WO2014192521A1 - 半田ボールおよび電子部材 - Google Patents

半田ボールおよび電子部材 Download PDF

Info

Publication number
WO2014192521A1
WO2014192521A1 PCT/JP2014/062588 JP2014062588W WO2014192521A1 WO 2014192521 A1 WO2014192521 A1 WO 2014192521A1 JP 2014062588 W JP2014062588 W JP 2014062588W WO 2014192521 A1 WO2014192521 A1 WO 2014192521A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
solder ball
alloy
solder
drop
Prior art date
Application number
PCT/JP2014/062588
Other languages
English (en)
French (fr)
Inventor
寺嶋 晋一
小林 孝之
將元 田中
勝一 木村
忠礼 佐川
Original Assignee
新日鉄住金マテリアルズ株式会社
日鉄住金マイクロメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金マテリアルズ株式会社, 日鉄住金マイクロメタル株式会社 filed Critical 新日鉄住金マテリアルズ株式会社
Priority to US14/405,691 priority Critical patent/US9320152B2/en
Priority to JP2014544846A priority patent/JP5714191B1/ja
Priority to CN201480001539.7A priority patent/CN104395035B/zh
Priority to EP14804933.1A priority patent/EP3006158A4/en
Priority to KR1020147031663A priority patent/KR20160012878A/ko
Priority to TW103118612A priority patent/TW201509582A/zh
Publication of WO2014192521A1 publication Critical patent/WO2014192521A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/041Solder preforms in the shape of solder balls

Definitions

  • the present invention relates to a solder ball for mounting a semiconductor and an electronic member using the same.
  • Electronic components are mounted on the printed circuit board. Electronic components are mounted by temporarily bonding between a printed wiring board or the like and the electronic component with a semiconductor mounting solder ball (hereinafter referred to as “solder ball”) and a flux, and then heating the entire printed wiring board.
  • solder ball semiconductor mounting solder ball
  • a reflow method which melts the solder balls and then cools the substrate to room temperature to solidify the solder balls to secure a strong solder joint (also simply called a joint). It is common to do.
  • solder balls are connected to materials having different coefficients of thermal expansion, such as silicon chips and resin substrates, the solder balls are placed in a thermal fatigue environment with the operation of the electronic equipment. As a result, a crack called a crack develops inside the solder ball, and there is a possibility that an electric signal may be exchanged through the solder ball.
  • TCT Thermal Cycling Test
  • solder alloys used as connection materials for electronic devices are being demanded in order to minimize adverse environmental impacts when disposing of electronic devices. It is not common to use pure Sn as the composition of the ball. This is because pure Sn is extremely soft, so that cracks are likely to develop in the process of the TCT test when examining the above-described thermal fatigue characteristics, and the long-term reliability of the solder ball becomes poor. Therefore, as the composition of the solder ball, in addition to the Sn—Ag eutectic composition (Ag: 3.5 mass%, Sn: balance), for example, as disclosed in Patent Document 1 and Patent Document 2, the Sn—Ag eutectic composition is generally used. Solder compositions in which a small amount of Cu is added as a third element to the peripheral composition of Ag eutectic are widely used.
  • the solder joints used in electronic members Since the bonding area is also reduced, suppression of voids has been more important than ever. Therefore, solder balls that do not use Ag, such as Sn-Bi alloys, have been proposed. Since Bi is solid-dissolved in Sn, needle-like precipitates such as Ag 3 Sn are not formed. As a result, there is no concern about the void even in an environment where the bonding area is reduced recently.
  • solder balls for BGA All Grid Array
  • drop characteristics TCT characteristics that ensure drop impact resistance
  • the conventional solder balls made of Sn—Bi alloy have a problem that the TCT characteristics are improved but the drop characteristics are deteriorated.
  • the present invention has been made in view of the above-described problems, and a solder ball that has excellent thermal fatigue characteristics and good drop impact resistance characteristics while suppressing the generation of voids at the joints, and this It aims at providing the electronic member using.
  • the solder ball according to claim 1 of the present invention is composed of a Sn-Bi alloy mainly composed of Sn and containing 0.3 to 2.0 mass% Cu, 0.01 to 0.2 mass% Ni, and 0.1 to 3.0 mass% Bi.
  • An intermetallic compound composed of (Cu, Ni) 6 Sn 5 is formed in the Sn—Bi alloy.
  • the solder ball according to claim 2 of the present invention is characterized in that, in claim 1, the Ag content is not more than a detection limit by ICP (Inductively-Coupled-Plasma) analysis.
  • ICP Inductively-Coupled-Plasma
  • the solder ball according to claim 3 of the present invention is characterized in that, in claim 1, the Sn-Bi alloy contains Ag, and the Ag content is 1.0 mass% or less.
  • solder ball according to claim 4 of the present invention is characterized in that, in any one of claims 1 to 3, the ratio of Cu to Ni is (5 to 20): 1.
  • solder ball according to claim 5 of the present invention contains, in any one of claims 1 to 4, any one of Mg, Ga, P, or two or more in a total amount of 0.0001 to 0.005 mass%. It is characterized by that.
  • a solder ball according to a sixth aspect of the present invention is the solder ball according to any one of the first to fifth aspects, wherein the content of Ge, Sb, In, P, As, Al, Au is analyzed by ICP (Inductively Coupled Plasma). Even if it is below the detection limit by the above, or contains at least one of Ge, Sb, In, P, As, Al, and Au, all are contained as inevitable impurities. And
  • a solder ball according to a seventh aspect of the present invention is the solder ball according to any one of the first to sixth aspects, wherein the Sn is low ⁇ -ray Sn and the emitted ⁇ dose is 1 [cph / cm 2 ] or less. It is characterized by that.
  • An electronic member according to an eighth aspect of the present invention is an electronic member in which a plurality of electronic components are joined together by a joint portion, and a part or all of the joint portion is any one of the first to seventh aspects. It is formed by the solder ball described in the item.
  • solder ball and the electronic member of the present invention a solder ball excellent in thermal fatigue characteristics and having good drop impact resistance characteristics while suppressing generation of voids in the joint portion, and an electronic member using the solder ball are provided. realizable.
  • the solder ball made of a conventional Sn—Bi alloy has improved TCT characteristics but has poor drop impact resistance (drop characteristics).
  • this phenomenon is mainly caused by the brittleness of Cu 6 Sn 5 between electrodes (for example, Cu electrodes) when solder balls of conventional Sn-Bi alloys are mounted.
  • the intermetallic compound was formed thick and Cu 6 Sn 5 or its vicinity was brittlely broken by the impact during the drop impact resistance test (hereinafter also referred to as drop property test). .
  • a solder ball made of an Sn-Bi alloy is formed by thinly forming a relatively ductile intermetallic compound mainly (Cu, Ni) 6 Sn 5 between the solder ball and the electrode after mounting.
  • the present inventors have found that even when an impact is applied by a drop characteristic test, the intermetallic compound and its vicinity can be deformed in a ductile manner, brittle fracture is less likely to occur, and high drop characteristics can be secured.
  • a solder mother alloy prepared by adding an additive element so as to meet a predetermined concentration is heated and melted in a crucible or a mold, and then solidified and then solidified.
  • a Cu-Ni master alloy was prepared in advance using Cu and Ni, and added to the Sn-Bi alloy raw material and then homogenized by melting. .
  • Cu and Ni have the property of being easily bonded to each other, as suggested by showing the equilibrium diagram of total solid solution between them. Then, even if Cu-Ni master alloy is added to the raw material of Sn-Bi alloy after that, Cu-Ni master alloy decomposes to form Bi and intermetallic compounds, or Sn- It is considered that it does not easily form a Bi solid solution and a new solid solution, but reacts with Sn in the Sn—Bi alloy as it is to become (Cu, Ni) 6 Sn 5 .
  • an intermetallic compound such as NiBi or NiBi 3 or a solid solution in which Ni is further solid-dissolved in the Sn-Bi solid solution is suppressed, and the intermetallic compound composed of (Cu, Ni) 6 Sn 5 Solder balls with excellent TCT characteristics and drop characteristics can be manufactured by dispersing in a Sn-Bi alloy.
  • the melting point of (Cu, Ni) 6 Sn 5 is as high as 500 ° C or higher, heating is performed in a reflow process (generally about 250 ° C) in which electronic components such as printed wiring boards and semiconductor chips are joined with solder balls. Then, (Cu, Ni) 6 Sn 5 does not decompose or disappear, and (Cu, Ni) 6 Sn 5 may exist in the joint even after the joint is formed on the electrode by the solder balls.
  • the intermetallic compound composed of (Cu, Ni) 6 Sn 5 is desirably formed in a fine particle shape and finely dispersed in the Sn—Bi alloy.
  • (Cu, Ni) 6 Sn 5 present in the solder ball becomes a precipitation nucleus on the electrode.
  • the formed intermetallic compound is mainly (Cu, Ni) 6 Sn 5 , and as a result, the effect of improving the TCT characteristics by adding Bi and the effect of improving the drop characteristics by (Cu, Ni) 6 Sn 5 are obtained at the same time. be able to.
  • (Cu, Ni) 6 Sn 5 in the solder ball can be observed by SEM (Scanning Electron Microscope), and (Cu, Ni) 6 Sn can be observed at a magnification of about 1000 to 5000 times. If 5 is present, the above-described effects can be obtained.
  • (Cu, Ni) 6 Sn 5 can be identified by analyzing an electron beam diffraction pattern of a TEM (Transmission Electron Microscope).
  • the composition in the state of the solder ball is mainly composed of Sn, and Cu is 0.3 It is desirable to contain -2.0 mass% and Ni-0.01-0.2 mass%.
  • Cu is less than 0.3% by mass or Ni is less than 0.01% by mass, a Cu—Ni based master alloy is not sufficiently formed, and a (Cu, Ni) 6 Sn 5 intermetallic compound is formed at the bonding interface between the solder ball and the electrode. Since it becomes difficult to form, it is not preferable.
  • the solder ball is likely to be oxidized.
  • the surface of the solder ball may become distorted in the shape of a mirror ball, causing erroneous recognition during mounting.
  • it is preferable that the surface of the solder ball is covered with a thick oxide film, and the oxide film cannot be removed with a normal flux amount, and the bonding strength (pull strength or shear strength) between the solder ball and the electrode is deteriorated. Absent.
  • the Bi in the Sn-Bi alloy is 0.1 to 3.0% by mass with the composition in the solder ball state, the solder ball can be appropriately cured, and as a result, the TCT characteristics are improved. However, if Bi is less than 0.1% by mass, no significant effect on the TCT characteristics can be obtained. Conversely, if Bi exceeds 3.0% by mass, the effect of improving the drop characteristics by (Cu, Ni) 6 Sn 5 is negated. This is not preferable because the solder balls are hardened and the TCT characteristics and the drop characteristics cannot be achieved at the same time.
  • (Cu, Ni) 6 Sn 5 shows ductility compared to Cu 6 Sn 5 , , Ni) 6 Sn 5 and Sn matrix have a smaller difference in hardness, and cracks that develop during the drop test occur in (Cu, Ni) 6 Sn 5 or near (Cu, Ni) ) It does not develop only in or near 6 Sn 5 , but a phenomenon that is not seen in the past occurs that cracks often develop inside the Sn matrix.
  • the Bi contained in the Sn—Bi alloy is 0.1 to 0.5 mass%. Because, if the Bi concentration is within this range, the grain boundary energy of the Sn parent phase constituting the solder ball can be lowered with the optimization of the Bi concentration, and as a result, (Cu, Ni) during the drop test. This is because it is possible to prevent cracks from progressing at the grain boundary of the Sn parent phase in the vicinity of 6 Sn 5 , thereby improving the drop characteristics.
  • this technique is an effective method to solder balls crack progresses even Sn matrix phase by as in the present (Cu, Ni) 6 Sn 5 is formed, as in the conventional Cu 6 In a solder ball in which Sn 5 is formed, it is not an effective technique because cracks rarely propagate inside the Sn matrix.
  • Cu is 0.8 to 1.2% by mass and Ni is 0.04 to 0.15% by mass. is there.
  • (Cu, Ni) 6 By be reduced the amount of lattice defects Sn in 5, (Cu, Ni) 6 Sn 5 can internally prevent the crack progresses, resulting in a drop characteristic improvement effect of Is further obtained.
  • Cu, Ni, and Bi contained in the Sn-Bi alloy are 0.8 to 1.2 mass% Cu, Ni Is contained in 0.04 to 0.15 mass% and Bi is contained in 0.1 to 0.5 mass%.
  • the effect of reducing the grain boundary energy of the Sn parent phase with the optimization of the Bi concentration and the effect of reducing the amount of lattice defects in (Cu, Ni) 6 Sn 5 can be obtained at the same time, so drop characteristics The improvement effect is further obtained.
  • Cu to be contained, for Ni, (Cu, Ni) ratio of 6 Sn 5 in Cu and Ni are 10: when the 1, (Cu, Ni) 6 Sn 5 Since the amount of lattice defects is minimized, setting Cu and Ni in (Cu, Ni) 6 Sn 5 to a ratio of (10 ⁇ 3): 1 has a very good drop characteristic improvement effect. More preferred.
  • the addition amount of Cu and Ni is set to a ratio of (5 to 7): 1 or (13 to 20): 1, the addition amount of Bi is 0.1 to 0.5% by mass. If possible, the combined effect of the above effects can provide a very good drop characteristic improvement effect as much as when the ratio of Cu and Ni is (10 ⁇ 3): 1.
  • Sn—Bi alloy used as solder balls contains Sn as a main component by containing 95% by mass or more of Sn, and Cu, Ni, Bi is added to such Sn—Bi alloy mainly composed of Sn. A predetermined amount is added, and Mg and Ag described later are added as necessary.
  • Mg, Ga, and P are base metals rather than Sn, so by oxidizing preferentially over Sn, an amorphous oxide layer is formed in a rapidly cooled state, and Sn on the surface of the solder ball This is thought to be due to the suppression of oxide growth.
  • This hardening can not be achieved when the amount of Mg, Ga, P, or two or more added is less than 0.0001% by mass. Conversely, when it exceeds 0.005% by mass, Mg, Ga, P itself is violently oxidized.
  • solder balls are not preferable because they are not spherical but polygonal.
  • the evidence of such oxidation on the surface of the solder ball is not possible to squeeze the electron gun with an ordinary SEM using LaB 6 or tungsten as a filament. It can be observed with a high-resolution electron microscope such as an Emission-Scanning Electron Microscope.
  • both Mg and Ga are simultaneously added to a solder alloy that is a Sn-Bi alloy, or both Mg and P are simultaneously a solder that is a Sn-Bi alloy. It has been found that when added to the alloy, in addition to the above effects, the brightness of the solder ball surface is further improved. This effect is considered to be due to the combined effect of simultaneous addition of Mg and Ga, or Mg and P, and cannot be obtained with Mg alone, Ga alone, or P alone.
  • 0.0001 mass% or more of Mg and 0.0001 mass% or more of Ga are added to the total amount of 0.0002 mass% or more and 0.005 mass% or less in the solder alloy which is an Sn-Bi alloy, or
  • lightness L * (Elster) Is over 70%.
  • Such a solder ball having a high lightness L * can reduce the risk that the mounter device erroneously recognizes the solder ball, for example, when the solder ball is transferred onto a substrate or a device by the mounter device.
  • a high lightness L * solder ball more preferably 0.0001 mass% or more of Mg and 0.0001 mass% or more of Ga in a total range of 0.0005 mass% or more and 0.0007 mass% or less of Sn-Bi Or a Sn-Bi alloy in a range of 0.0005 mass% or more and 0.0007 mass% or less in total of 0.0001 mass% or more of Mg and 0.0001 mass% or more of P
  • the brightness L * can be increased to 80% or more, and the risk of erroneous recognition of solder balls by the mounter device described above can be further reduced.
  • solder ball having a high lightness L * most preferably, Sn-Bi in a range of 0.0008 mass% or more and 0.005 mass% or less in total of 0.0001 mass% or more of Mg and 0.0001 mass% or more of Ga. Or Sn-Bi based solder in a range of 0.0008 mass% or more and 0.005 mass% or less in total of Mg of 0.0001 mass% or more and P of 0.0001 mass% or more
  • the brightness L * can be increased to 85% or more, and the risk of erroneous recognition of solder balls by the mounter device described above can be further reduced.
  • the lightness L * can be measured according to JIS-Z8729.
  • the Ag content in the Sn—Bi alloy is below the detection limit by inductively coupled plasma (ICP) analysis, and in the Sn—Bi alloy Even if it does not contain Ag, it can be cured by adding Bi to 0.1 to 3.0% by mass, preferably 0.5 to 2.0% by mass, obtaining good TCT characteristics, and further improving the drop characteristics Obtainable. Note that when Bi contained in the Si—Bi alloy is 2.0 mass% or less, an effect of improving drop characteristics can be further obtained.
  • ICP analysis refers to ICP emission spectroscopic analysis and ICP mass spectrometry.
  • “below detection limit” means that if it is below detection limit in either ICP emission spectroscopic analysis or ICP mass spectrometry. Good.
  • the solder ball of the present invention Ag may be further added to the Sn—Bi alloy, and the Ag content in the Sn—Bi alloy is 1.0 mass% or less, preferably 0.1 to 1.0 mass%.
  • the above-mentioned Ag 3 Sn precipitates in the solder ball and the solder ball is hardened, so that the TCT characteristics can be further enhanced.
  • addition of Ag exceeding 1.0% by mass is not preferable because the above-mentioned voids are likely to be generated.
  • the concentration of Bi to be added is 0.1 to 0.5% by mass. In this case, it is difficult to ensure the TCT characteristics because the amount of Bi added is small.
  • the TCT characteristics can be secured without impairing the drop characteristics of the solder balls. Therefore, in the manufacturing process, the Sn-Bi alloy Further, it is desirable to add 0.1 to 1.0% by mass of Ag.
  • an intermetallic compound composed of (Cu, Ni) 6 Sn 5 can be formed in a Sn-Bi alloy.
  • Sn is the main component
  • Cu is 0.3 to 2.0 mass%
  • Ni is used.
  • Other elements such as Ge, Sb, In, P, As, Al, and Au may be contained in the Sn-Bi alloy containing 0.01 to 0.2% by mass and Bi of 0.1 to 3.0% by mass.
  • the solder ball of the present invention contains 0.3 to 2.0% by mass of Cu, 0.01 to 0.2% by mass of Ni and 0.1 to 3.0% by mass of Bi, with the balance being Sn, or the balance being Sn and inevitable impurities Sn It can be formed of a -Bi alloy.
  • inevitable impurities refer to impurity elements that are unavoidable to be mixed into the material in manufacturing processes such as refining and melting, such as Ge, Sb, In, P, As, Al, and Au. If present, it indicates 30 ppm by mass or less.
  • Sn inevitable impurities other than these include, for example, Pb, Zn, Fe, and Cd.
  • the solder ball is composed of Sn—Bi based alloy mainly containing Sn, containing 0.3 to 2.0 mass% Cu, 0.01 to 0.2 mass% Ni, and 0.1 to 3.0 mass% Bi, (Cu, Ni) 6 Sn 5 intermetallic compound is formed in the Sn-Bi alloy, which suppresses the generation of voids in the joint when bonded to the electrode, and has excellent thermal fatigue characteristics In addition, good drop impact resistance can be obtained.
  • Ag may be contained in the Sn-Bi alloy.
  • the Ag content is 1.0% by mass or less, preferably 0.1 to 1.0% by mass
  • Ag 3 Sn is contained in the solder balls. Although precipitated, the generation of voids can be sufficiently suppressed as compared with the conventional case.
  • the solder balls are cured by Ag 3 Sn deposited in the solder balls, and the TCT characteristics can be further improved.
  • thermal fatigue characteristics when mounted between electronic components are evaluated using a TCT test according to an example described later as a guide, for example, a solder ball of ⁇ 40 [ °C] for 30 minutes, then a series of steps maintained at 125 [°C] for 30 minutes is one cycle, and even if a TCT test is performed for 200 cycles or more of this cycle, the electrical resistance value is It becomes below the electrical resistance value before the test, and good thermal fatigue characteristics can be obtained.
  • the method for identifying the composition in the solder ball is not particularly limited.
  • energy dispersive X-ray spectroscopy EDS; Energy Dispersive Xray Spectrometry), electron probe analysis (EPMA; Electron Probe Probe Micro Analyzer), Auger Electronics Spectroscopy (AES; Auger Electron Spectroscopy), Secondary Ion Mass Spectrometry (SIMS), Inductively Coupled Plasma Analysis (ICP), Glow Discharge Spectrum Mass Spectrometry (GD-MASS) Glow Discharge Mass Spectrometry), X-ray Fluorescence Spectrometry (XRF), etc. are preferable because of their abundant results and high accuracy.
  • the solder ball of the present invention when used for mounting on a semiconductor memory, or when used for mounting in the vicinity of the semiconductor memory, when alpha rays are emitted from the joint formed by the solder ball, There is also a risk that the alpha rays act on the semiconductor memory and data is erased. Therefore, when the influence of ⁇ rays on the semiconductor memory is taken into consideration, the solder ball of the present invention has an ⁇ dose of 1 [cph / cm 2 ] or less, which has a lower ⁇ dose than usual, that is, a so-called low ⁇ dose.
  • a solder ball made of a solder alloy may be used.
  • the solder ball of the present invention having such a low ⁇ dose uses high-purity Sn having a purity of 99.99% or more as a raw material by removing impurities that are sources of ⁇ -rays. This can be realized by manufacturing a base alloy.
  • the shape of the solder ball of the present invention is not particularly limited, but it has been proven that the ball-shaped solder alloy is transferred to the joint to form a protrusion, or the protrusion is mounted on another electrode. Since it is abundant, it is industrially preferable.
  • the solder ball of the present invention can exhibit an effect even when used as a connection terminal of a semiconductor device having a mounting form called CSP (Chip Scale Package) or FC (Flip Chip) other than the BGA.
  • CSP Chip Scale Package
  • FC Flip Chip
  • an organic substance such as a flux or a solder paste is previously applied to the electrodes on the printed wiring board, and then the solder balls are arranged on the electrodes.
  • An electronic member can be obtained by forming a strong solder joint by a reflow method.
  • the electronic member of the present embodiment also includes an electronic member in which the solder balls of the present embodiment are mounted on these BGA, CSP, and FC, and the electronic member after applying flux or solder paste to the electrodes on the printed wiring board in advance.
  • the electronic member is further mounted on a printed wiring board by placing the electrode on the electrode and soldering firmly by the reflow method described above.
  • a flexible wiring tape called a TAB (Tape Automated Automated Bonding) tape or a metal wiring called a lead frame may be used.
  • solder alloy for semiconductor mounting after preparing a Cu-Ni based mother alloy prepared by adding Cu and Ni, Sn and By adding the Cu-Ni master alloy to the Sn-Bi base material prepared by adding Bi and heating and melting it to homogenize and solidify it, Sn is the main component and Cu is 0.3 to 2.0.
  • Sn-Bi alloy containing 0.1% by mass, 0.1-3.0% by mass of Ni and 0.1-3.0% by mass of Bi, and an intermetallic compound of (Cu, Ni) 6 Sn 5 is formed in the Sn-Bi alloy Manufacturing the solder alloy thus obtained.
  • the Cu—Ni-based mother alloy prepared in advance is prepared by adding Cu and Ni, heating and dissolving them, and making them uniform and solidified.
  • the manufacturing method which manufactures a solder ball from a solder alloy in addition to the manufacturing process of the solder alloy mentioned above, after producing a wire from the solder alloy, the wire is cut to a fixed volume, and then heated and melted. And a step of producing a spherical solder ball by solidification.
  • the Sn—Bi alloy is added without adding Ag to either the Cu—Ni master alloy or the Sn—Bi raw material.
  • the solder alloy which consists of is manufactured.
  • a solder alloy whose Ag content is below the detection limit by ICP analysis can be produced.
  • the addition of Bi can provide excellent thermal fatigue characteristics and good drop impact resistance characteristics.
  • a solder ball may be manufactured from a solder alloy containing Ag.
  • Sn-Bi based alloy in which Ag is added to at least one of Cu-Ni based master alloy and Sn-Bi based material, and Ag content is 1.0 mass% or less, preferably 0.1 to 1.0 mass%
  • Ag 3 Sn precipitates in the solder ball when used for mounting the semiconductor as a solder ball, but the addition of Bi can sufficiently suppress the generation of voids compared to the conventional case.
  • the solder balls are hardened by Ag 3 Sn precipitated in the solder balls, and the TCT characteristics can be further improved.
  • the composition of the solder alloy used as the solder ball was changed, and the surface of each solder ball, the presence or absence of voids, thermal fatigue characteristics (TCT characteristics) and drop impact resistance characteristics (drop characteristics) were examined.
  • a predetermined amount of Cu and Ni is preheated to 275 [° C.] in a high-frequency melting furnace to form a master alloy to form a Cu—Ni master alloy, and then Sn—Bi containing Sn as a main component and adding Bi or the like
  • the raw material was produced by adding the master alloy (Cu-Ni master alloy) to the base material. Next, this raw material was placed in a graphite crucible, heated to 275 [° C.] in a high-frequency melting furnace and melted, and then cooled to obtain a solder alloy for semiconductor mounting.
  • solder alloy was used as a wire having a wire diameter of 20 [ ⁇ m].
  • This wire was cut to a length of 6.83 [mm], made a constant volume, heated and melted again in a high-frequency melting furnace, and cooled to obtain a solder ball having a diameter of 160 [ ⁇ m].
  • the composition of each solder ball of Examples 1-122 and Comparative Examples 1-4 was measured by ICP emission spectroscopic analysis.
  • the plasma condition high frequency output is 1.3 [KW]
  • the integration time of the emission intensity is 3 seconds
  • the standard solution for the calibration curve of each element and the standard solution of each element are prepared in advance using the calibration curve method.
  • the compositions were as shown in Tables 1 to 3 below.
  • the inevitable impurities of the Sn raw material used this time were Ge, Sb, In, As, Al, Au, Zn, Fe, and Cd.
  • Table 1 shown below shows that a solder alloy made of Sn—Bi alloy was manufactured without adding Ag to both the Cu—Ni master alloy and the Sn—Bi raw material.
  • An example in which a solder ball is manufactured using a solder alloy whose content is below the detection limit by ICP analysis is shown.
  • Table 2 below shows the production of a solder alloy composed of an Sn-Bi alloy in which Ag is added to the Sn-Bi material and the Ag content is 0.1 to 1.0 mass%, and solder is produced using the solder alloy.
  • bowl is shown.
  • Sn used for the solder alloys in Tables 1 and 2 was a commercially available raw material in which the ⁇ dose was not particularly reduced.
  • Example 121 and Example 122 in Table 3 for comparison, a solder ball having a low ⁇ -ray with an ⁇ dose of 1 [cph / cm 2 ] or less using high-purity Sn having a purity of 99.99% as a raw material. was made.
  • the ⁇ dose of the solder balls was counted with a commercially available semiconductor ⁇ -ray measuring device, and the result is shown in the column of “ ⁇ -ray generation amount” in Table 3.
  • the degree of oxidation of the solder ball surface was observed at a magnification of 70,000 times using FE-SEM and EDX. At that time, if the surface of the solder ball is deformed in a polygonal shape, it is indicated as “X”, if such a deformation is observed only slightly, it is indicated as “ ⁇ ”, and if no such deformation is observed at all, it is indicated as “ ⁇ ”.
  • Examples 1 to 60, Comparative Examples 1 to 4, Examples 61 to 120 in Table 2 and Examples 121 and 122 in Table 3 were examined, respectively, and listed in the column “Oxidation of Ball Surface” in Tables 1 to 3. .
  • the brightness L * of the solder ball surface was measured using a commercially available spectrophotometer.
  • the light source is a white light source.
  • Three test pieces are prepared by placing solder balls in a circular cylinder with a diameter of 3 mm, and the lightness L * when measuring the center is JIS. -Determined along Z8729, and the average value was defined as the lightness L * of this example.
  • is listed in Tables 1 to 3, respectively.
  • an intermetallic compound composed of (Cu, Ni) 6 Sn 5 was formed in the Sn—Bi alloy constituting the solder ball.
  • an FE-SEM was used to observe an intermetallic compound with three fields of view at a magnification of 5000 times, and then a typical intermetallic compound diffraction pattern was obtained from a TEM electron diffraction pattern, and its crystal structure was identified.
  • an intermetallic compound with similar contrast observed by SEM was considered as (Cu, Ni) 6 Sn 5 .
  • the size of the specified intermetallic compound composed of (Cu, Ni) 6 Sn 5 was also examined.
  • an SEM image was taken to measure the diameter of the particulate intermetallic compound, and the average particle diameter of 10 of these intermetallic compounds was taken as the size of the intermetallic compound.
  • a thin film sample for TEM was obtained by cutting with FIB (Focused Ion Beam), and the acceleration voltage during TEM observation was set to 100 [kV].
  • FIB Flucused Ion Beam
  • solder ball is mounted, heated in a reflow furnace maintained at a peak temperature of 250 [° C.], and cooled to form a solder bump on the printed circuit board. Formed.
  • a semiconductor device is bonded onto the solder bump in the same way (water-soluble flux is applied to the electrode on the semiconductor device, then the electrode is positioned on the solder bump on the printed circuit board, and the peak temperature is 250 [° C]. Heating and cooling in a reflow furnace kept in a soldering state, solder bumps are joined to the semiconductor device, and an electronic member having a configuration of printed circuit board (electronic component) / solder bump (joining part) / semiconductor device (electronic component) Got.
  • the semiconductor device was 8 [mm] square, 324 pins, and the electrode was Cu.
  • a continuity test was conducted to measure the resistance value.
  • the electrical resistance value of the electronic member exceeds the initial value 2 [ ⁇ ] before the TCT test, it is considered that a defect has occurred, and the result is shown in the “TCT life” column of Tables 1 to 3. Indicated.
  • the electrical resistance value including the junction between the printed circuit board and the semiconductor device in the electronic member is measured by the resistance value between the terminals previously drilled in the printed circuit board, and the initial value 2 before performing the drop impact resistance test When [ ⁇ ] was exceeded, it was considered that a defect (breakage) occurred.
  • Sn-Bi based alloy mainly composed of Sn, containing 0.3 to 2.0 mass% Cu, 0.01 to 0.2 mass% Ni, 0.1 to 3.0 mass% Bi, 0 to 1.0 mass% Ag, ( Cu, Ni) 6 Sn 5 intermetallic compound is formed in Sn-Bi alloy.
  • Solder balls are excellent in thermal fatigue properties while suppressing the generation of voids when bonded to electrodes. In addition, it was confirmed that good drop impact resistance was also obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 接合部におけるボイドの発生を抑制しつつ、熱疲労特性に優れ、かつ良好な耐落下衝撃特性をも得られる半田ボール及びこれを用いた電子部材を提供する。Snを主体とし、Cuを0.3~2.0質量%、Niを0.01~0.2質量%、Biを0.1~3.0質量%含有したSn-Bi系合金からなり、(Cu,Ni)6Sn5からなる金属間化合物がSn-Bi系合金中に形成されるようにしたことにより、電極に接合させた際に接合部におけるボイドの発生を抑制しつつ、熱疲労特性に優れ、かつ良好な耐落下衝撃特性をも得ることができる。

Description

半田ボールおよび電子部材
 本発明は、半導体実装用の半田ボール、およびこれを用いた電子部材に関する。
 プリント配線基板等には電子部品が実装されている。電子部品の実装は、プリント配線基板等と電子部品との間を半導体実装用半田ボール(以下、「半田ボール」という。)とフラックスとで仮接合させた後、プリント配線基板全体を加熱して前記半田ボールを溶融させて、その後に基板を常温まで冷却して半田ボールを固体化することで強固な半田接合部(単に、接合部とも呼ぶ)を確保する、いわゆるリフロー法と呼ばれる手法にて行うことが一般的である。
 プリント配線基板等を組み込んだ電子機器を動作させると、動作のために印加した電流に起因して、電子機器内部では熱が発生する。前記半田ボールはシリコンチップや樹脂基板等という熱膨張係数が異なる材料を接続しているため、電子機器の動作に伴い、半田ボールは熱疲労の環境下に置かれることになる。その結果、半田ボールの内部にはクラックと呼ばれる亀裂が進展してしまい、半田ボールを通じた電気信号の授受に支障をきたす虞もある。このような熱疲労の環境下における半田ボールの長期信頼性は、一般的には熱疲労特性やTCT(Thermal Cycling Test)特性と呼ばれ、半田ボールに求められる最重要特性とされている。
 昨今では、電子装置を廃棄処理する際の環境への悪影響を最小限にとどめるために電子装置の接続材料として使用される半田合金の無鉛化(鉛フリー化)が要求されつつあるが、前記半田ボールの組成として、純Snを使用することは一般的では無い。これは、純Snが極端に軟らかいことから、前述の熱疲労特性を調べる際のTCT試験の過程でクラックが進展し易くなり、半田ボールの長期信頼性が劣悪となるからである。そこで、半田ボールの組成としては、一般にSn-Ag共晶組成(Ag:3.5質量%、Sn:残部)の他、例えば、特許文献1や特許文献2で開示されているように、前記Sn-Ag共晶の周辺組成に第3元素として少量のCuを添加した半田組成が広く使用されている。
 これは、Agの濃度を高めることで半田ボール中にAg3Snと呼ばれる金属間化合物を多数析出させて、析出硬化により半田ボールを硬化させ、外力に対して半田ボールが変形し難い状態とする。従来はAgの濃度を高めることにより、熱疲労に伴う荷重が生じても熱疲労に伴う変位量そのものを小さくすることで、半田ボールの内部に進展する亀裂の進行を遅くできると考えられていた。
 しかしながら、Agは高価であることから3質量%程度の添加は望ましくなく、また、Agを3質量%程度添加すると、針状のAg3SnがSn中に多量に析出することになり、前記仮接合時に使用したフラックスがリフロー時の熱で気体化した際、その気体が針状のAg3Snにトラップされ、気泡起因のボイドが接合界面近傍に形成され易い。直径が180[μm]以上のボールサイズでなる従来の半田ボールの場合は、半田ボールと電極から成る接合部の面積が充分大きく、そのため、仮に針状のAg3Snが接合部近傍に析出したとしても、半田ボールと電極との間の接合強度の低下は問題とはならず、熱疲労特性にも悪影響を及ぼさなかった。
 しかしながら、近年の携帯型電子機器の小型化・軽量化の加速に伴い、直径が180[μm]未満の半田ボールのニーズが高まっており、この場合、電子部材に使用されている半田接合部の接合面積も縮小されることから、ボイドの抑制は、従来以上に重要視されてきている。そこで、Sn-Bi系合金のように、Agを使用しない半田ボールも提案されている。BiはSn中に固溶するので前記Ag3Snのような針状析出物は形成されず、その結果、昨今の接合面積が縮小する環境でも上記ボイドの懸念は生じない。
特開2003-1481号公報 特開2004-1100号公報
 しかしながら、Sn中にBiを添加すると、半田の強度は向上するものの、半田が脆化してしまう。昨今急増しているBGA(Ball Grid Array)用の半田ボールにおいては、電子機器を不意に落下してしまっても故障を生じさせない耐落下衝撃特性(以下、ドロップ特性とも呼ぶ)の確保がTCT特性と並んで重視されているが、従来のSn-Bi系合金からなる半田ボールでは、TCT特性が向上するものの、ドロップ特性が劣悪となってしまうという問題があった。
 そこで、本発明は、上記問題点に鑑みてなされたものであり、接合部におけるボイドの発生を抑制しつつ、熱疲労特性に優れ、かつ良好な耐落下衝撃特性をも得られる半田ボール及びこれを用いた電子部材を提供することを目的とする。
 本発明の請求項1に係る半田ボールは、Snを主体とし、Cuを0.3~2.0質量%、Niを0.01~0.2質量%、Biを0.1~3.0質量%含有したSn-Bi系合金からなり、(Cu,Ni)6Sn5からなる金属間化合物が前記Sn-Bi系合金中に形成されていることを特徴とする。
 本発明の請求項2に係る半田ボールは、請求項1において、Agの含有量が、ICP(Inductively Coupled Plasma)分析による検出限界以下であることを特徴とする。
 本発明の請求項3に係る半田ボールは、請求項1において、前記Sn-Bi系合金はAgを含有し、前記Agの含有量が1.0質量%以下であることを特徴とする。
 本発明の請求項4に係る半田ボールは、請求項1~3のうちいずれか1項において、前記Cuと前記Niの比率が(5~20):1であることを特徴とする。
 本発明の請求項5に係る半田ボールは、請求項1~4のうちいずれか1項において、Mg,Ga,Pのいずれか、もしくは2種以上を総計で0.0001~0.005質量%含有していることを特徴とする。
 本発明の請求項6に係る半田ボールは、請求項1~5のうちいずれか1項において、Ge,Sb,In,P,As,Al,Auの含有量が、ICP(Inductively Coupled Plasma)分析による検出限界以下であるか、または前記Ge,Sb,In,P,As,Al,Auのうち少なくともいずれか1種を含有していたとしても、いずれも不可避不純物として含有されていることを特徴とする。
 本発明の請求項7に係る半田ボールは、請求項1~6のうちいずれか1項において、上記のSnが低α線Snからなり、発するα線量が1[cph/cm2]以下であることを特徴とする。
 また、本発明の請求項8に係る電子部材は、複数の電子部品間を接合部によって接合した電子部材であって、該接合部の一部又は全部が請求項1~7のうちいずれか1項記載の半田ボールによって形成されていることを特徴とする。
 本発明の半田ボールおよび電子部材によれば、接合部におけるボイドの発生を抑制しつつ、熱疲労特性に優れ、かつ良好な耐落下衝撃特性をも得られる半田ボール及びこれを用いた電子部材を実現できる。
 前記のように、従来のSn-Bi系合金でなる半田ボールではTCT特性は向上するものの、耐落下衝撃特性(ドロップ特性)が劣悪となってしまう。この理由を本発明者らが鋭意検討した結果、この現象は、従来のSn-Bi系合金の半田ボールを実装すると、電極(例えばCu電極)との間に主としてCu6Sn5という脆性的な金属間化合物が厚く形成され、耐落下衝撃特性試験(以下、ドロップ特性試験とも呼ぶ)時の衝撃によってCu6Sn5、もしくはその近傍が脆性破壊してしまうことに起因することが明らかとなった。
 そこで、本発明では、Sn-Bi系合金でなる半田ボールにおいて、実装後に半田ボールと電極との間に主として(Cu,Ni)6Sn5という比較的延性な金属間化合物を薄く形成したことにより、ドロップ特性試験による衝撃が加わっても、金属間化合物やその近傍が延性的に変形し得、脆性破壊が生じ難くなり、高いドロップ特性を確保し得ることを見出した。但し、半田ボールを製造する際、Sn-Bi系合金となる原料中にNiを単に添加しただけでは、半田ボール中のNiは、半田ボール中のBiと結合して、NiBiやNiBi3等の金属間化合物や、Sn-Bi固溶体にNiが更に固溶した固溶体等が先行して形成されてしまい、Niが消費されてしまう。そのため、実装時に電極との間に形成される相は主としてCu6Sn5となってしまい、ドロップ特性を改善できない。
 そのため、本発明では、半田ボールを製造する際、所定の濃度に見合うように添加元素を調合した半田母合金を、るつぼや鋳型中で加熱して溶解することで均一化し、しかる後に凝固させる手法を利用するが、この際、予めCuとNiを用いてCu-Ni系母合金を作製しておき、それをSn-Bi系合金の原料中に添加してから溶解で均一化させるようにした。
 ここでCuとNiは、両者間で全率固溶の平衡状態図を示すことからも示唆されるように、互いに結合しやすい性質を有しており、予めCu-Ni系母合金を作製しておけば、その後に、Cu-Ni系母合金をSn-Bi系合金の原料中に添加しても、Cu-Ni系母合金が分解してBiと金属間化合物を形成したり、Sn-Bi固溶体と新たな固溶体を形成したりすることなく、そのままSn-Bi系合金中のSnと反応して(Cu,Ni)6Sn5になり易いと考えられる。
 これにより、本発明では、NiBiやNiBi3等の金属間化合物や、Sn-Bi固溶体にNiが更に固溶した固溶体等の生成が抑制され、(Cu,Ni)6Sn5からなる金属間化合物をSn-Bi系合金中に分散させた、TCT特性およびドロップ特性がともに優れた半田ボールを製造することができた。
 また、(Cu,Ni)6Sn5の融点は500℃以上と高温であるため、プリント配線基板や半導体チップ等の電子部品間を半田ボールで接合させるリフロー工程(おおむね250℃程度)での加熱では(Cu,Ni)6Sn5は分解したり消失したりせず、半田ボールにより電極上に接合部が形成された後でも接合部中に(Cu,Ni)6Sn5は存在し得る。なお、(Cu,Ni)6Sn5からなる金属間化合物は、微粒子状に形成され、Sn-Bi系合金中に微細分散されていることが望ましい。
 このようなCu-Ni系母合金を活用して作製した半田ボールを電極上に実装すれば、半田ボール中に存在している(Cu,Ni)6Sn5が析出核となって電極上に形成される金属間化合物が主として(Cu,Ni)6Sn5となり、その結果、Biの添加によるTCT特性の向上効果と、(Cu,Ni)6Sn5によるドロップ特性の向上効果とを同時に得ることができる。なお、半田ボール中における(Cu,Ni)6Sn5の観察はSEM(Scanning Electron Microscope:走査電子顕微鏡)により行え、1000倍~5000倍程度の倍率で観察できる程度に(Cu,Ni)6Sn5が存在していれば上述の効果が得られる。(Cu,Ni)6Sn5の同定はTEM(Transmission Electron Microscope:透過型電子顕微鏡)の電子線回折パターンの解析により行うことができる。
 ここで、半田ボールと電極との接合界面で(Cu,Ni)6Sn5からなる金属間化合物を効率的に得るには、半田ボールの状態での組成が、Snを主体とし、Cuを0.3~2.0質量%、Niを0.01~0.2質量%含有していることが望ましい。Cuが0.3質量%未満、或いはNiが0.01質量%未満では、Cu-Ni系母合金が充分に生成されず、半田ボールと電極との接合界面で(Cu,Ni)6Sn5金属間化合物が形成され難くなるため好ましくない。逆に、Cuを2.0質量%超、或いはNiを0.2質量%超とすると半田ボールが酸化され易くなるため、例えば半田ボールの表面がミラーボール状にいびつとなって実装時の誤認識を招いたり、或いは半田ボールの表面を厚い酸化被膜が覆うことで通常のフラックス量ではその酸化被膜を除去しきれず、半田ボールおよび電極間の接合強度(プル強度やシェア強度)が劣化してしまうことから好ましくない。
 半田ボールの状態での組成でSn-Bi系合金中のBiを0.1~3.0質量%とすれば、半田ボールを適度に硬化させることができ、その結果、TCT特性が良好となる。しかしながら、Biを0.1質量%未満とすると、TCT特性について顕著な効果が得られず、逆にBiが3.0質量%超となると(Cu,Ni)6Sn5によるドロップ特性の向上効果を打ち消す程、半田ボールが硬化してしまい、TCT特性とドロップ特性の両立はできなくなることから好ましくない。
 更にドロップ特性を向上させるには、本願のように(Cu,Ni)6Sn5が形成されるという特徴を考慮した手法が必要である。ここで、従来のようなCu6Sn5が形成される半田ボールでは、Cu6Sn5が固く脆性であるがために、Cu6Sn5とSn母相との固さの差が大きくなり、ドロップ試験時に進展する亀裂は、Cu6Sn5の内部もしくはその近傍で発生した後に、Cu6Sn5の内部もしくはその近傍で優先的に進展してゆく。そのため、従来の半田ボールでは、Sn母相の内部を亀裂が進展することは極めてまれである。
 これに対して、本願のように(Cu,Ni)6Sn5が形成される半田ボールでは、(Cu,Ni)6Sn5がCu6Sn5と比較して延性を示すことから、(Cu,Ni)6Sn5とSn母相との固さの差が小さくなり、ドロップ試験時に進展する亀裂は、(Cu,Ni)6Sn5の内部もしくはその近傍で発生した後に、(Cu,Ni)6Sn5の内部もしくはその近傍のみで進展するわけではなく、Sn母相の内部にもしばしば亀裂が進展するという従来では見られない現象が生じる。
 そのため、本願のように(Cu,Ni)6Sn5が形成される半田ボールでは、ドロップ特性の向上効果を更に得るために従来から一般的に考えられている、(i)金属間化合物(本願では(Cu,Ni)6Sn5)で発生する亀裂を抑制することと、(ii)発生した亀裂が金属間化合物(本願では(Cu,Ni)6Sn5)の内部もしくはその近傍を進展するのを防ぐことと、を行うだけでは不十分であり、更に、(iii)発生した亀裂がSn母相中を進展するのを防ぐという点も考慮する必要があり、これら上述した(i)、(ii)および(iii)という3つのアプローチを組み合わせることが重要となることを本願発明者らは見出した。
 そこで、まず上記(iii)への対策手法としては、Sn-Bi系合金に含有させるBiを0.1~0.5質量%とすることが有効である。なぜなら、Biの濃度をこの範囲とすれば、Bi濃度の適正化に伴って半田ボールを構成するSn母相の粒界エネルギーを低下させることができ、その結果、ドロップ試験時に(Cu,Ni)6Sn5近傍にあるSn母相の粒界で亀裂が進展するのを防ぐことができるため、ドロップ特性が向上するからである。なお、この手法は、本願のように(Cu,Ni)6Sn5が形成されることによって亀裂がSn母相中も進展する半田ボールに対して有効な手法であり、従来のようにCu6Sn5が形成される半田ボールでは、亀裂がSn母相の内部を進展することは極めて稀であることから有効な手法とはならない。
 あるいは上記(i)や(ii)への対策手法としては、Sn-Bi系合金に含有させるCuとNiとについて、Cuを0.8~1.2質量%、Niを0.04~0.15質量%、とすることがある。この場合、(Cu,Ni)6Sn5中の格子欠陥の量を減らせることで、(Cu,Ni)6Sn5内部で亀裂が進展することを抑制でき、その結果、ドロップ特性の向上効果が更に得られる。
 ここで、上記(i)、(ii)、および(iii)への対策を組み合わせた手法としては、Sn-Bi系合金に含有させるCu,Ni,Biについて、Cuを0.8~1.2質量%、Niを0.04~0.15質量%、Biを0.1~0.5質量%含有させる手法がある。この場合、Bi濃度の適正化に伴ってSn母相の粒界エネルギーを低下させる効果と、(Cu,Ni)6Sn5中の格子欠陥の量を減らす効果とが同時に得られるため、ドロップ特性の向上効果がより一層得られる。
 しかしながら、TCT特性も更に高める目的で、Biの濃度が0.5質量%を超えた半田ボールを製造する際は、上記(i)と(ii)への対策を組み合わせた手法(即ち、Cuを0.8~1.2質量%、Niを0.04~0.15質量%添加する手法)を行うことに加えて、更にCuとNiとの添加量を(5~20):1の比率にすることが好ましい。これは、このような半田ボールでは、(Cu,Ni)6Sn5中の格子欠陥の量を格段的に減らすことができるので、Biの濃度が0.5質量%を超えたとしても、ドロップ特性の向上効果を更に得ることができるためである。
 なお、本発明の半田ボールにおいて、含有させるCu,Niについては、(Cu,Ni)6Sn5中のCuとNiの比率が10:1となる際に、(Cu,Ni)6Sn5中の格子欠陥の量が最小化することから、(Cu,Ni)6Sn5中のCuとNiを(10±3):1の比率にすることが、極めて良好なドロップ特性の向上効果を得ることができ、より好ましい。あるいは、本発明の半田ボールにおいては、CuとNiの添加量を(5~7):1もしくは(13~20):1の比率にした場合でも、Biの添加量を0.1~0.5質量%とできるのであれば、上述の効果の複合効果によって、CuとNiの比率を(10±3):1とした場合と同程度に、極めて良好なドロップ特性の向上効果を得ることができる。
 なお、半田ボールとなるSn-Bi系合金では、Snを95質量%以上含有させることで、Snを主体としており、このようなSnを主体としたSn-Bi系合金にCu,Ni,Biを所定量添加し、更に必要に応じて後述のMg,Agを添加する。
 また、半田ボールの濡れ性を高めるには、Sn-Bi系合金に対して、更にMg,Ga,Pのうちいずれか、もしくは2種以上を総計で0.0001~0.005質量%添加することが好ましい。これは、MgやGa、PがSnよりも卑な金属であるため、Snよりも優先的に酸化することで、急冷状態において非晶質状の酸化物層を形成し、半田ボール表面のSn酸化物の成長が抑制されるためと考えられる。この硬化はMg,Ga,Pのうちいずれか、もしくは2種以上の添加量が総計で0.0001質量%未満になると得られず、逆に0.005質量%を超えるとMgやGa、P自体が激しく酸化してしまい、半田ボールが球状とはならずに多角形状となってしまうことから好ましくない。このような半田ボール表面の酸化の形跡は、通常のLaB6やタングステンをフィラメントにしているSEMでは電子銃を絞ることができず、上記酸化の形跡は観察し難いが、例えばFE-SEM(Field Emission-Scanning Electron Microscope:電界放出型走査電子顕微鏡)のように高分解能な電子顕微鏡で観察することができる。
 また、本願発明者らが鋭意検討した結果、MgとGaの両方を同時にSn-Bi系合金である半田合金中に添加したり、あるいはMgとPの両方を同時にSn-Bi系合金である半田合金中に添加すると、上記の効果に加えて、更に半田ボール表面の明度が向上するという効果が合わせて得られることがわかった。この効果は、MgとGa、もしくはMgとPの同時添加による複合効果によるものと考えられ、Mg単独、Ga単独、もしくはP単独では得られない。具体的には、0.0001質量%以上のMgと、0.0001質量%以上のGaとを総計で0.0002質量%以上0.005質量%以下の範囲でSn-Bi系合金である半田合金中に添加するか、もしくは0.0001質量%以上のMgと、0.0001質量%以上のPとを総計で0.0002質量%以上0.005質量%以下の範囲でSn-Bi系合金である半田合金中に添加すると、明度L*(エルスター)が70%以上となる。
 このような明度L*が高い半田ボールは、例えば、半田ボールをマウンター装置で基板上やデバイス上に転写する際に、マウンター装置が半田ボールを誤認識するリスクを減らすことができる。なお、このような明度L*の高い半田ボールとして、より好ましくは、0.0001質量%以上のMgと、0.0001質量%以上のGaとを総計で0.0005質量%以上0.0007質量%以下の範囲でSn-Bi系合金である半田合金中に添加するか、もしくは0.0001質量%以上のMgと、0.0001質量%以上のPとを総計で0.0005質量%以上0.0007質量%以下の範囲でSn-Bi系合金である半田合金中に添加すると、明度L*を80%以上にでき、上述したマウンター装置による半田ボールの誤認識の発生リスクを更に減らすことができる。
 さらに、このような明度L*の高い半田ボールとして、もっとも好ましくは、0.0001質量%以上のMgと、0.0001質量%以上のGaとを総計で0.0008質量%以上0.005質量%以下の範囲でSn-Bi系合金である半田合金中に添加するか、もしくは0.0001質量%以上のMgと、0.0001質量%以上のPとを総計で0.0008質量%以上0.005質量%以下の範囲でSn-Bi系合金である半田合金中に添加すると、明度L*を85%以上にでき、上述したマウンター装置による半田ボールの誤認識の発生リスクを更に減らすことができる。なお、ここで明度L*の測定は、JIS-Z8729に沿って測定できる。
 また、本発明の半田ボールでは、Sn-Bi系合金中のAgの含有量が、誘導結合プラズマ(ICP:Inductively Coupled Plasma)分析による検出限界以下であることが望ましく、Sn-Bi系合金中にAgを含有していなくても、Biを0.1~3.0質量%、好ましくは0.5~2.0質量%含有させることで硬化し得、良好なTCT特性を得ることができ、更にはドロップ特性の向上効果も得ることができる。なお、Si-Bi系合金中に含有させるBiは2.0質量%以下とすることで、さらにドロップ特性の向上効果も得ることができる。なお、ここで、ICP分析とは、ICP発光分光分析や、ICP質量分析を示し、ここで「検出限界以下」とは、ICP発光分光分析またはICP質量分析のいずれかで検出限界以下となればよい。
 一方、本発明の半田ボールでは、Sn-Bi系合金に対し、更にAgを含有させてもよく、Sn-Bi系合金中のAgの含有量を1.0質量%以下、好ましくは0.1~1.0質量%にすれば、半田ボール中に前述のAg3Snが析出して半田ボールが硬化し、TCT特性を更に高めることもできる。しかしながら、1.0質量%超のAgの添加は前述のボイドが発生しやすくなるので好ましくない。既に述べたように、ドロップ特性を向上させるには、添加するBiの濃度を0.1~0.5質量%とすることが望ましいが、その場合はBiの添加量が少ないことからTCT特性を確保し難い。その場合には、Sn-Bi系合金に対して更にAgを0.1~1.0質量%添加すると、半田ボールのドロップ特性を損なわずに、TCT特性を確保できるので、製造過程において、Sn-Bi系合金に対して更にAgを0.1~1.0質量%添加することが望ましい。
 また、本発明の半田ボールでは、(Cu,Ni)6Sn5からなる金属間化合物がSn-Bi系合金中に形成できればよく、例えばSnを主体とし、Cuを0.3~2.0質量%、Niを0.01~0.2質量%、Biを0.1~3.0質量%含有したSn-Bi系合金中に、Ge,Sb,In,P,As,Al,Au等の他の元素を含有させてもよい。但し、Sn-Bi系合金中のGe,Sb,In,P,As,Al,Au等の他の元素が、ICP分析による検出限界以下であることが望ましい。この場合、本発明の半田ボールは、Cuを0.3~2.0質量%、Niを0.01~0.2質量%、Biを0.1~3.0質量%含有し、残部がSn、或いは残部がSnおよび不可避不純物であるSn-Bi系合金により形成され得る。
 特に、Ge,Sb,In,P,As,Al,Auは、Sn-Bi系合金中において、ICP分析による検出限界以下か、または前記Ge,Sb,In,P,As,Al,Auのうち少なくともいずれか1種を含有していたとしても、いずれも不可避不純物として含有されていることが望ましい。なお、ここで不可避不純物とは、精錬、溶解等の製造工程で、材料中への混入が避けられない不純物元素を指すものであり、例えばGe,Sb,In,P,As,Al,Auであれば、30質量ppm以下を指す。因みに、これら以外のSnの不可避不純物には、例えば、Pb,Zn,Fe,Cdがある。
 以上の構成において、半田ボールでは、Snを主体とし、Cuを0.3~2.0質量%、Niを0.01~0.2質量%、Biを0.1~3.0質量%含有したSn-Bi系合金からなり、(Cu,Ni)6Sn5からなる金属間化合物がSn-Bi系合金中に形成されるようにしたことにより、電極に接合させた際に接合部におけるボイドの発生を抑制しつつ、熱疲労特性に優れ、かつ良好な耐落下衝撃特性をも得ることができる。
 また、半田ボールでは、Agの含有量をICP分析による検出限界以下にすることで、針状のAg3Snが形成され難くなり、その分、ボイドの発生を抑制でき、その一方でAgの含有量がICP分析による検出限界以下となっても、Biの添加により、熱疲労特性に優れ、かつ良好な耐落下衝撃特性をも得ることができる。
 但し、Agは、Sn-Bi系合金中に含有させてもよく、この際、Agの含有量を1.0質量%以下、好ましくは0.1~1.0質量%にすれば、半田ボール中にAg3Snが析出するものの、従来よりもボイドの発生を十分に抑制でき、その一方で半田ボール中に析出したAg3Snにより半田ボールが硬化し、TCT特性を更に高めることができる。
 実際上、この半田ボールでは、電子部品間に実装させたときの熱疲労特性(TCT特性)の評価として、後述する実施例に従ったTCT試験を目安とした場合、例えば半田ボールを-40[℃]で30分間維持した後、125[℃]で30分間維持する一連の工程を1サイクルとし、この1サイクルを200回以上連続して行ったTCT試験を行っても、電気抵抗値がTCT試験を行う前の電気抵抗値以下となり、良好な熱疲労特性を得ることができている。
 また、この半田ボールでは、電子部品間に実装させたときの耐落下衝撃特性(ドロップ特性)の評価として、後述する実施例に従った耐落下衝撃特性試験を目安とした場合、例えばJEDEC規格のJESD22-b111に準拠した試験法により、耐落下衝撃特性試験を行ったとき、20回超、落下衝撃を加えても、電気抵抗値が耐落下衝撃特性試験を行う前の電気抵抗値以下となり、良好な耐落下衝撃特性を得ることができている。
 なお、半田ボール中の組成を同定する手法については特に制限は無いが、例えばエネルギー分散X線分光法(EDS;Energy Dispersive Xray Spectrometry)、電子プローブ分析法(EPMA;Electron Probe Micro Analyzer)、オージェ電子分光法(AES;Auger Electron Spectroscopy)、二次イオン質量分析法(SIMS;Secondary Ion-microprobe Mass Spectrometer)、誘導結合プラズマ分析法(ICP;Inductively Coupled Plasma)、グロー放電スペクトル質量分析法(GD-MASS;Glow Discharge Mass Spectrometry)、蛍光X線分析法(XRF;X-ray Fluorescence Spectrometer)等が実績も豊富で精度も高いので好ましい。
 因みに、本発明の半田ボールを半導体メモリーへの実装に使用したり、もしくは半導体メモリーの近傍での実装に使用した場合は、当該半田ボールにより形成された接合部からα線が放射されると、当該α線が半導体メモリーに作用してデータが消去されてしまう虞もある。そこで、α線による半導体メモリーへの影響を考慮した場合、本発明の半田ボールは、α線量が1[cph/cm2]以下というように、通常よりもα線量が少ない、いわゆる低α線量の半田合金から成る半田ボールとしてもよい。このような低α線量でなる本発明の半田ボールは、α線の発生源となる不純物を除去することで純度を99.99%以上とした高純度のSnを原料として使用し、上述したSn-Bi系合金を製造することで実現できる。
 また、本発明の半田ボールの形状は特に問わないが、ボール状の半田合金を接合部へ転写して突起状としたり、更にその突起物を別な電極に実装したりするのが、実績も豊富であるので工業的には好ましい。
 本発明の半田ボールは、前記BGA以外にも、CSP(Chip Scale Package)、或いはFC(Flip Chip)と呼ばれる実装形態を有する半導体デバイスの接続端子として使用した場合でも効果を発現することができる。本実施形態による半田ボールをこれら半導体デバイスの接続端子として利用する場合には、例えば、フラックスや半田ペーストという有機物を予めプリント配線基板上の電極に塗布してから半田ボールを電極に並べ、前述のリフロー法で強固な半田接合部を形成することで電子部材を得ることができる。
 本実施形態の電子部材では、これらのBGA、CSP、FCに本実施形態の半田ボールを実装した電子部材も含み、またフラックスや半田ペーストを予めプリント配線基板上の電極に塗布してから電子部材を電極上に乗せ、前述のリフロー法で強固に半田付けすることで電子部材を更にプリント配線基板に実装させた電子部材も含むものとする。さらに、このプリント配線基板の代わりに、TAB(Tape Automated Bonding)テープと呼ばれるフレキシブル配線テープや、リードフレームと呼ばれる金属製配線を使用しても良い。
 以上の構成によれば、このような半田ボールとなり得る本発明の半導体実装用の半田合金の製造方法では、CuおよびNiを添加して作製したCu-Ni系母合金を用意した後、SnおよびBiを添加して作製したSn-Bi系原料中に、当該Cu-Ni系母合金を添加して加熱・溶解することで均一化して凝固させることによって、Snを主体とし、Cuを0.3~2.0質量%、Niを0.01~0.2質量%、Biを0.1~3.0質量%含有したSn-Bi系合金からなり、(Cu,Ni)6Sn5からなる金属間化合物がSn-Bi系合金中に形成された半田合金を製造する工程を含む。
 ここで、予め作製しておくCu-Ni系母合金は、CuおよびNiを添加して加熱・溶解させることにより均一化し、凝固させることにより作製される。
 そして、半田合金から半田ボールを製造する製造方法では、上述した半田合金の製造工程に加えて、当該半田合金から線材を作製した後、当該線材を切断して一定体積にしてから加熱・溶解して凝固させることにより球状の半田ボールを製造する工程を含む。
 ここで、一の実施の形態による半導体実装用の半田合金の製造方法では、Cu-Ni系母合金と、Sn-Bi系原料とのいずれにもAgを添加せずに、Sn-Bi系合金からなる半田合金を製造する。これにより、この半導体実装用の半田合金の製造方法では、Agの含有量が、ICP分析による検出限界以下である半田合金を製造し得る。このような半導体実装用の半田合金では、半田ボールとして半導体の実装に用いた際、針状のAg3Snが形成され難くなり、その分、ボイドの発生を抑制でき、その一方でAgの含有量がICP分析による検出限界以下となっても、Biの添加により、熱疲労特性に優れ、かつ良好な耐落下衝撃特性をも得ることができる。
 その一方、上述した一の実施の形態とは異なり、Agを含有した半田合金により半田ボールを製造してもよく、この場合、半導体実装用の半田合金の製造方法としては、上述した工程において、Cu-Ni系母合金と、Sn-Bi系原料とのうち、少なくともいずれか一方にAgを添加し、Agの含有量が1.0質量%以下、好ましくは0.1~1.0質量%であるSn-Bi系合金からなる半導体実装用の半田合金を製造する工程となる。このような半導体実装用の半田合金では、半田ボールとして半導体の実装に用いた際、半田ボール中にAg3Snが析出するものの、Biの添加により、従来よりもボイドの発生を十分に抑制でき、その一方で半田ボール中に析出したAg3Snにより半田ボールが硬化し、TCT特性を更に高めることができる。
 半田ボールとなる半田合金の組成を変えてゆき、各半田ボールのボール表面、ボイド発生の有無、熱疲労特性(TCT特性)および耐落下衝撃特性(ドロップ特性)についてそれぞれ調べた。ここでは、予め所定量のCuとNiを高周波溶解炉で275[℃]に加熱して母合金化しCu-Ni系母合金を作製した後、Snを主成分としBi等を添加したSn-Bi系原料に、その母合金(Cu-Ni系母合金)を加えて原料を生成した。次いで、この原料を黒鉛るつぼ内に設置してから高周波溶解炉で275[℃]に加熱して溶解させた後、冷却することで半導体実装用の半田合金を得た。
 その後、半田合金を線径20[μm]の線材とした。この線材を長さ6.83[mm]で切断してゆき、一定体積にしてから再度高周波溶解炉で加熱・溶解し、冷却することで直径160[μm]の半田ボールを得た。実施例1~122、比較例1~4の各半田ボールの組成についてICP発光分光分析で測定した。プラズマ条件高周波出力は1.3[KW]とし、発光強度の積分時間は3秒とし、各元素の検量線用標準液並びに各元素の標準溶液はあらかじめ調製しておいたものを用い、検量線法で同定したところ、下記の表1~3のような組成であった。今回用いたSn原料の不可避不純物は、Ge,Sb,In,As,Al,Au,Zn,Fe,Cdであった。
 ここで、下記に示す表1は、Cu-Ni系母合金と、Sn-Bi系原料とのいずれにもAgを添加せずに、Sn-Bi系合金からなる半田合金を製造し、Agの含有量が、ICP分析による検出限界以下である半田合金を用いて半田ボールを製造した実施例を示す。
Figure JPOXMLDOC01-appb-T000001
 下記に示す表2は、Sn-Bi系原料にAgを添加し、Agの含有量を0.1~1.0質量%としたSn-Bi系合金からなる半田合金を製造し、当該半田合金を用いて半田ボールを製造した実施例を示す。
Figure JPOXMLDOC01-appb-T000002
 なお、表1および表2における半田合金に用いたSnは、特にα線量が低減されていない市販の原料を用いた。一方、表3における実施例121と実施例122では、比較のため、純度99.99%の高純度Snを原料として用いて、α線量が1[cph/cm2]以下の低α線となる半田ボールを作製した。また、半田ボールのα線量は市販の半導体用α線測定機器でカウントし、その結果を表3の「α線発生量」の欄に示した。
Figure JPOXMLDOC01-appb-T000003
 半田ボール表面の酸化の程度をFE-SEM並びにEDXを用いて7万倍の倍率で観察した。その際、半田ボールの表面が多角形状に変形していれば×とし、そのような変形が僅かだけ観察されれば△とし、そのような変形がまったく観察されなければ○として、表1の実施例1~60と、比較例1~4と、表2の実施例61~120と、表3の実施例121,122とについてそれぞれ調べ、表1~3の「ボール表面の酸化」の欄に示した。その結果、表1の実施例1~60と、表2の実施例61~120と、表3の実施例121,122とについては、いずれも「ボール表面の酸化」が○か△のいずれかであった。特に、Mgや、Ga、Pを総計で0.0001~0.005質量%添加した半田ボールでは「ボール表面の酸化」が○となり、良好な結果が得られた。
 また、半田ボール表面の明度L*を市販の分光測光計を用いて測定した。光源は白色光源を用い、直径3[mm]の円形状の筒の中に半田ボールを敷き詰めて試験片としたものを3個ずつ用意し、その中央部分を測定した際の明度L*をJIS-Z8729に沿って求め、その平均値を本実施例の明度L*とした。明度L*が60%未満の場合は×を、60%以上70%未満の場合は△を、70%以上80%未満の場合は○を、80%以上85%未満の場合は◎を、85%以上の場合は◎○を、それぞれ表1~3に記載した。
 表1~表3から、MgおよびGaの両方を添加した半田ボールや、MgおよびPを添加した半田ボールでは、Mg単体、Ga単体、およびP単体を添加した半田ボールに比べて明度が向上することが確認できた。
 次に、半田ボールを構成するSn-Bi系合金中に(Cu,Ni)6Sn5からなる金属間化合物が形成されているか否かについて調べた。まず、FE-SEMで5000倍の倍率で3視野、金属間化合物を観察した後、代表的な金属間化合物の回折パターンをTEMの電子回折パターンから得て、その結晶構造を同定した。(Cu,Ni)6Sn5と同定された場合、SEMで観察された同様のコントラストを有する金属間化合物を(Cu,Ni)6Sn5とみなした。表1~表3では、上述のSEM観察において(Cu,Ni)6Sn5が観察されれば、「(Cu,Ni)6Sn5からなる金属間化合物の形成有無」の欄に○印を示し、観察されなければ×印を示した。SEM用の試料は機械研磨で行い、SEM観察時の加速電圧は20[kV]とした。
 また、特定した(Cu,Ni)6Sn5からなる金属間化合物のサイズについても調べた。金属間化合物のサイズの同定は、SEM像を撮影して粒子状の金属間化合物の直径を計測してゆき、これら金属間化合物の10個の平均粒径を金属間化合物のサイズとした。TEM用の薄膜試料はFIB(Focused Ion Beam)で切り出し加工を行うことで得て、TEM観察時の加速電圧は100[kV]とした。その結果、表1の実施例1~60と、表2の実施例61~120と、表3の実施例121,122全てにおいて(Cu,Ni)6Sn5からなる金属間化合物が、Sn結晶粒内並びにSn結晶粒界上の両位置で1[μm]よりも小さいサブミクロンサイズのものが主体として形成されていることが確認できた。一方、表1の比較例1~4では、(Cu,Ni)6Sn5からなる金属間化合物は観察されなかった。また、表1の実施例1~60と、表2の実施例61~120と、表3の実施例121,122の各半田ボールのSn-Bi系合金中には、NiBiやNiBi3でなる金属間化合物や、Sn-Bi固溶体にNiが更に固溶した固溶体の形成が抑制されていることも確認できた。
 次に、表1の実施例1~60と、表2の実施例61~120と、表3の実施例121,122と、表1の比較例1~4の各半田ボールについて、ボイド発生の有無、熱疲労特性、および耐落下衝撃特性について調べた。ここでは、半田ボールを実装するプリント基板として、40[mm]×30[mm]×1[mm]サイズ、電極は0.27[mm]ピッチ、電極表面はCu電極のままという仕様のプリント基板を用いた。そして、プリント基板上に水溶性フラックスを塗布してから半田ボールを搭載し、ピーク温度が250[℃]に保たれたリフロー炉内で加熱し、冷却することで前記プリント基板上に半田バンプを形成した。
 更にその半田バンプ上に、同様の方法で半導体デバイスを接合(半導体デバイス上の電極に水溶性フラックスを塗布してからプリント基板上の半田バンプに当該電極を位置決めし、ピーク温度が250[℃]に保たれたリフロー炉内で加熱し、冷却することで半導体デバイスに半田バンプを接合)させ、プリント基板(電子部品)/半田バンプ(接合部)/半導体デバイス(電子部品)という構成の電子部材を得た。なお、半導体デバイスは8[mm]角、324ピンで、電極はCuであった。
 半田ボールの組成を変えた各電子部材に対するボイドの観察は、X線透過観察装置で100バンプを観察し、バンプ径の5分の1超の直径のボイドが観察されたら不良として×とし、観察されなければ○とした。その結果、表1~3の「ボイド」の欄に示すような結果が得られた。表1の実施例1~60と、表2の実施例61~120と、表3の実施例121,122の各半田ボールにおいて「ボイド」の評価が○であった。
 次に、表1の実施例1~60と、表2の実施例61~120と、表3の実施例121,122と、表1の比較例1~4の各半田ボールを用いて作製した上述の電子部材に対してTCT試験を行い、各電子部材について熱疲労特性の評価を行った。TCT試験は、-40[℃]で30分間維持した後、125[℃]で30分間維持する一連の工程を1サイクルとし、この1サイクルを所定回数連続して行った。そして、この1サイクルを25回行った毎にTCT試験装置内から試験片(電子部材)を取り出し、プリント基板および半導体デバイス間の接合部を含む電気抵抗値をあらかじめプリント基板にひきまわした端子間の抵抗値で測定する導通試験を行った。導通試験では、電子部材の電気抵抗値がTCT試験を行う前の初期値の2[Ω]を超えたら不良が発生したと見なし、その結果を表1~表3の「TCT寿命」の欄に示した。
 表1~3の「TCT寿命」の欄では、初めて不良が発生した回数が200回以下であれば不良として×とし、200回超350回以下であれば実用上使用できるレベルということで△とし、350回超450回以下であれば良好として○とし、450回超であれば極めて良好として◎とした。その結果、表1の実施例1~60のAgを添加していない半田ボール(すなわち、Agの含有量がICP分析による検出限界以下の半田ボール)であっても、Biを所定量添加することで、実用上使用できるレベル以上にまでTCT特性が良くなることが確認できた。
 次に、表1の実施例1~60と、表2の実施例61~120と、表3の実施例121,122と、表1の比較例1~4の各半田ボールを用いて作製した上述の電子部材に対して、耐落下衝撃特性試験を行い、各電子部材について耐落下衝撃特性の評価を行った。具体的に耐落下衝撃特性の評価は、JEDEC(半導体技術協会;Solid State Technology Association)規格のJESD22-b111に準拠した試験法として、1500[G]の加速度を0.5[ms]印加する衝撃波を用いて評価した。その際、落下させる毎に試験片(電子部材)のプリント基板および半導体デバイス間の接合部における導通性を導通試験により確認した。そして、電子部材におけるプリント基板および半導体デバイス間の接合部を含む電気抵抗値を、予めプリント基板にひきまわした端子間の抵抗値で測定し、耐落下衝撃特性試験を行う前の初期値の2[Ω]を超えたら不良(破断)が発生したと見なした。
 表1~3の「ドロップ寿命」の欄では、初めて不良が発生した回数が20回以下であれば不良として×とし、20回超40回以下であれば実用上使用できるレベルということで△とし、40回超70回以下であれば良好として○とし、70回超90回未満であれば極めて良好として◎とし、90回以上であれば最も良好であるとして◎○とした。その結果、Sn-Bi系合金中にBiを0.1~3.0質量%添加することで、実用上使用できるレベル以上にまで耐落下衝撃特性が良くなることが確認できた。特に、Sn-Bi系合金中にBiを0.5~2.0質量%含有させることで、一段と良好な耐落下衝撃特性を得ることが確認できた。
 以上より、Snを主体とし、Cuを0.3~2.0質量%、Niを0.01~0.2質量%、Biを0.1~3.0質量%、Agを0~1.0質量%含有したSn-Bi系合金からなり、(Cu,Ni)6Sn5からなる金属間化合物がSn-Bi系合金中に形成される半田ボールでは、電極に接合させた際に接合部におけるボイドの発生を抑制しつつ、熱疲労特性に優れ、かつ良好な耐落下衝撃特性をも得られることが確認できた。
 また、Cu,Niについては、表1~3に示すように、CuとNiの添加量を(5~20):1の比率にしたとき、もしくはBiの濃度を0.1~0.5質量%としたとき、のいずれかにおいて、ドロップ特性を○以上にでき、TCT特性とドロップ特性について、ともに良好な結果が得られた。特に、CuとNiの添加量を10前後:1の比率にしたとき、TCT特性の向上効果を得つつ、ドロップ特性の良好な向上効果が得られることが確認できた。具体的には、CuとNiの添加量を(10±3):1の比率とした場合、TCT特性の向上効果を得つつ、ドロップ特性の良好な向上効果が得られることが確認できた。また、CuとNiの添加量を(5~20):1の比率にした上で、更にCuを0.8~1.2質量%、Niを0.04~0.15質量%、Biを0.1~0.5質量%含有させた場合にも、TCT特性の向上効果を得つつ、ドロップ特性の良好な向上効果が得られることが確認できた。

 

Claims (8)

  1.  Snを主体とし、Cuを0.3~2.0質量%、Niを0.01~0.2質量%、Biを0.1~3.0質量%含有したSn-Bi系合金からなり、(Cu,Ni)6Sn5からなる金属間化合物が前記Sn-Bi系合金中に形成されている
     ことを特徴とする半田ボール。
  2.  Agの含有量が、ICP(Inductively Coupled Plasma)分析による検出限界以下である
     ことを特徴とする請求項1記載の半田ボール。
  3.  前記Sn-Bi系合金はAgを含有し、前記Agの含有量が1.0質量%以下である
     ことを特徴とする請求項1記載の半田ボール。
  4.  前記Cuと前記Niの比率が(5~20):1である
     ことを特徴とする請求項1~3のうちいずれか1項記載の半田ボール。
  5.  Mg,Ga,Pのいずれか、もしくは2種以上を総計で0.0001~0.005質量%含有している
     ことを特徴とする請求項1~4のうちいずれか1項記載の半田ボール。
  6.  Ge,Sb,In,P,As,Al,Auの含有量が、ICP(Inductively Coupled Plasma)分析による検出限界以下であるか、または前記Ge,Sb,In,P,As,Al,Auのうち少なくともいずれか1種を含有していたとしても、いずれも不可避不純物として含有されている
     ことを特徴とする請求項1~5のうちいずれか1項記載の半田ボール。
  7.  上記のSnが低α線Snからなり、発するα線量が1[cph/cm2]以下である
     ことを特徴とする請求項1~6のうちいずれか1項記載の半田ボール。
  8.  複数の電子部品間を接合部によって接合した電子部材であって、該接合部の一部又は全部が請求項1~7のうちいずれか1項記載の半田ボールによって形成されている
     ことを特徴とする電子部材。
PCT/JP2014/062588 2013-05-29 2014-05-12 半田ボールおよび電子部材 WO2014192521A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/405,691 US9320152B2 (en) 2013-05-29 2014-05-12 Solder ball and electronic member
JP2014544846A JP5714191B1 (ja) 2013-05-29 2014-05-12 半田ボールおよび電子部材
CN201480001539.7A CN104395035B (zh) 2013-05-29 2014-05-12 钎料球以及电子构件
EP14804933.1A EP3006158A4 (en) 2013-05-29 2014-05-12 Solder ball and electronic member
KR1020147031663A KR20160012878A (ko) 2013-05-29 2014-05-12 땜납 볼 및 전자 부재
TW103118612A TW201509582A (zh) 2013-05-29 2014-05-28 焊球及電子構件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-113421 2013-05-29
JP2013113421 2013-05-29

Publications (1)

Publication Number Publication Date
WO2014192521A1 true WO2014192521A1 (ja) 2014-12-04

Family

ID=51988559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062588 WO2014192521A1 (ja) 2013-05-29 2014-05-12 半田ボールおよび電子部材

Country Status (7)

Country Link
US (1) US9320152B2 (ja)
EP (1) EP3006158A4 (ja)
JP (1) JP5714191B1 (ja)
KR (1) KR20160012878A (ja)
CN (1) CN104395035B (ja)
TW (1) TW201509582A (ja)
WO (1) WO2014192521A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537206A (ja) * 2013-10-31 2016-12-01 アルファ・メタルズ・インコーポレイテッドAlpha Metals, Inc. 鉛フリーかつ銀フリーのはんだ合金
WO2018051973A1 (ja) * 2016-09-13 2018-03-22 千住金属工業株式会社 はんだ合金、はんだボールおよびはんだ継手
JP2018140436A (ja) * 2017-12-19 2018-09-13 千住金属工業株式会社 はんだ材料、はんだペースト、フォームはんだ及びはんだ継手
US10170442B2 (en) 2016-12-08 2019-01-01 Panasonic Intellectual Property Management Co., Ltd. Mount structure including two members that are bonded to each other with a bonding material layer having a first interface layer and a second interface layer
JP2020192573A (ja) * 2019-05-27 2020-12-03 千住金属工業株式会社 はんだ合金、はんだ粉末、およびはんだ継手
JP2020192574A (ja) * 2019-05-27 2020-12-03 千住金属工業株式会社 はんだ合金、はんだ粉末、およびはんだ継手

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6011709B1 (ja) * 2015-11-30 2016-10-19 千住金属工業株式会社 はんだ合金
JP6369620B1 (ja) 2017-12-31 2018-08-08 千住金属工業株式会社 はんだ合金
KR102198850B1 (ko) 2018-11-29 2021-01-05 덕산하이메탈(주) 저융점 솔더 합금 및 이를 이용하여 제조된 솔더볼
KR102493931B1 (ko) 2019-05-27 2023-02-06 센주긴조쿠고교 가부시키가이샤 납땜 합금, 솔더 페이스트, 납땜 볼, 솔더 프리폼, 납땜 조인트, 및 회로
JP6810375B1 (ja) 2019-05-27 2021-01-06 千住金属工業株式会社 はんだ合金、ソルダペースト、はんだボール、ソルダプリフォーム、はんだ継手、車載電子回路、ecu電子回路、車載電子回路装置、およびecu電子回路装置
JP6803107B1 (ja) * 2019-07-26 2020-12-23 株式会社日本スペリア社 プリフォームはんだ及び該プリフォームはんだを用いて形成されたはんだ接合体
CN110315238B (zh) * 2019-07-31 2021-09-17 广东省科学院中乌焊接研究所 一种碳纳米管增强无铅钎料、其制备方法及其应用
US11534870B2 (en) * 2021-01-11 2022-12-27 Napra Co., Ltd. Metal particle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001481A (ja) 2001-06-15 2003-01-08 Senju Metal Ind Co Ltd 鉛フリーはんだボールおよびその製造方法
JP2004001100A (ja) 2001-06-28 2004-01-08 Senju Metal Ind Co Ltd 鉛フリーはんだ合金
JP2008521619A (ja) * 2004-12-01 2008-06-26 アルファ フライ リミテッド はんだ合金
WO2009051255A1 (ja) * 2007-10-19 2009-04-23 Nihon Superior Sha Co., Ltd. はんだ継手
WO2009131114A1 (ja) * 2008-04-23 2009-10-29 千住金属工業株式会社 鉛フリーはんだ
WO2012133598A1 (ja) * 2011-03-28 2012-10-04 千住金属工業株式会社 鉛フリーはんだボール
JP2013000744A (ja) * 2011-06-10 2013-01-07 Nihon Superior Co Ltd 鉛フリーはんだ合金及び当該はんだを用いたはんだ接合部

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237259A (ja) * 2000-02-22 2001-08-31 Fujitsu Ltd ハンダ合金、回路基板、半導体装置及びその製造方法
US6744142B2 (en) * 2002-06-19 2004-06-01 National Central University Flip chip interconnection structure and process of making the same
TW558809B (en) * 2002-06-19 2003-10-21 Univ Nat Central Flip chip package and process of making the same
US20090098012A1 (en) * 2005-07-01 2009-04-16 Nippon Mining & Metals Co., Ltd. High-Purity Tin or Tin Alloy and Process for Producing High-Purity Tin
CN101428374A (zh) * 2005-12-16 2009-05-13 浙江亚通焊材有限公司 无铅锡焊料
WO2007081775A2 (en) * 2006-01-10 2007-07-19 Illinois Tool Works Inc. Lead-free solder with low copper dissolution
KR20130073995A (ko) * 2006-03-09 2013-07-03 신닛테츠스미킹 마테리알즈 가부시키가이샤 무연 솔더 합금, 솔더 볼 및 전자 부재와, 자동차 탑재 전자 부재용 무연 솔더 합금, 솔더 볼 및 전자 부재
CN101575680A (zh) * 2008-05-09 2009-11-11 佛山市顺德区顺达电脑厂有限公司 无铅焊料合金
KR101055485B1 (ko) * 2008-10-02 2011-08-08 삼성전기주식회사 범프볼을 갖는 반도체 패키지
JP5280520B2 (ja) * 2009-04-20 2013-09-04 パナソニック株式会社 はんだ材料および電子部品接合体
TWI381901B (zh) * 2009-12-15 2013-01-11 Univ Yuan Ze 抑制錫-鎳介金屬於銲點中生成的方法
CN102233488A (zh) * 2010-05-07 2011-11-09 宁波卓诚焊锡科技有限公司 一种无铅焊料
KR101355694B1 (ko) * 2010-08-18 2014-01-28 닛데쓰스미킹 마이크로 메탈 가부시키가이샤 반도체 실장용 땜납 볼 및 전자 부재
JP4787384B1 (ja) * 2010-10-29 2011-10-05 ハリマ化成株式会社 低銀はんだ合金およびはんだペースト組成物
TWI466251B (zh) * 2010-12-28 2014-12-21 Ind Tech Res Inst 半導體裝置及其組裝方法
CN102430872A (zh) * 2011-10-17 2012-05-02 上海交通大学 Sn-Cu-Bi-Ni无铅焊料
CN102699563A (zh) * 2012-06-23 2012-10-03 浙江亚通焊材有限公司 一种低银无铅软钎料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001481A (ja) 2001-06-15 2003-01-08 Senju Metal Ind Co Ltd 鉛フリーはんだボールおよびその製造方法
JP2004001100A (ja) 2001-06-28 2004-01-08 Senju Metal Ind Co Ltd 鉛フリーはんだ合金
JP2008521619A (ja) * 2004-12-01 2008-06-26 アルファ フライ リミテッド はんだ合金
WO2009051255A1 (ja) * 2007-10-19 2009-04-23 Nihon Superior Sha Co., Ltd. はんだ継手
WO2009131114A1 (ja) * 2008-04-23 2009-10-29 千住金属工業株式会社 鉛フリーはんだ
WO2012133598A1 (ja) * 2011-03-28 2012-10-04 千住金属工業株式会社 鉛フリーはんだボール
JP2013000744A (ja) * 2011-06-10 2013-01-07 Nihon Superior Co Ltd 鉛フリーはんだ合金及び当該はんだを用いたはんだ接合部

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3006158A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537206A (ja) * 2013-10-31 2016-12-01 アルファ・メタルズ・インコーポレイテッドAlpha Metals, Inc. 鉛フリーかつ銀フリーのはんだ合金
WO2018051973A1 (ja) * 2016-09-13 2018-03-22 千住金属工業株式会社 はんだ合金、はんだボールおよびはんだ継手
US10500680B2 (en) 2016-09-13 2019-12-10 Senju Metal Industry Co., Ltd. Solder alloy, solder ball, and solder joint
US10170442B2 (en) 2016-12-08 2019-01-01 Panasonic Intellectual Property Management Co., Ltd. Mount structure including two members that are bonded to each other with a bonding material layer having a first interface layer and a second interface layer
JP2018140436A (ja) * 2017-12-19 2018-09-13 千住金属工業株式会社 はんだ材料、はんだペースト、フォームはんだ及びはんだ継手
JP2020192573A (ja) * 2019-05-27 2020-12-03 千住金属工業株式会社 はんだ合金、はんだ粉末、およびはんだ継手
JP2020192574A (ja) * 2019-05-27 2020-12-03 千住金属工業株式会社 はんだ合金、はんだ粉末、およびはんだ継手
WO2020240929A1 (ja) * 2019-05-27 2020-12-03 千住金属工業株式会社 はんだ合金、はんだ粉末、およびはんだ継手
WO2020240927A1 (ja) * 2019-05-27 2020-12-03 千住金属工業株式会社 はんだ合金、はんだ粉末、およびはんだ継手
US11583959B2 (en) 2019-05-27 2023-02-21 Senju Metal Industry Co., Ltd. Solder alloy, solder power, and solder joint

Also Published As

Publication number Publication date
CN104395035A (zh) 2015-03-04
JPWO2014192521A1 (ja) 2017-02-23
TW201509582A (zh) 2015-03-16
US9320152B2 (en) 2016-04-19
EP3006158A4 (en) 2017-01-18
US20150146394A1 (en) 2015-05-28
JP5714191B1 (ja) 2015-05-07
EP3006158A1 (en) 2016-04-13
KR20160012878A (ko) 2016-02-03
CN104395035B (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
JP5714191B1 (ja) 半田ボールおよび電子部材
KR101355694B1 (ko) 반도체 실장용 땜납 볼 및 전자 부재
JP4428448B2 (ja) 鉛フリーはんだ合金
JP2010247167A (ja) 無鉛ハンダ合金、ハンダボール及びハンダバンプを有する電子部材
KR20160006667A (ko) 반도체 장치 및 반도체 장치의 제조방법
US20170259366A1 (en) Lead-free solder bump joining structure
CN109641323A (zh) 软钎焊材料
KR102672970B1 (ko) 땜납 합금, 땜납 볼, 땜납 페이스트 및 솔더 조인트
TWI795778B (zh) 無鉛焊料合金、焊料球、焊膏及半導體裝置
JP6408282B2 (ja) 半田ボールおよび電子部材
US11858071B2 (en) Solder alloy, solder paste, solder ball, solder preform, and solder joint
TWI423358B (zh) Solder balls and electronic components for semiconductor encapsulation
WO2024122382A1 (ja) Al接続材
WO2022085365A1 (ja) 半導体装置用Ag合金ボンディングワイヤ
TW202021001A (zh) 半導體裝置用Cu合金接合導線

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014544846

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147031663

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14405691

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014804933

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE