WO2014185072A1 - リチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物およびその製造方法、リチウムイオン二次電池用正極の製造方法、並びに、リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物およびその製造方法、リチウムイオン二次電池用正極の製造方法、並びに、リチウムイオン二次電池 Download PDF

Info

Publication number
WO2014185072A1
WO2014185072A1 PCT/JP2014/002554 JP2014002554W WO2014185072A1 WO 2014185072 A1 WO2014185072 A1 WO 2014185072A1 JP 2014002554 W JP2014002554 W JP 2014002554W WO 2014185072 A1 WO2014185072 A1 WO 2014185072A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion secondary
secondary battery
positive electrode
binder
Prior art date
Application number
PCT/JP2014/002554
Other languages
English (en)
French (fr)
Inventor
智也 村瀬
拓己 杉本
郁哉 召田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2015516919A priority Critical patent/JP6394593B2/ja
Priority to US14/890,664 priority patent/US9876231B2/en
Priority to KR1020157032537A priority patent/KR102210264B1/ko
Priority to CN201480027447.6A priority patent/CN105247716B/zh
Publication of WO2014185072A1 publication Critical patent/WO2014185072A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2203Oxides; Hydroxides of metals of lithium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a lithium ion secondary battery positive electrode, a slurry composition for a lithium ion secondary battery positive electrode, a method for producing a slurry composition for a lithium ion secondary battery positive electrode, and a positive electrode for a lithium ion secondary battery.
  • the present invention relates to a manufacturing method and a lithium ion secondary battery.
  • Lithium ion secondary batteries are small and light, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of lithium ion secondary batteries.
  • a positive electrode for a lithium ion secondary battery usually includes a current collector and an electrode mixture layer (positive electrode mixture layer) formed on the current collector.
  • the positive electrode mixture layer is formed, for example, by applying a slurry composition obtained by dispersing a positive electrode active material, a conductive material, a binder, or the like in a dispersion medium on a current collector and drying it.
  • PVDF polyvinylidene fluoride
  • a copolymer containing an acidic functional group-containing monomer unit or the like is used.
  • a dispersion medium used for preparing the slurry composition an organic dispersion medium such as N-methylpyrrolidone is used.
  • a slurry composition having excellent dispersibility of a compounded material such as a binder is required. It has been.
  • the slurry composition using the conventional binder has a problem that aggregates and gels are generated, and the dispersibility of the blended material is lowered. And in the positive electrode prepared using the slurry composition with low dispersibility, the electrical characteristics of the lithium ion secondary battery could not be sufficiently improved.
  • the generation of aggregates and gels in the slurry composition occurs particularly when a positive electrode active material containing nickel (Ni) or manganese (Mn) is used for the purpose of obtaining a high-capacity lithium ion secondary battery. It was easy.
  • the present invention provides a binder composition for a positive electrode of a lithium ion secondary battery that can suppress the generation of aggregates and gels, and is excellent in dispersibility and sufficiently improves the electrical characteristics of the lithium ion secondary battery.
  • An object of the present invention is to provide a slurry composition for a positive electrode of a lithium ion secondary battery and a method for producing the same.
  • the present invention also provides a method for producing a positive electrode for a lithium ion secondary battery capable of sufficiently improving the electrical characteristics of the lithium ion secondary battery and a lithium ion secondary battery excellent in electrical characteristics. Objective.
  • the inventors of the present invention provide a lithium ion having a predetermined weight average molecular weight and a binder containing a predetermined amount of an ethylenically unsaturated monomer unit having an acidic group, and a predetermined amount of lithium.
  • a lithium ion secondary battery positive electrode prepared by using a binder composition for a secondary battery positive electrode, it was found that the generation of aggregates and gels was suppressed, and good dispersibility was obtained. Was completed.
  • the present invention aims to advantageously solve the above-mentioned problems, and the binder composition for a lithium ion secondary battery positive electrode according to the present invention includes a binder and an organic dispersion medium.
  • the binder has a weight average molecular weight of 100,000 to 2,000,000, and the binder contains 10 to 35% by mass of an ethylenically unsaturated monomer unit having an acidic group, It is characterized by containing 0.6 to 1.5 equivalents of lithium with respect to the acidic group.
  • the slurry composition for lithium ion secondary battery positive electrodes of this invention contains the said binder composition for lithium ion secondary battery positive electrodes, a positive electrode active material, and a electrically conductive material, It is characterized by the above-mentioned.
  • a binder having a predetermined weight average molecular weight and containing a predetermined amount of an ethylenically unsaturated monomer unit having an acidic group is used, and the binding group has an acidic group.
  • the slurry composition for a positive electrode of a lithium ion secondary battery that can suppress the generation of aggregates and gels and is excellent in dispersibility Is obtained. And if the positive electrode for lithium ion secondary batteries prepared using the said slurry composition for lithium ion secondary battery positive electrodes is used, the electrical property of a lithium ion secondary battery can fully be improved.
  • the slurry composition for a lithium ion secondary battery positive electrode of the present invention preferably has a TI value (ratio of viscosity at 6 rpm to viscosity at 60 rpm) of 1 to 4 measured with a B-type viscometer. If the TI value of the lithium ion secondary battery positive electrode slurry composition is 1 or more and 4 or less, the lithium ion secondary battery positive electrode slurry composition can be satisfactorily applied to a substrate such as a current collector. Therefore, a uniform positive electrode mixture layer can be formed.
  • a positive electrode for a lithium ion secondary battery having a uniform positive electrode mixture layer is prepared to further improve the electrical characteristics of the lithium ion secondary battery. Can be made.
  • the binder contains 50 to 85% by mass of a (meth) acrylate monomer unit.
  • the content of the (meth) acrylate monomer unit is 50 to 85% by mass, a lithium ion secondary battery positive electrode slurry composition having excellent coating properties can be obtained, and the lithium ion secondary battery positive electrode The flexibility of the positive electrode for a lithium ion secondary battery prepared using the slurry composition for a battery can be improved.
  • the acidic group preferably contains at least one of a carboxylic acid group and a sulfonic acid group.
  • the acidic group contains at least one of a carboxylic acid group and a sulfonic acid group, the dispersibility of the slurry composition for a lithium ion secondary battery positive electrode can be further improved.
  • the degree of swelling of the electrolytic solution of the binder is preferably 1 to 5 times. If the electrolyte swelling degree is 1 to 5 times, sufficient peel strength of the positive electrode for lithium ion secondary battery prepared using the slurry composition for positive electrode of lithium ion secondary battery is ensured, and cycle characteristics are reduced. Can be suppressed.
  • the said positive electrode active material is lithium nickel complex oxide.
  • the generation of aggregates and gels is sufficiently suppressed. For this reason, it is possible to achieve a sufficiently high capacity of a lithium ion secondary battery using a lithium nickel composite oxide as a positive electrode active material and using a positive electrode for a lithium ion secondary battery.
  • lithium nickel composite oxide refers to a lithium-containing composite oxide of Co—Ni—Mn, a lithium-containing composite oxide of Ni—Mn—Al, and a lithium-containing composite oxide of Ni—Co—Al. It refers to a lithium-containing composite oxide containing nickel, such as a product.
  • the manufacturing method of the slurry composition for lithium ion secondary battery positive electrodes of this invention contains a binder and an organic dispersion medium.
  • the lithium dispersion is added to the aqueous dispersion to adjust the pH to 7.5 or more, the weight average molecular weight is 100,000 to 2,000,000, and the ethylenically unsaturated monomer having an acidic group Contains 10-35 mass% body units
  • the manufacturing method of the positive electrode for lithium ion secondary batteries of this invention is any of the said slurry composition for lithium ion secondary battery positive electrodes.
  • a positive electrode mixture layer is formed on the current collector by coating the current on the current collector and drying.
  • the positive electrode mixture layer is formed using the above-described slurry composition for a positive electrode of a lithium ion secondary battery, the lithium ion secondary battery that can sufficiently improve the electrical characteristics of the lithium ion secondary battery.
  • a positive electrode for a battery is obtained.
  • the lithium ion secondary battery of this invention is a positive electrode for lithium ion secondary batteries obtained by the said manufacturing method, a negative electrode, And an electrolyte solution and a separator.
  • the positive electrode for lithium ion secondary batteries obtained by the manufacturing method mentioned above is used, the lithium ion secondary battery excellent in an electrical property will be obtained.
  • the binder composition for lithium ion secondary battery positive electrodes which can suppress generation
  • a slurry composition for a positive electrode of a lithium ion secondary battery capable of being obtained is obtained.
  • the manufacturing method of the positive electrode for lithium ion secondary batteries which can fully improve the electrical property of a lithium ion secondary battery is obtained.
  • a lithium ion secondary battery having excellent electrical characteristics can be obtained.
  • the binder composition for a lithium ion secondary battery positive electrode of the present invention can be used when preparing the slurry composition for a lithium ion secondary battery positive electrode of the present invention.
  • the slurry composition for lithium ion secondary battery positive electrodes of this invention can be manufactured, for example using the manufacturing method of the slurry composition for lithium ion secondary battery positive electrodes of this invention, The positive electrode of a lithium ion secondary battery Used when forming.
  • the manufacturing method of the positive electrode for lithium ion secondary batteries of this invention manufactures the positive electrode for lithium ion secondary batteries using the slurry composition for lithium ion secondary battery positive electrodes of this invention.
  • the lithium ion secondary battery of the present invention is characterized by using a positive electrode for a lithium ion secondary battery obtained by the method for producing a positive electrode for a lithium ion secondary battery of the present invention.
  • the binder composition for a lithium ion secondary battery positive electrode of the present invention includes a binder and an organic dispersion medium.
  • the binder composition for a lithium ion secondary battery positive electrode of the present invention comprises an ethylenically unsaturated monomer unit having a weight average molecular weight of 100,000 to 2,000,000 and having an acidic group.
  • a polymer containing 10 to 35% by mass is used as a binder, and 0.6 to 1.5 equivalents of lithium with respect to acidic groups is further contained.
  • weight average molecular weight refers to a polystyrene-reduced weight average molecular weight measured using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • including a monomer unit means “a monomer-derived structural unit is contained in a polymer obtained by using the monomer”.
  • the binder is produced by forming a positive electrode mixture layer on a current collector using a slurry composition for a lithium ion secondary battery positive electrode including the binder composition for a lithium ion secondary battery positive electrode of the present invention.
  • the component contained in the positive electrode mixture layer is a component that can be held so as not to be detached from the positive electrode mixture layer.
  • the binder in the positive electrode mixture layer is immersed in the electrolytic solution, the positive electrode active material, the positive electrode active material and the conductive material, or between the conductive materials absorb the electrolytic solution and swell. To prevent the positive electrode active material and the like from falling off the current collector.
  • the binder used in the binder composition for the positive electrode of the lithium ion secondary battery of the present invention comprises a polymer that can be dissolved or dispersed in an organic solvent as an organic dispersion medium.
  • organic solvent examples include N-methyl Examples include pyrrolidone.
  • a polymer may be used individually by 1 type and may be used in combination of 2 or more type.
  • the weight average molecular weight of the binder used for the binder composition for a lithium ion secondary battery positive electrode of the present invention needs to be 100,000 or more and 2,000,000 or less, and is 250,000 or more. It is preferably 500,000 or more, more preferably 700,000 or more, particularly preferably 1,750,000 or less, and further preferably 1,500,000 or less. 1,300,000 or less is particularly preferable.
  • the weight average molecular weight of the binder is less than 100,000, the dispersibility of the slurry composition for a lithium ion secondary battery positive electrode prepared using the binder composition for a lithium ion secondary battery positive electrode decreases, The binding power is reduced.
  • the content of the ethylenically unsaturated monomer unit having an acidic group needs to be 10% by mass or more and 35% by mass or less, and is 15% by mass or more. Is preferably 30% by mass or less, and more preferably 20% by mass or less.
  • the content ratio of the ethylenically unsaturated monomer unit having an acidic group is less than 10% by mass or more than 35% by mass
  • lithium prepared using the binder composition for a lithium ion secondary battery positive electrode Aggregates are generated in the slurry composition for an ion secondary battery positive electrode, and the dispersibility of the slurry composition for a lithium ion secondary battery positive electrode is lowered.
  • a part or all of the acidic groups of the polymer usually form a salt with lithium described later.
  • the monomer capable of forming the ethylenically unsaturated monomer unit having an acidic group is, for example, an ethylenically unsaturated monomer having an acidic group such as a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, or a maleimide group. If it is a saturated monomer, it will not specifically limit.
  • ethylenically unsaturated monomers having a carboxylic acid group as an acidic group include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; ethylene such as maleic acid, fumaric acid, and itaconic acid.
  • unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid
  • ethylene such as maleic acid, fumaric acid, and itaconic acid.
  • Unsaturated dicarboxylic acids partially esterified products of ethylenically unsaturated polyvalent carboxylic acids such as monomethyl maleate and monoethyl itaconate.
  • Examples of the ethylenically unsaturated monomer having a sulfonic acid group as an acidic group include ethylenically unsaturated sulfonic acids such as vinyl sulfonic acid, styrene sulfonic acid, allyl sulfonic acid, and methallyl sulfonic acid; 2-acrylamide-2 -Methylpropanesulfonic acid, sulfobis- (3-sulfopropyl) itaconic acid ester and the like.
  • ethylenically unsaturated monomers having a phosphate group as an acidic group include vinyl phosphonic acid, vinyl phosphate, bis (methacryloxyethyl) phosphate, diphenyl-2-methacryloyloxyethyl phosphate-3-allyloxy-2 -Hydroxypropane phosphate and the like.
  • Examples of the ethylenically unsaturated monomer having a maleimide group as an acidic group include N-vinylmaleimide and N- (4-vinylphenyl) maleimide.
  • an ethylenically unsaturated monomer having an acidic group is used.
  • an ethylenically unsaturated monomer having a carboxylic acid group and an ethylenically unsaturated monomer having a sulfonic acid group such as methacrylic acid, acrylic acid, itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid.
  • methacrylic acid and 2-acrylamido-2-methylpropanesulfonic acid are particularly preferred.
  • the ethylenic unsaturated monomer which has the acidic group mentioned above may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the electrical properties of the lithium ion secondary battery manufactured using the lithium ion secondary battery positive electrode slurry composition, which is prepared by using the lithium ion secondary battery positive electrode binder composition and having improved dispersibility From the viewpoint of improving the characteristics, as the ethylenically unsaturated monomer having an acidic group, an ethylenically unsaturated monomer having a carboxylic acid group such as methacrylic acid is used alone, or methacrylic acid or the like is used.
  • an ethylenically unsaturated monomer having a carboxylic acid group and an ethylenically unsaturated monomer having a sulfonic acid group such as 2-acrylamido-2-methylpropanesulfonic acid.
  • the polymer used as the binder has a carboxylic acid group.
  • the ratio of the amount of the ethylenically unsaturated monomer unit having a sulfonic acid group to the total amount of the ethylenically unsaturated monomer unit and the ethylenically unsaturated monomer unit having a sulfonic acid group is 20% by mass or less. It is preferably 15% by mass or less, more preferably 10% by mass or less.
  • any polymer having an ethylenically unsaturated monomer unit having a weight average molecular weight and an acidic group as described above for example, A diene polymer, an acrylic polymer, a fluoropolymer, a silicon polymer, and the like can be used. Among them, an acrylic polymer is preferably used because of excellent oxidation resistance.
  • the acrylic polymer used as the binder is a polymer containing a (meth) acrylate monomer unit.
  • a polymer containing a (meth) acrylate monomer unit and further containing an ⁇ , ⁇ -unsaturated nitrile monomer unit is preferable.
  • the acrylic polymer containing the monomer unit By using the acrylic polymer containing the monomer unit, the flexibility and binding force of the binder can be further improved.
  • “(meth) acryl” means acryl and / or methacryl.
  • Examples of the (meth) acrylate monomer that can be used in the production of the acrylic polymer include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, Acrylic acid alkyl esters such as heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n -Butyl methacrylate, t-butyl methacrylate, pentyl methacrylate, hexy
  • the alkyl group bonded to the non-carbonyl oxygen atom preferably has 4 to 13 carbon atoms, more preferably n-butyl acrylate or 2-ethylhexyl acrylate, and particularly preferably 2-ethylhexyl acrylate. These may be used alone or in combination of two or more.
  • the content ratio of the (meth) acrylate monomer unit in the acrylic polymer suitably used as the polymer is preferably 50% by mass or more, more preferably 55% by mass or more, still more preferably 60% by mass or more, particularly preferably. Is 65% by mass or more, preferably 85% by mass or less, more preferably 80% by mass or less, still more preferably 75% by mass or less, and particularly preferably 70% by mass or less.
  • the positive electrode for lithium ion secondary batteries obtained using the prepared slurry composition for positive electrodes of lithium ion secondary batteries can be made difficult to break. Further, by making the content ratio 85% by mass or less, it is possible to improve the mechanical strength and binding property as a polymer, and to prepare using a binder composition for a positive electrode of a lithium ion secondary battery.
  • the lithium-ion secondary battery positive electrode slurry composition has a good coating property, and the lithium ion secondary battery positive electrode slurry composition manufactured using the lithium-ion secondary battery positive electrode slurry composition has an electric capacity such as initial capacity and rate characteristics. Characteristics can be improved.
  • Examples of the ⁇ , ⁇ -unsaturated nitrile monomer include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile and the like.
  • acrylonitrile and methacrylonitrile are preferable and acrylonitrile is particularly preferable from the viewpoint of improving mechanical strength and binding properties.
  • these may be used individually by 1 type and may be used in combination of 2 or more types.
  • the content ratio of the ⁇ , ⁇ -unsaturated nitrile monomer unit in the acrylic polymer suitably used as the binder is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 14% by mass. It is above, Preferably it is 30 mass% or less, More preferably, it is 25 mass% or less, More preferably, it is 20 mass% or less, Most preferably, it is 17 mass% or less.
  • the acrylic polymer suitably used as the binder may contain a crosslinkable monomer unit in addition to the monomer unit described above.
  • the crosslinkable monomer include a monomer containing an epoxy group, a monomer containing a carbon-carbon double bond and an epoxy group, a monomer containing a halogen atom and an epoxy group, and N-methylol.
  • examples thereof include a monomer containing an amide group, a monomer containing an oxetanyl group, a monomer containing an oxazoline group, and a polyfunctional monomer having two or more olefinic double bonds.
  • the content ratio of the crosslinkable monomer unit in the acrylic polymer is preferably more than 0% by mass, preferably 10% by mass or less, more preferably 5% by mass or less.
  • the acrylic polymer may contain monomer units derived from monomers other than those described above.
  • monomer units include polymerized units derived from vinyl monomers and hydroxyl group-containing monomer units.
  • vinyl monomers include carboxylic acid esters having two or more carbon-carbon double bonds such as ethylene glycol dimethacrylate and diethylene glycol dimethacrylate; monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; vinyl acetate Vinyl esters such as vinyl propionate and vinyl butyrate; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, and butyl vinyl ether; vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone And heterocycle-containing vinyl compounds such as N-vinylpyrrolidone, vinylpyridine and vinylimidazole.
  • hydroxyl group-containing monomer examples include ethylenically unsaturated alcohols such as (meth) allyl alcohol, 3-buten-1-ol and 5-hexen-1-ol, 2-hydroxyethyl acrylate, and acrylic acid-2- Ethylenic acids such as hydroxypropyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate, di-4-hydroxybutyl maleate and di-2-hydroxypropyl itaconate
  • Alkanol esters of saturated carboxylic acids general formula CH 2 ⁇ CR 1 —COO— (C n H 2n-1 O) m —H (m is an integer from 2 to 9, n is an integer from 2 to 4,
  • R 1 is 2-hydroxyethyl-2 ′-(meth) ester of polyalkylene glycol represented by (representing hydrogen or methyl group) and (meth) acrylic acid )
  • (meth) allyl means allyl and / or methallyl
  • “(meth) acryloyl” means acryloyl and / or methacryloyl. And these may be used individually by 1 type and may be used in combination of 2 or more types.
  • the content ratio of the polymer unit derived from the vinyl monomer and the hydroxyl group-containing monomer unit in the acrylic polymer is preferably more than 0% by mass, preferably 10% by mass or less, more preferably 5% by mass or less.
  • a polymer that can be used as a binder such as the acrylic polymer described above preferably has an electrolyte swelling degree of 1 to 5 times, more preferably 4 times or less, and 3 times. More preferably, it is more preferably 2 times or less. If electrolyte solution swelling degree is 1 time or more, the lithium ion secondary battery positive electrode prepared using the slurry composition for lithium ion secondary battery positive electrode containing the binder composition for lithium ion secondary battery positive electrode is lithium. It can suppress that a polymer melt
  • the degree of swelling of the electrolyte is 5 times or less, the degree of swelling of the binder with respect to the electrolyte is set to an appropriate level, and the lithium ion secondary battery positive electrode containing the binder composition for a lithium ion secondary battery positive electrode
  • the electrical characteristics such as the cycle characteristics of the lithium ion secondary battery produced using the slurry composition can be ensured.
  • the degree of swelling can be appropriately adjusted by changing the polymer preparation conditions (for example, the monomers used, the polymerization conditions, etc.).
  • the “electrolyte swelling degree” can be measured by using the measuring method described in the examples of the present specification.
  • the glass transition temperature (Tg) of the polymer which can be used as a binder is lithium produced using a slurry composition for a lithium ion secondary battery positive electrode including a binder composition for a lithium ion secondary battery positive electrode. It can be appropriately adjusted within a range in which the strength and flexibility of the positive electrode for an ion secondary battery can be ensured, for example, 50 ° C. or less, more preferably ⁇ 50 ° C. to 10 ° C.
  • the production method of the polymer that can be used as the binder such as the above-mentioned acrylic polymer is not particularly limited, and any one of, for example, solution polymerization method, suspension polymerization method, bulk polymerization method, emulsion polymerization method, etc.
  • the method may be used.
  • an emulsion polymerization method using an emulsifier is preferable.
  • addition polymerization such as ionic polymerization, radical polymerization, living radical polymerization and the like can be used.
  • the polymerization initiator known polymerization initiators such as those described in JP 2012-184201 A can be used.
  • the polymer mentioned above is normally manufactured in the state of the dispersion liquid disperse
  • the polymer is obtained as an aqueous dispersion of a polymer by polymerizing a monomer composition obtained by blending the above-described monomers at a desired ratio in water.
  • the polymer obtained in the state of the aqueous dispersion is obtained by, for example, treating a lithium compound described later with water as described in detail in the section “(Method for producing slurry composition for lithium ion secondary battery positive electrode)”.
  • a binder composition for a lithium ion secondary battery positive electrode After adding a predetermined amount to the dispersion and adjusting the pH, water is replaced with an organic dispersion medium to obtain a binder composition for a lithium ion secondary battery positive electrode, and then a slurry composition for a lithium ion secondary battery positive electrode is prepared. Used for. In addition, the abundance ratio of each monomer unit in the polymer is substantially equal to the blending ratio of each monomer.
  • the binder in the slurry composition for lithium ion secondary battery positive electrodes is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, preferably 10 parts by mass or less, per 100 parts by mass of the positive electrode active material. More preferably, it is 5 parts by mass or less.
  • the lithium ion secondary battery positive electrode obtained by using the slurry composition for a lithium ion secondary battery positive electrode containing the binder composition for a lithium ion secondary battery positive electrode is adjusted to lithium ion by adjusting the amount to 10 parts by mass or less.
  • the binder composition for a lithium ion secondary battery positive electrode of the present invention needs to contain 0.6 equivalents or more and 1.5 equivalents or less of lithium with respect to the acidic group of the binder described above. Yes, preferably 0.7 equivalents or more of lithium, more preferably 0.8 equivalents or more of lithium, more preferably 1.2 equivalents or less of lithium, 1.0 equivalents or less More preferably, lithium is contained.
  • a lithium ion secondary battery positive electrode slurry using a lithium ion secondary battery positive electrode binder composition is used.
  • the composition When the composition is prepared, aggregates are generated and the dispersibility of the slurry composition for a lithium ion secondary battery positive electrode is lowered.
  • the solubility of the polymer as the binder in the organic dispersion medium is reduced, and the lithium ion secondary battery positive electrode is used.
  • Aggregates are generated in the slurry composition for a positive electrode of a lithium ion secondary battery prepared using the binder composition.
  • the “equivalent” refers to the molar equivalent of lithium necessary for neutralizing the acidic group of the binder.
  • lithium adds lithium compounds, such as lithium hydroxide, lithium carbonate, lithium hydrogencarbonate, with respect to the aqueous dispersion liquid of the polymer (binder) mentioned above,
  • the aqueous dispersion liquid to which the said lithium compound was added is added. It can be made to contain in a binder composition by using and preparing the binder composition for lithium ion secondary battery positive electrodes.
  • the lithium in the binder composition for a lithium ion secondary battery positive electrode exists, for example, in the form of lithium ions, and part or all of the lithium forms an acid group and a salt of the binder.
  • organic dispersion medium used for the binder composition for a lithium ion secondary battery positive electrode
  • an organic solvent having a polarity capable of dispersing or dissolving the binder can be used.
  • acetonitrile, N-methylpyrrolidone, acetylpyridine, cyclopentanone, dimethylformamide, dimethylsulfoxide, methylformamide, methyl ethyl ketone, furfural, ethylenediamine, and the like can be used as the organic solvent.
  • N-methylpyrrolidone is most preferable as the organic solvent from the viewpoints of ease of handling, safety, and ease of synthesis.
  • the slurry composition for a lithium ion secondary battery positive electrode of the present invention is an organic slurry composition using an organic solvent as a dispersion medium, the above-described binder composition for a lithium ion secondary battery positive electrode, a positive electrode active material, And a conductive material.
  • blended with the slurry composition for lithium ion secondary battery positive electrodes a well-known positive electrode active material can be used, without being specifically limited.
  • a compound containing a transition metal for example, a transition metal oxide, a transition metal sulfide, a composite metal oxide of lithium and a transition metal, or the like can be used.
  • a transition metal Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo etc. are mentioned, for example.
  • transition metal oxide for example, MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , amorphous Examples include MoO 3 , amorphous V 2 O 5 , and amorphous V 6 O 13 .
  • the composite metal oxide of lithium and transition metal include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure. It is done.
  • lithium-containing composite metal oxide having a layered structure examples include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium-containing composite oxide, and Ni—Mn.
  • LiCoO 2 lithium-containing cobalt oxide
  • LiNiO 2 lithium-containing nickel oxide
  • Co—Ni—Mn lithium-containing composite oxide lithium-containing composite oxide
  • Ni—Mn lithium-containing composite oxide of -Al
  • LiMaO 2 and Li 2 MbO 3 examples include xLiMaO 2. (1-x) Li 2 MbO 3 .
  • x represents a number satisfying 0 ⁇ x ⁇ 1
  • Ma represents one or more transition metals having an average oxidation state of 3+
  • Mb represents one or more transition metals having an average oxidation state of 4+.
  • lithium-containing composite metal oxide having a spinel structure examples include lithium manganate (LiMn 2 O 4 ) and compounds in which a part of Mn of lithium manganate (LiMn 2 O 4 ) is substituted with another transition metal.
  • LiMn 2 O 4 lithium manganate
  • LiMn 2 O 4 compounds in which a part of Mn of lithium manganate
  • a specific example is Li s [Mn 2 -t Mc t ] O 4 .
  • Mc represents one or more transition metals having an average oxidation state of 4+.
  • Specific examples of Mc include Ni, Co, Fe, Cu, and Cr.
  • T represents a number satisfying 0 ⁇ t ⁇ 1, and s represents a number satisfying 0 ⁇ s ⁇ 1.
  • a lithium-excess spinel compound represented by Li 1 + x Mn 2 ⁇ x O 4 (0 ⁇ X ⁇ 2) can also be used.
  • Examples of the lithium-containing composite metal oxide having an olivine type structure include olivine type phosphorus represented by Li y MdPO 4 such as olivine type lithium iron phosphate (LiFePO 4 ) and olivine type lithium manganese phosphate (LiMnPO 4 ).
  • An acid lithium compound is mentioned.
  • Md represents one or more transition metals having an average oxidation state of 3+, and examples thereof include Mn, Fe, and Co.
  • Y represents a number satisfying 0 ⁇ y ⁇ 2.
  • Md may be partially substituted with another metal. Examples of the metal that can be substituted include Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B, and Mo.
  • a positive electrode active material It is preferable to use lithium-containing cobalt oxide (LiCoO 2 ) or olivine type lithium iron phosphate (LiFePO 4 ).
  • a lithium nickel composite oxide is used as a positive electrode active material. It is preferable to use a positive electrode active material containing at least one of Mn and Ni such as a product.
  • LiNiO 2 Lithium-excess spinel compound, Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 , Li [Ni 1/3 Co 1/3 Mn 1/3 ] O 2 , Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2, etc. Is more preferably used as the positive electrode active material, and Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 is particularly preferably used as the positive electrode active material.
  • the positive electrode active material containing at least one of Mn and Ni alkali components such as lithium carbonate (Li 2 CO 3 ) and lithium hydroxide (LiOH) used at the time of manufacture remain, so that the positive electrode When an active material is used, gels and aggregates are likely to be generated in the slurry composition for a lithium ion secondary battery positive electrode, usually due to alkali content.
  • a predetermined binder is used, and the lithium content in the binder composition is within a predetermined range. Is suppressed, and the dispersibility can be improved.
  • the compounding amount and particle size of the positive electrode active material are not particularly limited, and can be the same as those of conventionally used positive electrode active materials.
  • the conductive material is for ensuring electrical contact between the positive electrode active materials.
  • the conductive material is not particularly limited, and a known conductive material can be used. Specifically, as the conductive material, acetylene black, ketjen black (registered trademark), furnace black, graphite, carbon fiber, carbon flake, carbon ultrashort fiber (for example, carbon nanotube, vapor grown carbon fiber, etc.), etc.
  • Conductive carbon materials various metal fibers, foils and the like can be used. Among these, the electrical characteristics of the lithium ion secondary battery using the positive electrode for the lithium ion secondary battery formed by using the slurry composition for the positive electrode of the lithium ion secondary battery by improving the electrical contact between the positive electrode active materials.
  • acetylene black is particularly preferably used.
  • these electrically conductive materials may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the blending amount of the conductive material is preferably 1 part by mass or more, more preferably 1.2 parts by mass or more, and preferably 3 parts by mass or less, per 100 parts by mass of the positive electrode active material. It is more preferable that it is 2.8 parts by mass or less. If the blending amount of the conductive material is too small, sufficient electrical contact between the positive electrode active materials cannot be ensured, and sufficient electrical characteristics of the lithium ion secondary battery cannot be ensured. On the other hand, when the blending amount of the conductive material is too large, the stability of the slurry composition for the lithium ion secondary battery positive electrode is lowered and the density of the positive electrode mixture layer in the positive electrode for the lithium ion secondary battery is lowered. The secondary battery cannot have a sufficiently high capacity.
  • the slurry composition for a lithium ion secondary battery positive electrode of the present invention includes, for example, a viscosity modifier, a reinforcing material, an antioxidant, an electrolyte additive having a function of suppressing decomposition of the electrolyte, and the like. It may contain components. As these other components, known ones can be used.
  • the slurry composition of the present invention has a TI value (viscosity at 6 rpm / viscosity at 60 rpm) of 1 or more as a ratio of the viscosity at 6 rpm to the viscosity at 60 rpm measured with a B-type viscometer. Is preferably 1.2 or more, more preferably 1.4 or more, preferably 4 or less, more preferably 3.8 or less, and 3.6 or less. More preferably. If the TI value of the lithium ion secondary battery positive electrode slurry composition is 1 or more and 4 or less, the coating amount of the lithium ion secondary battery positive electrode slurry composition when forming the positive electrode for the lithium ion secondary battery is stabilized.
  • a uniform positive electrode mixture layer can be formed.
  • a lithium ion secondary battery excellent in electrical characteristics can be obtained.
  • the TI value is less than 1, the dilatancy of the lithium ion secondary battery positive electrode slurry composition increases and the fluidity during application deteriorates, so that it is difficult to stabilize the application amount. .
  • the TI value exceeds 4, it becomes difficult to smoothly apply the slurry composition for a positive electrode of a lithium ion secondary battery to a base material such as a current collector.
  • the “TI value” can be measured using the measuring method described in the examples of the present specification.
  • the viscosity at 6 rpm is preferably 1000 mPa ⁇ s or more. It is more preferably 1800 mPa ⁇ s or more, further preferably 2800 mPa ⁇ s or more, preferably 20000 mPa ⁇ s or less, more preferably 17000 mPa ⁇ s or less, and 14000 mPa ⁇ s or less. More preferably.
  • the viscosity at 60 rpm is preferably 1000 mPa ⁇ s or more, more preferably 1500 mPa ⁇ s or more, further preferably 2000 mPa ⁇ s or more, and 5000 mPa ⁇ s or less.
  • it is 4500 mPa ⁇ s or less, more preferably 4000 mPa ⁇ s or less.
  • the TI value and viscosity of the lithium ion secondary battery positive electrode slurry composition are, for example, the solid content concentration in the lithium ion secondary battery positive electrode slurry composition, the blending ratio of each component described above, and the binder. It can be adjusted by changing the molecular weight of the polymer used. Specifically, for example, when the molecular weight of the polymer used as the binder is increased, the TI value increases, and when the amount of acidic groups in the polymer used as the binder is increased, the TI value decreases.
  • the slurry composition for a lithium ion secondary battery positive electrode of the present invention can be prepared by dispersing each of the above components in an organic solvent as a dispersion medium.
  • the slurry composition for a lithium ion secondary battery positive electrode is prepared, for example, by preparing in advance a binder composition for a lithium ion secondary battery positive electrode containing a binder and an organic solvent as an organic dispersion medium.
  • lithium ion secondary battery positive electrode binder composition preparation step then lithium ion secondary battery positive electrode binder composition, positive electrode active material, conductive material, optionally other components and additions It can be prepared by mixing with an organic dispersion medium (mixing step).
  • a known mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, or a fill mix can be used.
  • the additional organic dispersion medium the same organic dispersion medium used for preparing the binder composition for the positive electrode of the lithium ion secondary battery can be used.
  • the binder composition for lithium ion secondary battery positive electrodes mentioned above can be prepared as follows, for example. That is, as described above, the polymer used as the binder is obtained in the state of an aqueous dispersion.
  • the binder composition for a positive electrode of the lithium ion secondary battery of the present invention needs to contain 0.6 to 1.5 equivalents of lithium with respect to the acidic group of the binder.
  • a polymer used as a binder for example, lithium hydroxide or the like is used for an aqueous dispersion having a pH of about 3.5.
  • the lithium compound is added so that lithium has a predetermined equivalent to the acidic group, and the pH of the aqueous dispersion is adjusted to 7.5 or more.
  • a polymer having a weight average molecular weight of 100,000 to 2,000,000 and containing 10 to 35% by mass of an ethylenically unsaturated monomer unit having an acidic group, and 0 to the acidic group A pH-adjusted aqueous dispersion containing 6 to 1.5 equivalents of lithium is obtained.
  • pH adjustment may be performed using only a lithium compound, and may be performed using other compounds, such as sodium hydroxide. Thereafter, the water in the pH-adjusted water dispersion is replaced with an organic dispersion medium.
  • the binder composition for a lithium ion secondary battery positive electrode of the present invention containing lithium is provided.
  • the slurry composition for lithium ion secondary battery positive electrodes containing the binder composition for said lithium ion secondary battery positive electrodes can be prepared easily.
  • the replacement of water with the organic dispersion medium is performed, for example, by adding an organic dispersion medium having a boiling point higher than that of water and then evaporating all the water and a part of the organic dispersion medium under reduced pressure. Can do.
  • the residual monomer may be evaporated together with water, and the residual monomer may be removed simultaneously. If substitution of water using an organic dispersion medium and removal of residual monomer are performed simultaneously, a slurry composition for a lithium ion secondary battery positive electrode can be efficiently produced.
  • the pH of the pH-adjusted aqueous dispersion needs to be 7.5 or more, preferably 7.8 or more, more preferably 8 or more, and preferably 12 or less.
  • the pH of the pH-adjusted water dispersion is less than 7.5 or more than 12, there is a possibility that aggregates are generated and the dispersibility of the lithium ion secondary battery positive electrode slurry composition is lowered.
  • the positive electrode for a lithium ion secondary battery can be produced by the method for producing a positive electrode for a lithium ion secondary battery of the present invention using the slurry composition for a positive electrode of the lithium ion secondary battery of the present invention.
  • the positive electrode for lithium ion secondary batteries manufactured by the manufacturing method of the positive electrode for lithium ion secondary batteries of this invention is equipped with a collector and the positive mix layer formed on the collector, and is positive electrode
  • the composite material layer includes at least a positive electrode active material, a conductive material, and a binder.
  • the positive electrode active material, the conductive material, and the binder contained in the positive electrode are those contained in the slurry composition for a lithium ion secondary battery positive electrode of the present invention.
  • the abundance ratio is the same as the preferred abundance ratio of each component in the slurry composition for a positive electrode of the lithium ion secondary battery of the present invention.
  • the positive electrode for a lithium ion secondary battery produced by the method for producing a positive electrode for a lithium ion secondary battery of the present invention comprises the above-described slurry composition for a positive electrode of the lithium ion secondary battery of the present invention. Therefore, the electrical characteristics of the lithium ion secondary battery can be sufficiently improved.
  • the manufacturing method of the positive electrode for lithium ion secondary batteries of this invention is a process (application
  • a method for applying the slurry composition for a lithium ion secondary battery positive electrode on the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition for a lithium ion secondary battery positive electrode may be applied to only one surface of the current collector or may be applied to both surfaces. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the positive electrode mixture layer obtained by drying.
  • an electrically conductive and electrochemically durable material is used as the current collector to which the slurry composition for a lithium ion secondary battery positive electrode is applied.
  • a current collector made of aluminum or an aluminum alloy can be used as the current collector.
  • aluminum and an aluminum alloy may be used in combination, or different types of aluminum alloys may be used in combination.
  • Aluminum and aluminum alloys are excellent current collector materials because they have heat resistance and are electrochemically stable.
  • the method for drying the positive electrode slurry composition for the lithium ion secondary battery on the current collector is not particularly limited, and a known method can be used. For example, drying with warm air, hot air, low-humidity air, vacuum drying, infrared rays And a drying method by irradiation with electron beam or the like.
  • a positive electrode mixture layer is formed on the current collector, and the lithium ion provided with the current collector and the positive electrode mixture layer A positive electrode for a secondary battery can be obtained.
  • the positive electrode mixture layer may be subjected to pressure treatment using a die press or a roll press. By the pressure treatment, the adhesion between the positive electrode mixture layer and the current collector can be improved. Furthermore, when the positive electrode mixture layer contains a curable polymer, the polymer is preferably cured after the positive electrode mixture layer is formed.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the lithium ion secondary battery manufactured by the method for manufacturing a positive electrode for a lithium ion secondary battery of the present invention as a positive electrode.
  • the positive electrode is used.
  • the lithium ion secondary battery of this invention uses the positive electrode for lithium ion secondary batteries manufactured by the manufacturing method of the positive electrode for lithium ion secondary batteries of this invention, the outstanding electrical property is acquired. .
  • a negative electrode of a lithium ion secondary battery a known negative electrode used as a negative electrode for a lithium ion secondary battery can be used.
  • the negative electrode for example, a negative electrode made of a thin plate of metallic lithium or a negative electrode formed by forming a negative electrode mixture layer on a current collector can be used.
  • a collector what consists of metal materials, such as iron, copper, aluminum, nickel, stainless steel, titanium, a tantalum, gold
  • the negative electrode mixture layer a layer containing a negative electrode active material and a binder can be used.
  • the binder is not particularly limited, and any known material can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used as the supporting electrolyte.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable because it is easily dissolved in a solvent and exhibits a high degree of dissociation.
  • electrolyte may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • the lithium ion conductivity can be adjusted depending on the type of solvent.
  • the concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. For example, it is preferably 0.5 to 15% by mass, more preferably 2 to 13% by mass, and 5 to 10% by mass. Is more preferable. Further, known additives such as fluoroethylene carbonate and ethyl methyl sulfone may be added to the electrolytic solution.
  • ⁇ Separator> As the separator, for example, those described in JP 2012-204303 A can be used. Among these, the film thickness of the entire separator can be reduced, thereby increasing the ratio of the electrode active material in the secondary battery and increasing the capacity per volume.
  • a microporous film made of a resin such as polyethylene, polypropylene, polybutene, or polyvinyl chloride is preferable.
  • a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the battery shape as necessary, and placed in the battery container. It can manufacture by inject
  • an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary.
  • the shape of the secondary battery may be any of, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
  • the weight average molecular weight of the polymer (binder) contained in the binder composition for the positive electrode of a lithium ion secondary battery was measured by gel permeation chromatography using a LiBr-NMP solution having a concentration of 10 mM under the following measurement conditions ( GPC).
  • a circular sample having a diameter of 16 mm was punched out of the obtained polymer film, and the weight was measured (weight is assumed to be “A”).
  • the punched circular sample was immersed in 20 g of the nonaqueous electrolytic solution at 60 ° C. for 72 hours.
  • the viscosity measurement temperature of the slurry composition for a lithium ion secondary battery positive electrode was 25 ° C.
  • ⁇ Dispersibility> 1 g of the prepared lithium ion secondary battery positive electrode slurry composition was dropped into the deepest groove of a grind gauge (as defined in JIS K5101), and then the scraper was swept from the deep side toward the depth of 0 ⁇ m. The slurry film surface stretched by the above was visually confirmed.
  • the graduation at the position where three or more streaks of 1 cm or more occurred was read, and the granular trace
  • the scale at the position where 5 to 10 dots were generated in a 3 mm wide band was read.
  • the dispersibility of the slurry composition for a lithium ion secondary battery positive electrode was evaluated according to the following criteria. It shows that the dispersibility of the slurry composition for lithium ion secondary battery positive electrodes is excellent, so that the numerical value of a scale is small.
  • the rate characteristics were evaluated according to the following criteria. The larger the value of the charge / discharge rate characteristic, the smaller the internal resistance, indicating that high-speed charge / discharge is possible.
  • B The charge / discharge rate characteristic is 75% or more and less than 80%.
  • C The charge / discharge rate characteristic is 70% or more and less than 75%.
  • D The charge / discharge rate characteristic is less than 70%.
  • ⁇ Cycle characteristics About 10 cells of the manufactured pouch type lithium ion secondary battery, charging and discharging 50 times in a 60 ° C. atmosphere at a constant current of 0.2 C to 4.2 V and discharging to 0.2 V at a constant current of 0.2 C (50 cycles)
  • the discharge capacity) ⁇ 100%) was defined as the charge / discharge capacity retention rate, and the cycle characteristics were evaluated according to the following criteria. The higher the charge / discharge capacity retention value, the better the high-temperature cycle characteristics.
  • Polymerization was carried out by heating at 80 ° C. for 3 hours for 3 hours, and an aqueous dispersion of an acidic group-containing acrylic polymer (pH: 3 .5) was obtained.
  • the polymerization conversion rate determined from the solid content concentration was 96%.
  • the lithium amount with respect to acidic groups in the aqueous dispersion is 0.9 equivalent. 1.6% of a lithium hydroxide aqueous solution was added in terms of solid content to adjust the pH to 8.5.
  • ⁇ Preparation of negative electrode for lithium ion secondary battery> A mixture of 90 parts of spherical artificial graphite (volume average particle diameter: 12 ⁇ m) and 10 parts of SiO x (volume average particle diameter: 10 ⁇ m) as the negative electrode active material, 1 part of styrene butadiene polymer as the binder, and carboxy as the thickener
  • a slurry composition for a negative electrode of a lithium ion secondary battery was prepared by stirring 1 part of methylcellulose and an appropriate amount of water as a dispersion medium with a planetary mixer. Next, a copper foil having a thickness of 15 ⁇ m was prepared as a current collector.
  • the said slurry composition for lithium ion secondary battery negative electrodes was apply
  • the negative electrode original fabric was obtained by heat-processing at 150 degreeC for 2 hours.
  • This negative electrode original fabric was rolled with a roll press to produce a sheet-like negative electrode comprising a negative electrode mixture layer having a density of 1.8 g / cm 3 and a copper foil. And the sheet-like negative electrode was cut
  • the produced positive electrode for a lithium ion secondary battery and the negative electrode for a lithium ion secondary battery were wound using a core having a diameter of 20 mm with a separator (a polypropylene microporous film having a thickness of 20 ⁇ m) interposed therebetween to obtain a wound body. Obtained.
  • the obtained wound body was compressed from one direction until the thickness became 4.5 mm at a speed of 10 mm / second.
  • the wound body after compression had an elliptical shape in plan view, and the ratio of the major axis to the minor axis (major axis / minor axis) was 7.7.
  • 2% by volume of vinylene carbonate was added as an additive
  • This lithium ion secondary battery is a pouch having a width of 35 mm, a height of 48 mm, and a thickness of 5 mm, and the nominal capacity of the battery is 700 mAh.
  • the obtained lithium ion secondary battery was evaluated for initial capacity, rate characteristics, and cycle characteristics. The results are shown in Table 1.
  • Example 2 Except that the blending amounts of methacrylic acid and 2-acrylamido-2-methylpropanesulfonic acid at the time of preparing the binder composition for the positive electrode of the lithium ion secondary battery were changed as shown in Table 1, the same procedure as in Example 1 was performed. Production and evaluation of binder composition for positive electrode of lithium ion secondary battery, slurry composition for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery was done. The results are shown in Table 1.
  • Example 6 Except for changing the amount of lithium hydroxide aqueous solution added at the time of preparing the binder composition for a lithium ion secondary battery positive electrode and changing the lithium amount and pH relative to the acidic group as shown in Table 1, the same as in Example 1 A lithium ion secondary battery positive electrode binder composition, a lithium ion secondary battery positive electrode slurry composition, a lithium ion secondary battery positive electrode, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery. Evaluation was performed. The results are shown in Table 1.
  • a material composition, a slurry composition for a lithium ion secondary battery positive electrode, a positive electrode for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced and evaluated. The results are shown in Table 1.
  • Example 11 to 12 The binder composition for a lithium ion secondary battery positive electrode was the same as in Example 1 except that the amount of acrylonitrile at the time of preparing the binder composition for a lithium ion secondary battery positive electrode was changed as shown in Table 1.
  • a lithium ion secondary battery positive electrode slurry composition, a lithium ion secondary battery positive electrode, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery were produced and evaluated. The results are shown in Table 1.
  • Example 13 Binder composition for a lithium ion secondary battery positive electrode in the same manner as in Example 1, except that the blending amount of t-dodecyl mercaptan at the time of preparing the binder composition for a lithium ion secondary battery positive electrode was 0.1 part.
  • Products, slurry compositions for positive electrodes of lithium ion secondary batteries, positive electrodes for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries were evaluated. The results are shown in Table 1.
  • Example 14 A binder composition for a lithium ion secondary battery positive electrode, a lithium ion secondary battery, in the same manner as in Example 1, except that no molecular weight modifier was blended when preparing the binder composition for a lithium ion secondary battery positive electrode.
  • a slurry composition for positive electrode, a positive electrode for lithium ion secondary battery, a negative electrode for lithium ion secondary battery, and a lithium ion secondary battery were produced and evaluated. The results are shown in Table 1.
  • Example 15 Except for using 100 parts of lithium cobaltate LiCoO 2 as the positive electrode active material, the same as in Example 1, the binder composition for the positive electrode of the lithium ion secondary battery, the slurry composition for the positive electrode of the lithium ion secondary battery, the lithium ion A positive electrode for a secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery were manufactured and evaluated. The results are shown in Table 1.
  • Example 3 (Comparative Examples 3 to 4) The same as in Example 1 except that the amount of the lithium hydroxide aqueous solution added during the preparation of the binder composition for the lithium ion secondary battery positive electrode was changed, and the lithium amount and pH with respect to the acidic groups were changed as shown in Table 2.
  • Binder composition for a lithium ion secondary battery positive electrode in the same manner as in Example 1 except that the blending amount of t-dodecyl mercaptan at the time of preparing the binder composition for a lithium ion secondary battery positive electrode was 0.3 parts.
  • Products, slurry compositions for positive electrodes of lithium ion secondary batteries, positive electrodes for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries were evaluated. The results are shown in Table 2.
  • Example 6 A binder composition for a lithium ion secondary battery positive electrode in the same manner as in Example 1, except that 0.03 part of allyl methacrylate was used as a molecular weight modifier during the preparation of the binder composition for a lithium ion secondary battery positive electrode, A slurry composition for a lithium ion secondary battery positive electrode, a positive electrode for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced and evaluated. The results are shown in Table 2.
  • a lithium ion secondary battery positive electrode comprising a binder having a predetermined weight average molecular weight and a predetermined amount of an ethylenically unsaturated monomer unit having an acidic group, and a predetermined amount of lithium
  • the slurry composition for a lithium ion secondary battery positive electrode using the binder composition for a battery has excellent dispersibility, and the lithium ion secondary battery produced using the lithium ion secondary battery positive electrode slurry composition is It can be seen that the electrical characteristics are excellent.
  • a binder for a lithium ion secondary battery positive electrode including a binder that does not have a predetermined weight average molecular weight and a binder that does not contain a predetermined amount of an ethylenically unsaturated monomer unit having an acidic group.
  • Slurry composition for positive electrode of lithium ion secondary battery using material composition and slurry composition for positive electrode of lithium ion secondary battery using binder composition for positive electrode of lithium ion secondary battery not containing a predetermined amount of lithium Is poor in dispersibility and it can be seen that the lithium ion secondary battery produced using the slurry composition for a positive electrode of the lithium ion secondary battery has poor electrical characteristics.
  • the dispersibility of the lithium ion secondary battery positive electrode slurry composition and the lithium ion secondary battery were changed by changing the ratio of the monomer units contained in the binder. It can be seen that the electrical characteristics of the secondary battery can be further improved. Further, from Examples 1 and 6 to 8 in Table 1, the dispersibility of the slurry composition for a lithium ion secondary battery positive electrode by changing the lithium content of the binder composition for a lithium ion secondary battery positive electrode and It can be seen that the electrical characteristics of the lithium ion secondary battery can be further improved. Further, from Examples 1 and 13 to 14 in Table 1, the dispersibility of the slurry composition for the lithium ion secondary battery positive electrode and the electrical characteristics of the lithium ion secondary battery are further improved by changing the molecular weight of the binder. You can see that
  • the binder composition for lithium ion secondary battery positive electrodes which can suppress generation
  • a slurry composition for a positive electrode of a lithium ion secondary battery capable of being obtained is obtained.
  • the manufacturing method of the positive electrode for lithium ion secondary batteries which can fully improve the electrical property of a lithium ion secondary battery is obtained.
  • a lithium ion secondary battery having excellent electrical characteristics can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明のリチウムイオン二次電池正極用結着材組成物は、結着材と、有機分散媒とを含み、結着材の重量平均分子量が100,000~2,000,000であり、結着材が、酸性基を有するエチレン性不飽和単量体単位を10~35質量%含有し、酸性基に対し、0.6~1.5当量のリチウムを含む。また、本発明のリチウムイオン二次電池正極用スラリー組成物は、当該結着材組成物と、正極活物質と、導電材とを含む。

Description

リチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物およびその製造方法、リチウムイオン二次電池用正極の製造方法、並びに、リチウムイオン二次電池
 本発明は、リチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池正極用スラリー組成物の製造方法、リチウムイオン二次電池用正極の製造方法およびリチウムイオン二次電池に関するものである。
 リチウムイオン二次電池は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、リチウムイオン二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
 ここで、リチウムイオン二次電池用の正極は、通常、集電体と、集電体上に形成された電極合材層(正極合材層)とを備えている。この正極合材層は、例えば、正極活物質、導電材、結着材などを分散媒に分散させてなるスラリー組成物を集電体上に塗布し、乾燥させることにより形成される。
 そして、従来、正極合材層の形成に使用されるスラリー組成物に配合する結着材としては、ポリフッ化ビニリデン(PVDF)や、酸性官能基含有単量体単位を含む共重合体などが用いられている(例えば、特許文献1、2参照)。また、スラリー組成物の調製に使用する分散媒としては、N-メチルピロリドンなどの有機分散媒が用いられている。
特許第4438104号公報 特許第4904709号公報
 ここで、正極合材層を良好に形成した正極を調製して電気的特性に優れるリチウムイオン二次電池を得る観点からは、結着材などの配合材料の分散性に優れるスラリー組成物が求められている。
 しかし、上記従来の結着材を用いたスラリー組成物には、凝集物やゲルが発生し、配合材料の分散性が低下するという問題があった。そして、分散性の低いスラリー組成物を用いて調製した正極では、リチウムイオン二次電池の電気的特性を十分に向上させることができなかった。
 なお、スラリー組成物における凝集物やゲルの発生は、高容量のリチウムイオン二次電池を得ることを目的としてニッケル(Ni)やマンガン(Mn)を含有する正極活物質を使用した際に特に起こり易かった。
 そこで、本発明は、凝集物やゲルの発生を抑制できるリチウムイオン二次電池正極用結着材組成物、並びに、分散性に優れ、リチウムイオン二次電池の電気的特性を十分に向上させることが可能なリチウムイオン二次電池正極用スラリー組成物およびその製造方法を提供することを目的とする。
 また、本発明は、リチウムイオン二次電池の電気的特性を十分に向上させることが可能なリチウムイオン二次電池用正極の製造方法および電気的特性に優れるリチウムイオン二次電池を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行った。そして、本発明者らは、所定の重量平均分子量を有し、且つ、酸性基を有するエチレン性不飽和単量体単位を所定量含有する結着材と、所定量のリチウムとを含むリチウムイオン二次電池正極用結着材組成物を用いて調製したリチウムイオン二次電池正極用スラリー組成物では、凝集物やゲルの発生が抑制され、良好な分散性が得られることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池正極用結着材組成物は、結着材と、有機分散媒とを含み、前記結着材の重量平均分子量が100,000~2,000,000であり、前記結着材が、酸性基を有するエチレン性不飽和単量体単位を10~35質量%含有し、前記酸性基に対し、0.6~1.5当量のリチウムを含むことを特徴とする。
 そして、本発明のリチウムイオン二次電池正極用スラリー組成物は、上記リチウムイオン二次電池正極用結着材組成物と、正極活物質と、導電材とを含むことを特徴とする。
 このように、所定の重量平均分子量を有し、且つ、酸性基を有するエチレン性不飽和単量体単位を所定量含有する結着材を使用すると共に、結着材の酸性基に対して所定量のリチウムを含有させたリチウムイオン二次電池正極用結着材組成物を用いれば、凝集物やゲルの発生を抑制することができ、分散性に優れるリチウムイオン二次電池正極用スラリー組成物が得られる。そして、当該リチウムイオン二次電池正極用スラリー組成物を用いて調製したリチウムイオン二次電池用正極を使用すれば、リチウムイオン二次電池の電気的特性を十分に向上させることができる。
 ここで、本発明のリチウムイオン二次電池正極用スラリー組成物は、B型粘度計で測定したTI値(60rpmでの粘度に対する6rpmでの粘度の比)が1~4であることが好ましい。リチウムイオン二次電池正極用スラリー組成物のTI値が1以上4以下であれば、当該リチウムイオン二次電池正極用スラリー組成物を集電体などの基材に対して良好に塗布することができるので、均一な正極合材層を形成することができる。従って、当該リチウムイオン二次電池正極用スラリー組成物を使用すれば、均一な正極合材層を有するリチウムイオン二次電池用正極を調製して、リチウムイオン二次電池の電気的特性を更に向上させることができる。
 また、本発明のリチウムイオン二次電池正極用スラリー組成物は、前記結着材が、(メタ)アクリレート単量体単位を50~85質量%含有することが好ましい。(メタ)アクリレート単量体単位の含有量を50~85質量%とすれば、塗工性に優れるリチウムイオン二次電池正極用スラリー組成物を得ることができると共に、当該リチウムイオン二次電池正極用スラリー組成物を用いて調製したリチウムイオン二次電池用正極の柔軟性を向上させることができる。
 更に、本発明のリチウムイオン二次電池正極用スラリー組成物は、前記酸性基が、カルボン酸基およびスルホン酸基の少なくとも一方を含むことが好ましい。酸性基がカルボン酸基およびスルホン酸基の少なくとも一方を含む場合、リチウムイオン二次電池正極用スラリー組成物の分散性を更に向上させることができる。
 また、本発明のリチウムイオン二次電池正極用スラリー組成物は、前記結着材の電解液膨潤度が1~5倍であることが好ましい。電解液膨潤度が1~5倍であれば、リチウムイオン二次電池正極用スラリー組成物を用いて調製したリチウムイオン二次電池用正極のピール強度を十分に確保して、サイクル特性の低下を抑制することができる。
 そして、本発明のリチウムイオン二次電池正極用スラリー組成物は、前記正極活物質が、リチウムニッケル複合酸化物であることが好ましい。本発明のリチウムイオン二次電池正極用スラリー組成物では、正極活物質としてリチウムニッケル複合酸化物を使用した場合であっても、凝集物やゲルの発生が十分に抑制される。このため、正極活物質としてリチウムニッケル複合酸化物を使用し、リチウムイオン二次電池用正極を使用したリチウムイオン二次電池の十分な高容量化を実現することができる。
 なお、本発明において、「リチウムニッケル複合酸化物」とは、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物などのニッケルを含むリチウム含有複合酸化物を指す。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池正極用スラリー組成物の製造方法は、結着材と有機分散媒とを含むリチウムイオン二次電池正極用結着材組成物を調製するリチウムイオン二次電池正極用結着材組成物調製工程と、前記リチウムイオン二次電池正極用結着材組成物と、正極活物質と、導電材とを混合する混合工程とを含み、前記リチウムイオン二次電池正極用結着材組成物調製工程は、単量体組成物を重合して、重合体の水分散液を得る工程と、前記水分散液にリチウム化合物を添加してpHを7.5以上に調整し、重量平均分子量が100,000~2,000,000であり、且つ、酸性基を有するエチレン性不飽和単量体単位を10~35質量%含有する重合体と、前記酸性基に対して0.6~1.5当量のリチウムとを含むpH調整水分散液を得る工程と、前記pH調整水分散液中の水を有機分散媒で置換する工程とを含むことを特徴とする。このようにすれば、凝集物やゲルの発生を抑制することができ、分散性に優れるリチウムイオン二次電池正極用スラリー組成物が得られる。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池用正極の製造方法は、上記リチウムイオン二次電池正極用スラリー組成物の何れかを集電体上に塗布し、乾燥することによって集電体上に正極合材層を形成することを特徴とする。このように、上述したリチウムイオン二次電池正極用スラリー組成物を用いて正極合材層を形成すれば、リチウムイオン二次電池の電気的特性を十分に向上させることが可能なリチウムイオン二次電池用正極が得られる。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池は、上記製造方法により得られたリチウムイオン二次電池用正極と、負極と、電解液と、セパレータとを備えることを特徴とする。このように、上述した製造方法により得られたリチウムイオン二次電池用正極を用いれば、電気的特性に優れるリチウムイオン二次電池が得られる。
 本発明によれば、凝集物やゲルの発生を抑制できるリチウムイオン二次電池正極用結着材組成物、および、分散性に優れ、リチウムイオン二次電池の電気的特性を十分に向上させることが可能なリチウムイオン二次電池正極用スラリー組成物が得られる。更に、本発明によれば、リチウムイオン二次電池の電気的特性を十分に向上させることが可能なリチウムイオン二次電池用正極の製造方法が得られる。また、本発明によれば、電気的特性に優れるリチウムイオン二次電池が得られる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明のリチウムイオン二次電池正極用結着材組成物は、本発明のリチウムイオン二次電池正極用スラリー組成物を調製する際に用いることができる。また、本発明のリチウムイオン二次電池正極用スラリー組成物は、例えば本発明のリチウムイオン二次電池正極用スラリー組成物の製造方法を用いて製造することができ、リチウムイオン二次電池の正極を形成する際に用いられる。そして、本発明のリチウムイオン二次電池用正極の製造方法は、本発明のリチウムイオン二次電池正極用スラリー組成物を用いてリチウムイオン二次電池用正極を製造することを特徴とする。また、本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用正極の製造方法により得られたリチウムイオン二次電池用正極を用いたことを特徴とする。
(リチウムイオン二次電池正極用結着材組成物)
 本発明のリチウムイオン二次電池正極用結着材組成物は、結着材と、有機分散媒とを含む。そして、本発明のリチウムイオン二次電池正極用結着材組成物は、重量平均分子量が100,000~2,000,000であり、且つ、酸性基を有するエチレン性不飽和単量体単位を10~35質量%含有する重合体を結着材として使用し、更に、酸性基に対して0.6~1.5当量のリチウムを含有させることを特徴とする。
 なお、本発明において、「重量平均分子量」とは、ゲルパーミネーションクロマトグラフィー(GPC)を用いて測定したポリスチレン換算の重量平均分子量を指す。また、本発明において「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の構造単位が含まれている」ことを意味する。
<結着材>
 結着材は、本発明のリチウムイオン二次電池正極用結着材組成物を含むリチウムイオン二次電池正極用スラリー組成物を用いて集電体上に正極合材層を形成することにより製造した正極において、正極合材層に含まれる成分が正極合材層から脱離しないように保持しうる成分である。一般的に、正極合材層における結着材は、電解液に浸漬された際に、電解液を吸収して膨潤しながらも正極活物質同士、正極活物質と導電材、或いは、導電材同士を結着させ、正極活物質等が集電体から脱落するのを防ぐ。
 本発明のリチウムイオン二次電池正極用結着材組成物に用いる結着材は、有機分散媒としての有機溶媒に溶解または分散可能な重合体よりなり、有機溶媒としては、例えば、N-メチルピロリドンなどが挙げられる。なお、重合体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 そして、本発明のリチウムイオン二次電池正極用結着材組成物に用いる結着材の重量平均分子量は、100,000以上2,000,000以下である必要があり、250,000以上であることが好ましく、500,000以上であることが更に好ましく、700,000以上であることが特に好ましく、1,750,000以下であることが好ましく、1,500,000以下であることが更に好ましく、1,300,000以下であることが特に好ましい。結着材の重量平均分子量が100,000未満の場合、リチウムイオン二次電池正極用結着材組成物を用いて調製したリチウムイオン二次電池正極用スラリー組成物の分散性が低下すると共に、結着力が低下する。そして、その結果、リチウムイオン二次電池正極用スラリー組成物を用いて製造したリチウムイオン二次電池のサイクル特性などの電気的特性が低下する。また、重量平均分子量が2,000,000超の場合、架橋形成などにより、リチウムイオン二次電池正極用結着材組成物を用いて調製したリチウムイオン二次電池正極用スラリー組成物の分散性が低下し、リチウムイオン二次電池正極用スラリー組成物を用いて調製した電極合材層の均一性が低下する。そして、その結果、リチウムイオン二次電池正極用スラリー組成物を用いて製造したリチウムイオン二次電池の初期容量やレート特性などの電気的特性が低下する。
 また、結着材として使用する重合体において、酸性基を有するエチレン性不飽和単量体単位の含有割合は、10質量%以上35質量%以下である必要があり、15質量%以上であることが好ましく、30質量%以下であることが好ましく、20質量%以下であることが更に好ましい。酸性基を有するエチレン性不飽和単量体単位の含有割合が10質量%未満の場合および35質量%超の場合には、リチウムイオン二次電池正極用結着材組成物を用いて調製したリチウムイオン二次電池正極用スラリー組成物に凝集物が発生し、リチウムイオン二次電池正極用スラリー組成物の分散性が低下する。
 なお、上記重合体が有する酸性基の一部または全部は、通常、後述するリチウムと塩を形成している。
 ここで、上記酸性基を有するエチレン性不飽和単量体単位を形成し得る単量体は、例えば、カルボン酸基、スルホン酸基、リン酸基、マレイミド基などの酸性基を有するエチレン性不飽和単量体であれば特に限定されない。
 具体的には、酸性基としてカルボン酸基を有するエチレン性不飽和単量体としては、アクリル酸、メタクリル酸、クロトン酸などの不飽和モノカルボン酸;マレイン酸、フマル酸、イタコン酸などのエチレン性不飽和ジカルボン酸;マレイン酸モノメチル、イタコン酸モノエチルなどのエチレン性不飽和多価カルボン酸の部分エステル化物などが挙げられる。
 また、酸性基としてスルホン酸基を有するエチレン性不飽和単量体としては、ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸などのエチレン性不飽和スルホン酸;2-アクリルアミド-2-メチルプロパンスルホン酸、スルホビス-(3-スルホプロピル)イタコン酸エステルなどが挙げられる。
 更に、酸性基としてリン酸基を有するエチレン性不飽和単量体としては、ビニルホスホン酸、ビニルホスフェート、ビス(メタクリロキシエチル)ホスフェート、ジフェニル-2-メタクリロイロキシエチルホスフェート-3-アリロキシ-2-ヒドロキシプロパンリン酸などが挙げられる。
 そして、酸性基としてマレイミド基を有するエチレン性不飽和単量体としては、N-ビニルマレインイミド、N-(4-ビニルフェニル)マレインイミドなどが挙げられる。
 ここで、リチウムイオン二次電池正極用結着材組成物を用いて得たリチウムイオン二次電池正極用スラリー組成物の分散性を高める観点からは、酸性基を有するエチレン性不飽和単量体としては、カルボン酸基を有するエチレン性不飽和単量体およびスルホン酸基を有するエチレン性不飽和単量体が好ましく、メタクリル酸、アクリル酸、イタコン酸、2-アクリルアミド-2-メチルプロパンスルホン酸がより好ましく、メタクリル酸および2-アクリルアミド-2-メチルプロパンスルホン酸が特に好ましい。
 なお、上述した酸性基を有するエチレン性不飽和単量体は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 ここで、リチウムイオン二次電池正極用結着材組成物を用いて調製することで分散性を高めたリチウムイオン二次電池正極用スラリー組成物を用いて製造したリチウムイオン二次電池の電気的特性を向上する観点からは、酸性基を有するエチレン性不飽和単量体としては、メタクリル酸などのカルボン酸基を有するエチレン性不飽和単量体を単独で用いるか、或いは、メタクリル酸などのカルボン酸基を有するエチレン性不飽和単量体と、2-アクリルアミド-2-メチルプロパンスルホン酸などのスルホン酸基を有するエチレン性不飽和単量体とを組み合わせて用いることが好ましい。そして、カルボン酸基を有するエチレン性不飽和単量体とスルホン酸基を有するエチレン性不飽和単量体とを組み合わせて用いる場合には、結着材として用いる重合体は、カルボン酸基を有するエチレン性不飽和単量体単位とスルホン酸基を有するエチレン性不飽和単量体単位との合計量に対するスルホン酸基を有するエチレン性不飽和単量体単位の量の割合が20質量%以下であることが好ましく、15質量%以下であることが更に好ましく、10質量%以下であることが特に好ましい。
 そして、本発明のリチウムイオン二次電池正極用結着材組成物の結着材としては、上述した重量平均分子量および酸性基を有するエチレン性不飽和単量体単位を有する任意の重合体、例えば、ジエン重合体、アクリル重合体、フッ素重合体、シリコン重合体などを用いることができるが、中でも、耐酸化性に優れることから、アクリル重合体を用いることが好ましい。
 ここで、結着材として用いられるアクリル重合体は、(メタ)アクリレート単量体単位を含む重合体である。その中でも、(メタ)アクリレート単量体単位を含み、更にα,β-不飽和ニトリル単量体単位を含む重合体が好ましい。上記単量体単位を含むアクリル重合体を用いることにより、結着材の柔軟性や結着力をより向上させることができる。
 なお、本発明において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
 上記アクリル重合体の製造に使用可能な(メタ)アクリレート単量体としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステルなどが挙げられる。これらの中でも、正極としてリチウムイオン二次電池に用いた場合に、電解液に溶出せずに電解液に適度に膨潤することにより、良好なイオン伝導性を示し、また電池寿命を長くできることから、非カルボニル性酸素原子に結合するアルキル基の炭素数が4~13のものが好ましく、n-ブチルアクリレート、2-エチルヘキシルアクリレートがより好ましく、2-エチルヘキシルアクリレートが特に好ましい。なお、これらは単独で使用しても、2種以上併用してもよい。
 重合体として好適に用いられるアクリル重合体における、(メタ)アクリレート単量体単位の含有割合は、好ましくは50質量%以上、より好ましくは55質量%以上、更に好ましくは60質量%以上、特に好ましくは65質量%以上であり、好ましくは85質量%以下、より好ましくは80質量%以下、更に好ましくは75質量%以下、特に好ましくは70質量%以下である。(メタ)アクリレート単量体由来の単量体単位の含有割合を50質量%以上にすることにより、重合体の柔軟性を高くし、リチウムイオン二次電池正極用結着材組成物を用いて調製したリチウムイオン二次電池正極用スラリー組成物を用いて得たリチウムイオン二次電池用正極を割れ難くできる。また、含有割合を85質量%以下にすることにより、重合体としての機械的強度と結着性とを向上させることができると共に、リチウムイオン二次電池正極用結着材組成物を用いて調製したリチウムイオン二次電池正極用スラリー組成物の塗工性を良好なものとし、リチウムイオン二次電池正極用スラリー組成物を用いて製造したリチウムイオン二次電池の初期容量やレート特性などの電気的特性を向上させることができる。
 α,β-不飽和ニトリル単量体としては、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-エチルアクリロニトリルなどが挙げられる。これらの中でも、機械的強度および結着性向上の観点からは、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルが特に好ましい。なお、これらは1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 結着材として好適に用いられるアクリル重合体における、α,β-不飽和ニトリル単量体単位の含有割合は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは14質量%以上であり、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下、特に好ましくは17質量%以下である。α,β-不飽和ニトリル単量体単位の含有割合を5質量%以上とすることにより、重合体としての機械的強度を向上させて、正極活物質と集電体または正極活物質同士の密着性を高めることができる。そして、その結果、リチウムイオン二次電池正極用結着材組成物を用いて調製したリチウムイオン二次電池正極用スラリー組成物を用いて製造したリチウムイオン二次電池のサイクル特性などの電気的特性を確保することができる。また、含有割合を30質量%以下とすることにより、結着材の電解液に対する膨潤度を適度な大きさとして、リチウムイオン二次電池正極用結着材組成物を用いて調製したリチウムイオン二次電池正極用スラリー組成物を用いて製造したリチウムイオン二次電池のサイクル特性などの電気的特性を確保することができる。
 ここで、結着材として好適に用いられるアクリル重合体は、上記した単量体単位に加えて、架橋性単量体単位を含んでいてもよい。
 架橋性単量体としては、例えば、エポキシ基を含有する単量体、炭素-炭素二重結合およびエポキシ基を含有する単量体、ハロゲン原子およびエポキシ基を含有する単量体、N-メチロールアミド基を含有する単量体、オキセタニル基を含有する単量体、オキサゾリン基を含有する単量体、2以上のオレフィン性二重結合を持つ多官能性単量体などが挙げられる。
 アクリル重合体における架橋性単量体単位の含有割合は、好ましくは0質量%超であり、好ましくは10質量%以下、より好ましくは5質量%以下である。
 更に、アクリル重合体は、上述したもの以外の単量体由来の単量体単位を含んでいてもよい。このような単量体単位としては、ビニルモノマーに由来する重合単位や水酸基含有単量体単位が挙げられる。
 ビニルモノマーとしては、例えば、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレートなどの2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;が挙げられる。
 水酸基含有単量体としては、(メタ)アリルアルコール、3-ブテン-1-オール、5-ヘキセン-1-オールなどのエチレン性不飽和アルコール、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類、一般式CH2=CR1-COO-(Cn2n-1O)m-H(mは2~9の整数、nは2~4の整数、R1は水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリレート類、2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類、(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、(メタ)アリル-6-ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類、ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコール(メタ)モノアリルエーテル類、グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲンおよびヒドロキシ置換体のモノ(メタ)アリルエーテル、オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテルおよびそのハロゲン置換体、(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類などが挙げられる。
 なお、本発明において、「(メタ)アリル」とは、アリルおよび/またはメタアリルを意味し、「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
 そして、これらは1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 アクリル重合体におけるビニルモノマーに由来する重合単位や水酸基含有単量体単位の含有割合は、好ましくは0質量%超であり、好ましくは10質量%以下、より好ましくは5質量%以下である。
 ここで、上述したアクリル重合体などの結着材として使用し得る重合体は、電解液膨潤度が1倍以上5倍以下であることが好ましく、4倍以下であることがより好ましく、3倍以下であることが更に好ましく、2倍以下であることが特に好ましい。電解液膨潤度が1倍以上であれば、リチウムイオン二次電池正極用結着材組成物を含むリチウムイオン二次電池正極用スラリー組成物を用いて調製したリチウムイオン二次電池用正極をリチウムイオン二次電池に使用した際に重合体が電解液に溶解するのを抑制し、正極のピール強度や、リチウムイオン二次電池のサイクル特性が低下するのを抑制することができる。また、電解液膨潤度が5倍以下であれば、結着材の電解液に対する膨潤度を適度な大きさとして、リチウムイオン二次電池正極用結着材組成物を含むリチウムイオン二次電池正極用スラリー組成物を用いて製造したリチウムイオン二次電池のサイクル特性などの電気的特性を確保することができる。ここで、膨潤度は、重合体の調製条件(例えば、使用する単量体、重合条件など)を変更することにより適宜調整することができる。
 なお、本発明において、「電解液膨潤度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
 なお、結着材として使用し得る重合体のガラス転移温度(Tg)は、リチウムイオン二次電池正極用結着材組成物を含むリチウムイオン二次電池正極用スラリー組成物を用いて製造したリチウムイオン二次電池用正極の強度および柔軟性を確保し得る範囲内で適宜調整することができ、例えば50℃以下、より好ましくは-50℃~10℃である。
 ここで、上述したアクリル重合体などの結着材として使用し得る重合体の製造方法は特に限定はされず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。これらの中でも、乳化剤を用いた乳化重合法が好ましい。
 また、重合方法としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。また、重合開始剤としては、既知の重合開始剤、例えば、特開2012-184201号公報に記載のものを用いることができる。
 そして、上述した重合体は、通常、水系媒体中に分散した分散液の状態で製造される。具体的には、重合体は、上述した各単量体を所望の比率で配合してなる単量体組成物を水中で重合することにより、重合体の水分散液として得られる。そして、水分散液の状態で得られる重合体は、後に「(リチウムイオン二次電池正極用スラリー組成物の製造方法)」の項において詳細に説明するように、例えば、後述するリチウム化合物を水分散液に所定量添加し、pHを調整した後、水を有機分散媒で置換してリチウムイオン二次電池正極用結着材組成物としてから、リチウムイオン二次電池正極用スラリー組成物の調製に用いられる。
 なお、重合体中の各単量体単位の存在割合は、各単量体の配合比率と略等しい。
 なお、本発明のリチウムイオン二次電池正極用結着材組成物を用いてリチウムイオン二次電池正極用スラリー組成物を調製する場合、リチウムイオン二次電池正極用スラリー組成物中の結着材(重合体)の含有量は、固形分換算で、正極活物質100質量部当たり、好ましくは0.1質量部以上、より好ましくは0.5質量部以上であり、好ましくは10質量部以下、より好ましくは5質量部以下である。重合体の含有量を正極活物質100質量部当たり0.1質量部以上とすることにより、正極活物質同士、正極活物質と導電材および正極活物質と集電体の結着性を高めることができるので、リチウムイオン二次電池とした際に、良好な出力特性を得ると共に、電池寿命を長くすることができる。また、10質量部以下とすることにより、リチウムイオン二次電池正極用結着材組成物を含むリチウムイオン二次電池正極用スラリー組成物を用いて得たリチウムイオン二次電池用正極をリチウムイオン二次電池に適用した際に、重合体によりリチウムイオンの移動が阻害されることを防止でき、リチウムイオン二次電池の内部抵抗を小さくできる。
<リチウム>
 ここで、本発明のリチウムイオン二次電池正極用結着材組成物は、上述した結着材が有する酸性基に対して、0.6当量以上1.5当量以下のリチウムを含有する必要があり、0.7当量以上のリチウムを含有することが好ましく、0.8当量以上のリチウムを含有することがより好ましく、1.2当量以下のリチウムを含有することが好ましく、1.0当量以下のリチウムを含有することがより好ましい。酸性基に対するリチウムの含有量が0.6当量未満の場合や、1.5当量超の場合には、リチウムイオン二次電池正極用結着材組成物を用いてリチウムイオン二次電池正極用スラリー組成物を調製すると、凝集物が発生してリチウムイオン二次電池正極用スラリー組成物の分散性が低下する。特に、結着材が有する酸性基に対するリチウムの含有量が1.5当量超の場合には、結着材である重合体の有機分散媒に対する溶解性が低下し、リチウムイオン二次電池正極用結着材組成物を用いて調製したリチウムイオン二次電池正極用スラリー組成物に凝集物が発生する。
 なお、本発明において、「当量」とは、結着材の酸性基を中和するのに必要なリチウムのモル当量を指す。
 そして、リチウムは、上述した重合体(結着材)の水分散液に対し、水酸化リチウム、炭酸リチウム、炭酸水素リチウムなどのリチウム化合物を添加し、当該リチウム化合物を添加された水分散液を用いてリチウムイオン二次電池正極用結着材組成物を調製することにより、結着材組成物中に含有させることができる。
 なお、リチウムイオン二次電池正極用結着材組成物中のリチウムは、例えばリチウムイオンの状態で存在し、その一部または全部が、結着材の酸性基と塩を形成している。
<有機分散媒>
 リチウムイオン二次電池正極用結着材組成物に用いる有機分散媒としては、例えば、結着材を分散または溶解可能な極性を有する有機溶媒を用いることができる。
 具体的には、有機溶媒としては、アセトニトリル、N-メチルピロリドン、アセチルピリジン、シクロペンタノン、ジメチルホルムアミド、ジメチルスルホキシド、メチルホルムアミド、メチルエチルケトン、フルフラール、エチレンジアミンなどを用いることができる。これらの中でも、取扱い易さ、安全性、合成の容易さなどの観点から、有機溶媒としてはN-メチルピロリドンが最も好ましい。
(リチウムイオン二次電池正極用スラリー組成物)
 本発明のリチウムイオン二次電池正極用スラリー組成物は、有機溶媒を分散媒とした有機系スラリー組成物であり、上述したリチウムイオン二次電池正極用結着材組成物と、正極活物質と、導電材とを含む。
<正極活物質>
 リチウムイオン二次電池正極用スラリー組成物に配合する正極活物質としては、特に限定されることなく、既知の正極活物質を用いることができる。具体的には、正極活物質としては、遷移金属を含有する化合物、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属との複合金属酸化物などを用いることができる。なお、遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
 ここで、遷移金属酸化物としては、例えばMnO、MnO2、V25、V613、TiO2、Cu223、非晶質V2O-P25、非晶質MoO3、非晶質V25、非晶質V613等が挙げられる。
 遷移金属硫化物としては、TiS2、TiS3、非晶質MoS2、FeSなどが挙げられる。
 リチウムと遷移金属との複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル型構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
 層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO2)、リチウム含有ニッケル酸化物(LiNiO2)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、LiMaO2とLi2MbO3との固溶体などが挙げられる。なお、LiMaO2とLi2MbO3との固溶体としては、例えば、xLiMaO2・(1-x)Li2MbO3などが挙げられる。ここで、xは0<x<1を満たす数を表し、Maは平均酸化状態が3+である1種類以上の遷移金属を表し、Mbは平均酸化状態が4+である1種類以上の遷移金属を表す。
 なお、本発明において、「平均酸化状態」とは、前記「1種類以上の遷移金属」の平均の酸化状態を示し、遷移金属のモル量と原子価とから算出される。例えば、「1種類以上の遷移金属」が、50mol%のNi2+と50mol%のMn4+から構成される場合には、「1種類以上の遷移金属」の平均酸化状態は、(0.5)×(2+)+(0.5)×(4+)=3+となる。
 スピネル型構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn24)や、マンガン酸リチウム(LiMn24)のMnの一部を他の遷移金属で置換した化合物が挙げられる。具体例としては、Lis[Mn2-tMct]O4が挙げられる。ここで、Mcは平均酸化状態が4+である1種類以上の遷移金属を表す。Mcの具体例としては、Ni、Co、Fe、Cu、Cr等が挙げられる。また、tは0<t<1を満たす数を表し、sは0≦s≦1を満たす数を表す。なお、正極活物質としては、Li1+xMn2-x4(0<X<2)で表されるリチウム過剰のスピネル化合物なども用いることができる。
 オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、オリビン型リン酸鉄リチウム(LiFePO4)、オリビン型リン酸マンガンリチウム(LiMnPO4)などのLiyMdPO4で表されるオリビン型リン酸リチウム化合物が挙げられる。ここで、Mdは平均酸化状態が3+である1種類以上の遷移金属を表し、例えばMn、Fe、Co等が挙げられる。また、yは0≦y≦2を満たす数を表す。さらに、LiyMdPO4で表されるオリビン型リン酸リチウム化合物は、Mdが他の金属で一部置換されていてもよい。置換しうる金属としては、例えば、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、BおよびMoなどが挙げられる。
 上述した中でも、リチウムイオン二次電池正極用スラリー組成物を用いて形成したリチウムイオン二次電池用正極を使用したリチウムイオン二次電池のサイクル特性および初期容量を向上させる観点からは、正極活物質としてリチウム含有コバルト酸化物(LiCoO2)またはオリビン型リン酸鉄リチウム(LiFePO4)を用いることが好ましい。
 また、リチウムイオン二次電池正極用スラリー組成物を用いて形成したリチウムイオン二次電池用正極を使用したリチウムイオン二次電池を高容量とする観点からは、正極活物質として、リチウムニッケル複合酸化物などのMnおよびNiの少なくとも一方を含有する正極活物質を用いることが好ましい。具体的には、リチウムイオン二次電池の高容量化の観点からは、LiNiO2、LiMn24、リチウム過剰のスピネル化合物、LiMnPO4、Li[Ni0.5Co0.2Mn0.3]O2、Li[Ni1/3Co1/3Mn1/3]O2、Li[Ni0.17Li0.2Co0.07Mn0.56]O2、LiNi0.5Mn1.54等を正極活物質として用いることが好ましく、LiNiO2、リチウム過剰のスピネル化合物、Li[Ni0.5Co0.2Mn0.3]O2、Li[Ni1/3Co1/3Mn1/3]O2、Li[Ni0.17Li0.2Co0.07Mn0.56]O2等を正極活物質として用いることがより好ましく、Li[Ni0.5Co0.2Mn0.3]O2を正極活物質として用いることが特に好ましい。
 なお、MnおよびNiの少なくとも一方を含有する正極活物質には、製造時に使用される炭酸リチウム(Li2CO3)や水酸化リチウム(LiOH)等のアルカリ分が残存しているため、当該正極活物質を使用した場合、通常はアルカリ分に起因してリチウムイオン二次電池正極用スラリー組成物にゲルや凝集物が発生し易い。しかし、本発明のリチウムイオン二次電池正極用スラリー組成物では、所定の結着材を使用し、且つ、結着材組成物中のリチウムの含有量を所定範囲としているので、ゲルや凝集物の発生が抑制され、分散性を良好なものとすることができる。
 ここで、正極活物質の配合量や粒径は、特に限定されることなく、従来使用されている正極活物質と同様とすることができる。
<導電材>
 導電材は、正極活物質同士の電気的接触を確保するためのものである。そして、導電材としては、特に限定されることなく、既知の導電材を用いることができる。具体的には、導電材としては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、グラファイト、炭素繊維、カーボンフレーク、炭素超短繊維(例えば、カーボンナノチューブや気相成長炭素繊維など)等の導電性炭素材料;各種金属のファイバー、箔などを用いることができる。これらの中でも、正極活物質同士の電気的接触を向上させ、リチウムイオン二次電池正極用スラリー組成物を用いて形成したリチウムイオン二次電池用正極を使用したリチウムイオン二次電池の電気的特性を向上させる観点からは、導電材として、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラックを用いることが好ましく、アセチレンブラックを用いることが特に好ましい。
 なお、これら導電材は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 なお、導電材の配合量は、正極活物質100質量部当たり、1質量部以上であることが好ましく、1.2質量部以上であることがより好ましく、3質量部以下であることが好ましく、2.8質量部以下であることがより好ましい。導電材の配合量が少なすぎると、正極活物質同士の電気的接触を十分に確保することができず、リチウムイオン二次電池の電気的特性を十分に確保することができない。一方、導電材の配合量が多すぎると、リチウムイオン二次電池正極用スラリー組成物の安定性が低下すると共にリチウムイオン二次電池用正極中の正極合材層の密度が低下し、リチウムイオン二次電池を十分に高容量化することができない。
<その他の成分>
 本発明のリチウムイオン二次電池正極用スラリー組成物は、上記成分の他に、例えば、粘度調整剤、補強材、酸化防止剤、電解液の分解を抑制する機能を有する電解液添加剤などの成分を含有していてもよい。これらの他の成分は、公知のものを使用することができる。
<TI値>
 そして、本発明のスラリー組成物は、B型粘度計で測定した60rpmでの粘度に対する6rpmでの粘度の比であるTI値(6rpmでの粘度/60rpmでの粘度)が、1以上であることが好ましく、1.2以上であることがより好ましく、1.4以上であることが更に好ましく、4以下であることが好ましく、3.8以下であることがより好ましく、3.6以下であることが更に好ましい。リチウムイオン二次電池正極用スラリー組成物のTI値を1以上4以下とすれば、リチウムイオン二次電池用正極を形成する際のリチウムイオン二次電池正極用スラリー組成物の塗布量を安定化させて、均一な正極合材層を形成することができる。そして、その結果、電気的特性に優れたリチウムイオン二次電池を得ることができる。なお、TI値が1未満の場合には、リチウムイオン二次電池正極用スラリー組成物のダイラタンシー性が大きくなり、塗布時の流動性が悪くなるため、塗布量を安定化させることが困難になる。また、TI値が4超の場合には、リチウムイオン二次電池正極用スラリー組成物を集電体などの基材に平滑に塗布し難くなる。
 ここで、本発明において、「TI値」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
 なお、リチウムイオン二次電池用正極を形成する際のリチウムイオン二次電池正極用スラリー組成物の塗布量を安定化させる観点からは、6rpmでの粘度は、1000mPa・s以上であることが好ましく、1800mPa・s以上であることがより好ましく、2800mPa・s以上であることが更に好ましく、20000mPa・s以下であることが好ましく、17000mPa・s以下であることがより好ましく、14000mPa・s以下であることが更に好ましい。また、同様の理由により、60rpmでの粘度は、1000mPa・s以上であることが好ましく、1500mPa・s以上であることがより好ましく、2000mPa・s以上であることが更に好ましく、5000mPa・s以下であることが好ましく、4500mPa・s以下であることがより好ましく、4000mPa・s以下であることが更に好ましい。
 ここで、リチウムイオン二次電池正極用スラリー組成物のTI値および粘度は、例えば、リチウムイオン二次電池正極用スラリー組成物中の固形分濃度、上述した各成分の配合割合、結着材として使用する重合体の分子量などを変更することにより調整することができる。具体的には、例えば、結着材として使用する重合体の分子量を大きくするとTI値は大きくなり、結着材として使用する重合体中の酸性基の量を増加させるとTI値は小さくなる。
(リチウムイオン二次電池正極用スラリー組成物の製造方法)
 本発明のリチウムイオン二次電池正極用スラリー組成物は、上記各成分を分散媒としての有機溶媒中に分散させることにより調製することができる。具体的には、リチウムイオン二次電池正極用スラリー組成物は、例えば、結着材と、有機分散媒としての有機溶媒とを含むリチウムイオン二次電池正極用結着材組成物を予め調製し(リチウムイオン二次電池正極用結着材組成物調製工程)、その後、リチウムイオン二次電池正極用結着材組成物と、正極活物質と、導電材と、任意に、その他の成分および追加の有機分散媒とを混合することにより(混合工程)、調製することができる。
 なお、混合には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの既知の混合機を用いることができる。また、追加の有機分散媒としては、リチウムイオン二次電池正極用結着材組成物の調製に用いた有機分散媒と同じものを用いることができる。
 ここで、本発明のリチウムイオン二次電池正極用スラリー組成物の製造方法では、上述したリチウムイオン二次電池正極用結着材組成物は、例えば以下のようにして調製することができる。
 即ち、上述した通り、結着材として用いる重合体は、水分散液の状態で得られる。また、本発明のリチウムイオン二次電池正極用結着材組成物には、結着材の酸性基に対して0.6~1.5当量のリチウムを配合する必要がある。
 そこで、本発明のリチウムイオン二次電池正極用スラリー組成物の製造方法では、まず、結着材として用いる重合体の、例えばpHが3.5程度の水分散液に対し、水酸化リチウムなどのリチウム化合物を、リチウムが酸性基に対して所定の当量となるように添加して、水分散液のpHを7.5以上に調整する。そして、重量平均分子量が100,000~2,000,000であり、且つ、酸性基を有するエチレン性不飽和単量体単位を10~35質量%含有する重合体と、酸性基に対して0.6~1.5当量のリチウムとを含むpH調整水分散液を得る。なお、pHの調整は、リチウム化合物のみを用いて行ってもよいし、水酸化ナトリウムなどの他の化合物を用いて行なってもよい。そして、その後、pH調整水分散液中の水を有機分散媒で置換する。このように、重合体の水分散液に対してリチウム化合物を添加すれば、リチウム化合物を良好に溶解させることができるので、リチウムを含む本発明のリチウムイオン二次電池正極用結着材組成物および当該リチウムイオン二次電池正極用結着材組成物を含むリチウムイオン二次電池正極用スラリー組成物を容易に調製することができる。
 ここで、有機分散媒を用いた水の置換は、例えば、水よりも沸点の高い有機分散媒を添加した後、減圧下で全量の水および一部の有機分散媒を蒸発させることにより行なうことができる。なお、有機分散媒を用いた水の置換を行なう際には、水と共に残留モノマーを蒸発させて、残留モノマーの除去を同時に行なってもよい。有機分散媒を用いた水の置換と残留モノマーの除去とを同時に行なえば、リチウムイオン二次電池正極用スラリー組成物を効率的に製造することができる。
 また、pH調整水分散液のpHは、7.5以上とする必要があり、7.8以上とすることが好ましく、8以上とすることがより好ましく、12以下とすることが好ましい。pH調整水分散液のpHが7.5未満の場合や12超の場合には、凝集物が発生してリチウムイオン二次電池正極用スラリー組成物の分散性が低下する虞がある。
(リチウムイオン二次電池用正極)
 リチウムイオン二次電池用正極は、本発明のリチウムイオン二次電池正極用スラリー組成物を使用して、本発明のリチウムイオン二次電池用正極の製造方法により製造することができる。
 そして、本発明のリチウムイオン二次電池用正極の製造方法により製造されたリチウムイオン二次電池用正極は、集電体と、集電体上に形成された正極合材層とを備え、正極合材層には、少なくとも、正極活物質と、導電材と、結着材とが含まれている。なお、正極中に含まれている、正極活物質、導電材および結着材は、本発明のリチウムイオン二次電池正極用スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、本発明のリチウムイオン二次電池正極用スラリー組成物中の各成分の好適な存在比と同じである。
 そして、本発明のリチウムイオン二次電池用正極の製造方法により製造されたリチウムイオン二次電池用正極は、正極合材層が、上述した本発明のリチウムイオン二次電池正極用スラリー組成物を用いて形成されているので、リチウムイオン二次電池の電気的特性を十分に向上させることができる。
 なお、本発明のリチウムイオン二次電池用正極の製造方法は、上述したリチウムイオン二次電池正極用スラリー組成物を集電体上に塗布する工程(塗布工程)と、集電体上に塗布されたリチウムイオン二次電池正極用スラリー組成物を乾燥して集電体上に正極合材層を形成する工程(乾燥工程)とを含む。
<塗布工程>
 上記リチウムイオン二次電池正極用スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、リチウムイオン二次電池正極用スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる正極合材層の厚みに応じて適宜に設定しうる。
 ここで、リチウムイオン二次電池正極用スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、アルミニウムまたはアルミニウム合金からなる集電体を用い得る。この際、アルミニウムとアルミニウム合金とを組み合わせて用いてもよく、種類が異なるアルミニウム合金を組み合わせて用いてもよい。アルミニウムおよびアルミニウム合金は耐熱性を有し、電気化学的に安定であるため、優れた集電体材料である。
<乾燥工程>
 集電体上のリチウムイオン二次電池正極用スラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のリチウムイオン二次電池正極用スラリー組成物を乾燥することで、集電体上に正極合材層を形成し、集電体と正極合材層とを備えるリチウムイオン二次電池用正極を得ることができる。
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、正極合材層に加圧処理を施してもよい。加圧処理により、正極合材層と集電体との密着性を向上させることができる。
 さらに、正極合材層が硬化性の重合体を含む場合は、正極合材層の形成後に前記重合体を硬化させることが好ましい。
(リチウムイオン二次電池)
 本発明のリチウムイオン二次電池は、正極と、負極と、電解液と、セパレータとを備え、正極として、本発明のリチウムイオン二次電池用正極の製造方法により製造されたリチウムイオン二次電池用正極を用いたものである。そして、本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用正極の製造方法により製造されたリチウムイオン二次電池用正極を用いているので、優れた電気的特性が得られる。
<負極>
 リチウムイオン二次電池の負極としては、リチウムイオン二次電池用負極として用いられる既知の負極を用いることができる。具体的には、負極としては、例えば、金属リチウムの薄板よりなる負極や、負極合材層を集電体上に形成してなる負極を用いることができる。
 なお、集電体としては、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金等の金属材料からなるものを用いることができる。また、負極合材層としては、負極活物質と結着材とを含む層を用いることができる。更に、結着材としては、特に限定されず、任意の既知の材料を用いうる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましく、LiPF6が特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類を用いることが好ましく、エチレンカーボネートとエチルメチルカーボネートとの混合物を用いることが更に好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができ、例えば0.5~15質量%することが好ましく、2~13質量%とすることがより好ましく、5~10質量%とすることが更に好ましい。また、電解液には、既知の添加剤、例えばフルオロエチレンカーボネートやエチルメチルスルホンなどを添加してもよい。
<セパレータ>
 セパレータとしては、例えば、特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<リチウムイオン二次電池の製造方法>
 本発明のリチウムイオン二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。リチウムイオン二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、結着材の重量平均分子量および電解液膨潤度、リチウムイオン二次電池正極用スラリー組成物のTI値および分散性、並びに、リチウムイオン二次電池の初期容量、レート特性およびサイクル特性は、それぞれ以下の方法を使用して評価した。
<重量平均分子量>
 リチウムイオン二次電池正極用結着材組成物に含まれる重合体(結着材)の重量平均分子量を、濃度10mMのLiBr-NMP溶液を使用し、下記の測定条件でゲルパーミネーションクロマトグラフィー(GPC)より測定した。
・分離カラム:Shodex KD-806M(昭和電工株式会社製)
・検出器:示差屈折計検出器 RID-10A(株式会社島津製作所製)
・溶離液の流速:0.3mL/min
・カラム温度:40℃
・標準ポリマー:TSK 標準ポリスチレン(東ソー株式会社製)
<電解液膨潤度>
 結着材のN-メチルピロリドン(NMP)溶液(濃度8質量%)を、乾燥後の厚みが100μmになるようにテフロンシャーレに流しこみ、乾燥して重合体フィルムを作成した。得られた重合体フィルムから直径16mmの円形試料を打ち抜き、重量を測定した(重量を「A」とする)。次に、非水電解液(組成:濃度1.0MのLiPF6溶液(溶媒は、エチレンカーボネート/エチルメチルカーボネート=3/7(重量比)の混合溶媒にフルオロエチレンカーボネート5質量%を添加した混合物であり、添加剤としてビニレンカーボネート2体積%を添加))を準備した。そして、かかる非水電解液20gに、打ち抜いた円形試料を60℃で72時間浸漬させた。その後、膨潤した円形試料を取り出し、表面の非水電解液を軽く拭き取ってから重量を測定した(重量を「B」とする)。これらの測定した値より電解液膨潤度(=B/A)を求めた。値が大きい程、電解液中で膨潤し易く、変形量が大きいことを示す。
<TI値>
 作製したリチウムイオン二次電池正極用スラリー組成物について、B型粘度計(東機産業製、RB-80L)を用いて60rpmでの粘度η0と、6rpmでの粘度η1とを測定した。そして、TI値(=η1/η0)を算出した。なお、リチウムイオン二次電池正極用スラリー組成物の粘度測定温度は25℃とした。
<分散性>
 作製したリチウムイオン二次電池正極用スラリー組成物1gを、グラインドゲージ(JIS K5101に規定)の最も深い側の溝に滴下した後、スクレーパーを深い側から深さ0μm側に向かって掃引し、掃引により張られたスラリー膜面を目視で確認した。分散性の悪い凝集物などによってスラリー膜面に線状もしくは粒状の特異模様の発生が確認された場合、線状痕については1cm以上の筋が3本以上発生した位置の目盛りを読み取り、粒状痕については3mm幅の帯の中に5~10個の点が発生した位置の目盛りを読み取った。読み取った目盛りを使用し、以下の基準でリチウムイオン二次電池正極用スラリー組成物の分散性を評価した。目盛りの数値が小さいほど、リチウムイオン二次電池正極用スラリー組成物の分散性が優れていることを示す。
 A:25μm未満
 B:25μm以上50μm未満
 C:50μm以上75μm未満
 D:75μm以上
<初期容量>
 作製したパウチ型リチウムイオン二次電池を、25℃環境下、電流140mAで電池電圧が4.2Vになるまで定電流充電し、電圧4.2Vで充電電流が14mAになるまで定電圧充電を行った。続いて、電流140mAで電池電圧が3Vになるまで定電流放電を行い、初期容量とした。この時の初期容量を以下の基準に従い評価した。
 A:700mAh以上
 B:697mAh以上700mAh未満
 C:694mAh以上697mAh未満
 D:694mAh未満
<レート特性>
 作製したパウチ型リチウムイオン二次電池10セルについて、温度25℃の条件下、0.2Cの定電流で4.2Vまで充電し、0.2Cの定電流で3.0Vまで放電する充放電サイクルと、温度25℃の条件下、0.2Cの定電流で4.2Vまで充電し、1.0Cの定電流で3.0Vまで放電する充放電サイクルとをそれぞれ行った。0.2Cにおける放電容量に対する1.0Cにおける放電容量の割合を百分率で算出したもの(=(1.0Cにおける放電容量)/(0.2Cにおける放電容量)×100%)を充放電レート特性とし、下記の基準でレート特性を評価した。充放電レート特性の値が大きいほど、内部抵抗が小さく、高速充放電が可能であることを示す。
A:充放電レート特性が80%以上である。
B:充放電レート特性が75%以上80%未満である。
C:充放電レート特性が70%以上75%未満である。
D:充放電レート特性が70%未満である。
<サイクル特性>
 作製したパウチ型リチウムイオン二次電池10セルについて、60℃雰囲気下、0.2Cの定電流で4.2Vまで充電し、0.2Cの定電流で3.0Vまで放電する充放電を50回(50サイクル)繰り返し、放電容量を測定した。10セルの平均値を測定値とし、50サイクル終了時の放電容量に対する5サイクル終了時の放電容量の割合を百分率で算出したもの(=(50サイクル終了時の放電容量)/(5サイクル終了時の放電容量)×100%)を充放電容量保持率とし、下記の基準でサイクル特性を評価した。充放電容量保持率の値が高いほど高温サイクル特性に優れることを示す。
A:充放電容量保持率が80%以上である。
B:充放電容量保持率が70%以上80%未満である。
C:充放電容量保持率が60%以上70%未満である。
D:充放電容量保持率が60%未満である。
(実施例1)
<リチウムイオン二次電池正極用結着材組成物の調製>
 撹拌機付きのオートクレーブに、イオン交換水164質量部、(メタ)アクリレート単量体として2-エチルヘキシルアクリレート(2EHA)68質量部、カルボン酸基を有するエチレン性不飽和単量体としてメタクリル酸(MAA)16質量部、スルホン酸基を有するエチレン性不飽和単量体として2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)1質量部、α,β-不飽和ニトリル単量体としてアクリロニトリル(AN)15質量部、重合開始剤として過硫酸カリウム0.3部、乳化剤としてラウリル硫酸ナトリウム1.6部、分子量調整剤としてt-ドデシルメルカプタン0.05部を入れ、十分に撹拌した後、70℃で3時間、80℃で2時間加温して重合を行い、酸性基含有アクリル重合体の水分散液(pH:3.5)を得た。なお、固形分濃度から求めた重合転化率は96%であった。
 次に、このpHが3.5の酸性基含有アクリル重合体の水分散体100部(固形分換算)に、当該水分散体における酸性基に対するリチウム量が0.9当量となるように、4%水酸化リチウム水溶液を固形分換算で1.6部加え、pHを8.5とした。その後、N-メチルピロリドン500部を加え、減圧下で水および残留モノマーをすべて蒸発させると共にN-メチルピロリドンを81部蒸発させて、酸性基含有アクリル重合体のN-メチルピロリドン溶液(濃度:8質量%)よりなるリチウムイオン二次電池正極用結着材組成物Aを得た。
 そして、得られたリチウムイオン二次電池正極用結着材組成物Aを用いて、結着材の重量平均分子量および電解液膨潤度を測定した。結果を表1に示す。
<リチウムイオン二次電池正極用スラリー組成物の調製>
 正極活物質としてリチウムニッケル複合酸化物(戸田工業社製、NCA-02-ST-5)100部と、導電材としてアセチレンブラック(電気化学工業社製、AB35、デンカブラック粉状品)2.0部と、リチウムイオン二次電池正極用結着材組成物A 1.2部(固形分換算)と、適量のN-メチルピロリドンとをプラネタリーミキサーにて撹拌し、リチウムイオン二次電池正極用スラリー組成物Aを調製した。
 そして、得られたリチウムイオン二次電池正極用スラリー組成物Aを用いて、スラリー組成物のTI値および分散性を評価した。結果を表1に示す。
<リチウムイオン二次電池用正極の作製>
 集電体として厚さ15μmのアルミ箔を準備した。そして、リチウムイオン二次電池正極用スラリー組成物Aをアルミ箔の両面に乾燥後の塗布量が20mg/cm2になるように塗布し、60℃で20分、120℃で20分間乾燥した。その後、150℃で2時間加熱処理して正極原反を得た。この正極原反をロールプレスで圧延し、密度が3.7g/cm3の正極合材層とアルミ箔とからなるシート状正極を作製した。そして、シート状正極を幅4.8mm、長さ50cmに切断し、リチウムイオン二次電池用正極とした。
<リチウムイオン二次電池用負極の作製>
 負極活物質として球状人造黒鉛(体積平均粒子径:12μm)90部とSiOX(体積平均粒子径:10μm)10部との混合物、結着材としてスチレンブタジエン重合体1部、増粘剤としてカルボキシメチルセルロース1部、および、分散媒として適量の水をプラネタリーミキサーにて撹拌し、リチウムイオン二次電池負極用スラリー組成物を調製した。
 次に、集電体として厚さ15μmの銅箔を準備した。そして、上記リチウムイオン二次電池負極用スラリー組成物を銅箔の両面に乾燥後の塗布量が10mg/cm2になるように塗布し、60℃で20分、120℃で20分間乾燥した。その後、150℃で2時間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延し、密度が1.8g/cm3の負極合材層と銅箔とからなるシート状負極を作製した。そして、シート状負極を幅5.0mm、長さ52cmに切断し、リチウムイオン二次電池用負極とした。
<リチウムイオン二次電池の作製>
 作製したリチウムイオン二次電池用正極とリチウムイオン二次電池用負極とを、セパレータ(厚さ20μmのポリプロピレン製微多孔膜)を介在させて直径20mmの芯を用いて捲回し、捲回体を得た。得られた捲回体を、10mm/秒の速度で厚さ4.5mmになるまで一方向から圧縮した。なお、圧縮後の捲回体は平面視楕円形をしており、その長径と短径との比(長径/短径)は7.7であった。
 また、非水電解液(組成:濃度1.0MのLiPF6溶液(溶媒は、エチレンカーボネート/エチルメチルカーボネート=3/7(重量比)の混合溶媒にフルオロエチレンカーボネート5質量%を添加した混合物であり、添加剤としてビニレンカーボネート2体積%を添加))を準備した。
 そして、圧縮後の捲回体を所定のアルミラミネート製ケース内に3.2gの非水電解液とともに収容した。そして、リチウムイオン二次電池用負極に接続したニッケルリード線およびリチウムイオン二次電池用正極に接続したアルミニウムリード線を所定の箇所に接続したのち、ケースの開口部を熱で封口し、リチウムイオン二次電池とした。このリチウムイオン二次電池は、幅35mm、高さ48mm、厚さ5mmのパウチ形であり、電池の公称容量は700mAhである。得られたリチウムイオン二次電池について、初期容量、レート特性およびサイクル特性を評価した。結果を表1に示す。
(実施例2~5)
 リチウムイオン二次電池正極用結着材組成物調製時のメタクリル酸および2-アクリルアミド-2-メチルプロパンスルホン酸の配合量を表1に示すように変更した以外は、実施例1と同様にしてリチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極およびリチウムイオン二次電池を製造し、評価を行なった。結果を表1に示す。
(実施例6~8)
 リチウムイオン二次電池正極用結着材組成物調製時の水酸化リチウム水溶液の添加量を変更し、酸性基に対するリチウム量およびpHを表1に示すように変更した以外は、実施例1と同様にしてリチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極およびリチウムイオン二次電池を製造し、評価を行なった。結果を表1に示す。
(実施例9~10)
 リチウムイオン二次電池正極用結着材組成物調製時の2-エチルヘキシルアクリレートの配合量を表1に示すように変更した以外は、実施例1と同様にしてリチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極およびリチウムイオン二次電池を製造し、評価を行なった。結果を表1に示す。
(実施例11~12)
 リチウムイオン二次電池正極用結着材組成物調製時のアクリロニトリルの配合量を表1に示すように変更した以外は、実施例1と同様にしてリチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極およびリチウムイオン二次電池を製造し、評価を行なった。結果を表1に示す。
(実施例13)
 リチウムイオン二次電池正極用結着材組成物調製時のt-ドデシルメルカプタンの配合量を0.1部とした以外は、実施例1と同様にしてリチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極およびリチウムイオン二次電池を製造し、評価を行なった。結果を表1に示す。
(実施例14)
 リチウムイオン二次電池正極用結着材組成物調製時に分子量調整剤を配合しなかった以外は、実施例1と同様にしてリチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極およびリチウムイオン二次電池を製造し、評価を行なった。結果を表1に示す。
(実施例15)
 正極活物質としてコバルト酸リチウムLiCoO2 100部を使用した以外は、実施例1と同様にしてリチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極およびリチウムイオン二次電池を製造し、評価を行なった。結果を表1に示す。
(比較例1~2)
 リチウムイオン二次電池正極用結着材組成物調製時のメタクリル酸および2-アクリルアミド-2-メチルプロパンスルホン酸の配合量を表2に示すように変更した以外は、実施例1と同様にしてリチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極およびリチウムイオン二次電池を製造し、評価を行なった。結果を表2に示す。
(比較例3~4)
 リチウムイオン二次電池正極用結着材組成物調製時の水酸化リチウム水溶液の添加量を変更し、酸性基に対するリチウム量およびpHを表2に示すように変更した以外は、実施例1と同様にしてリチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極およびリチウムイオン二次電池を製造し、評価を行なった。結果を表2に示す。
(比較例5)
 リチウムイオン二次電池正極用結着材組成物調製時のt-ドデシルメルカプタンの配合量を0.3部とした以外は、実施例1と同様にしてリチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極およびリチウムイオン二次電池を製造し、評価を行なった。結果を表2に示す。
(比較例6)
 リチウムイオン二次電池正極用結着材組成物調製時に分子量調整剤としてアリルメタクリレート0.03部を使用した以外は、実施例1と同様にしてリチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極およびリチウムイオン二次電池を製造し、評価を行なった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1より、所定の重量平均分子量を有し、且つ、酸性基を有するエチレン性不飽和単量体単位を所定量含有する結着材と、所定量のリチウムとを含むリチウムイオン二次電池正極用結着材組成物を用いたリチウムイオン二次電池正極用スラリー組成物は分散性が優れており、当該リチウムイオン二次電池正極用スラリー組成物を用いて作製したリチウムイオン二次電池は、電気的特性が優れていることが分かる。一方、表2より、所定の重量平均分子量を有しない結着材や、酸性基を有するエチレン性不飽和単量体単位を所定量含有しない結着材を含むリチウムイオン二次電池正極用結着材組成物を使用したリチウムイオン二次電池正極用スラリー組成物、および、リチウムを所定量含有しないリチウムイオン二次電池正極用結着材組成物を使用したリチウムイオン二次電池正極用スラリー組成物は分散性が悪く、当該リチウムイオン二次電池正極用スラリー組成物を用いて作製したリチウムイオン二次電池は、電気的特性が劣っていることが分かる。
 更に、表1の実施例1~5および9~12より、結着材が含む単量体単位の割合を変更することにより、リチウムイオン二次電池正極用スラリー組成物の分散性およびリチウムイオン二次電池の電気的特性を更に向上させ得ることが分かる。
 また、表1の実施例1および6~8より、リチウムイオン二次電池正極用結着材組成物のリチウムの含有量を変更することによりリチウムイオン二次電池正極用スラリー組成物の分散性およびリチウムイオン二次電池の電気的特性を更に向上させ得ることが分かる。
 そして、表1の実施例1および13~14より、結着材の分子量を変更することによりリチウムイオン二次電池正極用スラリー組成物の分散性およびリチウムイオン二次電池の電気的特性を更に向上させ得ることが分かる。
 本発明によれば、凝集物やゲルの発生を抑制できるリチウムイオン二次電池正極用結着材組成物、および、分散性に優れ、リチウムイオン二次電池の電気的特性を十分に向上させることが可能なリチウムイオン二次電池正極用スラリー組成物が得られる。更に、本発明によれば、リチウムイオン二次電池の電気的特性を十分に向上させることが可能なリチウムイオン二次電池用正極の製造方法が得られる。また、本発明によれば、電気的特性に優れるリチウムイオン二次電池が得られる。

Claims (10)

  1.  結着材と、有機分散媒とを含み、
     前記結着材の重量平均分子量が100,000~2,000,000であり、
     前記結着材が、酸性基を有するエチレン性不飽和単量体単位を10~35質量%含有し、
     前記酸性基に対し、0.6~1.5当量のリチウムを含む、リチウムイオン二次電池正極用結着材組成物。
  2.  請求項1に記載のリチウムイオン二次電池正極用結着材組成物と、正極活物質と、導電材とを含む、リチウムイオン二次電池正極用スラリー組成物。
  3.  B型粘度計で測定したTI値(60rpmでの粘度に対する6rpmでの粘度の比)が1~4である、請求項2に記載のリチウムイオン二次電池正極用スラリー組成物。
  4.  前記結着材が、(メタ)アクリレート単量体単位を50~85質量%含有する、請求項2または3に記載のリチウムイオン二次電池正極用スラリー組成物。
  5.  前記酸性基が、カルボン酸基およびスルホン酸基の少なくとも一方を含む、請求項2~4の何れかに記載のリチウムイオン二次電池正極用スラリー組成物。
  6.  前記結着材の電解液膨潤度が1~5倍である、請求項2~5の何れかに記載のリチウムイオン二次電池正極用スラリー組成物。
  7.  前記正極活物質が、リチウムニッケル複合酸化物である、請求項2~6の何れかに記載のリチウムイオン二次電池正極用スラリー組成物。
  8.  結着材と有機分散媒とを含むリチウムイオン二次電池正極用結着材組成物を調製するリチウムイオン二次電池正極用結着材組成物調製工程と、
     前記リチウムイオン二次電池正極用結着材組成物と、正極活物質と、導電材とを混合する混合工程と、
    を含み、前記リチウムイオン二次電池正極用結着材組成物調製工程は、
     単量体組成物を重合して、重合体の水分散液を得る工程と、
     前記水分散液にリチウム化合物を添加してpHを7.5以上に調整し、重量平均分子量が100,000~2,000,000であり、且つ、酸性基を有するエチレン性不飽和単量体単位を10~35質量%含有する重合体と、前記酸性基に対して0.6~1.5当量のリチウムとを含むpH調整水分散液を得る工程と、
     前記pH調整水分散液中の水を有機分散媒で置換する工程と、
    を含む、リチウムイオン二次電池正極用スラリー組成物の製造方法。
  9.  請求項2~7の何れかに記載のリチウムイオン二次電池正極用スラリー組成物を集電体上に塗布し、乾燥することによって集電体上に正極合材層を形成する、リチウムイオン二次電池用正極の製造方法。
  10.  請求項9に記載の製造方法により得られたリチウムイオン二次電池用正極と、負極と、電解液と、セパレータとを備えるリチウムイオン二次電池。
PCT/JP2014/002554 2013-05-15 2014-05-14 リチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物およびその製造方法、リチウムイオン二次電池用正極の製造方法、並びに、リチウムイオン二次電池 WO2014185072A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015516919A JP6394593B2 (ja) 2013-05-15 2014-05-14 リチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物およびその製造方法、リチウムイオン二次電池用正極の製造方法、並びに、リチウムイオン二次電池
US14/890,664 US9876231B2 (en) 2013-05-15 2014-05-14 Binder composition for positive electrode of lithium ion secondary battery, slurry composition for positive electrode of lithium ion secondary battery and method of producing the same, method of producing positive electrode for lithium ion secondary battery, and lithium ion secondary battery
KR1020157032537A KR102210264B1 (ko) 2013-05-15 2014-05-14 리튬 이온 2 차 전지 정극용 결착재 조성물, 리튬 이온 2 차 전지 정극용 슬러리 조성물 및 그 제조 방법, 리튬 이온 2 차 전지용 정극의 제조 방법, 그리고 리튬 이온 2 차 전지
CN201480027447.6A CN105247716B (zh) 2013-05-15 2014-05-14 锂离子二次电池正极用粘结材料组合物、锂离子二次电池正极用浆料组合物及其制造方法、锂离子二次电池用正极的制造方法及锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-103199 2013-05-15
JP2013103199 2013-05-15

Publications (1)

Publication Number Publication Date
WO2014185072A1 true WO2014185072A1 (ja) 2014-11-20

Family

ID=51898060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002554 WO2014185072A1 (ja) 2013-05-15 2014-05-14 リチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物およびその製造方法、リチウムイオン二次電池用正極の製造方法、並びに、リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US9876231B2 (ja)
JP (1) JP6394593B2 (ja)
KR (1) KR102210264B1 (ja)
CN (1) CN105247716B (ja)
WO (1) WO2014185072A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171074A (ja) * 2015-03-13 2016-09-23 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2016157842A1 (ja) * 2015-03-27 2016-10-06 日本ゼオン株式会社 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2017010093A1 (ja) * 2015-07-14 2017-01-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2017029813A1 (ja) * 2015-08-20 2017-02-23 日本ゼオン株式会社 非水系二次電池用バインダー組成物、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
WO2018168615A1 (ja) 2017-03-13 2018-09-20 日本ゼオン株式会社 電気化学素子電極用導電材分散液、電気化学素子電極用スラリー組成物およびその製造方法、電気化学素子用電極、並びに、電気化学素子

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016063813A1 (ja) * 2014-10-21 2017-08-03 日本電気株式会社 二次電池用電極およびこれを用いた二次電池
US10361423B2 (en) * 2016-01-18 2019-07-23 Grst International Limited Method of preparing battery electrodes
HUE054572T2 (hu) * 2016-03-03 2021-09-28 Zeon Corp Kötõanyag-kompozíció nem-vizes akkumulátor elektródájához, vezetõ anyagból álló paszta kompozíció nem-vizes akkumulátor elektródájához, szuszpenziós kompozíció nem-vizes akkumulátor elektródájához, és nem-vizes akkumulátor
US10985374B2 (en) * 2016-03-24 2021-04-20 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, and non-aqueous secondary battery
SG11202000089TA (en) * 2016-10-11 2020-02-27 Grst Int Ltd Cathode slurry for lithium ion battery
JP6451889B1 (ja) * 2017-07-18 2019-01-16 Tdk株式会社 リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP7156859B2 (ja) * 2017-08-31 2022-10-19 三洋化成工業株式会社 炭素材料用分散剤、炭素材料用分散剤を含有する分散物、全固体リチウムイオン二次電池用電極スラリー、全固体リチウムイオン二次電池用電極の製造方法、全固体リチウムイオン二次電池用電極及び全固体リチウムイオン二次電池
US20200335791A1 (en) * 2017-10-24 2020-10-22 Toagosei Co. Ltd. Binder for secondary battery electrode, and use thereof
WO2020208799A1 (ja) * 2019-04-12 2020-10-15 花王株式会社 蓄電デバイス正極用分散剤
WO2020208800A1 (ja) * 2019-04-12 2020-10-15 花王株式会社 カーボンナノチューブ用分散剤組成物
KR20220091470A (ko) * 2019-10-31 2022-06-30 니폰 제온 가부시키가이샤 전고체 이차 전지용 바인더 조성물, 전고체 이차 전지용 슬러리 조성물, 고체 전해질 함유층 및 전고체 이차 전지
TWI767157B (zh) * 2019-11-12 2022-06-11 國立臺灣科技大學 鋰電池的正極材料的製備方法
CN112662348B (zh) * 2020-01-21 2023-08-29 四川茵地乐科技有限公司 电池用粘合剂、锂离子电池负极片以及锂离子电池
WO2021184392A1 (en) * 2020-03-20 2021-09-23 Guangdong Haozhi Technology Co. Limited Method of preparing cathode for secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185947A (ja) * 2011-03-04 2012-09-27 Toyo Ink Sc Holdings Co Ltd 非水系二次電池電極用バインダー組成物
JP2012212537A (ja) * 2011-03-30 2012-11-01 Nippon A&L Inc 電池電極用バインダー及び電池電極用組成物
JP2012216517A (ja) * 2011-03-28 2012-11-08 Toyo Ink Sc Holdings Co Ltd 非水二次電池電極用バインダー樹脂組成物
WO2013147007A1 (ja) * 2012-03-30 2013-10-03 日本ゼオン株式会社 二次電池負極用スラリー組成物
JP2013206759A (ja) * 2012-03-29 2013-10-07 Toyo Ink Sc Holdings Co Ltd 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494709B1 (ja) 1970-04-30 1974-02-02
JPH08203499A (ja) * 1995-01-25 1996-08-09 Namitsukusu Kk 導電性組成物およびそれを用いた電極
JP3539448B2 (ja) * 1995-04-19 2004-07-07 日本ゼオン株式会社 非水二次電池
JP4438104B2 (ja) 1998-03-31 2010-03-24 日本ゼオン株式会社 二次電池用バインダー組成物、電池電極用スラリー、電池用電極および二次電池
JP4280891B2 (ja) * 2000-07-26 2009-06-17 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダーおよびその利用
JP2004281055A (ja) * 2003-01-23 2004-10-07 Hitachi Chem Co Ltd カルボキシル基含有樹脂を用いた電池用バインダ樹脂組成物、合剤スラリー、電極および電池
JP4904709B2 (ja) * 2005-03-25 2012-03-28 日本ゼオン株式会社 リチウムイオン二次電池正極用バインダー組成物、およびその利用
US7875388B2 (en) * 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
KR20090109570A (ko) * 2007-02-06 2009-10-20 쓰리엠 이노베이티브 프로퍼티즈 컴파니 신규한 결합제를 포함하는 전극과, 그의 제조 방법 및 사용 방법
US9853292B2 (en) * 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
GB2487569B (en) 2011-01-27 2014-02-19 Nexeon Ltd A binder for a secondary battery cell
JP6024663B2 (ja) * 2011-09-08 2016-11-16 日本ゼオン株式会社 二次電池用スラリー
JP6070266B2 (ja) * 2013-02-27 2017-02-01 日本ゼオン株式会社 リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極の製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
JP2014165131A (ja) * 2013-02-27 2014-09-08 Nippon Zeon Co Ltd リチウムイオン二次電池正極用スラリー組成物の製造方法、リチウムイオン二次電池用正極の製造方法、及び、リチウムイオン二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185947A (ja) * 2011-03-04 2012-09-27 Toyo Ink Sc Holdings Co Ltd 非水系二次電池電極用バインダー組成物
JP2012216517A (ja) * 2011-03-28 2012-11-08 Toyo Ink Sc Holdings Co Ltd 非水二次電池電極用バインダー樹脂組成物
JP2012212537A (ja) * 2011-03-30 2012-11-01 Nippon A&L Inc 電池電極用バインダー及び電池電極用組成物
JP2013206759A (ja) * 2012-03-29 2013-10-07 Toyo Ink Sc Holdings Co Ltd 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池
WO2013147007A1 (ja) * 2012-03-30 2013-10-03 日本ゼオン株式会社 二次電池負極用スラリー組成物

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171074A (ja) * 2015-03-13 2016-09-23 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
US10312522B2 (en) 2015-03-27 2019-06-04 Zeon Corporation Binder composition for lithium ion secondary battery positive electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2016157842A1 (ja) * 2015-03-27 2016-10-06 日本ゼオン株式会社 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
CN107408701A (zh) * 2015-03-27 2017-11-28 日本瑞翁株式会社 锂离子二次电池正极用粘结剂组合物、锂离子二次电池正极用浆料组合物、锂离子二次电池用正极以及锂离子二次电池
JPWO2016157842A1 (ja) * 2015-03-27 2018-01-18 日本ゼオン株式会社 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
KR101848245B1 (ko) 2015-03-27 2018-04-12 니폰 제온 가부시키가이샤 리튬 이온 이차 전지 정극용 바인더 조성물, 리튬 이온 이차 전지 정극용 슬러리 조성물, 리튬 이온 이차 전지용 정극 및 리튬 이온 이차 전지
CN107408701B (zh) * 2015-03-27 2020-08-25 日本瑞翁株式会社 粘结剂组合物、正极用浆料、正极以及锂离子二次电池
WO2017010093A1 (ja) * 2015-07-14 2017-01-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
JPWO2017010093A1 (ja) * 2015-07-14 2018-04-26 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2017029813A1 (ja) * 2015-08-20 2017-02-23 日本ゼオン株式会社 非水系二次電池用バインダー組成物、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
US10535854B2 (en) 2015-08-20 2020-01-14 Zeon Corporation Binder composition for non-aqueous secondary battery, composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
KR20180044892A (ko) 2015-08-20 2018-05-03 니폰 제온 가부시키가이샤 비수계 2차 전지용 바인더 조성물, 비수계 2차 전지 기능층용 조성물, 비수계 2차 전지용 기능층 및 비수계 2차 전지
WO2018168615A1 (ja) 2017-03-13 2018-09-20 日本ゼオン株式会社 電気化学素子電極用導電材分散液、電気化学素子電極用スラリー組成物およびその製造方法、電気化学素子用電極、並びに、電気化学素子

Also Published As

Publication number Publication date
US9876231B2 (en) 2018-01-23
JPWO2014185072A1 (ja) 2017-02-23
KR20160008549A (ko) 2016-01-22
JP6394593B2 (ja) 2018-09-26
KR102210264B1 (ko) 2021-01-29
CN105247716B (zh) 2017-09-19
US20160126553A1 (en) 2016-05-05
CN105247716A (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
JP6394593B2 (ja) リチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物およびその製造方法、リチウムイオン二次電池用正極の製造方法、並びに、リチウムイオン二次電池
JP6589857B2 (ja) 電解液を備えるリチウムイオン二次電池用正極の製造方法
KR102393257B1 (ko) 이차 전지 전극용 도전재 페이스트, 이차 전지 정극용 슬러리의 제조 방법, 이차 전지용 정극의 제조 방법 및 이차 전지
JP6369473B2 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP7218729B2 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
JP6398191B2 (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
JP6191471B2 (ja) リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP6413242B2 (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
JP6020209B2 (ja) 二次電池負極用スラリー組成物の製造方法
WO2018056083A1 (ja) 非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池
JP2015162384A (ja) リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
JP2017069108A (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2018174150A (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
JP2015153529A (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6237306B2 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6481581B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2020137591A1 (ja) 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極、及び二次電池
JP6365181B2 (ja) 二次電池電極用導電材ペースト、二次電池正極用スラリーの製造方法、二次電池用正極の製造方法および二次電池の製造方法
JP6394027B2 (ja) 二次電池電極用導電材ペースト、二次電池正極用スラリーの製造方法、二次電池用正極の製造方法および二次電池の製造方法
JP7218730B2 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
WO2024162181A1 (ja) 二次電池用導電材ペレット、二次電池正極用スラリー組成物、二次電池用正極、および二次電池
US20240021826A1 (en) Composition for electrochemical device positive electrode, slurry composition for electrochemical device positive electrode, positive electrode for electrochemical device, and electrochemical device
KR20230116784A (ko) 비수계 이차 전지 정극용 바인더 조성물, 비수계 이차 전지 정극용 도전재 분산액, 비수계 이차 전지 정극용 슬러리 조성물, 비수계 이차 전지용 정극, 및 비수계 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015516919

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14890664

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157032537

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798034

Country of ref document: EP

Kind code of ref document: A1