frequency-selective devices, e.g. filters suppressing or attenuating harmonic frequencies

Definitions

  • the invention relates to the field of communication technology, and in particular to a filter applied in the field of communication.
  • a dielectric waveguide filter is a microwave filter that uses a dielectric resonator through multiple stages of coupling to achieve frequency selection.
  • the surface of the dielectric waveguide filter is covered with a metal layer, and electromagnetic waves are confined in the medium to form a standing wave oscillation.
  • the main advantages of dielectric waveguide filters are large power capacity and low insertion loss.
  • the existing dielectric filters are very difficult to achieve capacitive coupling and have spurious effects on the left and right ends, which limits the application of dielectric filters. Therefore, in view of the above requirements, it is necessary to propose further solutions.
  • the present invention aims to provide a filter to overcome the shortcomings in the prior art.
  • the technical solutions of the present invention are:
  • a filter comprising: a ceramic body, a metal layer provided on the inner and outer surfaces of the ceramic body;
  • the one side of the ceramic body has a plurality of resonant cavities. Between the two resonant cavities of the plurality of resonant cavities, holes for penetrating the ceramic body are provided for capacitive coupling, and the upper and/or lower edges of the holes are provided There is a ring-shaped adjustment band, the metal layer is not provided at the adjustment band, the distance h1 between the adjustment band and one side of the ceramic body defines the first performance parameter of the filter, and the hole diameter D1 defines The second performance parameter of the filter.
  • the hole is located at the midpoint of the line connecting the two resonant cavities.
  • the cross-sectional shape of the hole is one of a circle, an ellipse, a polygon, or a special shape.
  • the adjustment band is defined by the annular area exposed by the upper edge and/or the lower edge of the hole.
  • the adjustment band is defined by an annular groove on the annular area exposed by the upper and/or lower edges of the hole.
  • the depth h2 of the annular groove defines the third performance parameter of the filter
  • the diameter D2 of the annular groove defines the fourth performance parameter of the filter
  • the filter of the present invention there are six resonant cavities, and the six resonant cavities are arranged in an array on one side of the ceramic body.
  • the resonant cavities of two adjacent columns in the three columns of resonant cavities are separated by a first isolation cavity, and the resonant cavities of the adjacent two columns and the remaining column of resonant cavities pass the second The isolation cavity is isolated.
  • the hole is located between the two remaining resonators in the remaining column.
  • the metal layer is a silver-plated layer or a copper-plated layer.
  • the beneficial effect of the present invention is that the filter of the present invention achieves the capacitive coupling performance of the filter by opening holes between the resonant cavities, and at the same time, by making adjustment bands on the holes, the filter is effectively filtered
  • the capacitance coupling size, out-of-band suppression, and far-end suppression of the filter can be adjusted.
  • it can excellently improve the zero balance on both sides of the filter passband, which fully meets the actual use requirements.
  • the filter of the present invention is easier to machine and die-cast from the physical structure, the process is simpler, and it is more conducive to production.
  • Figure 1 is a top view of the filter of the present invention
  • FIG. 2 is a bottom view of the filter of the present invention
  • FIG. 3 is an enlarged cross-sectional view in the direction of FIGS. 1A-A in an embodiment, and at this time, the adjustment band is an annular area provided on the upper edge of the hole;
  • the adjustment band is an annular area provided on the upper and lower edges of the hole;
  • the adjustment band is an annular groove provided on the upper and lower edges of the hole;
  • A-A direction is a direction perpendicular to the paper surface, and for the convenience of drawing, it is drawn obliquely.
  • the present invention provides a filter including a ceramic body 1 and a metal layer 2 provided on the inner and outer surfaces of the ceramic body 1.
  • the one side of the ceramic body 1 has a plurality of resonant cavities 11.
  • the resonant cavity 11 is a blind hole provided on one side of the ceramic body 1.
  • the multiple resonant cavities 11 realize frequency selective filtering through multi-stage coupling. Since the filtering principle of the filter belongs to the prior art, it will not be described in detail here.
  • each of the two adjacent resonant cavities 11 in the three columns of resonant cavities 11 is separated by a first isolation cavity 12.
  • the first isolation cavity 12 is a cross-shaped structure, and the four resonant cavities 11 are respectively distributed in the four regions divided by the first isolation cavity 12.
  • Each resonant cavity 11 in the two adjacent columns is separated from the remaining resonant cavity 11 by a second isolation cavity 13.
  • the second isolation cavity 13 is substantially T-shaped.
  • a cavity 14 for capacitive coupling penetrating through the ceramic body 1 is provided between two cavity 11 of the multiple cavity 11, while achieving the capacitive coupling, the cavity 14 It also has the advantage of convenient processing for opening blind holes. Because, when opening the blind hole, the distance between the bottom of the blind hole and the surface of the ceramic body 1 is required to be accurate. This accuracy requirement significantly increases the process difficulty and cost of the device, and the opening of the through hole overcomes this problem.
  • the hole 14 is located at the midpoint of the line connecting the two resonant cavities 11. When there are six resonance chambers 11 arranged in an array, the holes 14 are located between the two resonance chambers 11 in the remaining column.
  • the cross-sectional shape of the hole 14 may be one of circular, elliptical, polygonal or irregular.
  • the cross-sectional shape of the hole 14 is circular.
  • an annular adjustment band 141 is provided on the upper edge and/or lower edge of the hole 14, and the metal layer 2 is not provided at the adjustment band 141 .
  • the adjustment band 141 is provided at the upper and lower end edges of the hole 14 at the same time, it has a better capacitive coupling effect than the adjustment band 141 provided at one end edge.
  • the width h1 of the adjustment band 141 defines the first performance parameter of the filter
  • the distance h1 of the adjustment band 141 and one side of the ceramic body 1 defines the first performance parameter of the filter
  • the hole 14 The aperture D1 defines the second performance parameter of the filter.
  • the performance of the capacitive coupling size, out-of-band suppression, and far-end suppression can be adjusted adaptively, so that The filter of the present invention satisfies the usage requirements under corresponding conditions.
  • FIG. 6 It can be seen from FIG. 6 that there are left and right A-point peaks and B-point peaks distributed in the L curve, which shows that the filter of the present invention has capacitive coupling performance, and the height difference between the A-point peak and the B-point peak reflects the out-of-band suppression Impact.
  • the peak of point C also appears in the L curve.
  • the peak of point C is the far-end harmonic.
  • the harmonic point of this patent is farther away from the passband and the degree of suppression is greater, thus indicating the filtering of the present invention.
  • the device can produce far-end suppression with better characteristics.
  • an annular adjustment band 141 is provided on the upper edge of the hole 14.
  • the adjusting belt 141 is defined by an annular area where the belt is exposed from the upper edge of the hole 14.
  • the distance h1 between the adjusting belt 141 and one side of the ceramic body 1 is the length of the hole 14.
  • the adjustment belt 141 is processed by a milling cutter. During processing, the milling cutter is controlled to mill the metal layer 2 corresponding to the surface of the adjusting belt 141, so that the area where the adjusting belt 141 is located is exposed.
  • the upper edge and the lower edge of the hole 14 are provided with an annular adjusting belt 141.
  • the adjusting belt 141 is defined by the annular area exposed by the upper and lower edges of the hole 14.
  • the processing method of the adjusting belt 141 is also processed by a milling cutter, and will not be repeated here.
  • the upper edge and the lower edge of the hole 14 are provided with an annular adjusting belt 141.
  • the adjusting belt 141 is defined by an annular groove on the annular area exposed by the upper and lower edges of the hole 14.
  • the adjustment belt 141 is also processed by a milling cutter. During processing, the milling cutter is first controlled to remove the metal layer 2 corresponding to the surface of the adjustment belt 141, and then milling is continued, so that an annular groove structure is formed on the exposed annular area, and the annular groove structure occupies part of the exposed annular area or All, when occupying a part, a stepped structure is formed between the exposed annular region and the annular groove structure. At this time, by adjusting the height of the step structure, the size of the capacitive coupling can also be adjusted.
  • the depth h2 of the annular groove defines the third performance parameter of the filter
  • the diameter D2 of the annular groove defines the fourth of the filter Performance parameters. Therefore, the first, second, third, and fourth performance parameters can adjust and optimize the performance of the filter together.
  • the other side of the ceramic body 1 is further provided with an input port 15 and an input port 16.
  • the metal layer 2 is used to realize the electrical performance of the filter of the present invention.
  • the metal layer 2 may be a silver-plated layer or a copper-plated layer.
  • the metal layer 2 can also be replaced by other layer structures with conductive properties.
  • the filter of the present invention achieves the capacitive coupling performance of the filter by opening holes between the resonant cavities, and at the same time, by making adjustment bands on the holes, the capacitive coupling size and out-of-band suppression of the filter are effectively , Far-end suppression and other performance adjustments, in particular, it can excellently improve the zero balance on both sides of the filter passband, which fully meets the actual use needs.
  • the filter of the present invention is easier to machine and die-cast from the physical structure, the process is simpler, and it is more conducive to production.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种滤波器,其包括:陶瓷本体(1)、设置于陶瓷本体(1)内、外表面的金属层(2);陶瓷本体(1)的一面具有多个谐振腔(11),多个谐振腔(11)中的两个谐振腔(11)之间设置有用于电容耦合的贯通陶瓷本体(1)的孔洞(14),孔洞(14)的上端边缘和/或下端边缘设置有环形的调节带(141),调节带(141)处未设置金属层(2),调节带(141)与陶瓷本体(1)的一面的距离h1定义滤波器的第一性能参数,孔洞(14)的孔径D1定义滤波器的第二性能参数。通过在谐振腔之间开设孔洞,实现了滤波器的电容耦合性能,同时通过在孔洞上制作调节带,有效地对滤波器的电容耦合大小、带外抑制、远端抑制等性能进行调节,特别是能极好的改善滤波器通带两侧的零点平衡性,充分满足了实际的使用需求。

Description

滤波器 技术领域
本发明涉及通信技术领域,尤其涉及一种应用于通信领域的滤波器。
背景技术
介质波导滤波器是一种采用介质谐振腔经过多级耦合而取得选频作用的微波滤波器。介质波导滤波器的表面覆盖着金属层,电磁波被限制在介质内,形成驻波振荡。介质波导滤波器的主要优点是功率容量大,插入损耗低,但是,现有的介质滤波器实现电容耦合相当困难,且对左右远端有杂散影响,如此限制了介质滤波器的应用。因此,针对上述要求,有必要提出进一步地解决方案。
发明内容
本发明旨在提供一种滤波器,以克服现有技术中存在的不足。
为解决上述技术问题,本发明的技术方案是:
一种滤波器,其包括:陶瓷本体、设置于所述陶瓷本体内、外表面的金属层;
所述陶瓷本体的一面具有多个谐振腔,多个谐振腔中的两个谐振腔之间设置有用于电容耦合的贯通所述陶瓷本体的孔洞,所述孔洞的上端边缘和/或下端边缘设置有环形的调节带,所述调节带处未设置所述金属层,所述调节带与所述陶瓷本体的一面的距离h1定义所述滤波器的第一性能参数,所述孔洞的孔径D1定义所述滤波器的第二性能参数。
作为本发明的滤波器的改进,所述孔洞位于两个谐振腔之间连线的中点 位置。
作为本发明的滤波器的改进,所述孔洞的截面形状为:圆形、椭圆形、多边形或者异形中的一种。
作为本发明的滤波器的改进,所述调节带由所述孔洞上端边缘和/或下端边缘所露出的环形区域所述限定。
作为本发明的滤波器的改进,所述调节带由所述孔洞上端边缘和/或下端边缘所露出环形区域上的环形凹槽所限定。
作为本发明的滤波器的改进,所述环形凹槽的深度h2定义所述滤波器的第三性能参数,所述环形凹槽的直径D2定义所述滤波器的第四性能参数。
作为本发明的滤波器的改进,所述谐振腔为六个,六个谐振腔以阵列形式排布于所述陶瓷本体的一面上。
作为本发明的滤波器的改进,三列谐振腔中相邻两列的各谐振腔之间通过第一隔离腔所隔离,所述相邻两列的各谐振腔与其余一列谐振腔通过第二隔离腔所隔离。
作为本发明的滤波器的改进,所述孔洞位于其余一列两个谐振腔之间。
作为本发明的滤波器的改进,所述金属层为镀银层或镀铜层。
与现有技术相比,本发明的有益效果是:本发明的滤波器通过在谐振腔之间开设孔洞,实现了滤波器的电容耦合性能,同时通过在孔洞上制作调节带,有效地对滤波器的电容耦合大小、带外抑制、远端抑制等性能进行调节,特别是能极好的改善滤波器通带两侧的零点平衡性,充分满足了实际的使用需求。此外,本发明的滤波器从物理结构上,更容易机加、压铸成形,工艺更简单,更利于生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的滤波器的俯视图;
图2为本发明的滤波器的仰视图;
图3为一实施方式中图1A-A方向的截面放大图,此时,调节带为设置于孔洞上端边缘的环形区域;
图4为另一实施方式中图1A-A方向的截面放大图,此时,调节带为设置于孔洞上、下端边缘的环形区域;
图5为另一实施方式中图1A-A方向的截面放大图,此时,调节带为设置于孔洞上、下端边缘的环形凹槽;
图6为本发明的滤波器的S参数曲线图;
需要说明的是,A-A方向为垂直于纸面的方向,为了绘制的方便,将其倾斜绘制。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1、2所示,本发明提供一种滤波器,其包括:陶瓷本体1、设置于 所述陶瓷本体1内、外表面的金属层2。
所述陶瓷本体1的一面具有多个谐振腔11,所述谐振腔11为设置于所述陶瓷本体1一面上的盲孔,多个谐振腔11通过多级耦合实现选频滤波。由于滤波器的滤波原理上属于现有技术,此处不对其进行详细说明。
在一个实施方式中,所述谐振腔11为六个,此时,六个谐振腔11以阵列形式排布于所述陶瓷本体1的一面上。本实施方式中,三列谐振腔11中相邻两列的各谐振腔11之间通过第一隔离腔12所隔离。该第一隔离腔12为十字形结构,四个谐振腔11分别分布于由所述第一隔离腔12所划分的四个区域中。所述相邻两列的各谐振腔11与其余一列谐振腔11通过第二隔离腔13所隔离。该第二隔离腔13大致呈T字形。
如图3-5所示,多个谐振腔11中的两个谐振腔11之间设置有用于电容耦合的贯通所述陶瓷本体1的孔洞14,该孔洞14在实现电容耦合的同时,相比于开设盲孔,还具有加工方便的优势。因为,开设盲孔时,对盲孔的底部距离陶瓷本体1的表面之间的距离具有精度的要求,该精度要求显著提高了器件的工艺难度以及成本,而开设通孔则克服了该问题。优选地,所述孔洞14位于两个谐振腔11之间连线的中点位置。当多个谐振腔11为六个,并以阵列形式排布时,所述孔洞14位于其余一列两个谐振腔11之间。此外,所述孔洞14的截面形状可以为:圆形、椭圆形、多边形或者异形中的一种。优选地,所述孔洞14的截面形状为圆形。
为了实现对电容耦合大小、带外抑制、远端抑制等性能进行调节,所述孔洞14上端边缘和/或下端边缘设置有环形的调节带141,该调节带141处未设置所述金属层2。当在孔洞14的上端边缘和下端边缘同时设置调节带141 时,相比在一端边缘设置调节带141具有更好的电容耦合效果。
所述调节带141的宽度h1定义所述滤波器的第一性能参数,所述调节带141与所述陶瓷本体1的一面的距离h1定义所述滤波器的第一性能参数,所述孔洞14的孔径D1定义所述滤波器的第二性能参数。
从而,通过改变调节带141与所述陶瓷本体1的一面的距离h1或孔洞14的孔径D1尺寸参数,可实现对电容耦合大小、带外抑制、远端抑制等性能进行适应性调节,以使得本发明的滤波器满足相应条件下的使用需求。
为了验证第一、第二性能参数与电容耦合大小、带外抑制、远端抑制等性能之间的相关性,如图6所示,建立不同频率下表征本发明滤波器性能的S参数的曲线图,其中,S参数,也就是散射参数。是微波传输中的一个重要参数。
由图6可知,L曲线中出现了左右分布的A点波峰和B点波峰,其表明本发明的滤波器具有电容耦合性能,同时A点波峰和B点波峰的高度差反映了对于带外抑制的影响。此外,L曲线中还出现了C点波峰,C点波峰为该远端谐波,对比同类电容耦合,本专利的谐波点离通带更远,抑制度更大,从而表明本发明的滤波器可以产生特性更好的远端抑制。
再次如图3所示,在一个实施方式中,所述孔洞14上端边缘设置有环形的调节带141。此时,所述调节带141由带由所述孔洞14上端边缘所露出的环形区域所述限定。调节带141与所述陶瓷本体1的一面的距离h1即为孔洞14的长度。此外,本实施方式中,该调节带141通过铣刀加工而成。加工时,控制铣刀铣去调节带141表面对应的金属层2,使调节带141所在的区域暴露出。
再次如图4所示,在另一个替代的实施方式中,所述孔洞14上端边缘和下端边缘设置有环形的调节带141。所述调节带141由所述孔洞14上端边缘和下端边缘所露出的环形区域所述限定。本实施方式中,该调节带141的加工方式同样通过铣刀加工而成,此处不再重复介绍。
再次如图5所示,在另一个替代的实施方式中,所述孔洞14上端边缘和下端边缘设置有环形的调节带141。所述调节带141由所述孔洞14上端边缘和下端边缘所露出环形区域上的环形凹槽所限定。本实施方式中,该调节带141同样通过铣刀加工而成。加工时,控制铣刀先铣去调节带141表面对应的金属层2后,在继续铣加工,使得露出的环形区域上形成环形的凹槽结构,环形的凹槽结构占据露出的环形区域部分或者全部,占据部分时,露出的环形区域与环形的凹槽结构之间形成台阶结构。此时,通过调节台阶结构的高度,也可实现对电容耦合大小的调节。
上述替代实施方式中,通过形成环形的凹槽结构,使得所述环形凹槽的深度h2定义所述滤波器的第三性能参数,所述环形凹槽的直径D2定义所述滤波器的第四性能参数。从而,第一、第二、第三、第四性能参数能够一起对滤波器的性能进行调整、优化。
所述陶瓷本体1的另一面还设置有输入口15和输入口16。
所述金属层2用于实现本发明滤波器的电气性能,优选地,所述金属层2可以为镀银层或镀铜层。此外,所述金属层2也可以通过其他具有导电性能的层结构所替代。
综上所述,本发明的滤波器通过在谐振腔之间开设孔洞,实现了滤波器的电容耦合性能,同时通过在孔洞上制作调节带,有效地对滤波器的电容耦 合大小、带外抑制、远端抑制等性能进行调节,特别是能极好的改善滤波器通带两侧的零点平衡性,充分满足了实际的使用需求。此外,本发明的滤波器从物理结构上,更容易机加、压铸成形,工艺更简单,更利于生产。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

  1. 一种滤波器,其特征在于,所述滤波器包括:陶瓷本体、设置于所述陶瓷本体内、外表面的金属层;
    所述陶瓷本体的一面具有多个谐振腔,多个谐振腔中的两个谐振腔之间设置有用于电容耦合的贯通所述陶瓷本体的孔洞,所述孔洞的上端边缘和/或下端边缘设置有环形的调节带,所述调节带处未设置所述金属层,所述调节带与所述陶瓷本体的一面的距离h1定义所述滤波器的第一性能参数,所述孔洞的孔径D1定义所述滤波器的第二性能参数。
  2. 根据权利要求1所述的滤波器,其特征在于,所述孔洞位于两个谐振腔之间连线的中点位置。
  3. 根据权利要求1所述的滤波器,其特征在于,所述孔洞的截面形状为:圆形、椭圆形、多边形或者异形中的一种。
  4. 根据权利要求1所述的滤波器,其特征在于,所述调节带由所述孔洞上端边缘和/或下端边缘所露出的环形区域所述限定。
  5. 根据权利要求1所述的滤波器,其特征在于,所述调节带由所述孔洞上端边缘和/或下端边缘所露出环形区域上的环形凹槽所限定。
  6. 根据权利要求5所述的滤波器,其特征在于,所述环形凹槽的深度h2定义所述滤波器的第三性能参数,所述环形凹槽的直径D2定义所述滤波器的第四性能参数。
  7. 根据权利要求1所述的滤波器,其特征在于,所述谐振腔为六个,六个谐振腔以阵列形式排布于所述陶瓷本体的一面上。
  8. 根据权利要求7所述的滤波器,其特征在于,三列谐振腔中相邻两列的各谐振腔之间通过第一隔离腔所隔离,所述相邻两列的各谐振腔与其余一 列谐振腔通过第二隔离腔所隔离。
  9. 根据权利要求8所述的滤波器,其特征在于,所述孔洞位于其余一列两个谐振腔之间。
  10. 根据权利要求1所述的滤波器,其特征在于,所述金属层为镀银层或镀铜层。
PCT/CN2019/071863 2019-01-11 2019-01-16 滤波器 WO2020143070A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910027304.X 2019-01-11
CN201910027304.XA CN109687072B (zh) 2019-01-11 2019-01-11 滤波器

Publications (1)

Publication Number Publication Date
WO2020143070A1 true WO2020143070A1 (zh) 2020-07-16

Family

ID=66192248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071863 WO2020143070A1 (zh) 2019-01-11 2019-01-16 滤波器

Country Status (2)

Country Link
CN (1) CN109687072B (zh)
WO (1) WO2020143070A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546270B (zh) * 2019-01-11 2020-07-28 华为技术有限公司 一种滤波器
CN110048200B (zh) * 2019-05-14 2024-03-26 京信通信技术(广州)有限公司 介质波导滤波器及其容性耦合结构
CN110098456A (zh) * 2019-05-24 2019-08-06 武汉凡谷电子技术股份有限公司 一种容性耦合装置及含有该容性耦合装置的滤波器
CN110148819B (zh) * 2019-06-20 2024-03-26 京信通信技术(广州)有限公司 介质波导滤波器的容性耦合结构及介质波导滤波器
CN110400996A (zh) * 2019-07-03 2019-11-01 广东通宇通讯股份有限公司 一种陶瓷介质填充波导滤波器
CN110380164B (zh) * 2019-07-11 2024-05-17 摩比科技(深圳)有限公司 陶瓷介质波导滤波器
CN110265754A (zh) * 2019-07-16 2019-09-20 深圳市国人射频通信有限公司 一种介质波导滤波器
CN110380165A (zh) * 2019-08-16 2019-10-25 苏州艾福电子通讯有限公司 介质滤波器
CN110444842A (zh) * 2019-08-16 2019-11-12 苏州艾福电子通讯有限公司 微波滤波器
CN110676542B (zh) * 2019-09-05 2021-06-25 京信通信技术(广州)有限公司 端口耦合结构、滤波器及射频组件
CN110729535A (zh) * 2019-10-21 2020-01-24 摩比科技(深圳)有限公司 一种介质波导滤波器的容性耦合结构及介质波导滤波器
KR102344664B1 (ko) * 2019-12-11 2021-12-30 주식회사 에이스테크놀로지 세라믹 웨이브가이드 필터 및 이의 제조 방법
CN111446525B (zh) * 2020-02-19 2022-03-11 深圳市大富科技股份有限公司 一种介质谐振器、介质滤波器、收发信机及基站
CN111540989A (zh) * 2020-02-26 2020-08-14 江苏灿勤科技股份有限公司 一种具有负耦合结构的滤波器及其制作方法
CN111355008A (zh) 2020-04-16 2020-06-30 昆山立讯射频科技有限公司 介质波导滤波器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340014A (zh) * 2008-08-01 2009-01-07 苏州艾福电子通讯有限公司 带凹槽的陶瓷电介质滤波器和双工器
CN101908666A (zh) * 2010-07-27 2010-12-08 苏州艾福电子通讯有限公司 一种改善二次谐波的介质滤波器
WO2014194477A1 (zh) * 2013-06-04 2014-12-11 华为技术有限公司 介质谐振器、应用其的介质滤波器、收发信机及基站
CN107706488A (zh) * 2017-09-30 2018-02-16 厦门松元电子有限公司 一种结构型多阶谐振带通滤波器
US20180205126A1 (en) * 2017-01-18 2018-07-19 Nokia Solutions And Networks Oy Drill tuning of aperture coupling
WO2018148905A1 (zh) * 2017-02-16 2018-08-23 华为技术有限公司 介质滤波器、收发设备及基站

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512866A (en) * 1994-04-29 1996-04-30 Motorola, Inc. Ceramic duplex filter
JPH11312903A (ja) * 1997-10-28 1999-11-09 Murata Mfg Co Ltd 誘電体フィルタ、誘電体デュプレクサ、通信機装置
KR101891332B1 (ko) * 2013-05-31 2018-08-23 후아웨이 테크놀러지 컴퍼니 리미티드 유전체 필터, 송수신기 및 기지국
US10312563B2 (en) * 2016-11-08 2019-06-04 LGS Innovations LLC Ceramic filter with differential conductivity
CN207834540U (zh) * 2017-09-30 2018-09-07 厦门松元电子有限公司 一种结构型多阶谐振带通滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340014A (zh) * 2008-08-01 2009-01-07 苏州艾福电子通讯有限公司 带凹槽的陶瓷电介质滤波器和双工器
CN101908666A (zh) * 2010-07-27 2010-12-08 苏州艾福电子通讯有限公司 一种改善二次谐波的介质滤波器
WO2014194477A1 (zh) * 2013-06-04 2014-12-11 华为技术有限公司 介质谐振器、应用其的介质滤波器、收发信机及基站
US20180205126A1 (en) * 2017-01-18 2018-07-19 Nokia Solutions And Networks Oy Drill tuning of aperture coupling
WO2018148905A1 (zh) * 2017-02-16 2018-08-23 华为技术有限公司 介质滤波器、收发设备及基站
CN107706488A (zh) * 2017-09-30 2018-02-16 厦门松元电子有限公司 一种结构型多阶谐振带通滤波器

Also Published As

Publication number Publication date
CN109687072A (zh) 2019-04-26
CN109687072B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2020143070A1 (zh) 滤波器
WO2020143814A1 (zh) 一种滤波器
CN110265753B (zh) 一种介质波导滤波器
CN109904571B (zh) 基于电磁混合耦合的基片集成波导滤波器
WO2021008006A1 (zh) 一种介质波导滤波器
CN105742766A (zh) 一种陶瓷谐振器开槽耦合方式的组合式滤波器
CN108400411B (zh) 基于三角形互补开口谐振环的集成基片波导带通滤波器
WO2021012447A1 (zh) 一种介质波导滤波器
CN110504512A (zh) 一种电容耦合结构及应用该结构的介质滤波器
WO2021134997A1 (zh) 一种滤波器及其制作方法
US11145945B2 (en) Dielectric filter
CN210778910U (zh) 一种滤波器耦合单元和滤波器
CN209843914U (zh) 一种介质波导滤波器
WO2022000590A1 (zh) 容性、感性交叉耦合结构及介质波导滤波器
CN209282363U (zh) 一种滤波器
CN209843916U (zh) 一种介质波导滤波器
WO2020155670A1 (zh) 滤波器及其制作方法
WO2021056415A1 (zh) 陶瓷介质滤波器
KR100694252B1 (ko) 마이크로스트립 스플릿 링 공진기를 이용한 타원함수대역통과 필터
CN211265681U (zh) 一种双阻带滤波器
CN211320273U (zh) 可实现单个带外传输零点的介质波导滤波器
CN104332683B (zh) 一种应用于PCS&WiMAX频段的双通带六边形滤波器
CN210326069U (zh) 一种介质波导滤波器
CN111987394A (zh) 滤波器和通信基站
CN209843915U (zh) 一种介质波导滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909131

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19909131

Country of ref document: EP

Kind code of ref document: A1