WO2014185353A1 - 透明ポリイミドおよびその前駆体 - Google Patents

透明ポリイミドおよびその前駆体 Download PDF

Info

Publication number
WO2014185353A1
WO2014185353A1 PCT/JP2014/062474 JP2014062474W WO2014185353A1 WO 2014185353 A1 WO2014185353 A1 WO 2014185353A1 JP 2014062474 W JP2014062474 W JP 2014062474W WO 2014185353 A1 WO2014185353 A1 WO 2014185353A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
formula
unit represented
polyamic acid
following formula
Prior art date
Application number
PCT/JP2014/062474
Other languages
English (en)
French (fr)
Inventor
健一 福川
真喜 岡崎
佳広 坂田
浦上 達宣
敦 大久保
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to KR1020157029919A priority Critical patent/KR101787862B1/ko
Priority to CN201480022616.7A priority patent/CN105143309B/zh
Priority to JP2015517057A priority patent/JP5931286B2/ja
Priority to US14/889,393 priority patent/US9850346B2/en
Publication of WO2014185353A1 publication Critical patent/WO2014185353A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a transparent polyimide and a polyamic acid which is a precursor thereof, and uses thereof.
  • Polyimide generally has excellent heat resistance, mechanical properties, and electrical properties. For this reason, polyimide is widely used as a molding material or a composite material in various applications such as electrical / electronic materials and optical materials.
  • polyimides obtained by reacting alicyclic diamines with aromatic tetracarboxylic acids have relatively high transparency, and future applications such as electrical and electronic materials and optical materials will be expanded.
  • future applications such as electrical and electronic materials and optical materials will be expanded.
  • Expected see, for example, Patent Document 1 and Patent Document 2).
  • the polyimide resin layer is patterned using the transparency of the polyimide, exposing the photosensitive resin layer containing an ultraviolet polymerizable compound formed on the polyimide resin layer through a photomask, and then developing with an alkaline solution. It is usual to carry out by (etching) treatment. Accordingly, there is a demand for polyimide having not only light transmittance but also high ultraviolet light transmittance.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polyimide that is excellent in heat resistance and colorless transparency, and also excellent in flexibility and ultraviolet transmittance.
  • the present inventors have found that the above problems can be solved by a polyimide having a skeleton derived from a specific alicyclic diamine and a specific aromatic tetracarboxylic dianhydride.
  • the present invention has been completed. That is, the present invention includes the following matters.
  • R is a group represented by the following formula (x1), (x2), or (x3);
  • R is a group represented by the following formula (x1), (x2), or (x3);
  • * represents a carbon atom bonded to the carbon atom of C ⁇ O adjacent to R, and when a plurality of R are contained, these groups are Can be the same or different
  • m represents the molar fraction of the structural unit represented by the formula (2a) with respect to the entire structural unit represented by the formula (2a) and the structural unit represented by the following formula (2b)
  • n represents the formula The molar fraction of the structural unit represented by the formula (2b) with respect to the whole structural unit represented by the structural unit represented by (2a) and the following formula (2b) is shown, and m / n is 99.9.
  • a polyimide composition comprising the polyimide according to [1] or [2] and an inorganic filler.
  • a polyamic acid composition comprising the polyamic acid according to [3] or [4] and an inorganic filler.
  • a diamine mixture containing bis (3,4-dicarboxyphenyl) ether dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic acid Tetracarboxylic dianhydride comprising an anhydride and at least one selected from 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride
  • the manufacturing method of the polyamic acid as described in [3] including the process with which a product is made to react.
  • R is a group represented by the following formula (x1), (x2), or (x3),
  • a polyamic acid varnish comprising the polyamic acid according to [3] or [4] and a solvent.
  • a flexible display substrate including the optical film according to [12].
  • the polyimide obtained according to the present invention is not only excellent in heat resistance and colorless transparency, but also excellent in flexibility and ultraviolet transparency, particularly transparency of long wavelength ultraviolet rays (for example, 365 nm ultraviolet rays).
  • the polyimide of the present invention includes a structural unit represented by the following formula (1a) and a structural unit represented by the following formula (1b).
  • R is a group represented by the following formula (x1), (x2), or (x3), and in the following formulas (x1), (x2), and (x3) , * Represents a carbon atom bonded to a C ⁇ O carbon atom adjacent to R in the above formulas (1a) and (1b).
  • * is a carbon atom bonded to the carbon atom of C ⁇ O adjacent to R.
  • these groups may be the same or different, and R contained in the above formula (1a) and the above formula (1b) The contained R may be the same or different.
  • the structural unit represented by the above formula (1a) is composed of 1,4-cyclohexanediamine and bis (3,4-dicarboxyphenyl) ether dianhydride (also known as 4,4′-oxydiphthalic anhydride), 3 , 3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane
  • This is a structural unit obtained by reacting at least one tetracarboxylic dianhydride selected from anhydrides (also known as 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride).
  • the structural unit derived from the tetracarboxylic dianhydride is formed from one single tetracarboxylic dianhydride. It may be formed from two or more kinds of tetracarboxylic dianhydrides.
  • the structural unit represented by the above formula (1b) is composed of 1,4-bis (aminomethyl) cyclohexane, bis (3,4-dicarboxyphenyl) ether dianhydride, 3,3 ′, 4,4′- At least one acid selected from diphenylsulfonetetracarboxylic dianhydride and 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride It is a structural unit obtained by reacting with an anhydride.
  • the structural unit derived from the tetracarboxylic dianhydride is formed from one single tetracarboxylic dianhydride. It may be formed from two or more kinds of tetracarboxylic dianhydrides.
  • the group derived from the tetracarboxylic dianhydride in the above (1a) and the group derived from the tetracarboxylic dianhydride in the above formula (1b) may be the same or different.
  • the ratio of the trans isomer in the cyclohexane skeleton is within such a range, the molecular weight of the obtained polyimide can be easily increased, and a self-supporting film can be easily formed.
  • the trans isomer ratio is preferably 70% to 100%, the cis isomer ratio is preferably 30% to 0%, and the trans isomer ratio is 80% to 100%. More preferably, the ratio of cis-isomer is 20% to 0%.
  • the glass transition temperature (Tg) of the resulting polyimide can be increased.
  • the trans isomer ratio is preferably 80% to 100% and the cis isomer ratio is preferably 20% to 0%.
  • m is the molar fraction of the structural unit represented by the formula (1a) with respect to the entire structural unit represented by the formula (1a) and the structural unit represented by the following formula (1b).
  • n is the mole fraction of the structural unit represented by the formula (1b) with respect to the entire structural unit represented by the formula (1a) and the structural unit represented by the following formula (1b).
  • This m / n is in the range of 99.9 / 0.1 to 50.0 / 50.0.
  • the resulting polyimide has not only excellent colorless transparency and ultraviolet transparency, but also has heat resistance such that Tg is 260 ° C. or higher and also has flexibility. It becomes.
  • m / n is preferably in the range of 99.9 / 0.1 to 70.0 / 30.0, more preferably 99.5 / 0.5. It is in the range of ⁇ 80.0 / 20.0, more preferably in the range of 99.5 / 0.5 to 90.5 / 9.5.
  • R is a group represented by (x1)
  • m / n is preferably in the above range.
  • Tg tends to decrease greatly, which tends to be undesirable from the viewpoint of heat resistance.
  • flexibility tends to be insufficient.
  • the structural unit represented by the above formula (1a) and the structural unit represented by the above formula (1b) are bonded, but there is no particular limitation on the bonding form of these structural units.
  • the bonding form is random.
  • a block in which a plurality of units are continuous may be used, and these coupling formats may be mixed.
  • R is a group represented by (x1), that is, the structural unit derived from the tetracarboxylic dianhydride contained in the polyimide is bis (3,4- It is an embodiment that is a structural unit derived from (dicarboxyphenyl) ether dianhydride.
  • the polyimide of the present invention may be composed only of the structural unit represented by the above formula (1a) and the structural unit represented by the above formula (1b), but within the range not impairing the effects of the present invention, Other structural units other than the structural unit represented by the formula (1a) and the structural unit represented by the formula (1b) may be included.
  • Other structural units include, for example, 1,4-cyclohexanediamine or 1,4-bis (aminomethyl) cyclohexane, bis (3,4-dicarboxyphenyl) ether dianhydride, 3,3 ′, 4,4 Tetracarboxylic acids other than '-diphenylsulfonetetracarboxylic dianhydride and 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride Structural units obtained by reacting with dianhydrides, Diamines other than 1,4-cyclohexanediamine and 1,4-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, bis (3,4-dicarboxyphenyl) ether dianhydride, 3, 3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride or 2,2-bis (3,
  • the said tetracarboxylic dianhydride may be used independently and may be used in combination of 2 or more type. Further, for the purpose of introducing a branch into the polyimide, a part of the tetracarboxylic dianhydride may be replaced with hexacarboxylic dianhydride or octacarboxylic dianhydride.
  • the said diamine may be used independently and may be used in combination of 2 or more type.
  • the content of other structural units contained in the polyimide is not particularly limited as long as the effects of the present invention are not impaired, but the total of the structural units represented by the formula (1a) and the formula (1b) The amount is usually 10 mol to 0 mol, preferably 9 mol to 0 mol, per 100 mol.
  • the polyimide of the present invention is preferably dissolved in an aprotic polar solvent.
  • dissolution means that polyimide is dissolved in an aprotic solvent by 10 g / l or more, preferably 100 g / l or more.
  • the aprotic polar solvent include aprotic amide solvents.
  • aprotic amide solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, and 1,3-dimethyl-2-imidazolidi.
  • N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone are preferable.
  • the Tg of the polyimide of the present invention is preferably 260 ° C. or higher, more preferably 280 ° C. or higher, from the viewpoint of improving heat resistance.
  • the Tg of polyimide can be determined by TMA measurement according to the following procedure, for example. That is, a test piece made of polyimide (5 mm ⁇ 22 mm, thickness of about 10 to 50 ⁇ m) was measured at a temperature rising rate of 5 ° C./min at a temperature range of 25 to 350 ° C.
  • the glass transition temperature (Tg) can be determined from the inflection point of the temperature-test piece elongation curve obtained by TMA measurement under the load 14 g / mm 2 and tensile mode measurement conditions.
  • the thermal expansion coefficient of the polyimide film of the present invention is preferably 30 ppm / K or less, and more preferably 20 ppm / K or less in order to reduce warpage of the circuit board described later.
  • the thermal expansion coefficient of the film can be determined from the slope in the temperature range of 100 to 200 ° C. of the temperature-test piece elongation curve obtained by the TMA measurement described above.
  • the tensile modulus of elasticity of the polyimide of the present invention is preferably 100 to 200 MPa.
  • Polyimide having such a tensile elastic modulus can be used for various applications including optical applications as a material having sufficient strength.
  • the tensile elongation (dumbbell-shaped test piece: marked line width: 5 mm, tensile speed: 30 mm / min) of the polyimide of the present invention is 10% or more.
  • the polyimide having such tensile elongation can be suitably used as an application that requires flexibility, for example, as a film, for example, as a film.
  • the total light transmittance measured according to JIS K 7105 of a 30 ⁇ m thick film made of the polyimide of the present invention is preferably 80% or more, more preferably 82% or more.
  • the light transmittance at a wavelength of 365 nm of a 10 ⁇ m thick film made of the polyimide of the present invention is preferably 30% or more, and more preferably 35% or more.
  • the polyimide of the present invention can be suitably used for applications requiring ultraviolet irradiation (for example, curing of an ultraviolet polymerizable compound).
  • the polyimide of the present invention preferably has an absolute value of b * in the L * a * b * color system specified by JIS Z 8729 (a numerical value is positive for yellow and a negative value indicates blue). 3 or less, and more preferably, the value of b * is in the range of 0-3. When the value of b * is in the above range, it is not yellow, that is, it can be suitably used as a colorless and transparent polyimide.
  • the polyimide of the present invention may be used as a film.
  • the film in the present invention includes a layer. That is, the film containing the polyimide of the present invention contains the polyimide of the present invention, and may further contain other components such as a cured product of a photopolymerizable compound as necessary.
  • the film of the present invention may be a multilayer film including at least one layer made of the polyimide of the present invention.
  • the polyamic acid of the present invention includes a structural unit represented by the following formula (2a) and a structural unit represented by the following formula (2b).
  • the polyamic acid of the present invention is also a precursor of the polyimide described above.
  • the structural unit represented by the formula (2a) corresponds to the structural unit represented by the above formula (1a), and the structural unit represented by the formula (2a) includes 1,4-cyclohexanediamine and bis (3 , 4-dicarboxyphenyl) ether dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, and 2,2-bis (3,4-dicarboxyphenyl) -1,1 , 1,3,3,3-hexafluoropropane dianhydride is a structural unit obtained by reacting with at least one tetracarboxylic dianhydride selected from the group.
  • the structural unit represented by the formula (2b) corresponds to the structural unit represented by the above formula (1b), and the structural unit represented by the formula (2b) is 1,4-bis (aminomethyl) cyclohexane and Bis (3,4-dicarboxyphenyl) ether dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, and 2,2-bis (3,4-dicarboxyphenyl) It is a structural unit obtained by reacting at least one acid anhydride selected from -1,1,1,3,3,3-hexafluoropropane dianhydride.
  • the trans isomer ratio is preferably 70% to 100%, the cis isomer ratio is preferably 30% to 0%, the trans isomer ratio is 80% to 100%, and the cis isomer ratio is 20%. More preferably, it is ⁇ 0%.
  • the trans isomer ratio is preferably 80% to 100% and the cis isomer ratio is preferably 20% to 0%.
  • R and m in the formula (2a) are synonymous with R and m in the formula (1a), and R and n in the formula (2b) are synonymous with R and n in the formula (1b).
  • m / n is in the range of 99.9 / 0.1 to 50.0 / 50.0, preferably in the range of 99.0 / 0.1 to 70.0 / 30.0, more preferably 99.
  • the range is from 0.5 / 0.5 to 80.0 / 20.0, more preferably from 99.5 / 0.5 to 90.5 / 9.5.
  • R is a group represented by (x1)
  • m / n is preferably in the above range.
  • the structural unit represented by the above formula (2a) and the structural unit represented by the above formula (2b) are bonded, but there is no particular limitation on the bonding form of these structural units.
  • the bonding form is random.
  • a block in which a plurality of units are continuous may be used, and these coupling formats may be mixed.
  • One preferred embodiment of the polyamic acid of the present invention is an embodiment in which the R is a group represented by (x1), that is, the structural unit derived from the tetracarboxylic dianhydride contained in the polyamic acid is bis (3, It is an embodiment that is a structural unit derived from 4-dicarboxyphenyl) ether dianhydride.
  • the polyamic acid of the present invention may be composed only of the structural unit represented by the above formula (2a) and the structural unit represented by the above formula (2b), but within the range not impairing the effects of the present invention.
  • Other structural units other than the structural unit represented by the above formula (2a) and the structural unit represented by the above formula (2b) may be included.
  • Other structural units include, for example, 1,4-cyclohexanediamine or 1,4-bis (aminomethyl) cyclohexane, bis (3,4-dicarboxyphenyl) ether dianhydride, 3,3 ′, 4,4 Tetracarboxylic acids other than '-diphenylsulfonetetracarboxylic dianhydride and 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride Structural units obtained by reacting with dianhydrides, Diamines other than 1,4-cyclohexanediamine and 1,4-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, bis (3,4-dicarboxyphenyl) ether dianhydride, 3, 3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride or 2,2-bis (3,
  • the said tetracarboxylic dianhydride may be used independently and may be used in combination of 2 or more type. Further, for the purpose of introducing a branch into the polyimide, a part of the tetracarboxylic dianhydride may be replaced with hexacarboxylic dianhydride or octacarboxylic dianhydride.
  • the content of other structural units contained in the polyamic acid is not particularly limited as long as the effects of the present invention are not impaired, but the structural unit represented by the formula (1a) and the structural unit represented by the formula (1b)
  • the amount is generally 10 mol to 0 mol, preferably 9 mol to 0 mol, relative to the total of 100 mol.
  • the logarithmic viscosity of the polyamic acid solution obtained in the present invention (solvent: N-methyl-2-pyrrolidone, concentration: 0.5 g / dl) at 35 ° C. is in the range of 0.1 to 3.0 dl / g. Is preferred.
  • solvent N-methyl-2-pyrrolidone, concentration: 0.5 g / dl
  • concentration 0.5 g / dl
  • the polyamic acid of the present invention includes, for example, a diamine mixture containing 1,4-cyclohexanediamine and 1,4-bis (aminomethyl) cyclohexane, bis (3,4-dicarboxyphenyl) ether dianhydride, 3, 3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride and 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride It can be obtained by polyaddition reaction with a tetracarboxylic dianhydride containing at least one selected from the products.
  • the molar ratio of 1,4-cyclohexanediamine and 1,4-bis (aminomethyl) cyclohexane in the diamine mixture is expressed by the structural unit represented by the formula (2a) and the formula (2b) of the resulting polyamic acid. It is only necessary that the ratio m / n of the structural units to be included is within the above-mentioned desired range.
  • the molar ratio of 1,4-cyclohexanediamine / 1,4-bis (aminomethyl) cyclohexane in the diamine mixture is preferably in the range of 99.9 / 0.1 to 50.0 / 50.0, more The range is preferably 99.9 / 0.1 to 70.0 / 30.0, more preferably 99.5 / 0.5 to 80.0 / 20.0, and particularly preferably 99.5 / 0. It may be in the range of 5 to 90.5 / 9.5.
  • the tetracarboxylic dianhydride is bis (3,4-dicarboxyphenyl) ether dianhydride
  • the diamine mixture may contain other diamines other than 1,4-cyclohexanediamine and 1,4-bis (aminomethyl) cyclohexane as long as the effects of the present invention are not impaired.
  • bis (3,4-dicarboxyphenyl) ether dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetra is used within the range not impairing the effects of the present invention.
  • Carboxylic dianhydrides and other tetracarboxylic dianhydrides other than 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride May be included.
  • a part of the tetracarboxylic dianhydride may be replaced with hexacarboxylic dianhydride or octacarboxylic dianhydride.
  • These other diamines and other tetracarboxylic dianhydrides are desirably used in such amounts that the content of other structural units contained in the polyamic acid is in the above-described range.
  • the polyaddition reaction for producing polyamic acid is preferably performed in a reaction solvent.
  • the reaction solvent include aprotic polar solvents and water-soluble alcohol solvents.
  • aprotic polar solvent examples include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, hexamethylphosphoramide.
  • water-soluble alcohol solvent examples include methanol, ethanol, 1-propanol, 2-propanol, tert-butyl alcohol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, and 1,3-butane.
  • Diol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-butene-1,4-diol, 2-methyl-2,4-pentanediol, 1,2,6- Examples include hexanetriol and diacetone alcohol.
  • reaction solvents may be used alone or in combination of two or more.
  • reaction solvents aprotic polar solvents are preferred, and N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, and mixtures thereof are more preferred.
  • the atmosphere for polymerizing the polyamic acid is not limited as long as the polymerization is not inhibited, but a nitrogen atmosphere is desirable.
  • the solid content concentration of the obtained polyimide is about 30% by weight.
  • the molar ratio of the diamine mixture to the tetracarboxylic dianhydride is usually about 0.9 to 1.1.
  • the polymerization time depends on the polymerization temperature, it is usually about 1 to 50 hours. In order to accelerate the reaction, the polymerization solution may be heated.
  • the polymerization temperature is usually 40 to 120 ° C, preferably 60 to 100 ° C.
  • the polyamic acid varnish can be prepared by dissolving the polyamic acid thus obtained in a solvent.
  • the solvent for the polyamic acid varnish is preferably an aprotic polar solvent.
  • the aprotic polar solvent include the same compounds as the aprotic polar solvent used as a reaction solvent used in the production of polyamic acid, and preferred compounds are also the same.
  • the concentration of the polyamic acid contained in the polyamic acid varnish is not particularly limited. Increasing the concentration tends to facilitate removal of the solvent by drying. Therefore, the concentration of the polyamic acid is preferably 15% by weight or more. On the other hand, when the concentration is too high, it tends to be difficult to apply the polyamic acid varnish.
  • the concentration of the polyamic acid is preferably 50% by weight or less.
  • the polyamic acid varnish may contain additives to be described later such as a photosensitizing component (such as a photopolymerizable compound and a photopolymerization initiator) and an inorganic filler.
  • the dry film containing the polyamic acid of the present invention can be produced by applying the above-mentioned polyamide varnish to a base material such as a carrier film and removing the residual solvent.
  • a base material such as a carrier film
  • the heating temperature is usually about 80 to 150 ° C.
  • the carrier film for example, when the dry film has photosensitivity, it may be desired to have transparency so that the dry film can be exposed and to have low moisture permeability. Therefore, the carrier film is preferably a transparent film such as polyethylene terephthalate, polyethylene, or polypropylene.
  • the amount of residual solvent in the dry film is preferably adjusted to a certain level or less.
  • the residual solvent amount of the dry film is preferably 3 to 20% by mass and more preferably 10% by mass or less in order to make the solubility in an alkaline aqueous solution in an appropriate range.
  • the amount of residual solvent in the dry film is large, the dissolution rate in the alkaline aqueous solution tends to increase.
  • the amount of residual solvent in the dry film is measured, for example, by gas chromatography (GC) measurement, and the area of the peak corresponding to the solvent in the obtained chart is calculated and collated with a previously prepared calibration curve for the solvent. Can be obtained.
  • GC gas chromatography
  • the GC measurement is performed by, for example, an electric furnace type pyrolysis furnace (for example, PYR-2A manufactured by Shimadzu Corporation), a gas chromatograph mass spectrometer (for example, Shimadzu) in which the injector temperature and detector temperature are set to 200 ° C., and the column temperature is set to 170 ° C.
  • GC-8A manufactured by Seisakusho was connected, and after the dry film was put into an electric furnace type pyrolysis furnace, it was immediately heated to 320 ° C. to generate volatile components. Volatile components can be analyzed by analyzing with a gas chromatograph mass spectrometer.
  • the thickness of the dry film depends on the application, it is preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m when used for an interlayer insulating layer of a circuit board.
  • the surface of the dry film may be further protected with a cover film.
  • the cover film is not particularly limited as long as it is a film having low moisture permeability.
  • the dry film may contain additives to be described later such as a photosensitizing component (photopolymerizable compound, photopolymerization initiator, etc.) and an inorganic filler.
  • a photosensitizing component photopolymerizable compound, photopolymerization initiator, etc.
  • an inorganic filler such as a photosensitizing component (photopolymerizable compound, photopolymerization initiator, etc.) and an inorganic filler.
  • the polyimide of the present invention described above can be produced, for example, by imidizing (dehydrating condensation reaction) the polyamic acid obtained as described above.
  • the imidization means is not particularly limited, and may be performed, for example, thermally or chemically as follows. (1) A method of imidizing a polyamic acid in a solvent by heating to, for example, about 100 to 400 ° C.
  • the polyimide of the present invention is 1,4-cyclohexanediamine and bis (3,4-dicarboxyphenyl) ether dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, and 2,2-bis (3 4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride is reacted with a tetracarboxylic dianhydride containing at least one selected from the following formula (3a):
  • R is a group represented by the following formula (x1), (x2), or (x3),
  • the molar ratio of the structural unit represented by the formula (3a) / the structural unit represented by the formula (3b) is preferably in the range of 99.9 / 0.1 to 70.0 / 30.0, more preferably 99 The range is from 0.5 / 0.5 to 80.0 / 20.0, more preferably from 99.5 / 0.5 to 90.5 / 9.5.
  • R in the above formulas (3a) and (3b) is a group represented by the formula (x1)
  • the structural unit represented by the formula (3a) / the structural unit represented by the formula (3b) The molar ratio is preferably in the above range.
  • the production conditions for the polyamic acid (1) and the polyamic acid (2) are the same as the production conditions for the polyamic acid of the present invention. Moreover, the said imidation can be performed on the same conditions as the imidation mentioned above.
  • the polyimide resin composition may be made by further adding various additives to the polyimide of the present invention as necessary.
  • additives include inorganic fillers, organic fillers, wear resistance improvers, flame retardant improvers, tracking resistance improvers, acid resistance improvers, thermal conductivity improvers, antifoaming agents, leveling agents, and surface tension.
  • examples thereof include a regulator and a coloring agent.
  • the inorganic filler examples include metal oxides such as titanium oxide, zinc oxide, magnesium oxide, alumina, and silica; calcium carbonate, magnesium carbonate, barium titanate, barium sulfate, calcium sulfate, magnesium sulfate, aluminum sulfate, and magnesium chloride.
  • Inorganic metal salts such as basic magnesium carbonate, precipitated barium sulfate and precipitated barium carbonate; metal hydroxides such as magnesium hydroxide, aluminum hydroxide and calcium hydroxide; talc, natural mica, synthetic mica, kaolin, etc. And clay minerals.
  • the particle shape of the inorganic filler is not particularly limited, and may be needle-shaped, plate-shaped, or spherical.
  • the average particle size of the inorganic filler is preferably 0.05 ⁇ m to 5 ⁇ m, more preferably 0.05 ⁇ m to 2 ⁇ m.
  • the inorganic filler is contained in an amount of preferably 10 to 500 parts by weight, more preferably 20 to 400 parts by weight with respect to 100 parts by weight of polyimide. Within this range, for example, when a film made of polyimide is used as the light reflecting plate, the light reflectivity is sufficient, and the film strength is hardly lowered.
  • organic filler examples include fine particles such as epoxy resin, melamine resin, urea resin, acrylic resin, polyimide, tetrafluoroethylene resin, polyethylene, polyester, polyamide and the like (however, insoluble in a solvent used for varnish) Some).
  • the colorant may be organic, inorganic, or fluorescent dye agent.
  • a coloring agent there is no restriction
  • the light reflectance can be increased by blending a white agent such as a fluorescent brightening agent.
  • Such a polyimide resin composition can be prepared by preparing a polyamic acid resin composition containing the polyamic acid of the present invention and various additives and imidizing it. Moreover, after adding various additives further to the mixture of the polyamic acid (1) and polyamic acid (2) mentioned above, it can also produce by imidating this.
  • a film (polyimide film) containing the polyimide or the polyimide resin composition of the present invention can have high transparency, heat resistance, ultraviolet transparency and flexibility. Therefore, the film containing the polyimide or polyimide composition of the present invention can also be used as an optical film.
  • the optical film examples include a polarizing plate protective film, a retardation film, an antireflection film, an electromagnetic wave shielding film, and a transparent conductive film.
  • the optical film can be used as a transparent substrate for a panel for use in an image display device.
  • the transparent panel substrate examples include a flexible display substrate, a flat panel display substrate, a liquid crystal display substrate, and an inorganic / organic substrate. Examples include an EL display substrate, a touch panel substrate, and an electronic paper substrate.
  • Functional films such as a smooth layer, a hard coat layer, a gas barrier layer, a transparent conductive layer, or other optical films may be further laminated on the polyimide film used as a transparent substrate for a panel for use in an image display device.
  • the glass transition temperature (Tg), thermal expansion coefficient and total light transmittance of the film are preferably in the same ranges as described above. .
  • polyimide films were prepared and various physical properties were measured by the following methods.
  • Total light transmittance Total T The total light transmittance of the produced polyimide film was measured by a method according to JIS K 7105 with a light source D65 using a Nippon Denshoku Haze Meter NDH2000 equipped with an integrating sphere.
  • Tensile strength TS and tensile elongation EL A dumbbell punched specimen is prepared from the polyimide film obtained above and measured with a tensile tester (manufactured by Shimadzu Corporation, EZ-S) under the conditions of a marked line width of 5 mm, a sample length of 30 mm, and a tensile speed of 30 mm / min. went. From the obtained stress / strain curve, the strength and elongation at the point of fracture were taken as tensile strength and tensile elongation, respectively, and the average value of the five measurements was taken as tensile strength TS and tensile elongation EL.
  • ODPA bis (3,4-dicarboxyphenyl) ether dianhydride
  • Table 1 summarizes the varnish physical properties ( ⁇ ) of the obtained polyamic acid solution and the physical properties (Tg, T% @ 365 nm, b *, Total T, TS, EL) of the film obtained according to the above-described film preparation method.
  • Example 2 Changed CHDA charge from 11.3g to 10.9g (0.095mol), 14BAC charge from 0.140g to 0.710g (0.005mol), DMAc charge from 223g to 224g
  • Table 1 summarizes the varnish physical properties ( ⁇ ) of the obtained polyamic acid solution and the physical properties (Tg, T% @ 365 nm, b *, Total T, TS, EL) of the film obtained according to the above-described film preparation method.
  • Example 3 The CHDA charge was changed from 11.3 g to 10.3 g (0.090 mol), the 14BAC charge was changed from 0.140 g to 1.42 g (0.010 mol), and the DMAc charge was changed from 223 g to 224 g.
  • a polyamic acid solution was prepared in the same manner as in Example 1 except that. Table 1 summarizes the varnish physical properties ( ⁇ ) of the obtained polyamic acid solution and the physical properties (Tg, T% @ 365 nm, b *, Total T, TS, EL) of the film obtained according to the above-described film preparation method.
  • Example 4 Changed CHDA charge from 11.3 g to 9.14 g (0.080 mol), 14BAC charge from 0.140 g to 2.84 g (0.020 mol), and DMAc charge from 223 g to 226 g
  • a polyamic acid solution was prepared in the same manner as in Example 1 except that.
  • Table 1 summarizes the varnish physical properties ( ⁇ ) of the obtained polyamic acid solution and the physical properties (Tg, T% @ 365 nm, b *, Total T, TS, EL) of the film obtained according to the above-described film preparation method.
  • Example 5 Change CHCH charge from 11.3g to 5.71g (0.050mol), 14BAC charge from 0.140g to 7.11g (0.050mol), DMAc charge from 223g to 230g
  • Table 1 summarizes the varnish physical properties ( ⁇ ) of the obtained polyamic acid solution and the physical properties (Tg, T% @ 365 nm, b *, Total T, TS, EL) of the film obtained according to the above-described film preparation method.
  • Example 1 As in Example 1 except that 14BAC was not used as the diamine, the CHDA charge was changed from 11.3 g to 11.4 g (0.100 mol), and the DMAc charge was changed from 223 g to 224 g. A solution was made. Table 1 summarizes the varnish physical properties ( ⁇ ) of the obtained polyamic acid solution and the physical properties (Tg, T% @ 365 nm, b *, Total T, TS, EL) of the film obtained according to the above-described film preparation method.
  • Example 2 As in Example 1, except that CHDA was not used as the diamine, the amount of 14BAC was changed from 0.140 g to 14.2 g (0.100 mol), and the amount of DMAc was changed from 223 g to 238 g. A solution was made. Table 1 summarizes the varnish physical properties ( ⁇ ) of the obtained polyamic acid solution and the physical properties (Tg, T% @ 365 nm, b *, Total T, TS, EL) of the film obtained according to the above-described film preparation method.
  • Comparative Example 3 Except for changing the amount of DMAc charged from 224 g to 189 g and ODPA 31.0 g to 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA) 35.8 g (0.100 mol), As in Comparative Example 1, a polyamic acid solution was prepared. Table 1 summarizes the varnish physical properties ( ⁇ ) of the obtained polyamic acid solution and the physical properties (Tg, T% @ 365 nm, b *, Total T, TS, EL) of the film obtained according to the above-described film preparation method.
  • Comparative Example 4 A polyamic acid solution was prepared in the same manner as in Comparative Example 2, except that the amount of DMAc charged was changed from 238 g to 200 g and ODPA 31.0 g was changed to DSDA 35.8 g (0.100 mol).
  • Table 1 summarizes the varnish physical properties ( ⁇ ) of the obtained polyamic acid solution and the physical properties (Tg, T% @ 365 nm, b *, Total T, TS, EL) of the film obtained according to the above-described film preparation method.
  • Table 1 summarizes the varnish physical properties ( ⁇ ) of the obtained mixed solution and the physical properties (Tg, T% @ 365 nm, b *, Total T, TS, EL) of the film obtained according to the above-described film preparation method.
  • Example 7 Example 6 except that the amount of the polyamic acid solution obtained in Comparative Example 1 was changed from 50.4 g to 48.3 g, and the amount of the polyamic acid solution obtained in Comparative Example 2 was changed from 2.83 g to 5.09 g.
  • a mixed solution was prepared in the same manner as described above.
  • Table 1 summarizes the varnish physical properties ( ⁇ ) of the obtained mixed solution and the physical properties (Tg, T% @ 365 nm, b *, Total T, TS, EL) of the film obtained according to the above-described film preparation method.
  • the CHDA / 14BAC ratio (namely, m / n) in the obtained liquid mixture is 91/9.
  • the polyimide obtained by the present invention not only has excellent heat resistance and colorless transparency, but also has excellent flexibility and ultraviolet transparency, and particularly excellent transparency to long wavelength ultraviolet rays (for example, 365 nm ultraviolet rays). It is useful for various applications such as electrical / electronic materials such as flexible circuit boards and optical materials.

Abstract

 本発明は、耐熱性および無色透明性に優れ、柔軟性、および紫外線透過性にも優れるポリイミドを提供することを目的とする。 Rが特定の芳香族基である下記式(1a)で表される構造単位と下記式(1b)で表される構造単位とを含むポリイミドを作製する。

Description

透明ポリイミドおよびその前駆体
 本発明は、透明ポリイミドおよびその前駆体であるポリアミド酸、ならびにその用途に関する。
 ポリイミドは、一般的に、優れた耐熱性、機械特性、電気特性を有している。そのため、ポリイミドは、成形材料または複合材料などとして、電気・電子材料用途、光学材料用途など様々な用途で幅広く用いられている。
 これらポリイミドの中でも、脂環族ジアミンと芳香族テトラカルボン酸とを反応させて得られるポリイミドは、透明性が比較的高く、電気・電子材料用途、光学用途材料をはじめとする今後の用途展開が期待される(例えば、特許文献1、特許文献2を参照)。
 これら透明性に優れるポリイミドは、例えば、HDD用サスペンション基板、半導体パッケージ基板、フレキシブルディスプレイ用基板などの回路基板への使用が検討されてきている。これら回路基板は、通常、パターニングされたポリイミド樹脂層を有する。このような回路基板に各種電子部品を実装する際に加熱を行うため、耐熱性が必要とされる。特に、近年、環境問題への配慮から、電子回路に使用するハンダは、鉛フリーハンダが主流となり、これに伴いハンダリフロー温度が高温側にシフトするため、従来よりも高い耐熱性、例えば、260℃以上のガラス転移温度(Tg)を有するポリイミドが求められている。
 また、ポリイミド樹脂層のパターニングは、そのポリイミドの透明性を活かし、ポリイミド樹脂層上に形成されている紫外線重合性化合物を含む感光性樹脂層をフォトマスクを介して露光した後、アルカリ溶液で現像(エッチング)処理することにより行うことが通常である。従って、光透過性だけでなく、高い紫外線透過性を有するポリイミドも求められている。
 さらに、ポリイミドを回路基板として用いる場合には、電気・電子部品のスペースが狭く、複雑な形状をしている部分に各種電子部品を実装する場合、柔軟性が必要とされる場所(例えば、プリンターのヘッド部と本体とを接続する部分など)への使用が期待されており、ポリイミドとして柔軟性に優れることも求められている。
特開2003-141936号公報 国際公開第2010/100874号パンフレット
 しかしながら、従来の透明性ポリイミドでは、高い耐熱性および無色透明性を維持しつつ、柔軟性と高い紫外線透過性を有することが困難であった。
 本発明は、上記事情に鑑みてなされたものであり、耐熱性および無色透明性に優れ、柔軟性、および紫外線透過性にも優れるポリイミドを提供することを目的とする。
 本発明者らは、上記課題を解決するために検討した結果、特定の脂環式ジアミンと特定の芳香族テトラカルボン酸二無水物とに由来する骨格を有するポリイミドにより上記課題を解決できることを見い出し、本発明を完成するに至った。すなわち、本発明は以下記載の事項を含む。
 [1] 下記式(1a)で表される構造単位と下記式(1b)で表される構造単位とを含むポリイミド。
Figure JPOXMLDOC01-appb-C000011
(上記式(1a)および(1b)において、Rは下記式(x1)、(x2)、または(x3)で表される基であり、
Figure JPOXMLDOC01-appb-C000012
上記式(x1)、(x2)、および(x3)において、*は、Rに隣接するC=Oの炭素原子に結合する炭素原子を示し、Rが複数含まれる場合には、それらの基は同一でも異なっていてもよく、
mは、式(1a)で表される構造単位および式(1b)で表される構造単位の全体に対する、式(1a)で表される構造単位のモル分率を示し、nは、式(1a)で表される構造単位および式(1b)で表される構造単位の全体に対する、式(1b)で表される構造単位のモル分率を示し(m+n=100%)、かつm/nが99.9/0.1~50.0/50.0であり、式(1a)で表される構造単位と式(1b)で表される構造単位とは結合しており、その結合方式は、ランダムでもブロックでもよく、
上記式(1a)におけるシクロヘキサン骨格(y)は、60%~100%の下記式(y1)で表されるトランス体と、40%~0%の下記式(y2)で表されるシス体とからなり(トランス体+シス体=100%)、
Figure JPOXMLDOC01-appb-C000013
上記式(1b)における1,4-ビスメチレンシクロヘキサン骨格(z)は、60%~100%の下記式(z1)で表されるトランス体と40%~0%の下記式(z2)で表されるシス体とからなる(トランス体+シス体=100%)。
 [2] 上記式(1a)および(1b)において、Rが(x1)で表される基である[1]に記載のポリイミド。
 [3] 下記式(2a)で表される構造単位と下記式(2b)で表される構造単位とを含むポリアミド酸。
Figure JPOXMLDOC01-appb-C000015
(上記式(2a)および(2b)において、Rは下記式(x1)、(x2)、または(x3)で表される基であり、
Figure JPOXMLDOC01-appb-C000016
上記式(x1)、(x2)、および(x3)において、*は、Rに隣接するC=Oの炭素原子に結合する炭素原子を示し、Rが複数含まれる場合には、それらの基は同一でも異なっていてもよく、
mは、式(2a)で表される構造単位および下記式(2b)で表される構造単位の全体に対する、式(2a)で表される構造単位のモル分率を示し、nは、式(2a)で表される構造単位および下記式(2b)で表される構造単位の全体に対する、式(2b)で表される構造単位のモル分率を示し、かつm/nが99.9/0.1~50.0/50.0の範囲にあり、式(2a)で表される構造単位と式(2b)で表される構造単位とは結合しており、その結合方式は、ランダムでもブロックでもよく、
上記式(2a)におけるシクロヘキサン骨格(y)は、60%~100%の下記式(y1)で表されるトランス体と、40%~0%の下記式(y2)で表されるシス体とからなり(トランス体+シス体=100%)、
Figure JPOXMLDOC01-appb-C000017
上記式(2b)における1,4-ビスメチレンシクロヘキサン骨格(z)は、60%~100%の下記式(z1)で表されるトランス体と、40%~0%の下記式(z2)で表されるシス体とからなる(トランス体+シス体=100%)。
Figure JPOXMLDOC01-appb-C000018
 [4] 上記一般式(2a)および(2b)において、Rが(x1)で表される基である[3]に記載のポリアミド酸。
 [5] [1]または[2]に記載のポリイミドと無機フィラーとを含むポリイミド組成物。
 [6] [3]または[4]に記載のポリアミド酸と無機フィラーとを含むポリアミド酸組成物。
 [7] 1,4-シクロヘキサンジアミンと1,4-ビス(アミノメチル)シクロヘキサンとを1,4-シクロヘキサンジアミン/1,4-ビス(アミノメチル)シクロヘキサンのモル比が99.9/0.1~50.0/50.0の範囲となるように含むジアミン混合物と、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から選ばれる少なくとも1つを含むテトラカルボン酸二無水物とを反応させる工程を含む[3]に記載のポリアミド酸の製造方法。
 [8] 1,4-シクロヘキサンジアミンとビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から選ばれる少なくとも1つを含むテトラカルボン酸二無水物とを反応させて下記式(3a)で表される構造単位を含むポリアミド酸(1)を製造する工程、
 1,4-ビス(アミノメチル)シクロヘキサンとビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から選ばれる少なくとも1つを含むテトラカルボン酸二無水物とを反応させて下記式(3b)で表される構造単位を含むポリアミド酸(2)を製造する工程、
 ポリアミド酸(1)とポリアミド酸(2)とを、下記式(3a)で表される構造単位/下記式(3b)で表される構造単位のモル比が99.9/0.1~50.0/50.0の範囲となるように混合してポリアミド酸混合物を製造する工程、および
 上記ポリアミド酸混合物のイミド化を行う工程を含む[1]に記載のポリイミドの製造方法。
Figure JPOXMLDOC01-appb-C000019
(上記式(3a)および(3b)において、Rは下記式(x1)、(x2)、または(x3)で表される基であり、
Figure JPOXMLDOC01-appb-C000020
上記式(x1)、(x2)、および(x3)において、*は、Rに隣接するC=Oの炭素原子に結合する炭素原子を示し、Rがポリマー中に複数含まれる場合には、それらの基は同一でも異なっていてもよい。)
 [9] [3]または[4]に記載のポリアミド酸と溶媒とを含むポリアミド酸ワニス。
 [10] [3]または[4]に記載のポリアミド酸を含むドライフィルム。
 [11] [1]もしくは[2]に記載のポリイミド、または[5]に記載のポリイミド組成物を含むフィルム。
 [12] [11]に記載のフィルムを含む光学フィルム。
 [13] [12]に記載の光学フィルムを含むフレキシブルディスプレイ用基板。
 本発明により得られるポリイミドは、耐熱性および無色透明性に優れるだけでなく、柔軟性、および紫外線透過性、特に長波長の紫外線(例えば365nmの紫外線)の透過性に優れる。
 本発明のポリイミドは、下記式(1a)で表される構造単位と下記式(1b)で表される構造単位とを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000021
 上記式(1a)および(1b)において、Rは下記式(x1)、(x2)、または(x3)で表される基であり、下記式(x1)、(x2)、および(x3)において、*は、上記式(1a)および(1b)のRに隣接するC=Oの炭素原子に結合する炭素原子を示す。
Figure JPOXMLDOC01-appb-C000022
 上記式(x1)、(x2)、および(x3)において、*は、Rに隣接するC=Oの炭素原子に結合する炭素原子である。また、上記式(1a)および(1b)において、Rが複数含まれる場合には、それらの基は同一でも異なっていてもよく、上記式(1a)に含まれるRと上記式(1b)に含まれるRとは同一でも異なっていてもよい。
 上記式(1a)で表される構造単位は、1,4-シクロヘキサンジアミンと、ビス(3,4-ジカルボキシフェニル)エーテル二無水物(別名:4,4'-オキシジフタル酸無水物)、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物(別名:4,4'-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物)から選ばれる少なくとも1つのテトラカルボン酸二無水物とを反応されて得られる構造単位である。本発明のポリイミドに上記式(1a)で表される構造単位が複数含まれる場合には、上記テトラカルボン酸二無水物に由来する構成単位は、1種単独のテトラカルボン酸二無水物から形成されていてもよく、2種以上のテトラカルボン酸二無水物から形成されていてもよい。
 上記式(1b)で表される構造単位は、1,4-ビス(アミノメチル)シクロヘキサンと、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から選ばれる少なくとも1つの酸無水物とを反応されて得られる構造単位である。本発明のポリイミドに上記式(1b)で表される構造単位が複数含まれる場合には、上記テトラカルボン酸二無水物に由来する構成単位は、1種単独のテトラカルボン酸二無水物から形成されていてもよく、2種以上のテトラカルボン酸二無水物から形成されていてもよい。
 また、上記(1a)におけるテトラカルボン酸二無水物に由来する基と上記式(1b)におけるテトラカルボン酸二無水物に由来する基とは、同一であっても異なっていてもよい。
 本発明のポリイミドに、このような2つの構造単位が含まれることにより、耐熱性および無色透明性に優れるだけでなく、柔軟性、および紫外線透過性、特に長波長の紫外線(例えば365nmの紫外線)の透過性に優れる。
 上記式(1a)におけるシクロヘキサン骨格(y)は、60%~100%の下記式(y1)で表されるトランス体と、40%~0%の下記式(y2)で示されるシス体とからなる(ただし、トランス体+シス体=100%である。)。
Figure JPOXMLDOC01-appb-C000023
 シクロヘキサン骨格におけるトランス体の割合がこのような範囲にあることにより、得られるポリイミドの分子量を増大しやすくでき、自己支持性のある膜を形成しやすくなる。得られるポリイミドの分子量を増大しやすくする観点からは、トランス体の割合が70%~100%、シス体の割合が30%~0%であることが好ましく、トランス体割合が80%~100%、シス体の割合が20%~0%であることがより好ましい。
 上記式(1b)における1,4-ビスメチレンシクロヘキサン骨格(z)は、60%~100%の下記式(z1)で表されるトランス体と、40%~0%の下記式(z2)で示されるシス体とからなる(ただし、トランス体+シス体=100%である。)。
Figure JPOXMLDOC01-appb-C000024
 1,4-ビスメチレンシクロヘキサン骨格におけるトランス体の割合がこのような範囲にあることにより、得られるポリイミドのガラス転移温度(Tg)を高めることができる。得られるポリイミドのTg、すなわち耐熱性を高める観点からは、トランス体の割合が80%~100%、シス体の割合が20%~0%であることが好ましい。
 上記式(1a)中、mは、式(1a)で表される構造単位および下記式(1b)で表される構造単位の全体に対する、式(1a)で表される構造単位のモル分率を示す。上記式(1b)中、nは、式(1a)で表される構造単位および下記式(1b)で表される構造単位の全体に対する、式(1b)で表される構造単位のモル分率を示す。このm/nは、99.9/0.1~50.0/50.0の範囲にある。m/nがこの範囲にあることにより、得られるポリイミドの無色透明性、紫外線透過性が優れるだけでなく、Tgが260℃以上となるような耐熱性を有しつつ柔軟性も有することが可能となる。
 これらの特性をより優れたものとする等の観点から、m/nは、好ましくは99.9/0.1~70.0/30.0の範囲、より好ましくは99.5/0.5~80.0/20.0の範囲、さらに好ましくは99.5/0.5~90.5/9.5の範囲である。特に、上記式(1a)および(1b)において、Rが(x1)で示される基である場合にはm/nが上記範囲であることが望ましい。m/nが上記下限値を下回る場合、Tgが大きく低下する傾向にあり、耐熱性の点で好ましくない傾向にある。一方、上記上限値を超える値である場合、柔軟性が不充分になる傾向にある。
 上記式(1a)で表される構造単位および上記式(1b)で表される構造単位とは結合しているが、これら構造単位の結合形式には特に制限はなく、例えば、結合形式はランダムでもよく、それぞれの単位が複数連続したブロックでもよく、これら結合形式が混在していてもよい。
 本発明のポリイミドの1つの好ましい態様は、上記Rが(x1)で示される基である態様、すなわち、ポリイミドに含まれる上記テトラカルボン酸二無水物に由来する構成単位がビス(3,4-ジカルボキシフェニル)エーテル二無水物に由来する構成単位である態様である。
 本発明のポリイミドは、上記式(1a)で表される構造単位と上記式(1b)で表される構造単位とのみから構成されていてもよいが、本発明の効果を損なわない範囲で、上記式(1a)で表される構造単位および上記式(1b)で表される構造単位以外のその他の構造単位を含んでいてもよい。その他の構造単位は、例えば、1,4-シクロヘキサンジアミンまたは1,4-ビス(アミノメチル)シクロヘキサンと、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物以外のテトラカルボン酸二無水物とを反応させて得られる構造単位、
1,4-シクロヘキサンジアミンおよび1,4-ビス(アミノメチル)シクロヘキサン以外のジアミンと1,4-ビス(アミノメチル)シクロヘキサンと、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、または2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物とを反応させて得られる構造単位、
1,4-シクロヘキサンジアミンおよび1,4-ビス(アミノメチル)シクロヘキサン以外のジアミンとビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物以外のテトラカルボン酸二無水物とを反応させて得られる構造単位などが挙げられる。上記テトラカルボン酸二無水物は単独で用いてもよく、2種以上組み合わせて用いてもよい。また、ポリイミドに分岐を導入することなどを目的に、上記テトラカルボン酸二無水物の一部を、ヘキサカルボン酸三無水物またはオクタカルボン酸四無水物などに置き換えてもよい。上記ジアミンは単独で用いてもよく、2種以上組み合わせて用いてもよい。
 ポリイミドに含まれるその他の構造単位の含有量は、本発明の効果を阻害しない限り特に制限はないが、式(1a)で表される構造単位および式(1b)で表される構造単位の合計100モルに対して、通常10モル~0モル、好ましくは9モル~0モルである。
 本発明のポリイミドは、非プロトン性極性溶媒に溶解することが好ましい。なお本発明で溶解するとは、非プロトン性溶媒に、ポリイミドが10g/l以上、好ましは100g/l以上溶解することを意味する。非プロトン性極性溶媒とは、例えば非プロトン性アミド系溶媒が挙げられる。非プロトン性アミド系溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-メチルカプロラクタム、ヘキサメチルホスホロトリアミドなどが挙げられる。これらアミド系溶媒の中でも、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノンが好ましい。
 本発明で得られるポリイミドの溶液(溶媒:p-クロロフェノール/フェノール=9/1(重量比),濃度:0.5g/dl)の35℃における対数粘度は、0.1~3.0dl/gの範囲にあることが好ましい。対数粘度がこの範囲にある場合、ポリイミドが実用的な分子量を有し、所望の固形分濃度で塗布が容易となる。対数粘度が高すぎる場合、一般的に重合が困難となり、また、溶解性が低くなる場合がある。
 本発明のポリイミドのTgは、耐熱性を高める等の観点から、好ましくは260℃以上、より好ましくは280℃以上である。ポリイミドのTgは、例えば、以下の手順でTMA測定により求めることができる。即ち、ポリイミドからなる試験片(5mm×22mm,厚み約10~50μm)を、測定装置TMA‐50(島津製作所製)を用いて、25~350℃の温度範囲で、昇温速度5℃/分、荷重14g/mm、引張りモードの測定条件で、TMA測定し、得られた温度-試験片伸び曲線の変曲点から、ガラス転移温度(Tg)を求めることができる。
 本発明のポリイミドからなるフィルムの熱線膨張率は、後述する回路基板の反りを低減するためなどから、30ppm/K以下であることが好ましく、20ppm/K以下であることがより好ましい。フィルムの熱膨張係数は、前述のTMA測定で得られた温度-試験片伸び曲線の、100~200℃の範囲における傾きから求めることができる。
 本発明のポリイミドの引張弾性率(ダンベル型試験片:標線幅5mm、引張速度:30mm/分)は、100~200MPaであることが好ましい。このような引張弾性率を有するポリイミドは、十分な強度を有する材料として、光学用途をはじめとする種々の用途に用いることができる。
 また、本発明のポリイミドの引張伸度(ダンベル型試験片:標線幅5mm、引張速度:30mm/分)は、10%以上であることが好ましい。このような引張伸度を有するポリイミドは、例えばフィルムとすると柔軟性が必要とする用途、例えばフレキシブルフィルムとして好適に用いることができる。
 本発明のポリイミドからなる厚み30μmのフィルムの、JIS K 7105に準じて測定される全光線透過率は、80%以上であることが好ましく、82%以上であることがより好ましい。
 本発明のポリイミドからなる厚み10μmのフィルムの、波長365nmにおける光線透過率は、30%以上であることが好ましく、35%以上であることがより好ましい。波長365nmにおける光線透過率がこのような範囲にあることにより、本発明のポリイミドを、紫外線照射を必要とする用途(例えば、紫外線重合性化合物の硬化)に好適に用いることができる。
 また、従来のポリイミドは主に黄色や茶色などの有色フィルムである。しかし、本発明のポリイミドは、JIS Z 8729で規格されるL***表色系のうち、好ましくはb*の絶対値(数値がプラスで黄色味、マイナスで青味を示す)が3以下であり、より好ましくはb*の値が0~3の範囲である。b*の値が上記範囲であることにより、黄色くない、すなわち、無色透明ポリイミドとして好適に用いることができる。
 本発明のポリイミドは、フィルムとして用いられてもよい。本発明におけるフィルムには、層も含まれる。即ち、本発明のポリイミドを含むフィルムは、本発明のポリイミドを含み、必要に応じて光重合性化合物の硬化物などの他の成分をさらに含んでもよい。また、本発明のフィルムは、本発明のポリイミドからなる層を少なくとも1層含む多層フィルムであってもよい。
 本発明のポリアミド酸は、下記式(2a)で表される構造単位と下記式(2b)で表される構造単位とを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000025
 本発明のポリアミド酸は、上述したポリイミドの前駆体ともなる。
 すなわち、式(2a)で表される構造単位は上記式(1a)で表される構造単位に対応し、式(2a)で表される構造単位は1,4-シクロヘキサンジアミンと、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から選ばれる少なくとも1つのテトラカルボン酸二無水物とを反応されて得られる構造単位である。また、式(2b)で表される構造単位は上記式(1b)で表される構造単位に対応し、式(2b)で表される構造単位は1,4-ビス(アミノメチル)シクロヘキサンと、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から選ばれる少なくとも1つの酸無水物とを反応されて得られる構造単位である。
 したがって、上記式(2a)におけるシクロヘキサン骨格(y)は、60%~100%の下記式(y1)で表されるトランス体と、40%~0%の下記式(y2)で示されるシス体とからなる(ただし、トランス体+シス体=100%である。)。
Figure JPOXMLDOC01-appb-C000026
 上記シクロヘキサン骨格においては、トランス体の割合が70%~100%、シス体の割合が30%~0%であることが好ましく、トランス体割合が80%~100%、シス体の割合が20%~0%であることがより好ましい。
 上記式(2b)における1,4-ビスメチレンシクロヘキサン骨格(z)は、60%~100%の下記式(z1)で表されるトランス体と、40%~0%の下記式(z2)で示されるシス体とからなる(ただし、トランス体+シス体=100%である。)。
Figure JPOXMLDOC01-appb-C000027
 上記1,4-ビスメチレンシクロヘキサン骨格においては、トランス体の割合が80%~100%、シス体の割合が20%~0%であることが好ましい。
 また、式(2a)のRおよびmは、式(1a)のRおよびmと同義であり、式(2b)におけるRおよびnは、式(1b)におけるRおよびnと同義である。さらに、m/nは99.9/0.1~50.0/50.0の範囲にあり、好ましくは99.0/0.1~70.0/30.0の範囲、より好ましくは99.5/0.5~80.0/20.0の範囲、さらに好ましくは99.5/0.5~90.5/9.5の範囲である。特に、上記式(2a)および(2b)において、Rが(x1)で示される基である場合にはm/nが上記範囲であることが望ましい。
 上記式(2a)で表される構造単位および上記式(2b)で表される構造単位とは結合しているが、これら構造単位の結合形式には特に制限はなく、例えば、結合形式はランダムでもよく、それぞれの単位が複数連続したブロックでもよく、これら結合形式が混在していてもよい。
 本発明のポリアミド酸の1つの好ましい態様は、上記Rが(x1)で示される基である態様、すなわち、ポリアミド酸に含まれる上記テトラカルボン酸二無水物に由来する構成単位がビス(3,4-ジカルボキシフェニル)エーテル二無水物に由来する構成単位である態様である。
 本発明のポリアミド酸は、上記式(2a)で表される構造単位と上記式(2b)で表される構造単位とのみから構成されていてもよいが、本発明の効果を損なわない範囲で、上記式(2a)で表される構造単位および上記式(2b)で表される構造単位以外のその他の構造単位を含んでいてもよい。その他の構造単位は、例えば、1,4-シクロヘキサンジアミンまたは1,4-ビス(アミノメチル)シクロヘキサンと、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物以外のテトラカルボン酸二無水物とを反応させて得られる構造単位、
1,4-シクロヘキサンジアミンおよび1,4-ビス(アミノメチル)シクロヘキサン以外のジアミンと1,4-ビス(アミノメチル)シクロヘキサンと、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、または2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物とを反応させて得られる構造単位、
1,4-シクロヘキサンジアミンおよび1,4-ビス(アミノメチル)シクロヘキサン以外のジアミンとビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物以外のテトラカルボン酸二無水物とを反応させて得られる構造単位などが挙げられる。上記テトラカルボン酸二無水物は単独で用いてもよく、2種以上組み合わせて用いてもよい。また、ポリイミドに分岐を導入することなどを目的に、上記テトラカルボン酸二無水物の一部を、ヘキサカルボン酸三無水物またはオクタカルボン酸四無水物などに置き換えてもよい。
 ポリアミド酸に含まれるその他の構造単位の含有量は、本発明の効果を阻害しない限り特に制限はないが、式(1a)で表される構造単位および式(1b)で表される構造単位の合計100モルに対して、通常10モル~0モル、好ましくは9モル~0モルである。
 本発明で得られるポリアミド酸の溶液(溶媒:N-メチル-2-ピロリドン,濃度:0.5g/dl)の35℃における対数粘度は、0.1~3.0dl/gの範囲にあることが好ましい。対数粘度がこの範囲にある場合、ポリアミド酸溶液を基材等へ塗布することが容易となるので、ポリアミド酸ワニスとして好適に用いることができる。
 本発明のポリアミド酸は、例えば、1,4-シクロヘキサンジアミンと1,4-ビス(アミノメチル)シクロヘキサンとを含むジアミン混合物と、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から選ばれる少なくとも1つを含むテトラカルボン酸二無水物とを重付加反応することにより得られる。
 上記ジアミン混合物中の1,4-シクロヘキサンジアミンと1,4-ビス(アミノメチル)シクロヘキサンとのモル比は、得られるポリアミド酸の式(2a)で表される構造単位と式(2b)で表される構造単位の比 m/nが上述の所望の範囲となるように、含まれていればよい。
 したがって、上記ジアミン混合物中の1,4-シクロヘキサンジアミン/1,4-ビス(アミノメチル)シクロヘキサンのモル比は、好ましくは99.9/0.1~50.0/50.0の範囲、より好ましくは99.9/0.1~70.0/30.0の範囲、さらに好ましくは99.5/0.5~80.0/20.0の範囲、特に好ましくは99.5/0.5~90.5/9.5の範囲とすればよい。特に、上記テトラカルボン酸二無水物がビス(3,4-ジカルボキシフェニル)エーテル二無水物である場合には、1,4-シクロヘキサンジアミン/1,4-ビス(アミノメチル)シクロヘキサンのモル比が上記範囲であることが望ましい。
 また上記ジアミン混合物中には、本発明の効果を損なわない範囲で、1,4-シクロヘキサンジアミンおよび1,4-ビス(アミノメチル)シクロヘキサン以外のその他のジアミンが含まれていてもよい。また、テトラカルボン酸二無水物中には、本発明の効果を損なわない範囲で、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物以外のその他のテトラカルボン酸二無水物が含まれていてもよい。また、ポリイミドに分岐を導入することなどを目的に、上記テトラカルボン酸二無水物の一部を、ヘキサカルボン酸三無水物またはオクタカルボン酸四無水物などに置き換えてもよい。これらその他のジアミンおよびその他のテトラカルボン酸二無水物等は、ポリアミド酸に含まれるその他の構造単位の含有量が上述した範囲となる量で使用されることが望ましい。
 ポリアミド酸を製造する上記重付加反応は、反応溶媒中で行うことが好ましい。反応溶媒としては、非プロトン性極性溶媒、水溶性アルコール系溶媒などが挙げられる。
 上記非プロトン性極性溶媒としては、例えば、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、ヘキサメチルフォスフォラアミド;2-メトキシエタノール、2-エトキシエタノール、2-(メトキシメトキシ)エトキシエタノール、2-イソプロポキシエタノール、2-ブトキシエタノール、テトラヒドロフルフリルアルコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノエチルエーテル、テトラエチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、ポリエチレングリコール、ポリプロピレングリコール、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等のエーテル系化合物などが挙げられる。
 上記水溶性アルコール系溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、tert-ブチルアルコール、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-ブテン-1,4-ジオール、2-メチル-2,4-ペンタンジオール、1,2,6-ヘキサントリオール、ジアセトンアルコールなどが挙げられる。
 上記反応溶媒は、単独で用いてもよいし、2種以上混合して用いてもよい。
 これら反応溶媒の中でも、非プロトン性極性溶媒が好ましく、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、およびこれらの混合物がより好ましい。
 ポリアミド酸を重合する際の雰囲気は重合が阻害されない限り制限されないが、窒素雰囲気であることが望ましい。
 重合を反応溶媒中で行う場合には、例えば、得られるポリイミドの固形分濃度が30重量%程度となるように行う。また、重合の際には、上述のジアミン混合物とテトラカルボン酸二無水物はとのモル比は、通常0.9~1.1程度となるようにして行う。重合時間は重合温度にも依存するが、通常1~50時間程度である。反応を促進させるために、重合溶液を加熱しても良い。重合温度は、通常40~120℃、好ましくは60~100℃である。
 このようにして得られるポリアミド酸を溶媒に溶解することにより、ポリアミド酸ワニスを作製することができる。ポリアミド酸ワニスの溶媒としては、非プロトン性極性溶媒が好ましい。非プロトン性極性溶媒としては、ポリアミド酸製造の際に用いる反応溶媒として使用する非プロトン性極性溶媒と同様の化合物を例示でき、好ましい化合物も同様である。ポリアミド酸ワニスに含まれるポリアミド酸の濃度は特に限定されない。濃度を高くすると、乾燥による溶媒除去が容易になる傾向にある。したがって、ポリアミド酸の濃度は15重量%以上であることが好ましい。一方、濃度が高過ぎると、ポリアミド酸ワニスの塗布が困難になる傾向にある。したがって、ポリアミド酸の濃度は、50重量%以下であることが好ましい。上記ポリアミド酸ワニスには、感光性付与成分(光重合性化合物、光重合開始剤など)、無機フィラー等の後述する添加剤が含まれていてもよい。
 上記ポリアミドワニスを基材、例えばキャリアフィルム等に塗布して残存溶媒を除去することにより、本発明のポリアミド酸を含むドライフィルムを作製できる。残存溶媒を除去するために、加熱を行う(プリベイク)場合には、加熱温度は通常80~150℃程度である。
 上記キャリアフィルムとしては、例えばドライフィルムが感光性を有する場合に、ドライフィルムを露光できるような透明性を有し、かつ低透湿性を有することが望まれる場合がある。そのため、キャリアフィルムとしては、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレンなどの透明性フィルムが好ましい。
 上記ドライフィルムの残存溶媒量は、一定以下に調整されていることが好ましい。ドライフィルムの残存溶媒量は、アルカリ水溶液に対する溶解性を適度な範囲にするために、3~20質量%であることが好ましく、10質量%以下であることがより好ましい。ドライフィルムの残存溶媒量が多いと、アルカリ水溶液に対する溶解速度が高くなりやすい。
 ドライフィルムの残存溶媒量は、例えば、ガスクロマトグラフィー(GC)測定を行い、得られたチャートのその溶媒に該当するピークの面積を算出し、予め準備しておいた溶媒の検量線と照合することにより求めることができる。
 GC測定は、例えば、電気炉型熱分解炉(例えば、島津製作所製PYR-2A)と、インジェクタ温度およびディテクタ温度を200℃、カラム温度を170℃に設定したガスクロマト質量分析装置(例えば、島津製作所製GC-8A(カラムUniport HP 80/100 KG-02))とを接続し、ドライフィルムを電気炉型熱分解炉に投入後、即時320℃加熱して揮発成分を生成させた後、該揮発成分を、ガスクロマト質量分析装置により分析することにより行うことができる。
 上記ドライフィルムの厚みは、用途にもよるが、回路基板の層間絶縁層などに用いる場合には、1μm~100μmであることが好ましく、5μm~50μmであることがより好ましい。
 上記ドライフィルムの表面は、さらにカバーフィルムで保護されていてもよい。カバーフィルムは、低透湿性を有するフィルムであれば特に限定されない。
 上記ドライフィルムには、感光性付与成分(光重合性化合物、光重合開始剤など)、無機フィラー等の後述する添加剤が含まれていてもよい。
 上述した本発明のポリイミドは、例えば、上述のようにして得られるポリアミド酸をイミド化(脱水縮合反応)することにより作製できる。イミド化の手段は、特に限定されないが、例えば以下のように熱的または化学的に行えばよい。
(1)溶媒中のポリアミド酸を、例えば100~400℃程度に加熱して、イミド化する方法(熱イミド化)
(2)溶媒中のポリアミド酸を、無水酢酸などのイミド化剤を用いて化学的にイミド化する方法(化学イミド化)
(3)溶媒中のポリアミド酸を、触媒存在下または不存在下、共沸脱水用溶媒の存在下においてイミド化する方法(共沸脱水閉環法)
 また、上述したポリアミド酸ワニスから作製されたドライフィルムを、20℃~400℃、好ましくは150℃~350℃、さらに好ましくは200℃~300℃で、1秒~5時間程度加熱することによりイミド化を行い、ポリイミドを作製することもできる。
 また、本発明のポリイミドは、
1,4-シクロヘキサンジアミンとビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から選ばれる少なくとも1つを含むテトラカルボン酸二無水物とを反応させて下記式(3a)で表される構造単位を含むポリアミド酸(1)を製造する工程、
1,4-ビス(アミノメチル)シクロヘキサンとビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から選ばれる少なくとも1つを含むテトラカルボン酸二無水物とを反応させて下記式(3b)で表される構造単位を含むポリアミド酸(2)を製造する工程、
ポリアミド酸(1)とポリアミド酸(2)とを、下記式(3a)で表される構造単位/下記式(3b)で表される構造単位のモル比が99.9/0.1~50.0/50.0の範囲となるように混合してポリアミド酸混合物を製造する工程、および
上記ポリアミド酸混合物のイミド化を行う工程を含む製造方法によっても製造できる。
Figure JPOXMLDOC01-appb-C000028
(上記式(3a)および(3b)において、Rは下記式(x1)、(x2)、または(x3)で表される基であり、
Figure JPOXMLDOC01-appb-C000029
上記式(x1)、(x2)、および(x3)において、*は、Rに隣接するC=Oの炭素原子に結合する炭素原子を示し、Rがポリマー中に複数含まれる場合には、それらの基は同一でも異なっていてもよい。)
 式(3a)で表される構造単位/式(3b)で表される構造単位のモル比は、好ましくは99.9/0.1~70.0/30.0の範囲、より好ましくは99.5/0.5~80.0/20.0の範囲、さらに好ましくは99.5/0.5~90.5/9.5の範囲である。特に、上記式(3a)および(3b)のRが式(x1)であらわされる基である場合には、式(3a)で表される構造単位/式(3b)で表される構造単位のモル比が上記範囲であることが望ましい。
 上記ポリアミド酸(1)およびポリアミド酸(2)の製造条件は、本発明のポリアミド酸の製造条件と同様である。また、上記イミド化は、上述したイミド化と同様の条件により行うことができる。
 本発明のポリイミドに、必要に応じて各種添加剤をさらに添加してポリイミド樹脂組成物としてもよい。添加剤としては、例えば、無機フィラー、有機フィラー、耐摩耗性向上剤、難燃性向上剤、耐トラッキング向上剤、耐酸性向上剤、熱伝導度向上剤、消泡剤、レベリング剤、表面張力調整剤、着色剤等が挙げられる。
 上記無機フィラーとしては、例えば、酸化チタン、酸化亜鉛、酸化マグネシウム、アルミナ、シリカ等の金属酸化物;炭酸カルシウム、炭酸マグネシウム、チタン酸バリウム、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウム、塩化マグネシウム、塩基性炭酸マグネシウム、沈降性硫酸バリウム、沈降性炭酸バリウム等の無機金属塩;水酸化マグネシウム、水酸化アルミニウム、および水酸化カルシウム等の金属水酸化物;タルク、天然マイカ、合成マイカ、カオリンなどの粘土系鉱物等が挙げられる。
 上記無機フィラーの粒子形状は、特に限定されず、針状であっても、板状であっても、球状であってもよい。無機フィラーの平均粒径は、0.05μm~5μmであることが好ましく、0.05μm~2μmであることがより好ましい。
 無機フィラーは、100重量部のポリイミドに対して、好ましくは10~500重量部、さらに好ましくは20~400重量部の量で含まれる。この範囲であると、例えば光反射板としてポリイミドからなるフィルムを用いた場合、光線反射率が十分であり、フィルム強度も低下しにくい。
 上記有機フィラーとしては、例えば、エポキシ樹脂、メラミン樹脂、尿素樹脂、アクリル樹脂、ポリイミド、テトラフルオロエチレン系樹脂、ポリエチレン、ポリエステル、ポリアミド等の樹脂等の微粒子(ただし、ワニスに使用する溶媒に不溶であるもの)などが挙げられる。
 上記着色剤は、有機系であっても無機系であってもよく、蛍光色素剤であってもよい。着色剤の色は、特に制限はなく、用途に応じて適宜選択される。例えば、本発明のポリイミドフィルムを光反射材として用いる場合には、蛍光増白剤等の白色剤を配合することにより、光線反射率を高めることができる。
 このようなポリイミド樹脂組成物は、本発明のポリアミド酸と各種添加剤とを含むポリアミド酸樹脂組成物を作製し、これをイミド化することにより作製できる。また、上述したポリアミド酸(1)とポリアミド酸(2)との混合物に各種添加剤をさらに加えた後、これをイミド化することによっても作製することができる。
 また、本発明のポリイミドまたはポリイミド樹脂組成物を含むフィルム(ポリイミドフィルム)は、高い透明性と、耐熱性、紫外線透過性および柔軟性を有し得る。そのため、本発明のポリイミドまたはポリイミド組成物を含むフィルムは、光学フィルムとして用いることもできる。
 光学フィルムとしては、例えば、偏光板保護フィルム、位相差フィルム、反射防止フィルム、電磁波シールドフィルム、透明導電フィルムなどが挙げられる。また、この光学フィルムは、画像表示装置用途のパネル用透明基板として用い得るが、該パネル洋透明基板としては、例えば、フレキシブルディスプレイ用基板、フラットパネルディスプレイ用基板、液晶ディスプレイ用基板、無機・有機ELディスプレイ用基板、タッチパネル用基板、電子ペーパー用基材などが挙げられる。
 画像表示装置用途のパネル用透明基板として用いられるポリイミドフィルムには、平滑層、ハードコート層、ガスバリアー層、透明導電層などの機能層、または他の光学フィルムがさらに積層されていてもよい。
 本発明のポリイミドフィルムが、画層表示装置のパネル用透明基板として用いられる場合、該フィルムのガラス転移温度(Tg)、熱膨脹係数および全光線透過率は、前述と同様の範囲であることが好ましい。
 以下、実施例を参照して本発明をより詳細に説明するが、本発明はこれらにより何ら制限を受けるものではない。
 以下の実施例および比較例において、ポリイミドフィルムの作製および各種物性の測定は以下の方法により行った。
 (1)ポリイミドフィルムの作製
 各実施例および比較例で得られたポリアミド酸溶液(ワニス)を、ドクターブレードにてガラス基板上に流延した。このガラス基板を、オーブンにて窒素気流中、2時間かけて50℃から280℃まで昇温し、次いで280℃で2時間保持して、流延膜をイミド化させた。得られた流延膜をガラス基板から剥離することで、厚みが10μm~14μmの範囲にあるポリイミドフィルムを得た。
 (2)固有対数粘度の測定
 得られたポリアミド酸溶液(ワニス)を、固形分濃度が0.5g/dlとなるようにN,N-ジメチルアセトアミド(DMAc)を加えて調整し、その固有対数粘度(dl/g)をウベローデ粘度計を用いて35℃にて測定した。
 (3)ガラス転移温度 Tg
 作製したポリイミドフィルムの試験片(標線幅5mm・試料長20mm)を、測定装置TMA-50(島津製作所製)を用いて、25~350℃の温度範囲で、昇温速度5℃/分、荷重14g/mm、引張りモードの条件でTMA測定した。得られた温度・伸度曲線の変曲点からガラス転移温度(Tg)を求めた。
 (4)波長365nmにおける光線透過率 T%@365nm
 作製したポリイミドフィルムをMultiSpec-1500(島津製作所製)を用いて、紫外・可視スペクトルを測定した。この時の波長365nmにおける光線透過率を計測した。
 (5) b*(黄色味の指標)
 作製したポリイミドフィルムについて、色彩式差計(測定ヘッド:CM-2500d コニカミノルタ社製)を用いて、C光源・2°視野・SCIモードの条件で、校正白色板の上で、黄色味の指標となる値の測定を行った。3回の測定値の平均値をb*とした。
 (6)全光線透過率 Total T
 作製したポリイミドフィルムの全光線透過率を、積分球を備えた日本電色工業製ヘーズメーターNDH2000を用いて、光源D65にてJIS K 7105に準じた方法で測定した。
 (7)引張強度 TSおよび引張伸度 EL
 上記で得たポリイミドフィルムよりダンベル型打ち抜き試験片を作製し、引張試験機(島津製作所製、EZ-S)にて、標線幅5mm、試料長30mm、引張速度30mm/分の条件で測定を行った。得られた応力・歪曲線より、破断に至った点における強度および伸度をそれぞれ引張強度および引張伸度とし、5回の測定値の平均値を、引張強度 TS、引張伸度 ELとした。
 (8)1,4-ビス(アミノメチル)シクロヘキサンのシス体/トランス体比率の算出
 1H NMR(溶媒CDCl3)測定より、所定磁場範囲におけるシグナルの強度比より、シス体/トランス体比率を算出した。すなわち、シス体由来のNH2CH2(2.61ppm、ダブレット)と、トランス体由来のNH2CH2(2.53ppm、ダブレット)との比率から算出したところ、トランス体比率84%であった。
 (A)ポリアミド酸の合成
 (実施例1)
 温度計、攪拌機、窒素導入管を備えた500mLの5口セパラブルフラスコに、撹拌条件下、1,4-ジアミノシクロヘキサン(以下、CHDAと称する;岩谷瓦斯社製、トランス体比率:99%以上)11.3g(0.099モル)と、1,4-ビス(アミノメチル)シクロヘキサン(以下、14BACと称する;トランス体比率:84%、)0.140g(0.001モル)と、有機溶媒であるN,N‐ジメチルアセトアミド(以下、DMAcと称する)223gとを加え、ジアミン混合物の溶液を作製した。さらに撹拌条件下、その溶液に、ビス(3,4-ジカルボキシフェニル)エーテル二無水物(以下、ODPAと称する)31.0g(0.100モル)を粉状のまま投入した後、得られた液を、90℃に保持したオイルバス中に1時間浴して反応させた。液は、当初は不均一であったが、反応の進行に従って透明な溶液に変化し、粘性のあるポリアミド酸溶液を得た。得られたポリアミド酸溶液のワニス物性(η)、および上記フィルム作成方法に従って得られたフィルムの各物性(Tg、T%@365nm、b*、Total T、TS、EL)を表1にまとめる。
 (実施例2)
 CHDAの仕込み量を11.3gから10.9g(0.095モル)に、14BACの仕込み量を0.140gから0.710g(0.005モル)に、DMAcの仕込み量を223gから224gに変更する以外は実施例1と同様に、ポリアミド酸溶液を作製した。得られたポリアミド酸溶液のワニス物性(η)、および上記フィルム作成方法に従って得られたフィルムの各物性(Tg、T%@365nm、b*、Total T、TS、EL)を表1にまとめる。
 (実施例3)
 CHDAの仕込み量を11.3gから10.3g(0.090モル)に、14BACの仕込み量を0.140gから1.42g(0.010モル)に、DMAcの仕込み量を223gから224gに変更する以外は実施例1と同様に、ポリアミド酸溶液を作製した。得られたポリアミド酸溶液のワニス物性(η)、および上記フィルム作成方法に従って得られたフィルムの各物性(Tg、T%@365nm、b*、Total T、TS、EL)を表1にまとめる。
 (実施例4)
 CHDAの仕込み量を11.3gから9.14g(0.080モル)に、14BACの仕込み量を0.140gから2.84g(0.020モル)に、DMAcの仕込み量を223gから226gに変更する以外は実施例1と同様に、ポリアミド酸溶液を作製した。得られたポリアミド酸溶液のワニス物性(η)、および上記フィルム作成方法に従って得られたフィルムの各物性(Tg、T%@365nm、b*、Total T、TS、EL)を表1にまとめる。
 (実施例5)
 CHDAの仕込み量を11.3gから5.71g(0.050モル)に、14BACの仕込み量を0.140gから7.11g(0.050モル)に、DMAcの仕込み量を223gから230gに変更する以外は実施例1と同様に、ポリアミド酸溶液を作製した。得られたポリアミド酸溶液のワニス物性(η)、および上記フィルム作成方法に従って得られたフィルムの各物性(Tg、T%@365nm、b*、Total T、TS、EL)を表1にまとめる。
 (比較例1)
 ジアミンとして14BACを用いずに、CHDAの仕込み量を11.3gから11.4g(0.100モル)に、DMAcの仕込み量を223gから224gに変更する以外は実施例1と同様に、ポリアミド酸溶液を作製した。得られたポリアミド酸溶液のワニス物性(η)、および上記フィルム作成方法に従って得られたフィルムの各物性(Tg、T%@365nm、b*、Total T、TS、EL)を表1にまとめる。
 (比較例2)
 ジアミンとしてCHDAを用いずに、14BACの仕込み量を0.140gから14.2g(0.100モル)に、DMAcの仕込み量を223gから238gに変更する以外は実施例1と同様に、ポリアミド酸溶液を作製した。得られたポリアミド酸溶液のワニス物性(η)、および上記フィルム作成方法に従って得られたフィルムの各物性(Tg、T%@365nm、b*、Total T、TS、EL)を表1にまとめる。
 (比較例3)
 DMAcの仕込み量を224gから189gに、ODPA31.0gを3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)35.8g(0.100モル)に変更する以外は、比較例1と同様に、ポリアミド酸溶液を作製した。得られたポリアミド酸溶液のワニス物性(η)、および上記フィルム作成方法に従って得られたフィルムの各物性(Tg、T%@365nm、b*、Total T、TS、EL)を表1にまとめる。
 (比較例4)
 DMAcの仕込み量を238gから200gに、ODPA31.0gをDSDA35.8g(0.100モル)に変更する以外は、比較例2と同様に、ポリアミド酸溶液を作製した。得られたポリアミド酸溶液のワニス物性(η)、および上記フィルム作成方法に従って得られたフィルムの各物性(Tg、T%@365nm、b*、Total T、TS、EL)を表1にまとめる。
 (比較例5)
 DMAcの仕込み量を224gから231gに、ODPA31.0gを3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)29.4g(0.100モル)に変更する以外は、比較例1と同様に、ポリアミド酸溶液を作製した。得られたポリアミド酸溶液のワニス物性(η)、および上記フィルム作成方法に従って得られたフィルムの各物性(Tg、T%@365nm、b*、Total T、TS、EL)を表1にまとめる。
 (比較例6)
 DMAcの仕込み量を238gから247gに、ODPA31.0gを3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)29.4g(0.100モル)に変更する以外は、比較例2と同様に、ポリアミド酸溶液を作製した。得られたポリアミド酸溶液のワニス物性(η)、および上記フィルム作成方法に従って得られたフィルムの各物性(Tg、T%@365nm、b*、Total T、TS、EL)を表1にまとめる。
 (B)ポリアミド酸溶液の混合
 (実施例6)
 温度計、攪拌機、窒素導入管を備えた200mLの5口セパラブルフラスコに、撹拌条件下、比較例1で得たポリアミド酸溶液(CHDA/14BAC比率が100/0、濃度16wt%)50.4gと、比較例2で得たポリアミド酸溶液(CHDA/14BAC比率が0/100、濃度16wt%)2.83gとを加え混合溶液を作製した。混合溶液中のCHDA/14BAC比率(すなわち、m/n)は95/5である。該混合溶液を60℃に保持したオイルバス中で1時間、さらに室温で12時間撹拌した。得られた混合溶液のワニス物性(η)、および上記フィルム作成方法に従って得られたフィルムの各物性(Tg、T%@365nm、b*、Total T、TS、EL)を表1にまとめる。
 (実施例7)
 比較例1で得たポリアミド酸溶液の仕込み量を50.4gから48.3gに、比較例2で得たポリアミド酸溶液の仕込み量を2.83gから5.09g変更する以外は、実施例6と同様に混合溶液を作製した。得られた混合溶液のワニス物性(η)、および上記フィルム作成方法に従って得られたフィルムの各物性(Tg、T%@365nm、b*、Total T、TS、EL)を表1にまとめる。なお得られた混合液中のCHDA/14BAC比率(すなわち、m/n)は91/9である。
Figure JPOXMLDOC01-appb-T000030
 本発明により得られるポリイミドは、耐熱性および無色透明性に優れるだけでなく、柔軟性、および紫外線透過性、特に長波長の紫外線(例えば365nmの紫外線)の透過性に優れるため、フレキシブルディスプレイ用基板、フレキシブル回路基板などの電気・電子材料用途、光学材料用途などの種々の用途に有用である。

Claims (13)

  1.  下記式(1a)で表される構造単位と下記式(1b)で表される構造単位とを含むポリイミド。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1a)および(1b)において、Rは下記式(x1)、(x2)、または(x3)で表される基であり、
    Figure JPOXMLDOC01-appb-C000002
    上記式(x1)、(x2)、および(x3)において、*は、Rに隣接するC=Oの炭素原子に結合する炭素原子を示し、Rが複数含まれる場合には、それらの基は同一でも異なっていてもよく、
    mは、式(1a)で表される構造単位および式(1b)で表される構造単位の全体に対する、式(1a)で表される構造単位のモル分率を示し、nは、式(1a)で表される構造単位および式(1b)で表される構造単位の全体に対する、式(1b)で表される構造単位のモル分率を示し(m+n=100%)、かつm/nが99.9/0.1~50.0/50.0であり、式(1a)で表される構造単位と式(1b)で表される構造単位とは結合しており、その結合方式は、ランダムでもブロックでもよく、
    上記式(1a)におけるシクロヘキサン骨格(y)は、60%~100%の下記式(y1)で表されるトランス体と、40%~0%の下記式(y2)で表されるシス体とからなり(トランス体+シス体=100%)、
    Figure JPOXMLDOC01-appb-C000003
    上記式(1b)における1,4-ビスメチレンシクロヘキサン骨格(z)は、60%~100%の下記式(z1)で表されるトランス体と40%~0%の下記式(z2)で表されるシス体とからなる(トランス体+シス体=100%)。
    Figure JPOXMLDOC01-appb-C000004
  2.  上記式(1a)および(1b)において、Rが(x1)で表される基である請求項1に記載のポリイミド。
  3.  下記式(2a)で表される構造単位と下記式(2b)で表される構造単位とを含むポリアミド酸。
    Figure JPOXMLDOC01-appb-C000005
    (上記式(2a)および(2b)において、Rは下記式(x1)、(x2)、または(x3)で表される基であり、
    Figure JPOXMLDOC01-appb-C000006
    上記式(x1)、(x2)、および(x3)において、*は、Rに隣接するC=Oの炭素原子に結合する炭素原子を示し、Rが複数含まれる場合には、それらの基は同一でも異なっていてもよく、
    mは、式(2a)で表される構造単位および下記式(2b)で表される構造単位の全体に対する、式(2a)で表される構造単位のモル分率を示し、nは、式(2a)で表される構造単位および下記式(2b)で表される構造単位の全体に対する、式(2b)で表される構造単位のモル分率を示し、かつm/nが99.9/0.1~50.0/50.0の範囲にあり、式(2a)で表される構造単位と式(2b)で表される構造単位とは結合しており、その結合方式は、ランダムでもブロックでもよく、
    上記式(2a)におけるシクロヘキサン骨格(y)は、60%~100%の下記式(y1)で表されるトランス体と、40%~0%の下記式(y2)で表されるシス体とからなり(トランス体+シス体=100%)、
    Figure JPOXMLDOC01-appb-C000007
    上記式(2b)における1,4-ビスメチレンシクロヘキサン骨格(z)は、60%~100%の下記式(z1)で表されるトランス体と、40%~0%の下記式(z2)で表されるシス体とからなる(トランス体+シス体=100%)。
    Figure JPOXMLDOC01-appb-C000008
  4.  上記一般式(2a)および(2b)において、Rが(x1)で表される基である請求項3に記載のポリアミド酸。
  5.  請求項1に記載のポリイミドと無機フィラーとを含むポリイミド組成物。
  6.  請求項3に記載のポリアミド酸と無機フィラーとを含むポリアミド酸組成物。
  7.  1,4-シクロヘキサンジアミンと1,4-ビス(アミノメチル)シクロヘキサンとを1,4-シクロヘキサンジアミン/1,4-ビス(アミノメチル)シクロヘキサンのモル比が99.9/0.1~50.0/50.0の範囲となるように含むジアミン混合物と、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から選ばれる少なくとも1つを含むテトラカルボン酸二無水物とを反応させる工程を含む請求項3に記載のポリアミド酸の製造方法。
  8.  1,4-シクロヘキサンジアミンとビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から選ばれる少なくとも1つを含むテトラカルボン酸二無水物とを反応させて下記式(3a)で表される構造単位を含むポリアミド酸(1)を製造する工程、
     1,4-ビス(アミノメチル)シクロヘキサンとビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、および2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から選ばれる少なくとも1つを含むテトラカルボン酸二無水物とを反応させて下記式(3b)で表される構造単位を含むポリアミド酸(2)を製造する工程、
     ポリアミド酸(1)とポリアミド酸(2)とを、下記式(3a)で表される構造単位/下記式(3b)で表される構造単位のモル比が99.9/0.1~50.0/50.0の範囲となるように混合してポリアミド酸混合物を製造する工程、および
     上記ポリアミド酸混合物のイミド化を行う工程を含む請求項1に記載のポリイミドの製造方法。
    Figure JPOXMLDOC01-appb-C000009
    (上記式(3a)および(3b)において、Rは下記式(x1)、(x2)、または(x3)で表される基であり、
    Figure JPOXMLDOC01-appb-C000010
    上記式(x1)、(x2)、および(x3)において、*は、Rに隣接するC=Oの炭素原子に結合する炭素原子を示し、Rがポリマー中に複数含まれる場合には、それらの基は同一でも異なっていてもよい。)
  9.  請求項3に記載のポリアミド酸と溶媒とを含むポリアミド酸ワニス。
  10.  請求項3に記載のポリアミド酸を含むドライフィルム。
  11.  請求項1に記載のポリイミド組成物を含むフィルム。
  12.  請求項11に記載のフィルムを含む光学フィルム。
  13.  請求項12に記載の光学フィルムを含むフレキシブルディスプレイ用基板。
PCT/JP2014/062474 2013-05-14 2014-05-09 透明ポリイミドおよびその前駆体 WO2014185353A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157029919A KR101787862B1 (ko) 2013-05-14 2014-05-09 투명 폴리이미드 및 그의 전구체
CN201480022616.7A CN105143309B (zh) 2013-05-14 2014-05-09 透明聚酰亚胺及其前体
JP2015517057A JP5931286B2 (ja) 2013-05-14 2014-05-09 透明ポリイミドおよびその前駆体
US14/889,393 US9850346B2 (en) 2013-05-14 2014-05-09 Transparent polyimide and precursor thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013102200 2013-05-14
JP2013-102200 2013-05-14

Publications (1)

Publication Number Publication Date
WO2014185353A1 true WO2014185353A1 (ja) 2014-11-20

Family

ID=51898331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062474 WO2014185353A1 (ja) 2013-05-14 2014-05-09 透明ポリイミドおよびその前駆体

Country Status (6)

Country Link
US (1) US9850346B2 (ja)
JP (1) JP5931286B2 (ja)
KR (1) KR101787862B1 (ja)
CN (1) CN105143309B (ja)
TW (1) TWI613233B (ja)
WO (1) WO2014185353A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016561A1 (ja) * 2016-07-22 2018-01-25 三井化学株式会社 医療用フィルム及びその製造方法、医療用コーティング組成物、医療用具及びその製造方法
JP2018197822A (ja) * 2017-05-24 2018-12-13 三井化学株式会社 液晶素子及びその製造方法
WO2019074047A1 (ja) * 2017-10-12 2019-04-18 三菱瓦斯化学株式会社 ポリイミドワニス組成物、その製造方法、及びポリイミドフィルム
JP2019105830A (ja) * 2017-12-08 2019-06-27 住友化学株式会社 光学積層体
JP2020059785A (ja) * 2018-10-09 2020-04-16 三井化学株式会社 ポリアミド酸およびこれを含むワニス、ならびにポリイミドフィルムの製造方法
US10707491B2 (en) 2016-02-10 2020-07-07 Nec Corporation Binder for secondary battery
WO2022004857A1 (ja) * 2020-07-02 2022-01-06 住友化学株式会社 光学フィルム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI553039B (zh) * 2015-08-31 2016-10-11 長興材料工業股份有限公司 阻障用板及其製備方法、封裝顯示裝置及其製備方法
CN112334521B (zh) * 2018-06-22 2023-05-09 三井化学株式会社 聚酰胺酸及含有其的清漆、膜、触控面板显示器、液晶显示器及有机el显示器
JP7144003B2 (ja) * 2018-08-02 2022-09-29 国立研究開発法人理化学研究所 有機薄膜太陽電池
KR102514272B1 (ko) * 2020-04-29 2023-03-27 에스케이마이크로웍스 주식회사 폴리아마이드계 복합 필름 및 이를 포함한 디스플레이 장치
CN112442201A (zh) * 2020-12-03 2021-03-05 宁波东旭成新材料科技有限公司 一种聚酰亚胺光学反射膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161136A (ja) * 2000-09-14 2002-06-04 Sony Chem Corp ポリイミド前駆体、その製造方法及び感光性樹脂組成物
WO2010100874A1 (ja) * 2009-03-04 2010-09-10 三井化学株式会社 ポリアミド酸およびポリイミド、それらの製造方法、組成物ならびに用途
JP2012255985A (ja) * 2011-06-10 2012-12-27 Mitsui Chemicals Inc 液晶配向剤、液晶配向膜および該液晶配向膜を有する液晶表示素子
WO2013051213A1 (ja) * 2011-10-05 2013-04-11 日立化成デュポンマイクロシステムズ株式会社 高透明ポリイミド
JP2013079344A (ja) * 2011-10-05 2013-05-02 Hitachi Chemical Dupont Microsystems Ltd ポリイミド前駆体、ポリイミド前駆体を含む組成物、及び該組成物から得られる透明ポリイミド成形体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003141936A (ja) 2001-11-02 2003-05-16 Mitsubishi Gas Chem Co Inc 透明導電性フィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161136A (ja) * 2000-09-14 2002-06-04 Sony Chem Corp ポリイミド前駆体、その製造方法及び感光性樹脂組成物
WO2010100874A1 (ja) * 2009-03-04 2010-09-10 三井化学株式会社 ポリアミド酸およびポリイミド、それらの製造方法、組成物ならびに用途
JP2012255985A (ja) * 2011-06-10 2012-12-27 Mitsui Chemicals Inc 液晶配向剤、液晶配向膜および該液晶配向膜を有する液晶表示素子
WO2013051213A1 (ja) * 2011-10-05 2013-04-11 日立化成デュポンマイクロシステムズ株式会社 高透明ポリイミド
JP2013079344A (ja) * 2011-10-05 2013-05-02 Hitachi Chemical Dupont Microsystems Ltd ポリイミド前駆体、ポリイミド前駆体を含む組成物、及び該組成物から得られる透明ポリイミド成形体

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707491B2 (en) 2016-02-10 2020-07-07 Nec Corporation Binder for secondary battery
WO2018016561A1 (ja) * 2016-07-22 2018-01-25 三井化学株式会社 医療用フィルム及びその製造方法、医療用コーティング組成物、医療用具及びその製造方法
JPWO2018016561A1 (ja) * 2016-07-22 2019-03-14 三井化学株式会社 医療用フィルム及びその製造方法、医療用コーティング組成物、医療用具及びその製造方法
US11198280B2 (en) 2016-07-22 2021-12-14 Mitsui Chemicals, Inc. Medical film and method for producing same, medical coating composition, medical device and method for producing same
JP2018197822A (ja) * 2017-05-24 2018-12-13 三井化学株式会社 液晶素子及びその製造方法
WO2019074047A1 (ja) * 2017-10-12 2019-04-18 三菱瓦斯化学株式会社 ポリイミドワニス組成物、その製造方法、及びポリイミドフィルム
JPWO2019074047A1 (ja) * 2017-10-12 2020-09-17 三菱瓦斯化学株式会社 ポリイミドワニス組成物、その製造方法、及びポリイミドフィルム
JP7230820B2 (ja) 2017-10-12 2023-03-01 三菱瓦斯化学株式会社 ポリイミドワニス組成物、その製造方法、及びポリイミドフィルム
JP2019105830A (ja) * 2017-12-08 2019-06-27 住友化学株式会社 光学積層体
JP2020059785A (ja) * 2018-10-09 2020-04-16 三井化学株式会社 ポリアミド酸およびこれを含むワニス、ならびにポリイミドフィルムの製造方法
WO2022004857A1 (ja) * 2020-07-02 2022-01-06 住友化学株式会社 光学フィルム

Also Published As

Publication number Publication date
TWI613233B (zh) 2018-02-01
US9850346B2 (en) 2017-12-26
CN105143309A (zh) 2015-12-09
KR20150132533A (ko) 2015-11-25
CN105143309B (zh) 2017-05-03
US20160115276A1 (en) 2016-04-28
JPWO2014185353A1 (ja) 2017-02-23
JP5931286B2 (ja) 2016-06-08
TW201446840A (zh) 2014-12-16
KR101787862B1 (ko) 2017-11-15

Similar Documents

Publication Publication Date Title
JP5931286B2 (ja) 透明ポリイミドおよびその前駆体
KR101899902B1 (ko) 수지안정성, 내열성이 향상되고 투명성을 갖는 폴리이미드 전구체 수지 조성물, 이를 이용한 폴리이미드 필름 제조방법, 및 이에 의해 제조된 폴리이미드 필름
KR102430152B1 (ko) 폴리아믹산 용액, 이를 이용한 투명 폴리이미드 수지 필름 및 투명 기판
JP5595376B2 (ja) ポリアミド酸およびポリイミド、それらの製造方法、組成物ならびに用途
KR101752079B1 (ko) 블록 폴리이미드 및 블록 폴리아마이드산 이미드, 및 그의 용도
KR102647164B1 (ko) 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
JP7047852B2 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
KR20210047858A (ko) 폴리이미드수지, 폴리이미드바니시 및 폴리이미드필름
WO2020110948A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
KR20200083284A (ko) 폴리이미드 전구체 조성물 및 그것으로부터 생기는 폴리이미드 필름 및 플렉시블 디바이스, 폴리이미드 필름의 제조 방법
JP2020164704A (ja) ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法。
JP7069478B2 (ja) ポリイミド、ポリイミド溶液組成物、ポリイミドフィルム、及び基板
CN114867767A (zh) 聚酰亚胺树脂、聚酰亚胺清漆和聚酰亚胺薄膜
WO2020110947A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP2011148901A (ja) リン含有ジアミンおよびこれより得られるリン含有ポリイミド
JP2022115823A (ja) ポリイミド前駆体及びポリイミド
JP6846148B2 (ja) ポリイミド前駆体溶液及びその製造方法並びにポリイミドフィルムの製造方法及び積層体の製造方法
JP7265864B2 (ja) ポリイミド前駆体及びポリイミド
WO2022091814A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2020067558A1 (ja) ポリイミド前駆体及びそれから生じるポリイミド並びにフレキシブルデバイス
KR20070032246A (ko) 폴리시클릭 폴리이미드 및 그와 관련있는 조성물 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022616.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015517057

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157029919

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14889393

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798100

Country of ref document: EP

Kind code of ref document: A1