WO2014181877A1 - 二次電池用電解液および二次電池 - Google Patents

二次電池用電解液および二次電池 Download PDF

Info

Publication number
WO2014181877A1
WO2014181877A1 PCT/JP2014/062520 JP2014062520W WO2014181877A1 WO 2014181877 A1 WO2014181877 A1 WO 2014181877A1 JP 2014062520 W JP2014062520 W JP 2014062520W WO 2014181877 A1 WO2014181877 A1 WO 2014181877A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
ether compound
containing ether
formula
secondary battery
Prior art date
Application number
PCT/JP2014/062520
Other languages
English (en)
French (fr)
Inventor
野口 健宏
加藤 有光
佐々木 英明
牧子 高橋
恵美子 藤井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/889,718 priority Critical patent/US10263286B2/en
Priority to JP2015515913A priority patent/JP6428609B2/ja
Publication of WO2014181877A1 publication Critical patent/WO2014181877A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolytic solution for a secondary battery and a secondary battery using the same, and further relates to a manufacturing method thereof.
  • Lithium secondary batteries are widely used in portable electronic devices, personal computers, and the like, and while miniaturization and weight reduction are required, increasing energy density is an important issue.
  • the average operating voltage is 3.6 to 3.8 V (4 V class) with respect to the metal lithium standard. This is because the operating voltage is defined by a redox reaction of cobalt ions or manganese ions (Co 3 + ⁇ ⁇ Co 4+ or Mn 3 + ⁇ ⁇ Mn 4+ ).
  • a spinel compound in which a part of manganese in lithium manganate is substituted with nickel or the like, for example, LiNi 0.5 Mn 1.5 O 4 shows a potential plateau in the region of 4.5 V or higher.
  • an operating voltage of 5V class can be realized.
  • manganese exists in a tetravalent state, and the operating voltage of the battery is reduced by oxidation and reduction of Ni 2+ ⁇ ⁇ Ni 4+ instead of oxidation reduction of Mn 3+ ⁇ ⁇ Mn 4+. It is prescribed.
  • LiNi 0.5 Mn 1.5 O 4 The capacity of LiNi 0.5 Mn 1.5 O 4 is 130 mAh / g or more, the average operating voltage is 4.6 V or more with respect to metallic lithium, and the lithium storage capacity is smaller than LiCoO 2, but the energy density is Higher than LiCoO 2 . For these reasons, LiNi 0.5 Mn 1.5 O 4 is promising as a positive electrode material.
  • a battery using a high-potential positive electrode active material such as LiNi 0.5 Mn 1.5 O 4 has a higher operating voltage than a battery using LiCoO 2 , LiMn 2 O 4 or the like as the positive electrode active material.
  • the decomposition reaction of the electrolytic solution tends to proceed at the contact portion between the positive electrode and the electrolytic solution. Gas is generated by this decomposition reaction.
  • the generation of gas is a problem in practical use because it increases the internal pressure of the cell or causes the laminate cell to swell. For this reason, an electrolytic solution with high voltage resistance that suppresses the generation of such gas is expected.
  • a fluorinated solvent or the like is considered as an electrolytic solution with high voltage resistance that can suppress gas generation.
  • Candidates include fluorinated carbonates that are fluorinated solvents, fluorinated carboxylic acid esters, fluorine-containing ether compounds, fluorine-containing phosphate compounds, and the like. Of these, fluorine-containing ether compounds are useful because they have a high life-improving effect and a relatively low viscosity.
  • Patent Document 1 describes that in a lithium secondary battery including a positive electrode active material that operates at a potential of 4.5 V or higher, a non-aqueous electrolytic solvent includes a fluorine-containing phosphate ester.
  • Reference 2 describes a lithium ion secondary battery containing a fluorinated ether in a non-aqueous electrolyte.
  • Patent Document 1 and Patent Document 2 describe a high voltage battery using an electrolyte solution containing a fluorine-containing ether compound or a fluorine-containing phosphate compound. Further improvements were needed.
  • the fluorine-containing ether compound has low oxidation resistance depending on the type.
  • the fluorine content is increased in order to increase the oxidation resistance, there is a problem that the battery characteristics may be deteriorated due to an increase in viscosity, a reduction in resistance, or a decrease in compatibility.
  • an object of the present invention is to provide an electrolyte for a secondary battery and a secondary battery having improved life characteristics, particularly life characteristics under high voltage.
  • a first fluorine-containing ether compound represented by the formula (1) A second fluorine-containing ether compound represented by formula (1), and Including at least one selected from a fluorine-containing phosphate compound represented by the formula (2) and a sulfone compound represented by the formula (3),
  • the fluorine substitution rate of the first fluorine-containing ether compound is smaller than the fluorine substitution rate of the second fluorine-containing ether compound
  • the content of the first fluorine-containing ether compound is larger than the content of the second fluorine-containing ether compound
  • Content of said 1st fluorine-containing ether compound is 0.1 volume% or more and 80 volume% or less of electrolyte solution
  • the content of the second fluorine-containing ether compound is 0.1 vol% or more and 40 vol% or less of the electrolytic solution
  • the total content of the fluorine-containing phosphate ester compound and the sulfone compound is from 0.1% by volume to 70% by volume of
  • R 1 —O—R 2 (1)
  • R 1 and R 2 are each independently an alkyl group or a fluorine-containing alkyl group, and at least one of R 1 and R 2 is a fluorine-containing alkyl group.
  • O P (-O-R 1 ') (- O-R 2') (- O-R 3 ') (2)
  • R 1 ′, R 2 ′ and R 3 ′ are each independently an alkyl group or a fluorine-containing alkyl group, and at least one of R 1 ′, R 2 ′ and R 3 ′ is fluorine-containing. It is an alkyl group.
  • R 1 ′′ -SO 2 -R 2 ′′ (3) [In formula (3), R 1 ′′ and R 2 ′′ are each independently a substituted or unsubstituted alkyl group, and the carbon atoms of R 1 ′′ and R 2 ′′ are single bonds or double bonds. It may be a cyclic compound bonded via ]
  • a secondary battery with improved life characteristics can be provided.
  • the inventors have selected 1 or more types of fluorine-containing ether compounds, fluorine-containing phosphate ester compounds, and sulfone compounds as the electrolyte solution. It has been found that the inclusion of more than seeds has an effect of improving the life characteristics.
  • the electrolytic solution according to this embodiment is characterized by containing two or more types of fluorine-containing ether compounds.
  • the electrolytic solution according to the present embodiment further includes at least one selected from a fluorine-containing phosphate compound and a sulfone compound.
  • the secondary battery according to the present embodiment has an electrolyte solution including two or more types of fluorine-containing ether compounds and one or more types selected from fluorine-containing phosphate compounds and sulfone compounds. .
  • the life characteristics of the secondary battery can be improved by using such an electrolyte.
  • the effect is high when a positive electrode material capable of operating at a high potential such as 4.5 V or higher with respect to lithium is used for the active material.
  • the electrolytic solution includes a supporting salt and a nonaqueous electrolytic solvent.
  • the nonaqueous electrolytic solution is a fluorine-containing chain ether compound represented by the following general formula (1) (hereinafter simply referred to as “fluorine-containing ether compound”). 2) or more.
  • fluorine-containing ether compound represented by the following general formula (1) (hereinafter simply referred to as “fluorine-containing ether compound”). 2) or more.
  • R 1 —O—R 2 (1)
  • R 1 and R 2 are each independently an alkyl group or a fluorine-containing alkyl group, and at least one of R 1 and R 2 is a fluorine-containing alkyl group.
  • the number of carbon atoms of the alkyl group (R 1 and R 2 ) in the fluorine-containing ether compound represented by the general formula (1) is preferably 1 or more and 10 or less, and preferably 1 or more and 8 or less. More preferred.
  • the carbon number of the alkyl group is 10 or less, the increase in the viscosity of the electrolytic solution is suppressed, and the electrolytic solution can easily penetrate into the pores in the electrode and the separator, and the ion conductivity is improved. This is because the current value becomes favorable in the discharge characteristics.
  • Alkyl groups (R 1 and R 2 ) include linear or branched ones.
  • the carbon number of the fluorine-containing ether compound represented by the general formula (1) that is, the total carbon number of the alkyl groups R 1 and R 2 is about 4 or more and 10 or less from the viewpoint of boiling point and viscosity. It is preferable. More preferably, it is 5-9.
  • part or all of the hydrogen of the alkyl group represented by R 1 or R 2 is substituted with fluorine. This is because by containing fluorine, the oxidation resistance can be improved and the cycle characteristics can be improved. This is because when the fluorine atom content is large, the withstand voltage is further improved, and a decrease in capacity can be suppressed even in a high voltage battery or a battery operated at a high temperature for a long time. On the other hand, if the fluorine atom content is too large, the reduction resistance may decrease, or the compatibility of the electrolytic solution with other solvents may decrease.
  • the non-aqueous electrolyte contains at least two fluorine-containing ether compounds represented by the general formula (1), that is, a first fluorine-containing ether compound and a second fluorine-containing ether compound
  • the fluorine substitution rate of one fluorine-containing ether compound is smaller than the fluorine substitution rate of the second fluorine-containing ether compound
  • the content of the first fluorine-containing ether compound in the non-aqueous electrolyte is the second fluorine-containing ether compound.
  • the content is preferably larger than the ether compound content.
  • the term “fluorine substitution rate” represents the ratio of the number of fluorine atoms to the total number of hydrogen atoms and fluorine atoms of the fluorine-containing compound (fluorinated compound).
  • the fluorine substitution rate of the first fluorine-containing ether compound is generally 20% or more and 80% or less, preferably 40% or more and 80% or less, and more preferably 50% or more and 75% or less. By setting it as such a range, compatibility with the other solvent in electrolyte solution can be kept high, and oxidation resistance can also be ensured.
  • the volume ratio of the first fluorine-containing ether compound in the electrolytic solution is generally from 0.01% to 80%, preferably from 0.1% to 80%, more preferably from 5% to 75%. preferable.
  • the second fluorine-containing ether compound preferably has a higher fluorine substitution rate than the first fluorine-containing ether compound. It is because oxidation resistance can be improved by doing in this way.
  • the fluorine substitution rate of the second fluorine-containing ether compound is generally 70% or more and 100% or less, preferably 70% or more and 95% or less, more preferably 75% or more and 95% or less. preferable. By setting it as such a range, oxidation resistance can be kept high rather than the case where the 1st fluorine-containing ether compound is used individually or 2 or more types of 1st fluorine-containing ether compounds are used.
  • the compatibility in electrolyte solution can be maintained by keeping the volume ratio in the electrolyte solution of a 2nd fluorine-containing ether compound lower than the 1st fluorine-containing ether compound.
  • the volume ratio of the second fluorine-containing ether compound in the electrolytic solution is generally 0.01% or more and 40% or less, preferably 0.1% or more and 40% or less, and preferably 5% or more. More preferably, it is 35% or less.
  • the total content of the two or more fluorine-containing ether compounds represented by the general formula (1) contained in the nonaqueous electrolytic solution is not particularly limited, but is 0.01 to 90 volume in the nonaqueous electrolytic solution. % Is preferred. When the content is 90% by volume or less, the ion conductivity of the electrolytic solution is improved, and the charge / discharge rate of the battery becomes better.
  • the total content of the fluorine-containing ether compound represented by the general formula (1) is more preferably 0.05 to 85% by volume, and further preferably 0.1 to 80% by volume. When the content is 0.1% by volume or more, the effect of increasing the voltage resistance is improved.
  • fluorine-containing ether compound examples include 2,2,3,3,3-pentafluoropropyl 1,1,2,2-tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl 2,2, and the like.
  • 2-trifluoroethyl ether 1H, 1H, 2'H, 3H-decafluorodipropyl ether, 1,1,1,2,3,3-hexafluoropropyl-2,2-difluoroethyl ether, isopropyl 1, 1,2,2-tetrafluoroethyl ether, propyl 1,1,2,2-tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether, 1H , 1H, 5H-perfluoropentyl-1,1,2,2-tetrafluoroethyl ether, 1H-perfluorobutyl-1H-per Fluoroethyl ether, methyl perfluoropentyl ether, methyl perfluorohexyl ether, methyl 1,1,3,3,3-pentafluoro-2- (trifluoromethyl) propyl ether, 1,
  • the nonaqueous electrolytic solution may contain three or more fluorine-containing ether compounds represented by the formula (1).
  • the fluorine-containing ether compound having the highest fluorine substitution rate is the second fluorine-containing ether compound
  • the other fluorine-containing ether compounds are the first fluorine-containing ether compounds.
  • the total content of the first fluorine-containing ether compound is preferably larger than the content of the second fluorine-containing ether compound.
  • the non-aqueous electrolyte contains one or more fluorine-containing ether compounds having a fluorine substitution rate of more than 80%
  • the fluorine-containing ether compound having a fluorine substitution rate of more than 80% is used as the second fluorine-containing ether compound or other fluorine compounds.
  • the containing ether compound is the first fluorine-containing ether compound, and the total content of the first fluorine-containing ether compound is larger than the total content of the second fluorine-containing ether compound.
  • Fluorine-containing ether compounds have a problem of low compatibility with other solvents, but the addition of a fluorine-containing phosphate ester compound or a sulfone compound increases the compatibility between solvents. Even if the solvent with low compatibility can be uniformly mixed once, it may be left for a long time or may be separated by a rise or fall in temperature, but by mixing a fluorine-containing phosphate ester compound or a sulfone compound, The long-term stability of the electrolytic solution can be improved.
  • fluorine-containing ether compounds compounds having a high fluorine substitution rate have a low compatibility with other solvents, so that the effect of improving uniformity by mixing with a fluorine-containing phosphate compound or a sulfone compound is high.
  • the nonaqueous electrolytic solution contains at least one selected from a fluorine-containing phosphate ester represented by the formula (2) and a sulfone compound represented by the formula (3).
  • the nonaqueous electrolytic solution can contain a fluorine-containing phosphate ester represented by the formula (2).
  • O P (-O-R 1 ') (- O-R 2') (- O-R 3 ') (2)
  • R 1 ′, R 2 ′ and R 3 ′ each independently represents an alkyl group or a fluorine-containing alkyl group, and at least one of R 1 ′, R 2 ′ and R 3 ′ is fluorine. It is a containing alkyl group.
  • R 1 ′, R 2 ′ and R 3 ′ each independently have 1 to 3 carbon atoms.
  • fluorine-containing phosphate ester compound examples include 2,2,2-trifluoroethyldimethyl phosphate, bis (trifluoroethyl) methyl phosphate, bistrifluoroethylethyl phosphate, tris (trifluoromethyl) phosphate, Pentafluoropropyldimethyl phosphate, heptafluorobutyldimethyl phosphate, trifluoroethyl methyl ethyl phosphate, pentafluoropropyl methyl ethyl phosphate, heptafluorobutyl methyl ethyl phosphate, trifluoroethyl methyl phosphate phosphate, pentafluoro phosphate Propylmethylpropyl, heptafluorobutylmethylpropyl phosphate, trifluoroethylmethylbutyl phosphate, pentafluoropropylmethylbutyl phosphate
  • tris phosphate (2,2,2-trifluoroethyl) represented by the following formula (2-1) is preferable because it has a high effect of suppressing decomposition of the electrolytic solution at a high potential.
  • Fluorine-containing phosphate ester compounds can be used singly or in combination of two or more.
  • the content of the fluorine-containing phosphate ester compound is preferably from 0.1 to 70% by volume, more preferably from 1 to 60% by volume, and more preferably from 2 to 50% by volume of the non-aqueous electrolyte from the viewpoint of voltage resistance and ionic conductivity. % Is more preferable.
  • the non-aqueous electrolyte can include a sulfone compound represented by the following formula (3).
  • R 1 ′′ -SO 2 -R 2 ′′ (3) [In Formula (3), R 1 ′′ and R 2 ′′ each independently represent a substituted or unsubstituted alkyl group. A cyclic compound in which the carbon atoms of R 1 ′′ and R 2 ′′ are bonded via a single bond or a double bond may be used. ]
  • R 1 'carbon number n 2 of the' number n 1 R 2 carbons of '' is 1 ⁇ n 1 ⁇ 12,1 ⁇ n 2 ⁇ 12 , respectively, 1 ⁇ n 1 ⁇ 6, 1 ⁇ n 2 ⁇ 6 is more preferable, and 1 ⁇ n 1 ⁇ 3 and 1 ⁇ n 2 ⁇ 3 are still more preferable.
  • Alkyl groups include linear, branched, or cyclic groups.
  • R 1 ′′ and R 2 ′′ may have a substituent.
  • substituents include an alkyl group having 1 to 6 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group). Group, isobutyl group), aryl group having 6 to 10 carbon atoms (for example, phenyl group, naphthyl group), halogen atom (for example, chlorine atom, bromine atom, fluorine atom) and the like.
  • the sulfone compound represented by the formula (3) may be a cyclic compound represented by the following formula (4).
  • R 3 represents a substituted or unsubstituted alkylene group.
  • R 3 preferably has 4 to 9 carbon atoms, more preferably 4 to 6 carbon atoms.
  • R 3 may have a substituent.
  • substituents include an alkyl group having 1 to 6 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group), a halogen atom (for example, , Chlorine atom, bromine atom, fluorine atom) and the like.
  • sulfone compounds include sulfolane (tetramethylene sulfone), 3-methyl sulfolane, dimethyl sulfone (for example, 3,4-dimethyl sulfone, 2,5-dimethyl sulfone), ethyl methyl sulfone, diethyl sulfone, butyl methyl sulfone, dibutyl sulfone, Methyl isopropyl sulfone, diisopropyl sulfone, methyl tert-butyl sulfone, butyl ethyl sulfone, butyl propyl sulfone, butyl isopropyl sulfone, di-tert-butyl sulfone, diisobutyl sulfone, ethyl isopropyl sulfone, ethyl isobutyl sulfone,
  • the content of the sulfone compound is preferably from 0.1 to 70% by volume, more preferably from 1 to 65% by volume, and even more preferably from 3 to 60% by volume, based on the compatibility and viscosity of the electrolyte. .
  • the total content of the fluorine-containing phosphate compound and the sulfone compound is preferably 0.1 to 70% by volume, more preferably 1 to 65% by volume of the electrolytic solution. 60% by volume is more preferable.
  • Non-aqueous electrolytes include cyclic carbonates (including fluorinated products), chain carbonates (including fluorinated products), chain carboxylic acid esters (including fluorinated products), cyclic carboxylic acid esters (including fluorinated products), and cyclic ethers. (Including fluorinated products), phosphate esters and the like.
  • cyclic carbonate has a large relative dielectric constant, the addition of these improves the dissociation property of the supporting salt and makes it easy to impart sufficient conductivity. Further, the addition of chain carbonate, fluorine-containing ether compound, fluorinated carboxylic acid ester, fluorinated carbonate and the like lowers the viscosity of the electrolytic solution, so that the ion mobility in the electrolytic solution is improved.
  • cyclic carbonates including fluorinated products
  • chain carbonates including fluorinated products
  • fluorinated carboxylic acid esters and fluorinated carbonates have high voltage resistance and electrical conductivity. Suitable for mixing with the containing ether compound.
  • the cyclic carbonate is not particularly limited, and examples thereof include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC).
  • the cyclic carbonate includes a fluorinated cyclic carbonate. Examples of the fluorinated cyclic carbonate include compounds in which some or all of the hydrogen atoms such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC) are substituted with fluorine atoms. Can be mentioned.
  • fluorinated cyclic carbonate examples include, for example, 4-fluoro-1,3-dioxolan-2-one, (cis or trans) 4,5-difluoro-1,3-dioxolan-2-one, 4,4-difluoro-1,3-dioxolan-2-one, 4-fluoro-5-methyl-1,3-dioxolan-2-one, and the like can be used.
  • ethylene carbonate, propylene carbonate, a compound obtained by fluorinating a part of these, and the like are preferable, and ethylene carbonate is more preferable, from the viewpoint of voltage endurance and conductivity.
  • a cyclic carbonate can be used individually by 1 type or in combination of 2 or more types.
  • the content of the cyclic carbonate is preferably 0.1 to 70% by volume, preferably 0.5 to 60% by volume in the nonaqueous electrolytic solution, from the viewpoint of increasing the degree of dissociation of the supporting salt and increasing the conductivity of the electrolytic solution. % Is more preferable, and 1 to 50% by volume is more preferable.
  • the chain carbonate is not particularly limited, and examples thereof include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and dipropyl carbonate (DPC).
  • the chain carbonate includes a fluorinated chain carbonate.
  • a fluorinated chain carbonate for example, a part or all of hydrogen atoms such as ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC) and the like are substituted with fluorine atoms.
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • fluorinated chain carbonate More specific examples of the fluorinated chain carbonate include bis (fluoroethyl) carbonate, 3-fluoropropylmethyl carbonate, 3,3,3-trifluoropropylmethyl carbonate, and the like. Among these, dimethyl carbonate is preferable from the viewpoints of voltage resistance and conductivity.
  • a linear carbonate can be used individually by 1 type or in combination of 2 or more types.
  • Chain carbonate has the effect of lowering the viscosity of the electrolytic solution, and can increase the conductivity of the electrolytic solution.
  • the content of the chain carbonate is preferably 0 to 90% by volume, more preferably 0.01 to 70% by volume, and further preferably 0.02 to 40% by volume in the non-aqueous electrolyte.
  • the carboxylate ester is not particularly limited, and examples thereof include ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, and methyl formate.
  • the carboxylic acid ester also includes a fluorinated carboxylic acid ester. Examples of the fluorinated carboxylic acid ester include ethyl acetate, methyl propionate, ethyl formate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetate, and methyl formate.
  • Carboxylic acid esters have the effect of reducing the viscosity of the electrolytic solution, like chain carbonates and chain ethers. Therefore, for example, the carboxylic acid ester can be used in place of the chain carbonate and the chain ether, and can also be used in combination with the chain carbonate and the chain ether.
  • the content of the carboxylic acid ester is preferably 0 to 50% by volume, more preferably 0.01 to 20% by volume, and further preferably 0.02 to 15% by volume in the non-aqueous electrolyte.
  • the cyclic carboxylic acid ester is not particularly limited.
  • ⁇ -lactones such as ⁇ -butyrolactone, ⁇ methyl- ⁇ -butyrolactone, 3-methyl- ⁇ -butyrolactone, ⁇ -propiolactone, ⁇ -Valerolactone is preferred. These fluorides may be used.
  • the content of the cyclic carboxylic acid ester is preferably 0 to 50% by volume, more preferably 0.01 to 20% by volume, and further preferably 0.02 to 15% by volume in the non-aqueous electrolyte.
  • the cyclic ether is not particularly limited, but for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 2-methyl-1,3-dioxolane and the like are preferable. It is also possible to use partially fluorinated 2,2-bis (trifluoromethyl) -1,3-dioxolane, 2- (trifluoroethyl) dioxolane, and the like.
  • the content of the cyclic ether in the non-aqueous electrolyte is preferably 0 to 70% by volume, more preferably 0.01 to 50% by volume, and further preferably 0.1 to 40% by volume.
  • phosphate ester examples include trimethyl phosphate, triethyl phosphate, and tributyl phosphate.
  • the content of the phosphate ester is preferably 0 to 40% by volume, more preferably 0.1 to 30% by volume, and further preferably 1 to 20% by volume of the non-aqueous electrolyte from the viewpoint of compatibility and viscosity of the electrolyte. preferable.
  • Non-aqueous electrolytic solution may include the following.
  • Non-aqueous electrolytes include, for example, non-fluorinated chain ethers such as 1,2-ethoxyethane (DEE) or ethoxymethoxyethane (EME), dimethyl sulfoxide, formamide, acetamide, dimethylformamide, acetonitrile, propyl nitrile , Nitromethane, ethyl monoglyme, trimethoxymethane, dioxolane derivative, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone
  • an aprotic organic solvent such as anisole or N-methylpyrrolidone may be contained.
  • Examples of the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 2 , LiN (CF 3 Examples thereof include lithium salts such as SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , and LiB 10 Cl 10 .
  • Other examples of the supporting salt include lower aliphatic lithium carboxylate carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, and the like.
  • the supporting salt can be used alone or in combination of two or more.
  • an ion conductive polymer can be added to the non-aqueous electrolyte.
  • the ion conductive polymer include polyethers such as polyethylene oxide and polypropylene oxide, and polyolefins such as polyethylene and polypropylene.
  • the ion conductive polymer include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl fluoride, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, and polyvinyl chloride.
  • Acetate, polyvinylpyrrolidone, polycarbonate, polyethylene terephthalate, polyhexamethylene acipamide, polycaprolactam, polyurethane, polyethyleneimine, polybutadiene, polystyrene, or polyisoprene, or derivatives thereof can be used.
  • An ion conductive polymer can be used individually by 1 type or in combination of 2 or more types. Moreover, you may use the polymer containing the various monomers which comprise the said polymer.
  • an electrolyte additive can be added to the non-aqueous electrolyte.
  • Additives include cyclic carbonate additives such as vinylene carbonate, sulfur compound additives such as 1,3-propane sultone, cyclic disulfonate, and chain sulfonate, and boron additives such as lithium bisoxalate borate.
  • imide-based additives such as lithium bissulfonylimide.
  • the positive electrode active material is not particularly limited, and examples thereof include a spinel material, a layered material, and an olivine material.
  • LiMn 2 ⁇ x M x O 4 (where 0 ⁇ x ⁇ 0. 0) is operated near 4 V with respect to lithium whose lifetime was increased by substituting a part of Mn of LiMn 2 O 4 . 3 and M includes at least one selected from Li, Al, B, Mg, Si, transition metals, etc.), and a potential of 4.5 V or more with respect to lithium represented by the following formula (5) Materials that work with.
  • M is a transition metal element and includes at least one selected from the group consisting of Co, Ni, Fe, Cr and Cu
  • Y is a metal element
  • Z is a halogen element, and includes at least one selected from the group consisting of F and Cl.
  • M preferably contains 80% or more, more preferably 90% or more of the elements exemplified above, and may be 100%.
  • Y and Z each preferably contain 80% or more, more preferably 90% or more of the elements exemplified above, and may be 100%.
  • the olivine-based material has the general formula LiMPO 4 (6)
  • M is a transition metal element, and more preferably contains at least one selected from Co and Ni.
  • olivine-based material examples include LiFePO 4 , LiMnPO 4 , LiCoPO 4 , LiNiPO 4, etc., but some of these transition metals are replaced with another element, or the oxygen portion is replaced with fluorine. You can also use it.
  • M preferably contains 80% or more, more preferably 90% or more of the above-exemplified elements, and the other elements contained preferably include, for example, Fe.
  • Examples of layered materials include the following.
  • NASICON type lithium transition metal silicon composite oxide, etc. can be used.
  • the positive electrode active material can be used alone or in combination of two or more.
  • the specific surface areas of the positive electrode active material is, for example, 0.01 ⁇ 5m 2 / g, preferably 0.05 ⁇ 4m 2 / g, more preferably 0.1 ⁇ 3m 2 / g, 0.15 ⁇ 2m 2 / g is more preferable.
  • the contact area with the electrolytic solution can be adjusted to an appropriate range. That is, when the specific surface area is 0.01 m 2 / g or more, lithium ions can be easily inserted and desorbed smoothly, and the resistance can be further reduced.
  • the center particle size of the lithium manganese composite oxide is preferably 0.01 to 50 ⁇ m, more preferably 0.02 to 40 ⁇ m.
  • the particle size can be measured by a laser diffraction / scattering particle size distribution measuring apparatus.
  • the positive electrode binder is not particularly limited, but is polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer.
  • PVdF polyvinylidene fluoride
  • Examples thereof include rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, and polyamideimide.
  • polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. .
  • a conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing the resistance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • the positive electrode current collector aluminum, nickel, silver, and alloys thereof are preferable.
  • the shape include foil, flat plate, and mesh.
  • the positive electrode can be obtained by dispersing and kneading the above-described positive electrode active material together with a conductive material and a binder in a solvent, and applying this to a positive electrode current collector.
  • a negative electrode will not be specifically limited if the negative electrode active material contains the material which can occlude and discharge
  • the negative electrode active material is not particularly limited.
  • An oxide (c) etc. are mentioned.
  • the carbon material (a) graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof can be used.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • the carbon material (a) can be used alone or in combination with other substances. In one embodiment used in combination with another substance, for example, the carbon material (a) is preferably in the range of 2% by mass to 80% by mass in the negative electrode active material, and in the range of 2% by mass to 30% by mass. It is more preferable that
  • the metal (b) a metal mainly composed of Al, Si, Pb, Sn, Zn, Cd, Sb, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, La, or the like, or these Two or more kinds of alloys, or an alloy of these metals or alloys and lithium can be used.
  • silicon (Si) is preferably included as the metal (b).
  • the metal (b) can be used alone or in combination with other substances, but is preferably in the range of 5% by mass to 90% by mass in the negative electrode active material, and is 20% by mass to 50% by mass. The following range is more preferable.
  • silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite thereof can be used as the metal oxide (c).
  • silicon oxide is preferably included as the metal oxide (c). This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
  • one or more elements selected from nitrogen, boron, and sulfur may be added to the metal oxide (c), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (c) can be improved.
  • the metal oxide (c) can be used alone or in combination with other substances, but is preferably in the range of 5% by mass or more and 90% by mass or less in the negative electrode active material, and is 40% by mass or more and 70% by mass. More preferably, it is in the range of mass% or less.
  • metal oxide (c) examples include, for example, LiFe 2 O 3 , WO 2 , MoO 2 , SiO, SiO 2 , CuO, SnO, SnO 2 , Nb 3 O 5 , Li x Ti 2-x O 4. (1 ⁇ x ⁇ 4/3), PbO 2 , Pb 2 O 5 and the like.
  • the negative electrode active material include metal sulfide (d) that can occlude and release lithium ions.
  • Metal sulfide as (d) are, for example, SnS and FeS 2 or the like.
  • Other examples of the negative electrode active material include metal lithium or lithium alloy, polyacene or polythiophene, or Li 5 (Li 3 N), Li 7 MnN 4 , Li 3 FeN 2 , Li 2.5 Co 0. Lithium nitride such as 5 N or Li 3 CoN can be used.
  • These negative electrode active materials can be used alone or in admixture of two or more.
  • the negative electrode active material can include a carbon material (a), a metal (b), and a metal oxide (c).
  • this negative electrode active material will be described.
  • the amorphous metal oxide (c) can suppress the volume expansion of the carbon material (a) and the metal (b), and can suppress the decomposition of the electrolytic solution. This mechanism is presumed to have some influence on the film formation on the interface between the carbon material (a) and the electrolytic solution due to the amorphous structure of the metal oxide (c).
  • the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects.
  • the metal oxide (c) does not have an amorphous structure, a peak specific to the metal oxide (c) is observed, but all or part of the metal oxide (c) is amorphous. When it has a structure, an intrinsic peak is observed as a broad in the metal oxide (c).
  • the metal oxide (c) is preferably a metal oxide constituting the metal (b).
  • the metal (b) and the metal oxide (c) are preferably silicon (Si) and silicon oxide (SiO), respectively.
  • the metal (b) is preferably dispersed entirely or partially in the metal oxide (c).
  • the metal (b) is preferably dispersed entirely or partially in the metal oxide (c).
  • the volume expansion of the whole negative electrode can be further suppressed, and the decomposition of the electrolytic solution can also be suppressed.
  • all or part of the metal (b) is dispersed in the metal oxide (c) because it is observed with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement.
  • the cross section of the sample containing the metal (b) particles is observed, the oxygen concentration of the metal (b) particles dispersed in the metal oxide (c) is measured, and the metal (b) particles are configured. It can be confirmed that the metal being used is not an oxide.
  • the content of the carbon material (a), the metal (b), and the metal oxide (c) with respect to the total of the carbon material (a), the metal (b), and the metal oxide (c) is 2 respectively. It is preferable that they are 0 mass% or more and 100 mass% or less, 0 mass% or more and 95 mass% or less, and 0 mass% or more and 95 mass% or less. Moreover, content of the carbon material (a), the metal (b), and the metal oxide (c) with respect to the total of the carbon material (a), the metal (b), and the metal oxide (c) is 2% by mass or more, respectively. More preferably, they are 100 mass% or less, 0 mass% or more and 90 mass% or less, and 0 mass% or more and 90 mass% or less.
  • a negative electrode active material in which all or part of the metal oxide (c) has an amorphous structure and all or part of the metal (b) is dispersed in the metal oxide (c) is disclosed in, for example, It can be produced by the method disclosed in 2004-47404. That is, by performing a CVD process on the metal oxide (c) in an atmosphere containing an organic gas such as methane gas, the metal (b) in the metal oxide (c) is nanoclustered and the surface is a carbon material (a ) Can be obtained. Moreover, the said negative electrode active material is producible also by mixing a carbon material (a), a metal (b), and a metal oxide (c) by mechanical milling.
  • the carbon material (a), the metal (b), and the metal oxide (c) are not particularly limited, but particulate materials can be used.
  • the average particle diameter of the metal (b) may be smaller than the average particle diameter of the carbon material (a) and the average particle diameter of the metal oxide (c). In this way, the metal (b) having a large volume change during charging and discharging has a relatively small particle size, and the carbon material (a) and the metal oxide (c) having a small volume change have a relatively large particle size. Therefore, dendrite formation and alloy pulverization are more effectively suppressed.
  • the average particle diameter of the metal (b) can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
  • the average particle diameter of a metal oxide (c) is 1/2 or less of the average particle diameter of a carbon material (a), and the average particle diameter of a metal (b) is an average of a metal oxide (c). It is preferable that it is 1/2 or less of a particle diameter. Furthermore, the average particle diameter of the metal oxide (c) is 1 ⁇ 2 or less of the average particle diameter of the carbon material (a), and the average particle diameter of the metal (b) is the average particle diameter of the metal oxide (c). It is more preferable that it is 1/2 or less.
  • the average particle diameter of the silicon oxide (c) is set to 1/2 or less of the average particle diameter of the graphite (a), and the average particle diameter of the silicon (b) is the average particle of the silicon oxide (c). It is preferable to make it 1/2 or less of the diameter. More specifically, the average particle diameter of silicon (b) can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
  • the binder for the negative electrode is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer.
  • PVdF polyvinylidene fluoride
  • Polymerized rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can be mentioned.
  • the content of the negative electrode binder is preferably in the range of 1 to 30% by mass and more preferably 2 to 25% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder.
  • the content is preferably in the range of 1 to 30% by mass and more preferably 2 to 25% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder.
  • the negative electrode current collector is not particularly limited, but aluminum, nickel, copper, silver, and alloys thereof are preferable from the viewpoint of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • the negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
  • Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
  • the secondary battery may be composed of a combination of a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte.
  • the separator include woven fabrics, nonwoven fabrics, polyolefins such as polyethylene and polypropylene, polyimides, porous polymer films such as porous polyvinylidene fluoride films, and ion conductive polymer electrolyte films. These can be used alone or in combination.
  • Examples of the shape of the battery include a cylindrical shape, a square shape, a coin shape, a button shape, and a laminate shape.
  • Examples of the battery outer package include stainless steel, iron, aluminum, titanium, alloys thereof, and plated products thereof. As the plating, for example, nickel plating can be used.
  • examples of the laminate resin film used for the laminate mold include aluminum, aluminum alloy, and titanium foil.
  • examples of the material of the heat-welded portion of the metal laminate resin film include thermoplastic polymer materials such as polyethylene, polypropylene, and polyethylene terephthalate.
  • the metal laminate resin layer and the metal foil layer are not limited to one layer, and may be two or more layers.
  • FIG. 1 shows the configuration of the secondary battery according to the present embodiment.
  • the lithium secondary battery includes a positive electrode active material layer 1 containing a positive electrode active material on a positive electrode current collector 3 made of metal such as aluminum foil, and a negative electrode active material on a negative electrode current collector 4 made of metal such as copper foil.
  • a negative electrode active material layer 2 containing The positive electrode active material layer 1 and the negative electrode active material layer 2 are disposed to face each other with a separator 5 made of an electrolytic solution, a nonwoven fabric containing the electrolyte, a polypropylene microporous film, and the like.
  • 6 and 7 are exterior bodies
  • 8 is a negative electrode tab
  • 9 is a positive electrode tab.
  • FIG. 1 is a schematic diagram showing the configuration of a lithium secondary battery produced in this example.
  • Table 1 shows the fluorine-containing ether compounds used in this example, their abbreviations, and their fluorine substitution rates (ratio of the number of fluorine atoms to the total number of hydrogen and fluorine atoms of the fluorine-containing ether compound).
  • Example 1 LiNi 0.5 Mn 1.35 Ti 0.15 O 4 (90% by mass) as a positive electrode active material, polyvinylidene fluoride (PVdF, 5% by mass) as a binder, and carbon black (5 % By mass) was mixed to obtain a positive electrode mixture.
  • This positive electrode mixture was dispersed in N-methyl-2-pyrrolidone to prepare a positive electrode slurry.
  • This positive electrode slurry was uniformly applied to one side of an aluminum current collector having a thickness of 20 ⁇ m. The thickness of the coating film was adjusted so that the initial charge capacity per unit area was 2.5 mAh / cm 2 . After drying, a positive electrode was produced by compression molding with a roll press.
  • Artificial graphite was used as the negative electrode active material. Artificial graphite was dispersed in N-methylpyrrolidone dissolved in PVdF as a binder to prepare a negative electrode slurry. The mass ratio of the negative electrode active material and the binder was 90/10. This negative electrode slurry was uniformly coated on a 10 ⁇ m thick Cu current collector. The thickness of the coating film was adjusted so that the initial charge capacity was 3.0 mAh / cm 2 . After drying, a negative electrode was produced by compression molding with a roll press.
  • the positive electrode and the negative electrode cut out to 3 cm ⁇ 3 cm were arranged so as to face each other with a separator interposed therebetween.
  • a separator a microporous polypropylene film having a thickness of 25 ⁇ m was used.
  • ethylene carbonate (EC), tris (2,2,2-trifluoroethyl) phosphate (FP1), and two fluorine-containing ether compounds (FE01, FE06) shown in Table 1 were used.
  • EC ethylene carbonate
  • FP1 tris (2,2,2-trifluoroethyl) phosphate
  • FE01, FE06 two fluorine-containing ether compounds
  • the above positive electrode, negative electrode, separator, and electrolyte were placed in a laminate outer package, the laminate was sealed, and a lithium secondary battery was produced.
  • the positive electrode and the negative electrode were connected to a tab and electrically connected from the outside of the laminate.
  • Example 2 Comparative Examples 1 to 7
  • a lithium secondary battery was produced in the same manner as in Example 1 except that the solvent composition of the non-aqueous electrolyte was changed to the composition shown in Table 2, and the capacity retention rate after 200 cycles at 45 ° C. was evaluated. The results are shown in Table 2.
  • FE01 to FE12 each represents a fluorine-containing ether compound shown in Table 1.
  • EC ethylene carbonate
  • PC propylene carbonate
  • FEC fluoroethylene carbonate
  • FP1 tris phosphate (2,2,2-trifluoroethyl)
  • the life improvement effect was recognized by mixing two kinds of fluorine-containing ether compounds.
  • the addition of a fluorine-containing ether compound having a high fluorine substitution rate is considered to improve the oxidation resistance and improve the characteristics. Even when a small amount of a fluorine-containing ether compound having a high fluorine substitution rate is added, it is presumed that deterioration at a high potential is suppressed by adsorption to the positive electrode.
  • the effect of improving the cycle capacity retention rate was low.
  • the ether compound having a high fluorine substitution rate has low compatibility with other solvents, and therefore, if the addition amount is large, it may cause partial separation, precipitation, and the like, and as a result, good cycle characteristics cannot be obtained.
  • FP1 Tris phosphate (2,2,2-trifluoroethyl)
  • FP2 Tris phosphate (1H, 1H-heptafluorobutyl)
  • FP3 Tris phosphate (2,2,3,3,3-pentafluoropropyl)
  • the mixture of the cyclic carbonate and the fluorine-containing ether compound has low compatibility and is difficult to uniformly mix.
  • the fluorine-containing phosphate compound phase separation is eliminated, and a uniformly mixed electrolyte can be obtained. Good battery characteristics can be obtained by the uniform electrolyte.
  • Table 3 in a plurality of types of fluorine-containing phosphate compounds, the same effect was confirmed in improving compatibility.
  • Example 20 to 21 Comparative Examples 10 to 11
  • a lithium secondary battery was produced in the same manner as in Example 1 except that the solvent composition of the nonaqueous electrolytic solution was changed to the composition shown in Table 4, and the capacity retention rate after 45 cycles at 45 ° C. was measured to evaluate cycle characteristics. Went. Table 4 shows the results.
  • Table 5 shows the results of evaluating the homogeneous mixing property of the electrolytic solution in each electrolytic solution solvent composition. LiPF 6 was used as the supporting salt for the electrolyte, and the concentration was 0.8 mol / l.
  • Examples 24 to 28, Comparative Examples 13 to 17 a lithium secondary battery was produced in the same manner as in Example 1 except that the solvent composition of the nonaqueous electrolytic solution was changed to the composition shown in Table 6, and the capacity retention rate after 45 cycles at 45 ° C. was measured. Evaluation was performed. The result of having evaluated with the electrolyte solution of Table 6 is shown. LiPF 6 was used as the supporting salt for the electrolyte, and the concentration was 0.8 mol / l.
  • the positive electrode active material Even if the positive electrode active material was changed, the effect of improving the cycle characteristics was obtained in the same manner. However, when the positive electrode active material operated at a high potential was used, the improvement effect was higher. Since the graphite of the negative electrode has a large charge / discharge region in the vicinity of 0.1 V to 0.2 V with respect to Li, the positive electrode potential is obtained by adding 0.1 V to 0.2 V to the cell voltage. . For example, when a battery using graphite is charged to 4.75 V, the positive electrode potential is approximately 4.85 V with respect to Li. From the results of Table 7, the effect was obtained even when the positive electrode potential was about 4.3 V, but the effect was higher when the positive electrode potential was 4.5 V or more.
  • Examples 41 to 43, Comparative Examples 30 to 32 Evaluation of negative electrode active material [Examples 41 to 43, Comparative Examples 30 to 32] Subsequently, a battery was produced in the same manner as in Example 1 except that the material shown in Table 8 was used as the negative electrode active material, and the solvent composition of the nonaqueous electrolytic solution was changed to the composition shown in Table 8, and cycle characteristics were evaluated. .
  • the charge / discharge range is the charge / discharge range shown in Table 8 as a charge / discharge voltage range in which sufficient capacity and lifetime characteristics are obtained for each negative electrode active material, and the capacity is maintained after 45 ° C. and 200 cycles in the same manner as in Example 1. The rate was evaluated. The results are shown in Table 8.
  • a life improvement effect can be obtained by adopting the configuration of the present embodiment.
  • the effect is particularly high when a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium is used. This makes it possible to provide a long-life lithium secondary battery having a high operating voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、第一のフッ素含有エーテル化合物、第二のフッ素含有エーテル化合物、並びに、フッ素含有リン酸エステル化合物およびスルホン化合物から選択される少なくとも一種を含み、前記第一のフッ素含有エーテル化合物のフッ素置換率は前記第二のフッ素含有エーテル化合物のフッ素置換率より小さく、かつ、前記第一のフッ素含有エーテル化合物の含有量は前記第二のフッ素含有エーテル化合物の含有量よりも大きいことを特徴とする、二次電池用電解液に関する。本発明によれば、高電圧で動作する電池や、高温で長期間使用されることが想定される電池において、電解液の分解反応を抑制し寿命特性を改善したリチウム二次電池を提供することができる。

Description

二次電池用電解液および二次電池
 本発明は、二次電池用電解液およびそれを用いた二次電池に関し、さらにはその製造方法に関するものである。
 リチウム二次電池は、携帯型電子機器やパソコン等に、広く利用され、小型化、軽量化が求められる一方において、エネルギー密度を高めることが重要な課題である。
 リチウム二次電池のエネルギー密度を高める方法としては幾つかの方法が考えられるが、その中でも電池の動作電圧を上昇させることが有効である。正極活物質として、コバルト酸リチウムやマンガン酸リチウムを用いたリチウム二次電池では、平均動作電圧は、金属リチウム基準に対し、3.6~3.8V(4V級)である。これは、コバルトイオンもしくはマンガンイオンの酸化還元反応(Co3+←→Co4+もしくはMn3+←→Mn4+)によって動作電圧が規定されるためである。
 これに対し、マンガン酸リチウムにおいてマンガンの一部をニッケル等により置換したスピネル化合物、例えば、LiNi0.5Mn1.5は4.5V以上の領域に電位プラトーを示すことから、このようなスピネル化合物を正極活物質として用いることにより、5V級の動作電圧を実現できる。このようなスピネル化合物を用いた正極においては、マンガンは4価の状態で存在し、Mn3+←→Mn4+の酸化還元に代わって、Ni2+←→Ni4+の酸化還元によって電池の動作電圧が規定される。
 LiNi0.5Mn1.5の容量は130mAh/g以上であり、平均動作電圧は金属リチウムに対して4.6V以上であり、リチウム吸蔵容量としてはLiCoOより小さいものの、エネルギー密度はLiCoOよりも高い。このような理由からLiNi0.5Mn1.5は、正極材料として有望である。
 ところが、LiNi0.5Mn1.5等の高電位の正極活物質を用いた電池においては、LiCoO、LiMn等を正極活物質に用いた電池よりもさらに動作電圧が高くなり、正極と電解液との接触部分で電解液の分解反応が進行しやすい。この分解反応によってガスが発生する。ガスの発生は、セルの内圧を高めたり、ラミネートセルの膨れとなったりするため、実使用上問題である。このため、このようなガスの発生を抑制した耐電圧性の高い電解液が期待されている。また、同様の現象は、従来から使用されてきた4V級の電池においても、例えば高温環境下で長期間保管される条件において同じく問題となっている。ガス発生抑制可能な耐電圧性の高い電解液としては、フッ素化溶媒などが考えられている。その候補として、フッ素化溶媒であるフッ素化カーボネート、フッ素化カルボン酸エステル、フッ素含有エーテル化合物、フッ素含有リン酸エステル化合物などが挙げられる。この中で、フッ素含有エーテル化合物は寿命改善効果が高く、粘度も比較的低いので有用である。
 例えば、引用文献1では、4.5V以上の電位で動作する正極活物質を含むリチウム二次電池において、非水電解溶媒にフッ素含有リン酸エステルを含むことが記載されている。また、引用文献2には、非水電解液にフッ素化エーテルを含むリチウムイオン二次電池が記載されている。
国際公開2012/077712号公報 国際公開2011/162169号公報
 上述のとおり、LiNi0.5Mn1.5等の高い放電電位を有する正極材料を活物質に使用する電池において、また、LiMn、LiCoO、LiNiO、LiNi1/3Co1/3Mn1/3などの4V級で動作する正極材料を活物質に使用する電池においても、45℃以上などの高い温度条件下での長期のサイクル寿命が求められていた。
 非水電解液としては、従来、カーボネート系の材料が主に使用されているが、高電圧動作時や高温での長期動作時においては、上述のように、セル内の電解液の分解に伴う容量の低下や、ガス発生に改善の余地があった。
 ガス発生抑制可能な耐電圧性の高い電解液としては、特許文献1、特許文献2に、フッ素含有エーテル化合物やフッ素含有リン酸エステル化合物を含む電解液を使った高電圧電池の記載があるが、さらなる改善が必要であった。
 また、フッ素含有エーテル化合物においても種類によっては耐酸化性が低いという課題があった。耐酸化性を高めるためにフッ素含有量を増やすと、粘度が増加したり、耐還元性が下がったり、相溶性が低下するなどして電池特性が低下する場合があるという課題があった。
 そこで、本発明は、寿命特性、特に高電圧下における寿命特性が改善された二次電池用電解液および二次電池を提供することを目的とする。
 本発明の一態様は、二次電池用電解液であって、
 式(1)で示される第一のフッ素含有エーテル化合物、
 式(1)で示される第二のフッ素含有エーテル化合物、並びに、
 式(2)で示されるフッ素含有リン酸エステル化合物および式(3)で示されるスルホン化合物から選択される少なくとも一種
を含み、
 前記第一のフッ素含有エーテル化合物のフッ素置換率は、前記第二のフッ素含有エーテル化合物のフッ素置換率より小さく、
 前記第一のフッ素含有エーテル化合物の含有量は前記第二のフッ素含有エーテル化合物の含有量よりも大きく、
 前記第一のフッ素含有エーテル化合物の含有量は電解液の0.1体積%以上80体積%以下であり、
 前記第二のフッ素含有エーテル化合物の含有量は電解液の0.1体積%以上40体積%以下であり、
 前記フッ素含有リン酸エステル化合物および前記スルホン化合物の含有量の合計は電解液の0.1体積%以上70体積%以下であることを特徴とする、二次電池用電解液に関する。
  R-O-R   (1)
[式(1)中、RおよびRは、それぞれ独立してアルキル基またはフッ素含有アルキル基であり、RおよびRの少なくとも一方がフッ素含有アルキル基である。]
  O=P(-O-R’)(-O-R’)(-O-R’)   (2)
[式(2)中、R’、R’、R’はそれぞれ独立してアルキル基またはフッ素含有アルキル基であり、R’、R’およびR’の少なくとも1つがフッ素含有アルキル基である。]
  R’’-SO-R’’   (3)
[式(3)中、R’’、R’’はそれぞれ独立して置換または無置換のアルキル基であり、R’’、R’’の炭素原子が単結合または二重結合を介して結合した環状化合物であっても良い。]
 本発明の実施形態によれば、寿命特性が改善した二次電池を提供することができる。
本実施形態に係る二次電池の断面構造を示す図である。
 本発明者らは、上述のような二次電池用電解液の検討を進めた結果、電解液に、2種類以上のフッ素含有エーテル化合物と、フッ素含有リン酸エステル化合物およびスルホン化合物から選ばれる1種以上と、を含むことによって、寿命特性の改善の効果があることを見出した。
 本実施形態に係る電解液は、フッ素含有エーテル化合物を2種類以上含むことを特徴とする。本実施形態に係る電解液は、さらに、フッ素含有リン酸エステル化合物およびスルホン化合物から選ばれる1種以上を含むことを特徴とする。また、本実施形態に係る二次電池は、2種類以上のフッ素含有エーテル化合物と、フッ素含有リン酸エステル化合物およびスルホン化合物から選ばれる1種以上と、を含む電解液を有することを特徴とする。
 このような電解液を使用することにより二次電池の寿命特性を改善できる。特に、リチウムに対して4.5V以上等の高電位で動作することができる正極材料を活物質に使用する場合に効果が高い。
 本発明の好適な実施形態について説明する。
 (電解液)
 電解液(非水電解液)は、支持塩及び非水電解溶媒を含み、非水電解液は下記一般式(1)で表されるフッ素含有鎖状エーテル化合物(以下、単に「フッ素含有エーテル化合物」と記載することもある。)を2種類以上含む。2種類以上のフッ素含有エーテル化合物を含むことによって、寿命特性を改善できる。
-O-R (1)
[式(1)中、RおよびRは、それぞれ独立してアルキル基またはフッ素含有アルキル基であり、RおよびRの少なくとも一方はフッ素含有アルキル基である。]
 一般式(1)で表されるフッ素含有エーテル化合物におけるアルキル基(RおよびR)の炭素数は、それぞれ独立に、1以上10以下であることが好ましく、1以上8以下であることがより好ましい。アルキル基の炭素数が10以下であると、電解液の粘度の増加が抑えられ、電解液が電極やセパレータ内の細孔に浸み込み易くなるとともに、イオン伝導性が向上し、電池の充放電特性において電流値が良好になるためである。アルキル基(RおよびR)は、直鎖状または分岐鎖状のものを含む。
 また、一般式(1)で表されるフッ素含有エーテル化合物の炭素数、すなわち、アルキル基RおよびRが有する炭素数の総和は、沸点や粘度の観点から、4以上10以下程度であることが好ましい。さらに好ましくは、5以上9以下である。
 本実施形態において、式(1)中、RまたはRで示されるアルキル基の水素のうちの、一部または全部がフッ素で置換されている。フッ素を含むことによって、耐酸化性を高めることができ、サイクル特性の改善が可能となるからである。フッ素原子の含有量が多いと、耐電圧性がより向上し、高電圧電池または高温、長期間で動作させた電池においても、容量の低下を抑制することができるからである。一方、フッ素原子の含有量が大きすぎると、耐還元性が低下したり、電解液の他の溶媒との相溶性が低下したりする場合がある。
 本実施形態において、非水電解液は一般式(1)で表される少なくとも2種類のフッ素含有エーテル化合物、すなわち、第一のフッ素含有エーテル化合物と第二のフッ素含有エーテル化合物とを含み、第一のフッ素含有エーテル化合物のフッ素置換率は第二のフッ素含有エーテル化合物のフッ素置換率より小さく、かつ、第一のフッ素含有エーテル化合物の非水電解液中の含有量は、第二のフッ素含有エーテル化合物の含有量より大きいことが好ましい。なお、本明細書において、用語「フッ素置換率」は、フッ素含有化合物(フッ素化化合物)が有する水素原子数とフッ素原子数の総和に対するフッ素原子数の比率を表す。
 第一のフッ素含有エーテル化合物のフッ素置換率は、一般には20%以上80%以下であり、40%以上80%以下の範囲が好ましく、50%以上75%以下の範囲がより好ましい。このような範囲とすることで、電解液中での他の溶媒との相溶性が高く保つことができ、耐酸化性も確保できるからである。第一のフッ素含有エーテル化合物の電解液中の体積比率は一般には0.01%以上80%以下であり、0.1%以上80%以下であることが好ましく、5%以上75%以下がより好ましい。
 第二のフッ素含有エーテル化合物は、第一のフッ素含有エーテル化合物よりも、フッ素置換率が高い方が好ましい。このようにすることで、耐酸化性を高めることができるからである。具体的には、第二のフッ素含有エーテル化合物のフッ素置換率は一般には70%以上100%以下であり、70%以上95%以下の範囲が好ましく、75%より大きく95%以下の範囲がより好ましい。このような範囲とすることで、第一のフッ素含有エーテル化合物を単独で、または第一のフッ素含有エーテル化合物のみを二種以上使用した場合よりも耐酸化性を高く保つことができる。また、第一のフッ素含有エーテル化合物よりも第二のフッ素含有エーテル化合物の電解液中の体積比率を低く保つことにより、電解液中での相溶性を保つことができる。具体的には、第二のフッ素含有エーテル化合物の電解液中の体積比率は一般には0.01%以上40%以下であり、0.1%以上40%以下とすることが好ましく、5%以上35%以下とすることがより好ましい。
 非水電解液に含まれる一般式(1)で示される2種類以上のフッ素含有エーテル化合物の含有量の合計は、特に制限されるものではないが、非水電解液において0.01~90体積%が好ましい。含有量が90体積%以下であると、電解液のイオン伝導性が向上して電池の充放電レートがより良好になる。一般式(1)で示されるフッ素含有エーテル化合物の含有量の合計は、0.05~85体積%がより好ましく、0.1~80体積%がさらに好ましい。含有量が0.1体積%以上であると、耐電圧性を高める効果が向上する。
 フッ素含有エーテル化合物としては、例えば、2,2,3,3,3-ペンタフルオロプロピル1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル2,2,2-トリフルオロエチルエーテル、1H,1H,2’H,3H-デカフルオロジプロピルエーテル、1,1,1,2,3,3-ヘキサフルオロプロピル-2,2-ジフルオロエチルエーテル、イソプロピル1,1,2,2-テトラフルオロエチルエーテル、プロピル1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテル、1H,1H,5H-パーフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテル、1H-パーフルオロブチル-1H-パーフルオロエチルエーテル、メチルパーフルオロペンチルエーテル、メチルパーフルオロへキシルエーテル、メチル1,1,3,3,3-ペンタフルオロ-2-(トリフルオロメチル)プロピルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピル2,2,2-トリフルオロエチルエーテル、エチルノナフルオロブチルエーテル、エチル1,1,2,3,3,3-ヘキサフルオロプロピルエーテル、1H,1H,5H-オクタフルオロペンチル1,1,2,2-テトラフルオロエチルエーテル、1H,1H,2’H-パーフルオロジプロピルエーテル、ヘプタフルオロプロピル1,2,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル、エチルノナフルオロブチルエーテル、メチルノナフルオロブチルエーテル、1,1-ジフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、ビス(2,2,3,3-テトラフルオロプロピル)エーテル、1,1-ジフルオロエチル-2,2,3,3,3-ペンタフルオロプロピルエーテル、1,1-ジフルオロエチル-1H,1H-ヘプタフルオロブチルエーテル、2,2,3,4,4,4-ヘキサフルオロブチル-ジフルオロメチルエーテル、ビス(2,2,3,3,3-ペンタフルオロプロピル)エーテル、ノナフルオロブチルメチルエーテル、ビス(1H,1H-ヘプタフルオロブチル)エーテル、1,1,2,3,3,3-ヘキサフルオロプロピル-1H,1H-ヘプタフルオロブチルエーテル、1H,1H-ヘプタフルオロブチル-トリフルオロメチルエーテル、2,2-ジフルオロエチル-1,1,2,2-テトラフルオロエチルエーテル、ビス(トリフルオロエチル)エーテル、ビス(2,2-ジフルオロエチル)エーテル、ビス(1,1,2-トリフルオロエチル)エーテル、1,1,2-トリフルオロエチル-2,2,2-トリフルオロエチルエーテルなどが挙げられる。
 これらの中でも、耐電圧性や沸点などの観点から、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、2,2,3,4,4,4-ヘキサフルオロブチル-ジフルオロメチルエーテル、1,1-ジフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、1,1,1,2,3,3-ヘキサフルオロプロピル-2,2-ジフルオロエチルエーテル、1,1-ジフルオロエチル-1H,1H-ヘプタフルオロブチルエーテル、1H,1H,2’H,3H-デカフルオロジプロピルエーテル、ビス(2,2,3,3,3-ペンタフルオロプロピル)エーテル、1H,1H,5H-パーフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテル、ビス(1H,1H-ヘプタフルオロブチル)エーテル、1H,1H,2’H-パーフルオロジプロピルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピル-1H,1H-ヘプタフルオロブチルエーテル、1H-パーフルオロブチル-1H-パーフルオロエチルエーテルなどが好ましい。
 本実施形態において、非水電解液は式(1)で表されるフッ素含有エーテル化合物を3種以上含むこともできる。
 非水電解液が3種以上のフッ素含有エーテル化合物を含む場合、フッ素置換率のもっとも高いフッ素含有エーテル化合物を第二のフッ素含有エーテル化合物、その他のフッ素含有エーテル化合物を第一のフッ素含有エーテル化合物とし、第一のフッ素含有エーテル化合物の含有量の合計が、第二のフッ素含有エーテル化合物の含有量より大きいことが好ましい。
 ただし、非水電解液が、フッ素置換率が80%より大きいフッ素含有エーテル化合物を一種以上含む場合、フッ素置換率が80%より大きいフッ素含有エーテル化合物を第二のフッ素含有エーテル化合物、その他のフッ素含有エーテル化合物を第一のフッ素含有エーテル化合物とし、第一のフッ素含有エーテル化合物の含有量の合計が、第二のフッ素含有エーテル化合物の含有量の合計より大きいことが好ましい。
 フッ素含有エーテル化合物は、他の溶媒との相溶性が低いことが課題であるが、フッ素含有リン酸エステル化合物やスルホン化合物を添加することにより溶媒間の相溶性が高まる。相溶性の低い溶媒は、いったん均一混合できたとしても、長期間放置したり、温度の上昇や低下によって分離する場合があるが、フッ素含有リン酸エステル化合物や、スルホン化合物を混合することにより、電解液の長期安定性を改善することができる。
 フッ素含有エーテル化合物のうち、フッ素置換率の高い化合物においては、他の溶媒との相溶性が低いため、フッ素含有リン酸エステル化合物やスルホン化合物との混合による均一性改善効果が高い。
 本実施形態において、非水電解液は、式(2)で表されるフッ素含有リン酸エステルおよび式(3)で表されるスルホン化合物から選ばれる少なくとも1種を含む。
 非水電解液は、式(2)で表されるフッ素含有リン酸エステルを含むことができる。
O=P(-O-R’)(-O-R’)(-O-R’) (2)
[式(2)中、R’、R’およびR’はそれぞれ独立にアルキル基またはフッ素含有アルキル基を示し、R’、R’およびR’のうちの少なくとも1つがフッ素含有アルキル基である。]
 式(2)において、R’、R’およびR’の炭素数は、それぞれ独立に、1~3であることが好ましい。
 フッ素含有リン酸エステル化合物としては、例えば、リン酸2,2,2-トリフルオロエチルジメチル、リン酸ビス(トリフルオロエチル)メチル、リン酸ビストリフルオロエチルエチル、リン酸トリス(トリフルオロメチル)、リン酸ペンタフルオロプロピルジメチル、リン酸ヘプタフルオロブチルジメチル、リン酸トリフルオロエチルメチルエチル、リン酸ペンタフルオロプロピルメチルエチル、リン酸ヘプタフルオロブチルメチルエチル、リン酸トリフルオロエチルメチルプロピル、リン酸ペンタフルオロプロピルメチルプロピル、リン酸ヘプタフルオロブチルメチルプロピル、リン酸トリフルオロエチルメチルブチル、リン酸ペンタフルオロプロピルメチルブチル、リン酸ヘプタフルオロブチルメチルブチル、リン酸トリフルオロエチルジエチル、リン酸ペンタフルオロプロピルジエチル、リン酸ヘプタフルオロブチルジエチル、リン酸トリフルオロエチルエチルプロピル、リン酸ペンタフルオロプロピルエチルプロピル、リン酸ヘプタフルオロブチルエチルプロピル、リン酸トリフルオロエチルエチルブチル、リン酸ペンタフルオロプロピルエチルブチル、リン酸ヘプタフルオロブチルエチルブチル、リン酸トリフルオロエチルジプロピル、リン酸ペンタフルオロプロピルジプロピル、リン酸ヘプタフルオロブチルジプロピル、リン酸トリフルオロエチルプロピルブチル、リン酸ペンタフルオロプロピルプロピルブチル、リン酸ヘプタフルオロブチルプロピルブチル、リン酸トリフルオロエチルジブチル、リン酸ペンタフルオロプロピルジブチル、リン酸ヘプタフルオロブチルジブチル、リン酸トリス(2,2,3,3-テトラフルオロプロピル)、リン酸トリス(2,2,3,3,3-ペンタフルオロプロピル)、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1H,1H-ヘプタフルオロブチル)、リン酸トリス(1H,1H,5H-オクタフルオロペンチル)等が挙げられる。
 これらの中でも、高電位における電解液分解の抑制効果が高いことから、下記式(2-1)で表されるリン酸トリス(2,2,2-トリフルオロエチル)が好ましい。
Figure JPOXMLDOC01-appb-C000001
 フッ素含有リン酸エステル化合物は、一種を単独で又は二種以上を併用して用いることができる。
 フッ素含有リン酸エステル化合物の含有量は、耐電圧性およびイオン伝導性の観点から、非水電解液の0.1~70体積%が好ましく、1~60体積%がより好ましく、2~50体積%がさらに好ましい。
 本実施形態において、非水電解液は、下記式(3)で表されるスルホン化合物を含むことができる。
’’-SO-R’’ (3)
[式(3)中、R’’およびR’’はそれぞれ独立して置換または無置換のアルキル基を示す。R’’、R’’の炭素原子が単結合または二重結合を介して結合した環状化合物であっても良い。]
 式(3)中、R’’の炭素数n、R’’の炭素数nはそれぞれ1≦n≦12、1≦n≦12であることが好ましく、1≦n≦6、1≦n≦6であることがより好ましく、1≦n≦3、1≦n≦3であることが更に好ましい。アルキル基は、直鎖状、分岐鎖状、又は環状のものを含む。
 R’’及びR’’は置換基を有してもよく、置換基としては、例えば、炭素数1~6のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基)、炭素数6~10のアリール基(例えば、フェニル基、ナフチル基)、ハロゲン原子(例えば、塩素原子、臭素原子、フッ素原子)等が挙げられる。
 式(3)で表されるスルホン化合物は下記式(4)で表される環状化合物であってもよい。
Figure JPOXMLDOC01-appb-C000002
[式(4)中、Rは置換または無置換のアルキレン基を示す。]
 式(4)中、Rの炭素数は4~9であることが好ましく、4~6であることが更に好ましい。
 Rは置換基を有してもよく、置換基としては、例えば、炭素数1~6のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基)、ハロゲン原子(例えば、塩素原子、臭素原子、フッ素原子)等が挙げられる。
 スルホン化合物としては、スルホラン(テトラメチレンスルホン)、3-メチルスルホラン、ジメチルスルホン(例えば3,4-ジメチルスルホン、2,5-ジメチルスルホン)、エチルメチルスルホン、ジエチルスルホン、ブチルメチルスルホン、ジブチルスルホン、メチルイソプロピルスルホン、ジイソプロピルスルホン、メチルtert‐ブチルスルホン、ブチルエチルスルホン、ブチルプロピルスルホン、ブチルイソプロピルスルホン、ジ‐tert‐ブチルスルホン、ジイソブチルスルホン、エチルイソプロピルスルホン、エチルイソブチルスルホン、tert‐ブチルエチルスルホン、プロピルエチルスルホン、イソブチルイソプロピルスルホン、ブチルイソブチルスルホン、イソプロピル(1‐メチルプロピル)スルホン、ペンタメチレンスルホン、ヘキサメチレンスルホン、エチレンスルホン、トリメチレンスルホンなどが挙げられる。これらの化合物は、一種を単独で又は二種以上を併用して用いることができる。
 スルホン化合物の含有量は、電解液の相溶性および粘度の観点から、非水電解液の0.1~70体積%が好ましく、1~65体積%がより好ましく、3~60体積%がさらに好ましい。
 また、本実施形態において、フッ素含有リン酸エステル化合物とスルホン化合物の含有量の合計は、電解液の0.1~70体積%であることが好ましく、1~65体積%がより好ましく、5~60体積%がさらに好ましい。
 非水電解液は、環状カーボネート(フッ素化物を含む)、鎖状カーボネート(フッ素化物を含む)、鎖状カルボン酸エステル(フッ素化物を含む)、環状カルボン酸エステル(フッ素化物を含む)、環状エーテル(フッ素化物を含む)、リン酸エステルなどをさらに含むことが可能である。
 環状カーボネートは比誘電率が大きいため、これらの添加により、支持塩の解離性が向上し、十分な導電性を付与し易くなる。さらに、鎖状カーボネート、フッ素含有エーテル化合物、フッ素化カルボン酸エステル、フッ素化カーボネートなどの添加により電解液の粘度が下がるので、電解液におけるイオン移動度が向上するという利点がある。また、環状カーボネート(フッ素化物を含む)、鎖状カーボネート(フッ素化物を含む)、フッ素化カルボン酸エステル及びフッ素化カーボネートは、耐電圧性及び導電率が高いことから、一般式(1)のフッ素含有エーテル化合物との混合に適している。
 環状カーボネートとしては、特に制限されるものではないが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)等を挙げることができる。また、環状カーボネートは、フッ素化環状カーボネートを含む。フッ素化環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)等の一部又は全部の水素原子をフッ素原子に置換した化合物等を挙げることができる。フッ素化環状カーボネートとしては、より具体的には、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、(cis又はtrans)4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、4-フルオロ-5-メチル-1,3-ジオキソラン-2-オン等を用いることができる。環状カーボネートとしては、上で列記した中でも、耐電圧性や、導電率の観点から、エチレンカーボネート、プロピレンカーボネート、およびこれらの一部をフッ素化した化合物等が好ましく、エチレンカーボネートがより好ましい。環状カーボネートは、一種を単独で又は二種以上を併用して用いることができる。
 環状カーボネートの含有量は、支持塩の解離度を高める効果と電解液の導電性を高める効果の観点から、非水電解液において、0.1~70体積%が好ましく、0.5~60体積%がより好ましく、1~50体積%がさらに好ましい。
 鎖状カーボネートとしては、特に制限されるものではないが、例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)等を挙げることができる。また、鎖状カーボネートは、フッ素化鎖状カーボネートを含む。フッ素化鎖状カーボネートとしては、例えば、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)等の一部又は全部の水素原子をフッ素原子に置換した化合物等を挙げることができる。フッ素化鎖状カーボネートとしては、より具体的には、例えば、ビス(フルオロエチル)カーボネート、3-フルオロプロピルメチルカーボネート、3,3,3-トリフルオロプロピルメチルカーボネート等が挙げられる。これらの中でも、ジメチルカーボネートが耐電圧性と導電率の観点から好ましい。鎖状カーボネートは、一種を単独で又は二種以上を併用して用いることができる。
 鎖状カーボネートは、電解液の粘度を下げる効果があり、電解液の導電率を高めることができる。これらの観点から、鎖状カーボネートの含有量は、非水電解液において0~90体積%が好ましく、0.01~70体積%がより好ましく、0.02~40体積%がさらに好ましい。
 カルボン酸エステルとしては、特に制限されるものではないが、例えば、酢酸エチル、プロピオン酸メチル、ギ酸エチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酢酸メチル、ギ酸メチル等が挙げられる。また、カルボン酸エステルは、フッ素化カルボン酸エステルも含み、フッ素化カルボン酸エステルとしては、例えば、酢酸エチル、プロピオン酸メチル、ギ酸エチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、酢酸メチルおよびギ酸メチルの一部又は全部の水素原子をフッ素原子で置換した化合物等が挙げられる。例えば、ペンタフルオロプロピオン酸エチル、3,3,3-トリフルオロプロピオン酸エチル、2,2,3,3-テトラフルオロプロピオン酸メチル、酢酸2,2-ジフルオロエチル、ヘプタフルオロイソ酪酸メチル、2,3,3,3-テトラフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸メチル、2-(トリフルオロメチル)-3,3,3-トリフルオロプロピオン酸メチル、ヘプタフルオロ酪酸エチル、3,3,3-トリフルオロプロピオン酸メチル、酢酸2,2,2-トリフルオロエチル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸tert-ブチル、4,4,4-トリフルオロ酪酸エチル、4,4,4-トリフルオロ酪酸メチル、2,2-ジフルオロ酢酸ブチル、ジフルオロ酢酸エチル、トリフルオロ酢酸n-ブチル、酢酸2,2,3,3-テトラフルオロプロピル、3-(トリフルオロメチル)酪酸エチル、テトラフルオロ-2-(メトキシ)プロピオン酸メチル、3,3,3-トリフルオロプロピオン酸3,3,3トリフルオロプロピル、ジフルオロ酢酸メチル、トリフルオロ酢酸2,2,3,3-テトラフルオロプロピル、酢酸1H,1H-ヘプタフルオロブチル、ヘプタフルオロ酪酸メチル、トリフルオロ酢酸エチルなどである。これらの中でも、耐電圧と沸点などの観点から、プロピオン酸エチル、酢酸メチル、2,2,3,3-テトラフルオロプロピオン酸メチル、トリフルオロ酢酸2,2,3,3-テトラフルオロプロピルなどが好ましい。カルボン酸エステルは、鎖状カーボネート、鎖状エーテルと同様に電解液の粘度を低減する効果がある。したがって、例えば、カルボン酸エステルは、鎖状カーボネート、鎖状エーテルの代わりに使用することが可能であり、また、鎖状カーボネート、鎖状エーテルと併用することも可能である。
 カルボン酸エステルの含有量は、非水電解液において0~50体積%が好ましく、0.01~20体積%がより好ましく、0.02~15体積%がさらに好ましい。
 環状カルボン酸エステルとしては、特に制限されるものではないが、例えば、γ-ブチロラクトン、αメチル-γ-ブチロラクトン、3-メチル-γ-ブチロラクトン等のγ-ラクトン類、β-プロピオラクトン、δ-バレロラクトンなどが好ましい。これらのフッ素化物などを使用しても良い。環状カルボン酸エステルの含有量は、非水電解液において0~50体積%が好ましく、0.01~20体積%がより好ましく、0.02~15体積%がさらに好ましい。
 環状エーテルとしては、特に制限されるものではないが、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、2-メチル-1,3-ジオキソラン等などが好ましい。一部をフッ素化した2,2-ビス(トリフルオロメチル)-1,3-ジオキソラン、2-(トリフルオロエチル)ジオキソランなどを使用することも可能である。環状エーテルの含有量は、非水電解液において0~70体積%が好ましく、0.01~50体積%がより好ましく、0.1~40体積%がさらに好ましい。
 リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸トリブチルなどが挙げられる。
 リン酸エステルの含有量は、電解液の相溶性および粘度の観点から、非水電解液の0~40体積%が好ましく、0.1~30体積%がより好ましく、1~20体積%がさらに好ましい。
 非水電解液としては、上記以外に以下のものを含んでいても良い。非水電解液は、例えば、1,2-エトキシエタン(DEE)若しくはエトキシメトキシエタン(EME)等のフッ素化されていない鎖状エーテル類、ジメチルスルホキシド、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、トリメトキシメタン、ジオキソラン誘導体、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドンなどの非プロトン性有機溶媒を含んでも良い。
 支持塩としては、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO、LiN(CSO、LiB10Cl10等のリチウム塩が挙げられる。また、支持塩としては、他にも、低級脂肪族カルボン酸カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl等が挙げられる。支持塩は、一種を単独で、または二種以上を組み合わせて用いることができる。
 また、非水電解液にイオン伝導性ポリマーを添加することができる。イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリエチレンやポリプロピレン等のポリオレフィン等を挙げることができる。また、イオン伝導性ポリマーとしては、例えば、ポリビニリデンフルオライド、ポリテトラフルオロエチレン、ポリビニルフルオライド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリビニルアルコール、ポリメタクリロニトリル、ポリビニルアセテート、ポリビニルピロリドン、ポリカーボネート、ポリエチレンテレフタレート、ポリヘキサメチレンアシパミド、ポリカプロラクタム、ポリウレタン、ポリエチレンイミン、ポリブタジエン、ポリスチレン、若しくはポリイソプレン、又はこれらの誘導体を用いることができる。イオン伝導性ポリマーは、一種を単独で、又は二種以上を組み合わせて用いることができる。また、上記ポリマーを構成する各種モノマーを含むポリマーを用いてもよい。
 また、非水電解液に、電解液添加剤を添加することができる。添加剤としては、ビニレンカーボネートなどの環状カーボネート系添加剤、1,3-プロパンスルトン、環状ジスルホン酸エステル、鎖状スルホン酸エステルなどの硫黄化合物系添加剤、リチウムビスオキサレートボレートなどのホウ素系添加剤、リチウムビススルホニルイミドなどのイミド系の添加剤などが挙げられる。
 (正極)
 正極活物質としては、特に制限されるものではないが、例えば、スピネル系の材料、層状系の材料、オリビン系の材料などが挙げられる。
 スピネル系材料としては、LiMnのMnの一部を置換して寿命を高めたリチウムに対して4V付近で動作するLiMn2-x(式中、0<x<0.3であり、Mは、Li、Al、B、Mg、Si、遷移金属などから選ばれる少なくとも一種を含む。)、および下記式(5)で表されるリチウムに対して4.5V以上の電位で動作する材料が挙げられる。
   Li(MMn2-x-y)(O4-w)   (5)
[式(5)中、0.4≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1である。Mは遷移金属元素でありCo、Ni、Fe、Cr及びCuからなる群より選ばれる少なくとも一種を含み、Yは金属元素であり、Li、B、Na、Al、Mg、Ti、Si、K及びCaからなる群より選ばれる少なくとも一種を含み、Zはハロゲン元素であり、F及びClからなる群より選ばれる少なくとも一種を含む。]
 式(5)において、Mは上記に例示した元素を好ましくは80%以上、より好ましくは90%以上含み、100%であってもよい。また、Y、Zは、それぞれ、上記に例示した元素を好ましくは80%以上、より好ましくは90%以上含み、100%であってもよい。
 オリビン系の材料は、一般式
   LiMPO   (6)
で表され、式(6)中、Mは遷移金属元素であり、Co及びNiから選ばれる少なくとも一種を含むことがより好ましい。
 オリビン系材料としては、具体的には、LiFePO、LiMnPO、LiCoPO、LiNiPOなどが挙げられるが、これらの遷移金属の一部を別の元素で置換したり、酸素部分をフッ素で置換したりしたものも使用できる。式(6)において、Mは上記に例示した元素を好ましくは80%以上、より好ましくは90%以上含み、その他に含まれる元素としては、例えばFeを含むことも好ましい。
 層状系の材料は、以下のようなものが挙げられる。
   Li(M1-zMn)O   (7)
[式(7)中、0.33≦z≦0.7、Mは金属元素でありLi、Co及びNiから選ばれる少なくとも一種を含む。]
   Li(Li1-x-zMn)O   (8)
[式(8)中、0.1≦x<0.3、0.33≦z≦0.7、Mは金属元素でありCo及びNiから選ばれる少なくとも一種を含む。]
 これらの材料の、遷移金属の一部を別の元素で置換したり、酸素部分をフッ素で置換したりしたものも使用できる。式(7)、式(8)において、Mは、それぞれ上記に例示された元素を好ましくは80%以上、より好ましくは90%以上含む。
 このほかにも、NASICON型、リチウム遷移金属シリコン複合酸化物などを使用することができる。
 正極活物質は、一種を単独で、または二種以上を混合して使用することができる。
 これらの正極活物質の比表面積は、例えば0.01~5m/gであり、0.05~4m/gが好ましく、0.1~3m/gがより好ましく、0.15~2m/gがさらに好ましい。比表面積をこのような範囲とすることにより、電解液との接触面積を適当な範囲に調整することができる。つまり、比表面積を0.01m/g以上とすることにより、リチウムイオンの挿入脱離がスムーズに行われ易くなり、抵抗をより低減することができる。また、比表面積を5m/g以下とすることにより、電解液の分解が促進することや、活物質の構成元素が溶出することをより抑制することができる。
 前記リチウムマンガン複合酸化物の中心粒径は、0.01~50μmであることが好ましく、0.02~40μmがより好ましい。粒径を0.02μm以上とすることにより、活物質の構成元素の溶出をより抑制でき、また、電解液との接触による劣化をより抑制できる。また、粒径を50μm以下とすることにより、リチウムイオンの挿入脱離がスムーズに行われ易くなり、抵抗をより低減することができる。粒径はレーザー回折・散乱式粒度分布測定装置によって測定することができる。
 正極結着剤としては、特に制限されるものではないが、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等が挙げられる。
 これらの中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~10質量部が好ましい。
 正極活物質を含む正極活物質層には、抵抗を低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。
 正極集電体としてはアルミニウム、ニッケル、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 正極は、上記の正極活物質を、導電性物質、結着剤とともに溶剤中に分散混練し、これを正極集電体上に塗布することにより得ることができる。
 (負極)
 負極は、負極活物質として、リチウムを吸蔵及び放出し得る材料を含むものであれば特に限定されない。
 負極活物質としては、特に制限されるものではなく、例えば、リチウムイオンを吸蔵、放出し得る炭素材料(a)、リチウムと合金可能な金属(b)、及びリチウムイオンを吸蔵、放出し得る金属酸化物(c)等が挙げられる。
 炭素材料(a)としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物を用いることができる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。炭素材料(a)は、それ単独で又はその他の物質と併用して用いることができる。他の物質と併用する一実施形態では、例えば、炭素材料(a)が、負極活物質中2質量%以上80質量%以下の範囲であることが好ましく、2質量%以上30質量%以下の範囲であることがより好ましい。
 金属(b)としては、Al、Si、Pb、Sn、Zn、Cd、Sb、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、La等を主体とした金属、又はこれらの2種以上の合金、あるいはこれら金属又は合金とリチウムとの合金等を用いることができる。特に、金属(b)としてシリコン(Si)を含むことが好ましい。金属(b)は、それ単独で又はその他の物質と併用して用いることができるが、負極活物質中5質量%以上90質量%以下の範囲であることが好ましく、20質量%以上50質量%以下の範囲であることがより好ましい。
 金属酸化物(c)としては、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物を用いることができる。特に、金属酸化物(c)として酸化シリコンを含むことが好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を引き起こしにくいからである。また、金属酸化物(c)に、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物(c)の電気伝導性を向上させることができる。金属酸化物(c)は、それ単独で又はその他の物質と併用して用いることができるが、負極活物質中5質量%以上90質量%以下の範囲であることが好ましく、40質量%以上70質量%以下の範囲であることがより好ましい。
 金属酸化物(c)の具体例としては、例えば、LiFe、WO、MoO、SiO、SiO、CuO、SnO、SnO、Nb、LiTi2-x(1≦x≦4/3)、PbO、Pb等が挙げられる。
 また、負極活物質としては、他にも、例えば、リチウムイオンを吸蔵、放出し得る金属硫化物(d)が挙げられる。金属硫化物(d)としては、例えば、SnSやFeS等が挙げられる。また、負極活物質としては、他にも、例えば、金属リチウム若しくはリチウム合金、ポリアセン若しくはポリチオフェン、又はLi(LiN)、LiMnN、LiFeN、Li2.5Co0.5N若しくはLiCoN等の窒化リチウム等を用いる事ができる。
 以上の負極活物質は、単独でまたは二種以上を混合して用いることができる。
 また、負極活物質は、炭素材料(a)、金属(b)、及び金属酸化物(c)を含む構成とすることができる。以下、この負極活物質について説明する。
 金属酸化物(c)はその全部または一部がアモルファス構造を有することが好ましい。アモルファス構造の金属酸化物(c)は、炭素材料(a)や金属(b)の体積膨張を抑制することができ、電解液の分解を抑制することができる。このメカニズムは、金属酸化物(c)がアモルファス構造であることにより、炭素材料(a)と電解液の界面への被膜形成に何らかの影響があるものと推定される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物(c)の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物(c)がアモルファス構造を有しない場合には、金属酸化物(c)に固有のピークが観測されるが、金属酸化物(c)の全部または一部がアモルファス構造を有する場合、金属酸化物(c)に固有ピークがブロードとなって観測される。
 金属酸化物(c)は、金属(b)を構成する金属の酸化物であることが好ましい。また、金属(b)及び金属酸化物(c)は、それぞれシリコン(Si)及び酸化シリコン(SiO)であることが好ましい。
 金属(b)は、その全部または一部が金属酸化物(c)中に分散していることが好ましい。金属(b)の少なくとも一部を金属酸化物(c)中に分散させることで、負極全体としての体積膨張をより抑制することができ、電解液の分解も抑制することができる。なお、金属(b)の全部または一部が金属酸化物(c)中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、金属(b)粒子を含むサンプルの断面を観察し、金属酸化物(c)中に分散している金属(b)粒子の酸素濃度を測定し、金属(b)粒子を構成している金属が酸化物となっていないことを確認することができる。
 上述のように、炭素材料(a)、金属(b)及び金属酸化物(c)の合計に対する炭素材料(a)、金属(b)及び金属酸化物(c)の含有量は、それぞれ、2質量%以上100質量%以下、0質量%以上95質量%以下、及び0質量%以上95質量%以下であることが好ましい。また、炭素材料(a)、金属(b)及び金属酸化物(c)の合計に対する炭素材料(a)、金属(b)及び金属酸化物(c)の含有量は、それぞれ、2質量%以上100質量%以下、0質量%以上90質量%以下、及び0質量%以上90質量%以下であることがより好ましい。
 金属酸化物(c)の全部または一部がアモルファス構造であり、金属(b)の全部または一部が金属酸化物(c)中に分散しているような負極活物質は、例えば、特開2004-47404号公報で開示されているような方法で作製することができる。すなわち、金属酸化物(c)をメタンガスなどの有機物ガスを含む雰囲気下でCVD処理を行うことで、金属酸化物(c)中の金属(b)がナノクラスター化し、かつ表面が炭素材料(a)で被覆された複合体を得ることができる。また、炭素材料(a)と金属(b)と金属酸化物(c)とをメカニカルミリングで混合することでも、上記負極活物質を作製することができる。
 また、炭素材料(a)、金属(b)、及び金属酸化物(c)は、特に制限するものではないが、それぞれ粒子状のものを用いることができる。例えば、金属(b)の平均粒子径は、炭素材料(a)の平均粒子径および金属酸化物(c)の平均粒子径よりも小さい構成とすることができる。このようにすれば、充放電時にともなう体積変化の大きい金属(b)が相対的に小粒径となり、体積変化の小さい炭素材料(a)や金属酸化物(c)が相対的に大粒径となるため、デンドライト生成および合金の微粉化がより効果的に抑制される。また、充放電の過程で大粒径の粒子、小粒径の粒子、大粒径の粒子の順にリチウムが吸蔵、放出されることとなり、この点からも、残留応力、残留歪みの発生が抑制される。金属(b)の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。
 また、金属酸化物(c)の平均粒子径が炭素材料(a)の平均粒子径の1/2以下であることが好ましく、金属(b)の平均粒子径が金属酸化物(c)の平均粒子径の1/2以下であることが好ましい。さらに、金属酸化物(c)の平均粒子径が炭素材料(a)の平均粒子径の1/2以下であり、かつ金属(b)の平均粒子径が金属酸化物(c)の平均粒子径の1/2以下であることがより好ましい。平均粒子径をこのような範囲に制御すれば、金属および合金相の体積膨脹の緩和効果をより有効に得ることができ、エネルギー密度、サイクル寿命と効率のバランスに優れた二次電池を得ることができる。より具体的には、シリコン酸化物(c)の平均粒子径を黒鉛(a)の平均粒子径の1/2以下とし、シリコン(b)の平均粒子径をシリコン酸化物(c)の平均粒子径の1/2以下とすることが好ましい。また、より具体的には、シリコン(b)の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。
 負極用結着剤としては、特に制限されるものではないが、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等が挙げられる。
 負極結着剤の含有量は、負極活物質と負極結着剤の総量に対して1~30質量%の範囲であることが好ましく、2~25質量%であることがより好ましい。1質量%以上とすることにより、活物質同士あるいは活物質と集電体との密着性が向上し、サイクル特性が良好になる。また、30質量%以下とすることにより、活物質比率が向上し、負極容量を向上することができる。
 負極集電体としては、特に制限されるものではないが、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 負極は、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。負極活物質層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。
 (セパレータ)
 二次電池は、正極、負極、セパレータ、及び非水電解液との組み合わせから構成されてよい。セパレータとしては、例えば、織布、不織布、ポリエチレンやポリプロピレンなどのポリオレフィン系、ポリイミド、多孔性ポリフッ化ビニリデン膜等の多孔性ポリマー膜、イオン伝導性ポリマー電解質膜等が挙げられる。これらは単独または組み合わせで使用することができる。
 (電池の形状)
 電池の形状としては、例えば、円筒形、角形、コイン型、ボタン型、ラミネート型等が挙げられる。電池の外装体としては、例えば、ステンレス、鉄、アルミニウム、チタン、又はこれらの合金、あるいはこれらのメッキ加工品等が挙げられる。メッキとしては例えばニッケルメッキを用いることができる。
 また、ラミネート型に用いるラミネート樹脂フィルムとしては、例えば、アルミニウム、アルミニウム合金、チタン箔等が挙げられる。金属ラミネート樹脂フィルムの熱溶着部の材質としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の熱可塑性高分子材料が挙げられる。また、金属ラミネート樹脂層や金属箔層はそれぞれ1層に限定されるものではなく2層以上であっても構わない。
 図1に本実施形態による二次電池の構成を示す。リチウム二次電池は、アルミニウム箔等の金属からなる正極集電体3上に正極活物質を含有する正極活物質層1と、銅箔等の金属からなる負極集電体4上に負極活物質を含有する負極活物質層2と、を有する。正極活物質層1及び負極活物質層2は、電解液、およびこれを含む不織布、ポリプロピレン微多孔膜などからなるセパレータ5を介して対向して配置されている。図1において、6及び7は外装体、8は負極タブ、9は正極タブを示す。
 以下、本発明を適用した具体的な実施例について説明するが、本発明は、本実施例に限定されるものではなく、その主旨を超えない範囲において適宜変更して実施することが可能である。図1は本実施例で作製したリチウム二次電池の構成を示す模式図である。
 表1に、本実施例において使用したフッ素含有エーテル化合物とそれらの略称、およびそれらのフッ素置換率(フッ素含有エーテル化合物が有する水素とフッ素の原子数の総和に対するフッ素原子数の比率)を示す。
Figure JPOXMLDOC01-appb-T000003
[実施例1]
 正極活物質としてのLiNi0.5Mn1.35Ti0.15(90質量%)と、結着剤としてのポリフッ化ビニリデン(PVdF、5質量%)と、導電剤としてカーボンブラック(5質量%)と、を混合して正極合剤とした。この正極合剤をN-メチル-2-ピロリドンに分散させることにより、正極用スラリーを調製した。この正極用スラリーを厚さ20μmのアルミニウム製集電体の片面に、均一に塗布した。単位面積当たりの初回充電容量が2.5mAh/cmとなるように塗布膜の厚さを調整した。乾燥させた後、ロールプレスで圧縮成型することにより正極を作製した。
 負極活物質としては人造黒鉛を用いた。人造黒鉛を、N-メチルピロリドンに結着剤としてPVdFを溶かしたものに分散させ、負極用スラリーを調製した。負極活物質、結着剤の質量比は90/10とした。この負極用スラリーを厚さ10μmのCu集電体上に均一に塗布した。初回充電容量が3.0mAh/cmとなるように塗布膜の厚さを調整した。乾燥させた後、ロールプレスで圧縮成型することにより負極を作製した。
 3cm×3cmに切り出した正極と負極をセパレータを介して対向するように配置させた。セパレータには、厚さ25μmの微多孔性ポリプロピレンフィルムを用いた。
 非水電解液の溶媒としては、エチレンカーボネート(EC)と、リン酸トリス(2,2,2-トリフルオロエチル)(FP1)と、表1に示す2種のフッ素含有エーテル化合物(FE01、FE06)を、EC/FP1/FE01/FE06=20/30/45/5の体積比で混合した溶液を用いた。この非水電解溶媒にLiPFを0.8mol/lの濃度で溶解し、電解液を調製した。
 上記の正極、負極、セパレータ、及び電解液を、ラミネート外装体の中に配置し、ラミネートを封止し、リチウム二次電池を作製した。正極と負極は、タブが接続され、ラミネートの外部から電気的に接続された状態とした。
(サイクル特性)
 この電池を、20mAで充電し、上限電圧が4.75Vに達した後は、全充電時間が2.5時間になるまで定電流で充電した。その後、20mAで下限電圧3Vになるまで定電流で放電した。この充放電を200回繰り返した。セルは45℃の恒温槽内に配置し、充放電を行った。200サイクル時点の容量と1サイクル目の容量との比率(200サイクル時点の容量/1サイクル目の容量)を、45℃200サイクル後容量維持率として評価した。結果を表2に示す。
[実施例2~16、比較例1~7]
 続いて、非水電解液の溶媒組成を表2の組成とした以外は実施例1と同様にしてリチウム二次電池を作製し、45℃200サイクル後容量維持率を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表2に記載の溶媒の略号を下記に示す。
 FE01~FE12:それぞれ表1に示すフッ素含有エーテル化合物を示す
 EC:エチレンカーボネート
 PC:プロピレンカーボネート
 FEC:フルオロエチレンカーボネート
 FP1:リン酸トリス(2,2,2-トリフルオロエチル)
 フッ素含有エーテル化合物を2種類混合することにより、寿命改善効果が認められた。特にフッ素置換率の高いフッ素含有エーテル化合物を添加することによって、耐酸化性が向上し特性が改善したものと考えられる。フッ素置換率の高いフッ素含有エーテル化合物を少量添加した場合においても、正極への吸着などにより、高電位での劣化を抑制したものと推察している。フッ素置換率の高いフッ素含有エーテル化合物を多く添加した場合は、サイクル容量維持率の改善効果が低かった。フッ素置換率の高いエーテル化合物は、他の溶媒との相溶性が低いため、添加量が多いと一部分離、析出などの原因となり、その結果、良好なサイクル特性が得られなくなったためと考えられる。
(フッ素含有リン酸エステル化合物の評価)
 続いて、フッ素含有リン酸エステル化合物での効果の評価を行った。使用したフッ素含有リン酸エステル化合物の略号を以下に説明する。
 FP1:リン酸トリス(2,2,2-トリフルオロエチル)
 FP2:リン酸トリス(1H,1H-ヘプタフルオロブチル)
 FP3:リン酸トリス(2,2,3,3,3-ペンタフルオロプロピル)
[実施例17~19、比較例8~9]
 表3に、各電解液溶媒組成における電解液の均一混合性について評価した結果を示す。電解液の支持塩にはLiPFを使用し、濃度は0.8mol/lとした。
Figure JPOXMLDOC01-appb-T000005
 比較例8、9に示すように、環状カーボネートとフッ素含有エーテル化合物の混合物は、相溶性が低く均一混合させることが困難である。フッ素含有リン酸エステル化合物を添加することにより、相分離が解消され、均一混合した電解液を得ることができる。均一電解液によって良好な電池特性が得られる。表3に示すように、複数種類のフッ素含有リン酸エステル化合物において、相溶性改善において同様の効果が確認できた。
[実施例20~21、比較例10~11]
 続いて、非水電解液の溶媒組成を表4に示す組成とした以外は、実施例1と同様にしてリチウム二次電池を作製し、45℃200サイクル後容量維持率を測定しサイクル特性評価を行った。表4に結果を示す。
Figure JPOXMLDOC01-appb-T000006
 表4に示すように、FP1と異なる種類のフッ素含有リン酸エステル化合物を使用した場合においても、電解液に2種類のフッ素含有エーテル化合物を含むことによるサイクル特性の改善効果が確認された。
(スルホン化合物の評価)
 続いて、フッ素含有リン酸エステル化合物に代えて、スルホン化合物を使った電解液の検討を行った。使用したスルホン化合物の略号を以下に説明する。
 SL:スルホラン
 DMS:ジメチルスルホン
 EMS:エチルメチルスルホン
 DES:ジエチルスルホン
[実施例22~23、比較例12]
 表5に、各電解液溶媒組成における電解液の均一混合性について評価した結果を示す。電解液の支持塩にはLiPFを使用し、濃度は0.8mol/lとした。
Figure JPOXMLDOC01-appb-T000007
[実施例24~28、比較例13~17]
 続いて、非水電解液の溶媒組成を表6の組成とした以外は、実施例1と同様にして、リチウム二次電池を作製し、45℃200サイクル後容量維持率を測定し、サイクル特性評価を行った。表6の電解液で評価を行った結果を示す。電解液の支持塩にはLiPFを使用し、濃度は0.8mol/lとした。
Figure JPOXMLDOC01-appb-T000008
 表6に示すように、スルホン化合物、または、スルホン化合物とフッ素含有リン酸エステル化合物の両方を添加した電解液においても、フッ素含有エーテル化合物を複数種含むことによってサイクル特性の改善効果があった。
(正極活物質の評価)
[実施例29~40、比較例18~29]
 正極活物質を変えて同様の実験を実施した。正極活物質として表7に示す材料を使用し、非水電解液の溶媒組成を表7に示す組成とした以外は実施例1と同様にして電池を作製した。電解液の支持塩にはLiPFを使用し、濃度は0.8mol/lとした。充放電範囲は、各正極活物質に、十分な容量と寿命特性が得られるような充放電電圧範囲として表7に示す範囲とし、実施例1と同様にして45℃200サイクル後容量維持率の評価を行った。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 正極活物質を変えても同様にサイクル特性の改善の効果が得られたが、高電位で動作する正極活物質で使用した場合に、より改善効果が高かった。負極の黒鉛は、Liに対して、0.1V~0.2V付近に大部分の充放電領域を持つため、正極電位は、セル電圧に0.1V~0.2V足したものとなっている。例えば、黒鉛を使用した電池で4.75Vまで充電した場合は、正極電位は、Liに対して、およそ、4.85Vである。表7の結果から、正極電位が4.3V程度でも効果があるが、正極電位が、4.5V以上の場合に、より効果が高かった。
(負極活物質の評価)
[実施例41~43、比較例30~32]
 続いて、負極活物質として表8で示す材料を使用し、非水電解液の溶媒組成を表8に示す組成とした以外は実施例1と同様に電池を作製し、サイクル特性評価を実施した。充放電範囲は、各負極活物質に、十分な容量と寿命特性が得られるような充放電電圧範囲として表8に示す充放電範囲とし、実施例1と同様にして45℃200サイクル後容量維持率の評価を行った。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000011
 表8に示すように、負極活物質を変えてもフッ素含有エーテル化合物を2種類以上含むことによって寿命改善効果が得られた。
 以上のように、本実施形態の構成とすることによって、寿命改善効果が得られる。特にリチウムに対して4.5V以上の電位で動作する正極活物質を使用した場合に効果が高い。これによって、高い動作電圧を持つ長寿命のリチウム二次電池を提供することが可能となる。
  1 正極活物質層
  2 負極活物質層
  3 正極集電体
  4 負極集電体
  5 セパレータ
  6 ラミネート外装体
  7 ラミネート外装体
  8 負極タブ
  9 正極タブ

Claims (12)

  1.  式(1)で示される第一のフッ素含有エーテル化合物、
     式(1)で示される第二のフッ素含有エーテル化合物、並びに、
     式(2)で示されるフッ素含有リン酸エステル化合物および式(3)で示されるスルホン化合物から選択される少なくとも一種
    を含み、
     前記第一のフッ素含有エーテル化合物のフッ素置換率は、前記第二のフッ素含有エーテル化合物のフッ素置換率より小さく、
     前記第一のフッ素含有エーテル化合物の含有量は、前記第二のフッ素含有エーテル化合物の含有量よりも大きく、
     前記第一のフッ素含有エーテル化合物の含有量は電解液の0.1体積%以上80体積%以下であり、
     前記第二のフッ素含有エーテル化合物の含有量は電解液の0.1体積%以上40体積%以下であり、
     前記フッ素含有リン酸エステル化合物および前記スルホン化合物の含有量の合計は電解液の0.1体積%以上70体積%以下であることを特徴とする、二次電池用電解液。
      R-O-R   (1)
    [式(1)中、RおよびRは、それぞれ独立してアルキル基またはフッ素含有アルキル基であり、RおよびRの少なくとも一方がフッ素含有アルキル基である。]
      O=P(-O-R’)(-O-R’)(-O-R’)   (2)
    [式(2)中、R’、R’、R’はそれぞれ独立してアルキル基またはフッ素含有アルキル基であり、R’、R’およびR’の少なくとも1つがフッ素含有アルキル基である。]
      R’’-SO-R’’   (3)
    [式(3)中、R’’、R’’はそれぞれ独立して置換または無置換のアルキル基であり、R’’、R’’の炭素原子が単結合または二重結合を介して結合した環状化合物であっても良い。]
  2.  式(1)で示されるフッ素含有エーテル化合物の炭素数の総和が、それぞれ4以上10以下であることを特徴とする請求項1に記載の二次電池用電解液。
  3.  前記第一のフッ素含有エーテル化合物のフッ素置換率が、40%以上80%以下であることを特徴とする、請求項1または2に記載の二次電池用電解液。
  4.  前記第二のフッ素含有エーテル化合物のフッ素置換率が、70%以上95%以下であることを特徴とする、請求項1~3のいずれか一項に記載の二次電池用電解液。
  5.  前記フッ素含有リン酸エステル化合物が、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(2,2,3,3,3-ペンタフルオロプロピル)、リン酸トリス(1H,1H-ヘプタフルオロブチル)から選ばれる少なくとも一種であることを特徴とする、請求項1~4のいずれか一項に記載の二次電池用電解液。
  6.  前記スルホン化合物が、スルホラン、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホンから選ばれる少なくとも一種であることを特徴とする、請求項1~5のいずれか一項に記載の二次電池用電解液。
  7.  さらに環状カーボネートを電解液の1体積%以上50体積%以下の範囲で含むことを特徴とする、請求項1~6のいずれか一項に記載の二次電池用電解液。
  8.  正極と、負極と、支持塩および非水電解溶媒を含む電解液と、を有する二次電池であって、
     前記電解液は、請求項1~7のいずれか一項に記載の二次電池用電解液であることを特徴とする二次電池。
  9.  前記正極は、リチウムに対して4.5V以上の電位でLiの挿入脱離を行う正極活物質を含むことを特徴とする、請求項8に記載の二次電池。
  10.  前記正極活物質は、下記式(4)、(5)、(6)および(7)のいずれかで表されるリチウム金属複合酸化物を一種以上含むことを特徴とする、請求項9に記載の二次電池。
       Li(MMn2-x-y)(O4-w)   (4)
    [式(4)中、0.4≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1、Mは遷移金属元素であり、Co、Ni、Fe、Cr及びCuからなる群より選ばれる少なくとも一種を含み、Yは金属元素であり、Li、B、Na、Al、Mg、Ti、Si、K及びCaからなる群より選ばれる少なくとも一種を含み、Zはハロゲン元素であり、F及びClからなる群より選ばれる少なくとも一種を含む。]
       LiMPO   (5)
    [式(5)中、Mは遷移金属元素であり、Co及びNiから選ばれる少なくとも一種を含む。]
       Li(M1-zMn)O   (6)
    [式(6)中、0.33≦z≦0.7、Mは金属元素であり、Li、Co及びNiから選ばれる少なくとも一種を含む。]
       Li(Li1-x-zMn)O   (7)
    [式(7)中、0.1≦x<0.3、0.33≦z≦0.7、Mは金属元素であり、Co及びNiから選ばれる少なくとも一種を含む。]
  11.  二次電池用電解液の製造方法であって、
     式(1)で示される第一のフッ素含有エーテル化合物、
     式(1)で示される第二のフッ素含有エーテル化合物、並びに、
     式(2)で示されるフッ素含有リン酸エステル化合物および式(3)で示されるスルホン化合物から選択される少なくとも一種
    を電解液に混合する工程を含み、
     前記第一のフッ素含有エーテル化合物のフッ素置換率は、前記第二のフッ素含有エーテル化合物のフッ素置換率より小さく、
     前記第一のフッ素含有エーテル化合物の含有量は、前記第二のフッ素含有エーテル化合物の含有量よりも大きく、
     前記第一のフッ素含有エーテル化合物の含有量は電解液の0.1体積%以上80体積%以下であり、
     前記第二のフッ素含有エーテル化合物の含有量は電解液の0.1体積%以上40体積%以下であり、
     前記フッ素含有リン酸エステル化合物および前記スルホン化合物の含有量の合計は電解液の0.1体積%以上70体積%以下であることを特徴とする、二次電池用電解液の製造方法。
  12.  正極、負極、電解液および外装体を有する二次電池の製造方法であって、
     前記正極と前記負極を対向配置し、前記電解液とともに前記外装体に封入する工程を含み、
     前記電解液は、請求項11に記載の製造方法によって製造された二次電池用電解液であることを特徴とする二次電池の製造方法。
PCT/JP2014/062520 2013-05-10 2014-05-09 二次電池用電解液および二次電池 WO2014181877A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/889,718 US10263286B2 (en) 2013-05-10 2014-05-09 Secondary battery electrolyte and secondary battery
JP2015515913A JP6428609B2 (ja) 2013-05-10 2014-05-09 二次電池用電解液および二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013100414 2013-05-10
JP2013-100414 2013-05-10

Publications (1)

Publication Number Publication Date
WO2014181877A1 true WO2014181877A1 (ja) 2014-11-13

Family

ID=51867349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062520 WO2014181877A1 (ja) 2013-05-10 2014-05-09 二次電池用電解液および二次電池

Country Status (3)

Country Link
US (1) US10263286B2 (ja)
JP (1) JP6428609B2 (ja)
WO (1) WO2014181877A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063902A1 (ja) * 2014-10-24 2016-04-28 日本電気株式会社 二次電池
WO2016175217A1 (ja) * 2015-04-30 2016-11-03 日本電気株式会社 二次電池用電解液及び二次電池
WO2017154788A1 (ja) * 2016-03-07 2017-09-14 日本電気株式会社 二次電池用電解液及び二次電池
WO2018212027A1 (ja) * 2017-05-18 2018-11-22 日本電気株式会社 リチウムイオン二次電池用電解液及びこれを用いたリチウムイオン二次電池
CN109643822A (zh) * 2016-06-03 2019-04-16 索尔维公司 包含氟化砜的非水性电解质组合物
JPWO2018051675A1 (ja) * 2016-09-14 2019-07-18 日本電気株式会社 リチウム二次電池
US10587008B2 (en) 2013-11-28 2020-03-10 Nec Corporation Electrolyte solution for secondary battery and secondary battery using same
US10707529B2 (en) * 2014-12-30 2020-07-07 Samsung Electronics Co., Ltd. Lithium secondary battery
JPWO2019031598A1 (ja) * 2017-08-10 2020-09-03 株式会社Gsユアサ 非水電解質及び非水電解質蓄電素子
CN111919323A (zh) * 2018-06-01 2020-11-10 松下知识产权经营株式会社 二次电池
WO2021018244A1 (zh) * 2019-07-31 2021-02-04 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及包含该电解液的锂离子电池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10506555B2 (en) * 2016-10-14 2019-12-10 Rurisond, Inc. System and method for identifying and using an optimum shared spectrum segment as a delay tolerant, low duty-cycle, cooperative communication medium for terrain independent connection
CN110495041A (zh) * 2017-08-07 2019-11-22 大金工业株式会社 电解液、电化学器件、锂离子二次电池和组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087136A (ja) * 2002-08-22 2004-03-18 Samsung Sdi Co Ltd リチウム二次電池用の非水電解液及びリチウム二次電池
JP2010123287A (ja) * 2008-11-17 2010-06-03 Panasonic Corp 非水電解液および非水電解液二次電池
WO2012077712A1 (ja) * 2010-12-07 2012-06-14 日本電気株式会社 リチウム二次電池
JP2013161706A (ja) * 2012-02-07 2013-08-19 Asahi Glass Co Ltd 二次電池用非水電解液およびリチウムイオン二次電池
JP2013218963A (ja) * 2012-04-11 2013-10-24 Gs Yuasa Corp 非水電解質電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229718B2 (en) 2002-08-22 2007-06-12 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
JP5206408B2 (ja) * 2006-07-13 2013-06-12 ダイキン工業株式会社 電気化学デバイス
JP2009211822A (ja) * 2008-02-29 2009-09-17 Panasonic Corp 非水電解質二次電池
WO2011104573A1 (es) * 2010-02-23 2011-09-01 Grupo Rotoplas, S.A. De C.V. Metodo y aparato para moldeo rotacional
US20130065136A1 (en) * 2010-06-25 2013-03-14 Nec Energy Devices, Ltd. Lithium ion secondary battery
JP2012074135A (ja) * 2010-09-27 2012-04-12 Tosoh F-Tech Inc ジフルオロエチルエーテルを含有する非水電解液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087136A (ja) * 2002-08-22 2004-03-18 Samsung Sdi Co Ltd リチウム二次電池用の非水電解液及びリチウム二次電池
JP2010123287A (ja) * 2008-11-17 2010-06-03 Panasonic Corp 非水電解液および非水電解液二次電池
WO2012077712A1 (ja) * 2010-12-07 2012-06-14 日本電気株式会社 リチウム二次電池
JP2013161706A (ja) * 2012-02-07 2013-08-19 Asahi Glass Co Ltd 二次電池用非水電解液およびリチウムイオン二次電池
JP2013218963A (ja) * 2012-04-11 2013-10-24 Gs Yuasa Corp 非水電解質電池

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10587008B2 (en) 2013-11-28 2020-03-10 Nec Corporation Electrolyte solution for secondary battery and secondary battery using same
US10243234B2 (en) 2014-10-24 2019-03-26 Nec Corporation Secondary battery
WO2016063902A1 (ja) * 2014-10-24 2016-04-28 日本電気株式会社 二次電池
US10707529B2 (en) * 2014-12-30 2020-07-07 Samsung Electronics Co., Ltd. Lithium secondary battery
WO2016175217A1 (ja) * 2015-04-30 2016-11-03 日本電気株式会社 二次電池用電解液及び二次電池
JPWO2016175217A1 (ja) * 2015-04-30 2018-02-22 日本電気株式会社 二次電池用電解液及び二次電池
JPWO2017154788A1 (ja) * 2016-03-07 2019-01-17 日本電気株式会社 二次電池用電解液及び二次電池
WO2017154788A1 (ja) * 2016-03-07 2017-09-14 日本電気株式会社 二次電池用電解液及び二次電池
US10749215B2 (en) 2016-03-07 2020-08-18 Nec Corporation Electrolyte solution for secondary battery and secondary battery
JP2019523521A (ja) * 2016-06-03 2019-08-22 ソルヴェイ(ソシエテ アノニム) フッ素化スルホンを含む非水電解質組成物
CN109643822A (zh) * 2016-06-03 2019-04-16 索尔维公司 包含氟化砜的非水性电解质组合物
US11374260B2 (en) 2016-06-03 2022-06-28 Solvay Sa Nonaqueous electrolyte compositions comprising fluorinated sulfones
JP7014169B2 (ja) 2016-09-14 2022-02-01 日本電気株式会社 リチウム二次電池
JPWO2018051675A1 (ja) * 2016-09-14 2019-07-18 日本電気株式会社 リチウム二次電池
JP7136092B2 (ja) 2017-05-18 2022-09-13 日本電気株式会社 リチウムイオン二次電池用電解液及びこれを用いたリチウムイオン二次電池
JPWO2018212027A1 (ja) * 2017-05-18 2020-03-12 日本電気株式会社 リチウムイオン二次電池用電解液及びこれを用いたリチウムイオン二次電池
WO2018212027A1 (ja) * 2017-05-18 2018-11-22 日本電気株式会社 リチウムイオン二次電池用電解液及びこれを用いたリチウムイオン二次電池
US11489202B2 (en) 2017-05-18 2022-11-01 Nec Corporation Electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using same
JPWO2019031598A1 (ja) * 2017-08-10 2020-09-03 株式会社Gsユアサ 非水電解質及び非水電解質蓄電素子
JP7152721B2 (ja) 2017-08-10 2022-10-13 株式会社Gsユアサ 非水電解質及び非水電解質蓄電素子
CN111919323A (zh) * 2018-06-01 2020-11-10 松下知识产权经营株式会社 二次电池
CN111919323B (zh) * 2018-06-01 2024-03-01 松下知识产权经营株式会社 二次电池
WO2021018244A1 (zh) * 2019-07-31 2021-02-04 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及包含该电解液的锂离子电池

Also Published As

Publication number Publication date
JP6428609B2 (ja) 2018-11-28
US10263286B2 (en) 2019-04-16
JPWO2014181877A1 (ja) 2017-02-23
US20160099486A1 (en) 2016-04-07

Similar Documents

Publication Publication Date Title
JP6428609B2 (ja) 二次電池用電解液および二次電池
JP6756268B2 (ja) 二次電池
JP6766806B2 (ja) 二次電池用電解液及び二次電池
JP6123682B2 (ja) リチウム二次電池
JP6138490B2 (ja) リチウム二次電池
JP6079770B2 (ja) リチウム二次電池
JP5910627B2 (ja) 二次電池
WO2013161774A1 (ja) リチウム二次電池
JP6179232B2 (ja) リチウム二次電池の充電方法
JP6292120B2 (ja) リチウム二次電池とその製造方法
WO2017154788A1 (ja) 二次電池用電解液及び二次電池
WO2015083481A1 (ja) 二次電池用正極活物質、その製造方法および二次電池
JP6500775B2 (ja) リチウムイオン二次電池
WO2014103893A1 (ja) リチウム二次電池とその選別方法
JP6601033B2 (ja) 蓄電装置及びその製造方法
JP6179511B2 (ja) リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015515913

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14889718

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794159

Country of ref document: EP

Kind code of ref document: A1