WO2021018244A1 - 锂离子电池非水电解液及包含该电解液的锂离子电池 - Google Patents

锂离子电池非水电解液及包含该电解液的锂离子电池 Download PDF

Info

Publication number
WO2021018244A1
WO2021018244A1 PCT/CN2020/105829 CN2020105829W WO2021018244A1 WO 2021018244 A1 WO2021018244 A1 WO 2021018244A1 CN 2020105829 W CN2020105829 W CN 2020105829W WO 2021018244 A1 WO2021018244 A1 WO 2021018244A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
aqueous electrolyte
carbonate
substituted
formula
Prior art date
Application number
PCT/CN2020/105829
Other languages
English (en)
French (fr)
Inventor
邓永红
康媛媛
钱韫娴
胡时光
张�浩
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Priority to US17/628,217 priority Critical patent/US20220255120A1/en
Publication of WO2021018244A1 publication Critical patent/WO2021018244A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/062Organo-phosphoranes without P-C bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/113Esters of phosphoric acids with unsaturated acyclic alcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of lithium ion batteries, and in particular to a lithium ion battery non-aqueous electrolyte and a lithium ion battery containing the electrolyte.
  • Lithium-ion batteries have made considerable progress in the field of portable electronic products due to their high working voltage, high safety, long life, and no memory effect. With the development of new energy vehicles, lithium-ion batteries have huge application prospects in power supply systems for new energy vehicles.
  • electrolyte plays a vital role in improving the energy density and cycle stability of lithium-ion batteries.
  • a series of reactions between the electrolyte and the electrode material will form a solid electrolyte interface film (SEI film) covering the surface of the electrode material. ).
  • SEI film solid electrolyte interface film
  • the stable SEI film can prevent further contact between the electrolyte and the electrode material, and has a positive effect on the electrochemical performance and safety performance of the lithium ion battery.
  • the unstable SEI film will cause the continuous consumption and continuous reaction of lithium ions, generating a series of irreversible by-products, causing the battery to swell, increase the internal resistance, and even cause fire or explosion, which greatly affects the safety of the battery. Hidden dangers. Therefore, the stability of the SEI film determines the performance of the lithium-ion battery.
  • VC can polymerize on the graphite surface to form a polyalkyl lithium carbonate film, thereby inhibiting the reduction of solvents and salt anions.
  • GHWrodnigg, etc. added 5% (volume fraction) vinyl sulfite (ES) or propylene sulfite (PS) to 1mol/L LiClO 4 /propylene carbonate (PC), which can effectively prevent PC molecules from embedding in the graphite electrode. It can also improve the low temperature performance of the electrolyte.
  • the reason may be that, for example, the reduction potential of ES is about 2V (relative to Li/Li + ), which is preferred to solvent reduction, and an SEI film is formed on the surface of the graphite negative electrode.
  • the object of the present invention is to provide a lithium ion battery non-aqueous electrolyte that can take into account both high-temperature storage performance and cycle performance of the battery, and further to provide a lithium ion battery containing the non-aqueous electrolyte.
  • the present invention provides a lithium ion battery non-aqueous electrolyte, the non-aqueous electrolyte comprising a non-aqueous organic solvent and a lithium salt, wherein the non-aqueous electrolyte further comprises a compound selected from formula 1 One or more compounds in the compound and a compound selected from formula 2
  • R 1 , R 2 , R 3 , and R 4 are each independently selected from substituted or unsubstituted alkyl groups of 1 to 5 carbon atoms, substituted or unsubstituted ether groups of 1 to 5 carbon atoms, substituted Or an unsubstituted unsaturated hydrocarbon group of 2-5 carbon atoms, provided that at least one of R 1 , R 2 , R 3 , and R 4 is the substituted or unsubstituted unsaturated hydrocarbon group of 2-5 carbon atoms Hydrocarbyl group, R 5 is selected from substituted or unsubstituted alkylene groups of 1 to 5 carbon atoms, substituted or unsubstituted ether groups of 1 to 5 carbon atoms.
  • R 6 , R 7 , and R 8 are each independently selected from substituted or unsubstituted alkyl groups of 1 to 5 carbon atoms, substituted or unsubstituted ether groups of 1 to 5 carbon atoms, substituted or unsubstituted The unsaturated hydrocarbon group of 2-5 carbon atoms, provided that at least one of R 6 , R 7 , and R 8 is the substituted or unsubstituted unsaturated hydrocarbon group of 2-5 carbon atoms.
  • the alkyl group with 1-5 carbon atoms can be selected from, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl. , N-pentyl, isopentyl, sec-pentyl, neopentyl.
  • the unsaturated hydrocarbon group of 2-5 carbon atoms can be selected from, for example, vinyl, propenyl, allyl, butenyl, pentenyl, methyl vinyl, and methallyl. , Ethynyl, propynyl, propargyl, butynyl, pentynyl.
  • the alkylene group of 1-5 carbon atoms can be selected from, for example, methylene, ethylene, n-propylene, isopropylene, n-butylene, isobutylene, Sec-butylene, tert-butylene, n-pentylene, isopentylene, sec-pentylene, neopentylene.
  • the ether group of 1 to 5 carbon atoms can be selected from, for example, methyl ether, ethyl ether, methyl ethyl ether, propyl ether, methyl propyl ether, and ethyl propyl ether.
  • the substitution means that one or more hydrogen elements are substituted by halogen; preferably, the halogen is fluorine, chlorine, bromine and iodine; more preferably, the halogen is fluorine.
  • the halogen-substituted alkyl group of 1 to 5 carbon atoms is one or more hydrogen elements in the alkyl group of 1 to 5 carbon atoms substituted with fluorine. ⁇ fluoroalkyl.
  • the halogen-substituted unsaturated hydrocarbon group of 2-5 carbon atoms is 1-5 in which one or more hydrogen elements in the unsaturated hydrocarbon group of 2-5 carbon atoms are replaced by fluorine elements. Fluorinated unsaturated hydrocarbon groups of carbon atoms.
  • a halogen-substituted alkylene group of 1 to 5 carbon atoms is one or more hydrogen elements in an alkylene group of 1 to 5 carbon atoms substituted by fluorine. Fluorinated alkylene of carbon atoms.
  • the halogen-substituted ether group of 1 to 5 carbon atoms is the one or more hydrogen elements in the ether group of 1 to 5 carbon atoms substituted by fluorine.
  • the fluoroether group is the one or more hydrogen elements in the ether group of 1 to 5 carbon atoms substituted by fluorine.
  • the fluoroether group of 1-5 carbon atoms can be selected from, for example, fluoromethyl ether, fluoroethyl ether, fluoromethyl ethyl ether, fluoropropyl ether, and fluoromethyl propyl ether. , Fluorinated ethyl propyl ether.
  • the compound represented by Formula 1 is the compound 1-22 listed in Table 1 below.
  • the compound represented by Formula 2 is the compounds 23-28 listed in Table 2 below.
  • the content of the compound represented by formula 1 is greater than 10 ppm relative to the total mass of the non-aqueous electrolyte. Further, the content of the compound represented by formula 1 is relative to the total mass of the non-aqueous electrolyte. Below 2%. The content of the compound represented by Formula 2 is 0.1-2% with respect to the total mass of the non-aqueous electrolyte. For example, the content of the compound represented by Formula 1 relative to the total mass of the non-aqueous electrolyte is 10ppm-2%, 20ppm-1%, 50ppm-0.5%, 100ppm-0.3%, 200ppm-0.2%, 300-1000ppm , 500-800ppm, or any value between them.
  • the content of the compound represented by formula 2 relative to the total mass of the non-aqueous electrolyte is 0.1-2%, 0.3-1.8%, 0.5-1.5%, 0.8-1.2%, 1-1.1%, or some of them Any value.
  • the above-mentioned non-aqueous electrolyte for lithium ion batteries further contains at least one of unsaturated cyclic carbonate, fluorinated cyclic carbonate, cyclic sultone, and cyclic sulfate.
  • unsaturated cyclic carbonate As a film-forming additive. Based on the total mass of the non-aqueous electrolyte, the content of the unsaturated cyclic carbonate is 0.1-5%, the content of the fluorocyclic carbonate is 0.1-30%, and the content of the cyclic sultone It is 0.1-5%, and the content of the cyclic sulfate is 0.1-5%.
  • the unsaturated cyclic carbonate is selected from vinylene carbonate (CAS: 872-36-6), vinyl ethylene carbonate (CAS: 4427-96-7), methylene carbonate At least one of vinyl esters (CAS: 124222-05-5), the fluorinated cyclic carbonate is selected from fluoroethylene carbonate (CAS: 114435-02-8), trifluoromethyl ethylene carbonate (CAS: 167951-80-6), at least one of bisfluoroethylene carbonate (CAS:311810-76-1), the cyclic sultone is selected from 1,3-propane sultone (CAS:1120-71 -4), at least one of 1,4-butane sultone (CAS:1633-83-6), propenyl-1,3-sultone (CAS:21806-61-1), ring
  • the shaped sulfuric acid ester is selected from at least one of vinyl sulfate (CAS: 1072-53-3) and vinyl 4-methylsulfate
  • the above-mentioned non-aqueous organic solvent is a mixture of cyclic carbonate and chain carbonate.
  • the cyclic carbonate is selected from at least one of ethylene carbonate, propylene carbonate and butylene carbonate
  • the chain carbonate is selected from dimethyl carbonate, diethyl carbonate, and carbonic acid.
  • At least one of ethyl methyl and methyl propyl carbonate; the above-mentioned lithium salt is selected from at least one of LiPF 6 , LiBF 4 , LiPO 2 F 2 , LiTFSI, LiBOB, LiDFOB, and LiN(SO 2 F) 2 .
  • the present invention provides a lithium ion battery, including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and the lithium ion battery non-aqueous electrolyte according to the first aspect of the present invention.
  • the positive electrode including a positive active material is selected from LiNi x Co y Mn z L ( 1-xyz) O 2, LiCo x 'L (1-x') O 2, LiNi x "L 'y' Mn (2-x" -y ') O 4, Li z' MPO 4 at least one, where, L is Al, Sr, Mg, Ti, Ca, Zr, Zn, Si Or at least one of Fe, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ x+y+z ⁇ 1, 0 ⁇ x' ⁇ 1, 0.3 ⁇ x” ⁇ 0.6, 0.01 ⁇ y' ⁇ 0.2, L'is at least one of Co, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, Fe; 0.5 ⁇ z' ⁇ 1, M is Fe, Mn, Co At least one of.
  • the inventors speculate that the compound represented by formula 1 has been used for the first time in lithium ion batteries due to the presence of at least one unsaturated hydrocarbon group. During the charging process, it can polymerize on the electrode surface to form a passivation film, thereby inhibiting the further decomposition of organic solvent molecules.
  • the compound represented by Formula 1 can react with LiF to reduce the content of LiF, a high-impedance component in the passivation film on the electrode surface, and facilitate the passage of lithium ions, thereby significantly improving the high-temperature storage performance and cycle performance of the lithium-ion battery.
  • the two phosphate groups are connected by a flexible alkylene group or ether group, which is more conducive to dispersion and reaction in the electrolyte than the more rigid alkynyl group and other groups.
  • a flexible alkylene group or ether group which is more conducive to dispersion and reaction in the electrolyte than the more rigid alkynyl group and other groups.
  • the content of the compound represented by Formula 1 is 10 ppm or more with respect to the total mass of the non-aqueous electrolyte. When it is less than 10 ppm, it may be difficult to sufficiently form a passivation film on the surface of the positive and negative electrodes, and it is difficult to exert a synergistic effect with the compound represented by Formula 2, so that it is difficult to sufficiently improve the high temperature storage performance of the non-aqueous electrolyte battery.
  • the content of the compound represented by Formula 1 is 2% or less with respect to the total mass of the non-aqueous electrolyte.
  • an excessively thick passivation film may be formed on the surface of the positive and negative electrodes, which increases the internal resistance of the battery, thereby reducing the cycle performance of the battery and increasing the cost of the electrolyte.
  • the content of the compound shown in formula 2 is 0.1-2% relative to the total mass of the non-aqueous electrolyte, in order to play a synergistic effect with the compound shown in formula 1, and avoid excessive formation on the surface of the positive and negative electrodes.
  • the passivation film is 0.1-2% relative to the total mass of the non-aqueous electrolyte, in order to play a synergistic effect with the compound shown in formula 1, and avoid excessive formation on the surface of the positive and negative electrodes.
  • the lithium ion battery non-aqueous electrolyte of the present invention also contains at least one of unsaturated cyclic carbonate, fluorinated cyclic carbonate, cyclic sultone, and cyclic sulfate as a film-forming additive, which can be used in graphite A more stable SEI film is formed on the surface of the negative electrode, thereby significantly improving the cycle performance of the lithium ion battery.
  • the non-aqueous electrolyte of the lithium ion battery of the present invention uses a mixture of a high dielectric constant cyclic carbonate organic solvent and a low viscosity chain carbonate organic solvent as the solvent of the lithium ion battery electrolyte, so that the organic solvent
  • the mixed solution also has high ionic conductivity, high dielectric constant and low viscosity.
  • the present invention provides a lithium-ion battery non-aqueous electrolyte solution, the non-aqueous electrolyte solution comprising a non-aqueous organic solvent and a lithium salt, wherein the non-aqueous electrolyte solution further comprises one or more selected from the compounds represented by formula 1.
  • R 1 , R 2 , R 3 , and R 4 are each independently selected from substituted or unsubstituted alkyl groups of 1 to 5 carbon atoms, substituted or unsubstituted ether groups of 1 to 5 carbon atoms, substituted Or an unsubstituted unsaturated hydrocarbon group of 2-5 carbon atoms, provided that at least one of R 1 , R 2 , R 3 , and R 4 is the substituted or unsubstituted unsaturated hydrocarbon group of 2-5 carbon atoms , R 5 is selected from substituted or unsubstituted alkylene groups of 1 to 5 carbon atoms, and substituted or unsubstituted ether groups of 1 to 5 carbon atoms.
  • R 6 , R 7 , and R 8 are each independently selected from substituted or unsubstituted alkyl groups of 1 to 5 carbon atoms, substituted or unsubstituted ether groups of 1 to 5 carbon atoms, substituted or unsubstituted The unsaturated hydrocarbon group of 2-5 carbon atoms, provided that at least one of R 6 , R 7 , and R 8 is the substituted or unsubstituted unsaturated hydrocarbon group of 2-5 carbon atoms.
  • the alkyl group of 1-5 carbon atoms can be selected from, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isoamyl Base, sec-pentyl, neopentyl.
  • the unsaturated hydrocarbon group of 2-5 carbon atoms can be selected from, for example, vinyl, propenyl, allyl, butenyl, pentenyl, methyl vinyl, methallyl, ethynyl, propynyl , Propargyl, butynyl, pentynyl.
  • the alkylene group of 1-5 carbon atoms can be selected from, for example, methylene, ethylene, n-propylene, isopropylidene, n-butylene, isobutylene, sec-butylene, tertiary Butyl, n-pentylene, isopentylene, sec-pentylene, neopentylene.
  • the ether group of 1 to 5 carbon atoms can be selected from, for example, methyl ether, ethyl ether, methyl ethyl ether, propyl ether, methyl propyl ether, and ethyl propyl ether.
  • substitution is that one or more hydrogen elements are substituted by halogen; preferably, the halogen is fluorine, chlorine, bromine and iodine; more preferably, the halogen is fluorine.
  • a halogen-substituted alkyl group of 1-5 carbon atoms is a fluoroalkyl group of 1-5 carbon atoms obtained by substituting one or more hydrogen elements in the alkyl group of 1-5 carbon atoms by a fluorine element .
  • a halogen-substituted unsaturated hydrocarbon group of 2-5 carbon atoms is a fluorinated hydrocarbon group of 2-5 carbon atoms obtained by substituting one or more hydrogen elements in an unsaturated hydrocarbon group of 2-5 carbon atoms with a fluorine element. Unsaturated hydrocarbon group.
  • a halogen-substituted alkylene group of 1 to 5 carbon atoms is a fluoro group of 1 to 5 carbon atoms obtained by substituting one or more hydrogen elements in an alkylene group of 1 to 5 carbon atoms by a fluorine element.
  • Alkylene is a fluoro group of 1 to 5 carbon atoms obtained by substituting one or more hydrogen elements in an alkylene group of 1 to 5 carbon atoms by a fluorine element.
  • a halogen-substituted ether group of 1-5 carbon atoms is a fluoroether group of 1-5 carbon atoms obtained by substituting one or more hydrogen elements in the ether group of 1-5 carbon atoms by a fluorine element .
  • the fluoroether group of 1-5 carbon atoms can be selected from, for example, fluoromethyl ether, fluoroethyl ether, fluoromethyl ethyl ether, fluoropropyl ether, fluoromethyl propyl ether, and fluoroethyl propyl ether.
  • the compound of formula 1 can use triethylamine as an acid binding agent, in an ether solvent, under low temperature (-10 to 0°C) and normal pressure, phosphorus oxychloride reacts with the corresponding alcohols to form the corresponding phosphate, It is prepared by recrystallization or column chromatography purification.
  • examples of their synthetic routes are as follows:
  • the present invention also provides a lithium ion battery, which includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and also includes the aforementioned lithium ion battery non-aqueous electrolyte.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • Examples 1-11 and Comparative Examples 1-6 based on the total mass of the basic electrolyte, 1% of compound 23 was added in Examples 1-11 and Comparative Examples 1-6. On this basis, 20 ppm of Compound 1 and 50 ppm were added in Examples 1-6.
  • Compound 2 100ppm of compound 4, 500ppm of compound 7, 1000ppm of compound 8, 1% of compound 12;
  • Examples 7-11 added 500ppm of compound 1 and 1% of vinylene carbonate (VC), 500ppm of compound Compound 1 and 1% fluoroethylene carbonate (FEC), 500ppm compound 1 and 1% 1,3-propane sultone (PS), 500ppm compound 1 and 1% ethylene sulfate (DTD) ), 500ppm compound 1 and 1% LiN(SO 2 F) 2 ;
  • Comparative Example 1 does not add the compound shown in Formula 1;
  • Comparative Examples 2-6 do not add the compound shown in Formula 1, but 1% VC, 1% FEC, 1% PS, 1% DTD, 1% Li
  • Example 12 only added 20 ppm of compound 1; Examples 13-17 all added 500 ppm of compound 7. On this basis, 0.1%, 0.2%, 0.5%, 1.5% and 2.0% of compound 23 were added respectively. Comparative Example 7 added 500 ppm of 2-alkynyl-1,4-bis(bis(2-propynyl))phosphate (ABPP).
  • ABPP 2-alkynyl-1,4-bis(bis(2-propynyl))phosphate
  • the positive electrode active material lithium nickel cobalt manganese oxide LiNi 0.6 Co 0.2 Mn 0.2 O 2 , conductive carbon black Super-P and binder polyvinylidene fluoride (PVDF) in a mass ratio of 93:4:3, and then mix the mixture Disperse in N-methyl-2-pyrrolidone (NMP) to obtain positive electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • the slurry is evenly coated on both sides of the aluminum foil, dried, calendered and vacuum dried, and then the aluminum lead wires are welded with an ultrasonic welder to obtain a positive electrode plate with a thickness of 120-150 ⁇ m.
  • a three-layer separator with a thickness of 20 ⁇ m is placed between the positive plate and the negative plate, and then the sandwich structure consisting of the positive plate, the negative plate and the separator is wound, and then the wound body is squashed and placed in an aluminum foil packaging bag. Vacuum bake at °C for 48h to obtain a cell to be injected.
  • the electrolyte prepared above is injected into the cell, and then vacuum-encapsulated to make a lithium-ion battery, and stand still for 24 hours.
  • Example 18-14 and Comparative Examples 8-9 were all made of LiNi 0.8 Co 0.15 Al 0.05 O 2 to prepare positive plates. According to the method described in the above "I. Example 1-17 and Comparative Example 1-7", the negative plate and the battery were prepared, and the battery was injected and formed.
  • the following performance tests were performed on the lithium ion batteries produced in the foregoing Examples 1-31 and Comparative Examples 1-11.
  • the performance tested includes high temperature cycle performance test, high temperature storage performance test and low temperature performance test.
  • the specific test methods are as follows:
  • the lithium ion batteries made in Examples 1-31 and Comparative Examples 1-11 were placed in an oven at a constant temperature of 45°C, and charged to 4.4V (LiNi 0.6 Co 0.2 Mn 0.2 O 2 /artificial graphite battery) at a constant current of 1C. LiCoO 2 /artificial graphite battery) or 4.2V (LiNi 0.8 Co 0.15 Al 0.05 O 2 /artificial graphite battery), then charge at constant voltage until the current drops to 0.02C, then discharge at a constant current of 1C to 3.0V, and so on , Record the first discharge capacity and the last discharge capacity.
  • Battery capacity retention rate (%) last discharge capacity/first discharge capacity ⁇ 100%.
  • the lithium ion batteries produced in Examples 1-31 and Comparative Examples 1-11 were charged to 4.4V (LiNi 0.6 Co 0.2 Mn 0.2 O 2 /Artificial graphite battery, LiCoO 2 / Artificial graphite battery) or 4.2V (LiNi 0.8 Co 0.15 Al 0.05 O 2 /artificial graphite battery), measure the initial discharge capacity of the battery and the initial battery thickness, and then store at 60°C for 30 days, discharge at 1C to 3V, measure the battery The retention capacity and recovery capacity and battery thickness after storage. Calculated as follows:
  • Battery capacity retention rate (%) retention capacity/initial capacity ⁇ 100%
  • Battery capacity recovery rate (%) recovery capacity/initial capacity ⁇ 100%
  • Thickness expansion rate (%) (battery thickness after storage-initial battery thickness)/initial battery thickness ⁇ 100%.
  • the lithium-ion batteries made in Examples 1-31 and Comparative Examples 1-11 were charged to 4.4V (LiNi 0.6 Co 0.2 Mn 0.2 O 2 /artificial graphite battery) or 4.2 at 25°C at a constant current and voltage of 1C at 25°C. V (LiNi 0.8 Co 0.15 Al 0.05 O 2 /artificial graphite battery), then discharge to 3.0V with 1C constant current, and record the discharge capacity.
  • 4.4V LiNi 0.6 Co 0.2 Mn 0.2 O 2 /artificial graphite battery
  • V LiNi 0.8 Co 0.15 Al 0.05 O 2 /artificial graphite battery
  • Table 2 Positive active components, electrolyte composition and battery performance of lithium-ion batteries of Examples 1-17 and Comparative Examples 1-7
  • the corresponding high temperature cycle performance, high temperature storage performance and low temperature of the lithium ion battery Performance has also improved significantly. Comparing Example 4 with Examples 13-17, when the amount of the compound represented by Formula 2 added to the non-aqueous electrolyte of the lithium ion battery is 1%, the battery's high temperature cycle performance, high temperature storage performance and low temperature performance are the most ideal. Therefore, in the lithium ion batteries designed in Table 3 and Table 4, the concentration of the compound shown in Formula 2 is 1%.
  • Example 2 Compared with Example 1 and Example 12, due to the addition of the compound represented by formula 2 whose content is 1% relative to the total mass of the non-aqueous electrolyte of the lithium ion battery, the high temperature cycle performance and high temperature storage performance of the corresponding lithium ion battery And low temperature performance has also been improved.
  • ABPP 2-alkynyl-1,4-bis(bis(2-propynyl))phosphate
  • Table 3 Positive active components, electrolyte composition and battery performance of lithium-ion batteries of Examples 18-24 and Comparative Examples 8-9
  • Example 18 Comparing Example 18 with Example 24, due to the addition of the compound represented by Formula 2 whose content is 1% relative to the total mass of the non-aqueous electrolyte of the lithium ion battery, the corresponding high temperature cycle performance and high temperature storage of the lithium ion battery Performance and low temperature performance have also been improved.
  • Table 4 Positive active components, electrolyte composition and battery performance of lithium-ion batteries of Examples 25-31 and Comparative Examples 10-11
  • Example 25 Comparing Example 25 with Example 31, due to the addition of the compound represented by Formula 2 whose content is 1% relative to the total mass of the non-aqueous electrolyte of the lithium ion battery, the corresponding high temperature cycle performance and high temperature storage of the lithium ion battery Performance and low temperature performance have also been improved.
  • ABPP 2-alkynyl-1,4-bis(bis(2-propynyl))phosphate
  • the compound represented by Formula 1 with a content of 20 ppm-1% relative to the total mass of the lithium-ion battery non-aqueous electrolyte was added, and its content relative to the lithium-ion battery non-aqueous electrolyte was added.
  • the compound represented by Formula 2 having a total mass of 1% the high-temperature cycle performance, high-temperature storage performance, and low-temperature performance of the corresponding lithium-ion battery are significantly improved.
  • the use of ABPP in Comparative Example 11 also caused a decrease in low temperature performance to a certain extent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂离子电池非水电解液,包含非水有机溶剂和锂盐,还包含选自式1所示的化合物中的一种或多种化合物和式2所示的化合物,其中式1中R 1、R 2、R 3、R 4各自独立地选自取代或未取代的1-5个碳原子的烷基、取代或未取代的1-5个碳原子的醚基、取代或未取代的2-5个碳原子的不饱和烃基,但条件是R 1、R 2、R 3、R 4中的至少一个为取代或未取代的2-5个碳原子的不饱和烃基,R 5选自取代或未取代的1-5个碳原子的亚烷基、取代或未取代的1-5个碳原子的醚基;式2中R 6、R 7、R 8各自独立地选自取代或未取代的1-5个碳原子的烷基、取代或未取代的1-5个碳原子的醚基、取代或未取代的2-5个碳原子的不饱和烃基,但条件是R 6、R 7、R 8中的至少一个为取代或未取代的2-5个碳原子的不饱和烃基。还提供包含该非水电解液的锂离子电池。该非水电解液能够兼顾电池的高温储存性能及循环性能。

Description

锂离子电池非水电解液及包含该电解液的锂离子电池 技术领域
本发明涉及锂离子电池技术领域,特别涉及一种锂离子电池非水电解液及包含该电解液的锂离子电池。
背景技术
锂离子电池因其工作电压高、安全性高、长寿命、无记忆效应等特点,在便携式电子产品领域中取得了长足的发展。随着新能源汽车的发展,锂离子电池在新能源汽车用动力电源系统具有巨大的应用前景。
作为锂离子电池最重要的组成成分之一,电解液对于提升锂离子电池的能量密度、循环稳定性等起着至关重要的作用。在锂离子电池的充放电过程中,伴随着Li +可逆的嵌入/脱嵌反应,电解液与电极材料会发生一系列的反应,形成一层覆盖于电极材料表面的固态电解质界面膜(SEI膜)。作为电子绝缘体和锂离子导体,稳定的SEI膜可以阻止电解液与电极材料的进一步接触,对锂离子电池的电化学性能和安全性能具有积极的作用。反之,不稳定的SEI膜会导致锂离子的持续消耗与不断反应,生成一系列的不可逆的副产物,造成电池膨胀,内阻增加,甚至引发火灾或爆炸,对电池的安全性造成极大的隐患。因此,SEI膜的稳定性决定了锂离子电池性能的好坏。
许多科研人员通过选择不同的成膜添加剂(如碳酸亚乙烯酯、氟代碳酸乙烯酯、碳酸乙烯亚乙酯)来提高锂离子电池的SEI膜的稳定性,改善电池的各项性能。相对于有机溶剂及锂盐来讲,添加剂需求量少而效果显著,同时成本较低。因此,添加剂的开发已成为电解液开发的核心技术。D.Aurbach等用电化学方法和谱学方法研究了添加剂碳酸亚乙烯酯(VC),发现VC能够提高电池的循环性能,尤其是提高电池在高温时的循环性能,降低不可逆容量。其主要原因是VC可以在石墨表面发生聚合,生成聚烷基碳酸锂膜,从而抑制溶剂和盐阴离子的还原。G.H.Wrodnigg等在1mol/L的LiClO 4/碳酸丙烯酯(PC)中添加5%(体积分数)亚硫酸乙烯酯(ES)或亚硫酸丙烯酯(PS),可以有效地防止PC分子嵌入石墨电极,同时还可提高电解液的低温性能。其原因可能是例如ES的还原电位约为2V(相对于Li/Li +),优先于溶剂还原,在石墨负极表面形成SEI膜。虽然研究表明功能性添加剂对改善电池的性能起着十分重要 的作用,添加剂的加入可弥补电解液自身的某些不足,但是到目前为止,这方面的研究工作还不够成熟,例如关于提高锂离子电池工作温度范围的添加剂报道不多,尤其是应用于高温方面的添加剂种类也很有限。
发明内容
本发明的目的是提供一种能够兼顾电池高温储存性能及循环性能的锂离子电池非水电解液,进一步提供一种包含上述非水电解液的锂离子电池。
为了达到上述发明目的,本发明采用了如下的技术方案:
根据本发明的第一方面,本发明提供一种锂离子电池非水电解液,该非水电解液包含非水有机溶剂和锂盐,其中该非水电解液还包含选自式1所示的化合物中的一个或多个化合物和选自式2所示的化合物,
Figure PCTCN2020105829-appb-000001
式1中R 1、R 2、R 3、R 4各自独立地选自取代或未取代的1-5个碳原子的烷基、取代或未取代的1-5个碳原子的醚基、取代或未取代的2-5个碳原子的不饱和烃基,但条件是R 1、R 2、R 3、R 4中的至少一个为所述取代或未取代的2-5个碳原子的不饱和烃基,R 5选自取代或未取代的1-5个碳原子的亚烷基、取代或未取代的1-5个碳原子的醚基。
式2中R 6、R 7、R 8各自独立地选自取代或未取代的1-5个碳原子的烷基、取代或未取代的1-5个碳原子的醚基、取代或未取代的2-5个碳原子的不饱和烃基,但条件是R 6、R 7、R 8中的至少一个为所述取代或未取代的2-5个碳原子的不饱和烃基。
作为本发明的优选方案,该1-5个碳原子的烷基可选自例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、仲戊基、新戊基。
作为本发明的优选方案,该2-5个碳原子的不饱和烃基可选自例如乙烯基、丙烯基、烯丙基、丁烯基、戊烯基、甲基乙烯基、甲基烯丙基、乙炔基、丙炔基、炔丙基、丁炔基、戊炔基。
作为本发明的优选方案,该1-5个碳原子的亚烷基可选自例如亚甲基、亚乙基、亚正丙基、亚异丙基、亚正丁基、亚异丁基、亚仲丁基、亚叔丁基、亚正戊基、亚异戊基、亚仲戊基、亚新戊基。
作为本发明的优选方案,该1-5个碳原子的醚基可选自例如甲醚、乙醚、甲乙醚、丙醚、甲丙醚、乙丙醚。
作为本发明的优选方案,该取代为一个或多个氢元素被卤素取代;优选地,该卤素为氟、氯、溴和碘;进一步优选地,该卤素为氟。
作为本发明的具体优选方案,卤素取代的1-5个碳原子的烷基为1-5个碳原子的烷基中的一个或多个氢元素被氟元素取代所得的1-5个碳原子的氟代烷基。
作为本发明的具体优选方案,卤素取代的2-5个碳原子的不饱和烃基为2-5个碳原子的不饱和烃基中的一个或多个氢元素被氟元素取代所得的1-5个碳原子的氟代不饱和烃基。
作为本发明的具体优选方案,卤素取代的1-5个碳原子的亚烷基为1-5个碳原子的亚烷基中的一个或多个氢元素被氟元素取代所得的1-5个碳原子的氟代亚烷基。
作为本发明的具体优选方案,卤素取代的1-5个碳原子的醚基为1-5个碳原子的醚基中的一个或多个氢元素被氟元素取代所得的1-5个碳原子的氟代醚基。
作为本发明的更具体的优选方案,该1-5个碳原子的氟代醚基可选自例如氟代甲醚、氟代乙醚、氟代甲乙醚、氟代丙醚、氟代甲丙醚、氟代乙丙醚。
作为本发明的再进一步的优选方案,式1所示的化合物为下表1中所列的化合物1-22。
表1:本发明的式1所示的化合物的代表性的优选化合物1-22
Figure PCTCN2020105829-appb-000002
Figure PCTCN2020105829-appb-000003
Figure PCTCN2020105829-appb-000004
作为本发明的再进一步的优选方案,式2所示的化合物为下表2中所列的化合物23-28。
表2:本发明的式2所示的化合物的代表性的优选化合物23-28
Figure PCTCN2020105829-appb-000005
作为本发明的优选方案,式1所示的化合物的含量相对于非水电解液的总质量在10ppm以上,进一步地,式1所示的化合物的含量相对于所述非水电解液的总质量在2%以下。式2所示的化合物的含量相对于非水电解液的总质量为0.1-2%。例如,为式1所示的化合物的含量相对于上述非水电解液的总质量为10ppm-2%、20ppm-1%、50ppm-0.5%、100ppm-0.3%、200ppm-0.2%、300-1000ppm、500-800ppm,或者它们之 间的任何数值。例如,式2所示的化合物的含量相对于非水电解液的总质量为0.1-2%、0.3-1.8%、0.5-1.5%、0.8-1.2%、1-1.1%,或者它们之间的任何数值。
作为本发明的进一步的优选方案,上述锂离子电池非水电解液还包含不饱和环状碳酸酯、氟代环状碳酸酯、环状磺酸内酯、环状硫酸酯中的至少一种,作为成膜添加剂。以该非水电解液总质量为基准,该不饱和环状碳酸酯的含量为0.1-5%,该氟代环状碳酸酯的含量为0.1-30%,该环状磺酸内酯的含量为0.1-5%,该环状硫酸酯的含量为0.1-5%。
作为本发明的进一步的优选方案,不饱和环状碳酸酯选自碳酸亚乙烯酯(CAS:872-36-6)、碳酸乙烯亚乙酯(CAS:4427-96-7)、亚甲基碳酸乙烯酯(CAS:124222-05-5)中的至少一种,氟代环状碳酸酯选自氟代碳酸乙烯酯(CAS:114435-02-8)、三氟甲基碳酸乙烯酯(CAS:167951-80-6)、双氟代碳酸乙烯酯(CAS:311810-76-1)中的至少一种,环状磺酸内酯选自1,3-丙烷磺内酯(CAS:1120-71-4)、1,4-丁烷磺内酯(CAS:1633-83-6)、丙烯基-1,3-磺酸内酯(CAS:21806-61-1)中的至少一种,环状硫酸酯选自硫酸乙烯酯(CAS:1072-53-3)、4-甲基硫酸乙烯酯(CAS:5689-83-8)中的至少一种。
作为本发明的进一步的优选方案,上述非水有机溶剂为环状碳酸酯和链状碳酸酯的混合物。
作为本发明的进一步的优选方案,环状碳酸酯选自碳酸乙烯酯、碳酸丙烯酯和碳酸丁烯酯中的至少一种,链状碳酸酯选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的至少一种;上述锂盐选自LiPF 6、LiBF 4、LiPO 2F 2、LiTFSI、LiBOB、LiDFOB、LiN(SO 2F) 2中的至少一种。
根据本发明的第二方面,本发明提供一种锂离子电池,包括正极、负极和置于正极与负极之间的隔膜,还包括根据本发明的第一方面的锂离子电池非水电解液。
作为本发明的进一步的优选方案,上述正极包括正极活性材料,上述正极活性材料选自LiNi xCo yMn zL (1-x-y-z)O 2、LiCo x’L (1-x’)O 2、LiNi x”L’ y’Mn (2-x”-y’)O 4、Li z’MPO 4中的至少一种,其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种,0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2,L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe中的至少一种;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。
尽管式1所示的化合物在本发明的锂离子电池非水电解液中的作用 机理不十分清楚,但发明人推测,式1所示的化合物由于存在至少一个不饱和烃基,在锂离子电池首次充电过程中,其在电极表面能够发生聚合反应形成钝化膜,从而抑制有机溶剂分子的进一步分解。此外,式1所示的化合物能够与LiF发生反应,降低电极表面钝化膜中高阻抗成分LiF的含量,有利于锂离子通过,从而能够明显改善锂离子电池的高温储存性能及循环性能。并且,式1所示的化合物中,两个磷酸酯基团通过柔性的亚烷基或醚基连接,相比于刚性更强的炔基等基团,更利于在电解液中分散及反应,以便进一步提高锂离子电池的高温储存性能及循环性能,并且可在一定程度上抑制低温性能的下降。
本发明人据信,式1所示的化合物与式2所示的化合物发挥协同作用,尽管其协同作用的机理还不十分清楚。式1所示的化合物的含量相对于非水电解液的总质量在10ppm以上。在低于10ppm时,可能难以充分在正负极表面形成钝化膜,并且难以与式2所示的化合物发挥协同作用,从而难以充分提高非水电解液电池的高温储存性能。式1所示的化合物的含量相对于非水电解液的总质量在2%以下。超过2%时,可能会在正负极表面形成过厚的钝化膜,增加电池内阻,从而降低电池的循环性能,并且造成电解液成本的提高。同样,优选地,式2所示的化合物的含量相对于非水电解液的总质量为0.1-2%,以与式1所示的化合物发挥协同作用,又避免在正负极表面形成过厚的钝化膜。
本发明的锂离子电池非水电解液还包含不饱和环状碳酸酯、氟代环状碳酸酯、环状磺酸内酯、环状硫酸酯中的至少一种作为成膜添加剂,能在石墨负极表面形成更稳定的SEI膜,从而显著提高锂离子电池的循环性能。
本发明的锂离子电池非水电解液中采用高介电常数的环状碳酸酯有机溶剂与低粘度的链状碳酸酯有机溶剂的混合液作为锂离子电池电解液的溶剂,使得该有机溶剂的混合液同时具有高的离子电导率、高的介电常数及低的粘度。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可 以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本发明提供了一种锂离子电池非水电解液,该非水电解液包含非水有机溶剂和锂盐,其中该非水电解液还包含选自式1所示的化合物中的一个或多个化合物和选自式2所示的化合物,
Figure PCTCN2020105829-appb-000006
式1中R 1、R 2、R 3、R 4各自独立地选自取代或未取代的1-5个碳原子的烷基、取代或未取代的1-5个碳原子的醚基、取代或未取代的2-5个碳原子的不饱和烃基,但条件是R 1、R 2、R 3、R 4中的至少一个为该取代或未取代的2-5个碳原子的不饱和烃基,R 5选自取代或未取代的1-5个碳原子的亚烷基、取代或未取代的1-5个碳原子的醚基。
式2中R 6、R 7、R 8各自独立地选自取代或未取代的1-5个碳原子的烷基、取代或未取代的1-5个碳原子的醚基、取代或未取代的2-5个碳原子的不饱和烃基,但条件是R 6、R 7、R 8中的至少一个为所述取代或未取代的2-5个碳原子的不饱和烃基。
该1-5个碳原子的烷基可选自例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、仲戊基、新戊基。
该2-5个碳原子的不饱和烃基可选自例如乙烯基、丙烯基、烯丙基、丁烯基、戊烯基、甲基乙烯基、甲基烯丙基、乙炔基、丙炔基、炔丙基、丁炔基、戊炔基。
该1-5个碳原子的亚烷基可选自例如亚甲基、亚乙基、亚正丙基、亚异丙基、亚正丁基、亚异丁基、亚仲丁基、亚叔丁基、亚正戊基、亚异戊基、亚仲戊基、亚新戊基。
该1-5个碳原子的醚基可选自例如甲醚、乙醚、甲乙醚、丙醚、甲丙醚、乙丙醚。
该取代为一个或多个氢元素被卤素取代;优选地,该卤素为氟、氯、溴和碘;进一步优选地,该卤素为氟。
具体地,卤素取代的1-5个碳原子的烷基为1-5个碳原子的烷基中的一个或多个氢元素被氟元素取代所得的1-5个碳原子的氟代烷基。
具体地,卤素取代的2-5个碳原子的不饱和烃基为2-5个碳原子的不饱和烃基中的一个或多个氢元素被氟元素取代所得的2-5个碳原子的氟代不饱和烃基。
具体地,卤素取代的1-5个碳原子的亚烷基为1-5个碳原子的亚烷基中的一个或多个氢元素被氟元素取代所得的1-5个碳原子的氟代亚烷基。
具体地,卤素取代的1-5个碳原子的醚基为1-5个碳原子的醚基中的一个或多个氢元素被氟元素取代所得的1-5个碳原子的氟代醚基。
进一步具体地,该1-5个碳原子的氟代醚基可选自例如氟代甲醚、氟代乙醚、氟代甲乙醚、氟代丙醚、氟代甲丙醚、氟代乙丙醚。
本领域技术人员在知晓上述式1的化合物的结构式的情况下,根据化学合成领域的公知常识可以知晓上述化合物的制备方法。例如式1的化合物可以通过以三乙胺作缚酸剂,在醚类溶剂中,低温(-10至0℃)常压下,三氯氧磷与相应的醇类反应生成相应的磷酸酯,再经重结晶或柱层析纯化制备得到。以化合物1、6和15为例,其合成路线示例如下:
Figure PCTCN2020105829-appb-000007
Figure PCTCN2020105829-appb-000008
本发明另外还提供一种锂离子电池,包括正极、负极和置于正极与负极之间的隔膜,还包括前述的锂离子电池非水电解液。
下面通过非限制性的实施例及对比例的方式对本发明作进一步详细说明。
I.实施例1-17和对比例1-7
1)电解液的制备
将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,制备基础电解液。然后按表2所示,加入或不加入指定数量的表1中所列的式1所示化合物和/或指定数量的式2所示化合物及 其他化合物。
具体地,按该基础电解液的总质量计,实施例1-11及对比例1-6均加入1%的化合物23,在此基础上,实施例1-6分别加入20ppm的化合物1、50ppm的化合物2、100ppm的化合物4、500ppm的化合物7、1000ppm的化合物8、1%的化合物12;实施例7-11分别加入500ppm的化合物1和1%的碳酸亚乙烯酯(VC)、500ppm的化合物1和1%的氟代碳酸乙烯酯(FEC)、500ppm的化合物1和1%的1,3-丙磺酸内酯(PS)、500ppm的化合物1和1%的硫酸亚乙酯(DTD)、500ppm的化合物1和1%的LiN(SO 2F) 2;对比例1不加入式1所示的化合物;对比例2-6不加入式1所示的化合物,但分别加入1%的VC、1%的FEC、1%的PS、1%的DTD、1%的LiN(SO 2F) 2
实施例12只加入20ppm的化合物1;实施例13-17均加入500ppm的化合物7,在此基础上,分别加入0.1%、0.2%、0.5%、1.5%及2.0%的化合物23。对比例7加入500ppm的2-炔基-1,4-二(二(2-丙炔基))磷酸酯(ABPP)。
2)正极板的制备
按93:4:3的质量比混合正极活性材料锂镍钴锰氧化物LiNi 0.6Co 0.2Mn 0.2O 2、导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将混合物分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在120-150μm。
3)负极板的制备
按94:1:2.5:2.5的质量比混合负极活性材料人造石墨、导电碳黑Super-P、粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将混合物分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,极板的厚度在120-150μm。
4)电芯的制备
在正极板和负极板之间放置厚度为20μm的三层隔膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入铝箔包装袋,在75℃下真空烘烤48h,得到待注液的电芯。
5)电芯的注液和化成
在露点控制在-40℃以下的手套箱中,将上述制备的电解液注入电芯中,经真空封装,制作成锂离子电池,静止24h。
然后按以下步骤进行首次充电的常规化成:0.05C恒流充电180min,0.2C恒流充电至3.95V,二次真空封口,然后进一步以0.2C的电流恒流充电至4.4V,常温搁置24h后,以0.2C的电流恒流放电至3.0V。II.实施例18-24和对比例8-9
参照上述“I.实施例1-17和对比例1-7”中介绍的方法制备基础电解液,然后按表3所示,加入或不加入指定数量的表1中所列的式1所示化合物和/或指定数量的式2所示化合物及其他化合物。具体地,按电解液的总质量计,实施例18-23及对比例8均加入1%的化合物26,在此基础上,实施例18-23分别加入20ppm的化合物1、50ppm的化合物2、100ppm的化合物4、500ppm的化合物7、1000ppm的化合物8、1%的化合物12;对比例8不加入式1所示的化合物;实施例24只加入20ppm的化合物1;对比例9只加入500ppm的2-炔基-1,4-二(二(2-丙炔基))磷酸酯(ABPP)。另外,实施例18-14和对比例8-9的正极活性成分均采用LiNi 0.8Co 0.15Al 0.05O 2制备正极板。按上述“I.实施例1-17和对比例1-7”中介绍的方法制备负极板、电芯并进行电芯的注液和化成。
III.实施例25-31和对比例10-11
参照上述“I.实施例1-17和对比例1-7”中介绍的方法制备基础电解液,然后按表4所示,加入或不加入指定数量的表1中所列的式1所示化合物和/或指定数量的式2所示的化合物及其他化合物。具体地,按电解液的总质量计,实施例25-30及对比例10均加入1%的化合物27,在此基础上,实施例25-30分别加入20ppm的化合物1、50ppm的化合物2、100ppm的化合物4、500ppm的化合物7、1000ppm的化合物8、1%的化合物12;对比例10不加入式1所示的化合物;实施例31只加入20ppm的化合物1;对比例11只加入500ppm的2-炔基-1,4-二(二(2-丙炔基))磷酸酯(ABPP)。另外,实施例25-31和对比例10-11的正极活性成分均采用LiCoO 2制备正极板。按上述“I.实施例1-17和对比例1-7”中介绍的方法制备负极板、电芯并进行电芯的注液和化成。
实施例和对比例制作的锂离子电池的性能测试
为了验证本发明的锂离子电池非水电解液对电池性能的影响,下面对上述实施例1-31及对比例1-11制作的锂离子电池进行相关的性能测试。测试的性能包括高温循环性能测试、高温储存性能测试和低温性能测试,具体测试方法如下:
1.高温循环性能测试
将实施例1-31及对比例1-11制作的锂离子电池置于恒温45℃的烘箱中,以1C的电流恒流充电至4.4V(LiNi 0.6Co 0.2Mn 0.2O 2/人造石墨电池,LiCoO 2/人造石墨电池)或4.2V(LiNi 0.8Co 0.15Al 0.05O 2/人造石墨电池),再恒压充电至电流下降至0.02C,然后以1C的电流恒流放电至3.0V,如此循环,记录第1次的放电容量和最后一次的放电容量。
按下式计算高温循环的容量保持率:
电池容量保持率(%)=最后一次的放电容量/第1次的放电容量×100%。
2.高温储存性能测试
将实施例1-31及对比例1-11制作的锂离子电池在化成后在常温下用1C恒流恒压充至4.4V(LiNi 0.6Co 0.2Mn 0.2O 2/人造石墨电池,LiCoO 2/人造石墨电池)或4.2V(LiNi 0.8Co 0.15Al 0.05O 2/人造石墨电池),测量电池初始放电容量及初始电池厚度,然后在60℃环境中储存30天后,以1C放电至3V,测量电池的保持容量和恢复容量及储存后电池厚度。计算公式如下:
电池容量保持率(%)=保持容量/初始容量×100%;
电池容量恢复率(%)=恢复容量/初始容量×100%;
厚度膨胀率(%)=(储存后电池厚度-初始电池厚度)/初始电池厚度×100%。
3.低温性能测试
将实施例1-31及对比例1-11制作的锂离子电池在化成后在25℃下用1C恒流恒压充至4.4V(LiNi 0.6Co 0.2Mn 0.2O 2/人造石墨电池)或4.2V(LiNi 0.8Co 0.15Al 0.05O 2/人造石墨电池),然后用1C恒流放电至3.0V,记录放电容量。然后1C恒流恒压充至4.4V(LiNi 0.6Co 0.2Mn 0.2O 2/人造石墨电池,LiCoO 2/人造石墨电池)或4.2V(LiNi 0.8Co 0.15Al 0.05O 2/人造石墨电池),置于-20℃的环境中搁置12h后,0.2C恒流放电至3.0V,记录放电容量。
-20℃的低温放电效率值=0.2C放电容量(-20℃)/1C放电容量(25 ℃)×100%。
表2:实施例1-17和对比例1-7的锂离子电池的正极活性成分、电解液组成及电池性能
Figure PCTCN2020105829-appb-000009
Figure PCTCN2020105829-appb-000010
Figure PCTCN2020105829-appb-000011
由表2的数据可见,在使用LiNi 0.6Co 0.2Mn 0.2O 2作为正极活性成分的情 况下,实施例1-6与对比例1相比,由于添加了其含量相对于锂离子电池非水电解液的总质量为20ppm-1%的代表性的式1所示的化合物,相应的锂离子电池的高温循环性能、高温储存性能和低温性能都得到明显改善。实施例7-11与对比例2-6相比,锂离子电池非水电解液中除了包含其他化合物之外还包含500ppm的化合物1,相应的锂离子电池的高温循环性能、高温储存性能和低温性能都也有明显改善。实施例4与实施例13-17相比,锂离子电池非水电解液中添加的式2所示化合物的量为1%时,电池的高温循环性能、高温储存性能和低温性能最为理想。因此在之后的表3及表4设计的锂离子电池中,式2所示化合物的浓度均为1%。实施例1和实施例12相比,由于添加了其含量相对于锂离子电池非水电解液的总质量为1%的式2所示化合物,相应的锂离子电池的高温循环性能、高温储存性能和低温性能都也有改善。与添加了其含量相对于锂离子电池非水电解液的总质量为500ppm的2-炔基-1,4-二(二(2-丙炔基))磷酸酯(ABPP)的对比例7相比,实施例1-6由于添加了其含量相对于锂离子电池非水电解液的总质量为20ppm-1%的代表性的式1所示的化合物和相对于锂离子电池非水电解液的总质量为1%的式2所示的化合物,相应的锂离子电池的高温循环性能、高温储存性能和低温性能都得到明显改善。而对比例7中采用ABPP在一定程度上也导致低温性能的下降。
表3:实施例18-24和对比例8-9的锂离子电池的正极活性成分、电解液组成及电池性能
Figure PCTCN2020105829-appb-000012
Figure PCTCN2020105829-appb-000013
由表3的数据可见,在使用LiNi 0.8Co 0.15Al 0.05O 2作为正极活性成分的情况下,实施例18-23与对比例8相比,由于添加了其含量相对于锂离子电池非水电解液的总质量为20ppm-1%的代表性的式1所示的化合物,相应的锂离子电池的高温循环性能、高温储存性能和低温性能都得到明显改善。实施例18和实施例24相比,由于添加了其含量相对于锂离子电池非水电解液的总质量为1%的式2所示的化合物,相应的锂离子电池的高温循环性能、高温储存性能和低温性能都也有改善。与添加了其含量相对于锂离子电池非水电解液的总质量为500ppm的2-炔基-1,4-二(二(2-丙炔基))磷酸酯(ABPP)的对比例9相比,实施例18-23由于添加了其含量相对于锂离子电池非水电解液的总质量为20ppm-1%的代表性的式1所示的 化合物和相对于锂离子电池非水电解液的总质量为1%的式2所示的化合物,相应的锂离子电池的高温循环性能、高温储存性能和低温性能都得到明显改善。而对比例9中采用ABPP在一定程度上也导致的低温性能的下降。
表4:实施例25-31和对比例10-11的锂离子电池的正极活性成分、电解液组成及电池性能
Figure PCTCN2020105829-appb-000014
由表4的数据可见,在使用LiCoO 2作为正极活性成分的情况下,实 施例25-30与对比例10相比,由于添加了其含量相对于锂离子电池非水电解液的总质量为20ppm-1%的代表性的式1所示的化合物,相应的锂离子电池的高温循环性能、高温储存性能和低温性能都得到明显改善。实施例25和实施例31相比,由于添加了其含量相对于锂离子电池非水电解液的总质量为1%的式2所示的化合物,相应的锂离子电池的高温循环性能、高温储存性能和低温性能都也有改善。与添加了其含量相对于锂离子电池非水电解液的总质量为500ppm的2-炔基-1,4-二(二(2-丙炔基))磷酸酯(ABPP)的对比例11相比,实施例25-30由于添加了其含量相对于锂离子电池非水电解液的总质量为20ppm-1%的代表性的式1所示的化合物和相对于锂离子电池非水电解液的总质量为1%的式2所示的化合物,相应的锂离子电池的高温循环性能、高温储存性能和低温性能都得到明显改善。而对比例11中采用ABPP在一定程度上也导致的低温性能的下降。
以上应用了具体实例对本发明进行了阐述,只是用于帮助理解本发明,并不用以限制本发明。本发明所属技术领域的技术人员依据本发明的构思,还可以做出若干简单推演、变形或替换。这些推演、变形或替换方案也落入本发明的权利要求范围内。

Claims (10)

  1. 一种锂离子电池非水电解液,包含非水有机溶剂和锂盐,其特征在于,所述非水电解液还包含选自式1所示的化合物中的一种或多种化合物和选自式2所示的化合物:
    Figure PCTCN2020105829-appb-100001
    式1中R 1、R 2、R 3、R 4各自独立地选自取代或未取代的1-5个碳原子的烷基、取代或未取代的1-5个碳原子的醚基、取代或未取代的2-5个碳原子的不饱和烃基,但条件是R 1、R 2、R 3、R 4中的至少一个为所述取代或未取代的2-5个碳原子的不饱和烃基,R 5选自取代或未取代的1-5个碳原子的亚烷基、取代或未取代的1-5个碳原子的醚基;
    式2中R 6、R 7、R 8各自独立地选自取代或未取代的1-5个碳原子的烷基、取代或未取代的1-5个碳原子的醚基、取代或未取代的2-5个碳原子的不饱和烃基,但条件是R 6、R 7、R 8中的至少一个为所述取代或未取代的2-5个碳原子的不饱和烃基。
  2. 根据权利要求1所述的非水电解液,其特征在于,
    所述1-5个碳原子的烷基选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、仲戊基、新戊基;所述2-5个碳原子的不饱和烃基选自乙烯基、丙烯基、烯丙基、丁烯基、戊烯基、甲基乙烯基、甲基烯丙基、乙炔基、丙炔基、炔丙基、丁炔基、戊炔基;
    所述1-5个碳原子的亚烷基选自亚甲基、亚乙基、亚正丙基、亚异丙基、亚正丁基、亚异丁基、亚仲丁基、亚叔丁基、亚正戊基、亚异戊基、亚仲戊基、亚新戊基;
    所述1-5个碳原子的醚基选自甲醚、乙醚、甲乙醚、丙醚、甲丙醚、乙丙醚;
    所述取代为一个或多个氢元素被卤素取代;优选地,所述卤素为氟。
  3. 根据权利要求2所述的非水电解液,其特征在于,所述式1所示的化合物为以下化合物1-22:
    Figure PCTCN2020105829-appb-100002
    Figure PCTCN2020105829-appb-100003
  4. 根据权利要求1-3中任意一项所述的非水电解液,其特征在于,所述式1所示的化合物的含量相对于所述非水电解液的总质量在10ppm以上。
  5. 根据权利要求4所述的非水电解液,其特征在于,所述式1所示的化合物的含量相对于所述非水电解液的总质量在2%以下。
  6. 根据权利要求1-3、5中任意一项所述的非水电解液,其特征在于,所述式2所示的化合物的含量相对于所述非水电解液的总质量为0.1-2%。
  7. 根据权利要求1所述的非水电解液,其特征在于,所述非水电解液还包含不饱和环状碳酸酯、氟代环状碳酸酯、环状磺酸内酯、环状硫酸酯中的至少一种;以所述非水电解液总质量为基准,所述不饱和环状碳酸酯的含量为0.1-5%,所述氟代环状碳酸酯的含量为0.1-30%,所述环状磺酸内酯的含量为0.1-5%,所述环状硫酸酯的含量为0.1-5%;
    优选地,所述不饱和环状碳酸酯选自碳酸亚乙烯酯(CAS:872-36-6)、 碳酸乙烯亚乙酯(CAS:4427-96-7)、亚甲基碳酸乙烯酯(CAS:124222-05-5)中的至少一种,所述氟代环状碳酸酯选自氟代碳酸乙烯酯(CAS:114435-02-8)、三氟甲基碳酸乙烯酯(CAS:167951-80-6)、双氟代碳酸乙烯酯(CAS:311810-76-1)中的至少一种,所述环状磺酸内酯选自1,3-丙烷磺内酯(CAS:1120-71-4)、1,4-丁烷磺内酯(CAS:1633-83-6)、丙烯基-1,3-磺酸内酯(CAS:21806-61-1)中的至少一种,所述环状硫酸酯选自硫酸乙烯酯(CAS:1072-53-3)、4-甲基硫酸乙烯酯(CAS:5689-83-8)中的至少一种。
  8. 根据权利要求1所述的非水电解液,其特征在于,所述非水有机溶剂为环状碳酸酯和链状碳酸酯的混合物;
    优选地,所述环状碳酸酯选自碳酸乙烯酯、碳酸丙烯酯和碳酸丁烯酯中的至少一种,所述链状碳酸酯选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的至少一种;所述锂盐选自LiPF 6、LiBF 4、LiPO 2F 2、LiTFSI、LiBOB、LiDFOB、LiN(SO 2F) 2中的至少一种。
  9. 一种锂离子电池,包括正极、负极和置于正极与负极之间的隔膜,其特征在于,所述锂离子电池还包括根据权利要求1-8中任一项所述的非水电解液。
  10. 根据权利要求9所述的锂离子电池,其特征在于,所述正极包括正极活性材料,所述正极活性材料选自LiNi xCo yMn zL (1-x-y-z)O 2、LiCo x’L (1-x’)O 2、LiNi x”L’ y’Mn (2-x”-y’)O 4、Li z’MPO 4中的至少一种,其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种,0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2,L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe中的至少一种;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。
PCT/CN2020/105829 2019-07-31 2020-07-30 锂离子电池非水电解液及包含该电解液的锂离子电池 WO2021018244A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/628,217 US20220255120A1 (en) 2019-07-31 2020-07-30 Non-aqueous electrolyte for a lithium ion battery and lithium ion battery comprising the electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910698670.8A CN112310466B (zh) 2019-07-31 2019-07-31 锂离子电池非水电解液及包含该电解液的锂离子电池
CN201910698670.8 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021018244A1 true WO2021018244A1 (zh) 2021-02-04

Family

ID=74228611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105829 WO2021018244A1 (zh) 2019-07-31 2020-07-30 锂离子电池非水电解液及包含该电解液的锂离子电池

Country Status (3)

Country Link
US (1) US20220255120A1 (zh)
CN (1) CN112310466B (zh)
WO (1) WO2021018244A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102651787B1 (ko) * 2021-07-14 2024-03-26 주식회사 엘지에너지솔루션 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038931A (zh) * 2010-08-31 2013-04-10 株式会社艾迪科 非水电解液二次电池
CN103151559A (zh) * 2013-02-05 2013-06-12 深圳新宙邦科技股份有限公司 一种锂离子电池用非水电解液及其相应的锂离子电池
CN103339783A (zh) * 2011-03-04 2013-10-02 株式会社电装 电池用非水电解液及使用了该电解液的非水电解液二次电池
WO2014181877A1 (ja) * 2013-05-10 2014-11-13 日本電気株式会社 二次電池用電解液および二次電池
CN104471780A (zh) * 2012-07-17 2015-03-25 日本电气株式会社 锂二次电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100509604B1 (ko) * 2003-01-14 2005-08-22 삼성에스디아이 주식회사 유기 전해액 및 이를 채용한 리튬 전지
JP4186710B2 (ja) * 2003-05-27 2008-11-26 株式会社ブリヂストン 難燃性ポリウレタンフォーム
JP5781293B2 (ja) * 2010-11-16 2015-09-16 株式会社Adeka 非水電解液二次電池
JP5708244B2 (ja) * 2011-05-25 2015-04-30 新神戸電機株式会社 非水電解液及びこれを用いたリチウムイオン二次電池
JP2013062038A (ja) * 2011-09-12 2013-04-04 Hitachi Maxell Energy Ltd リチウムイオン二次電池
CN104300174A (zh) * 2014-10-11 2015-01-21 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
US11362370B2 (en) * 2016-11-25 2022-06-14 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium-ion battery and lithium-ion battery
CN108110319A (zh) * 2016-11-25 2018-06-01 惠州市宙邦化工有限公司 锂离子电池非水电解液及锂离子电池
CN108808066B (zh) * 2017-04-28 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN109950620B (zh) * 2017-12-20 2021-05-14 深圳新宙邦科技股份有限公司 一种锂离子电池用非水电解液及锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038931A (zh) * 2010-08-31 2013-04-10 株式会社艾迪科 非水电解液二次电池
CN103339783A (zh) * 2011-03-04 2013-10-02 株式会社电装 电池用非水电解液及使用了该电解液的非水电解液二次电池
CN104471780A (zh) * 2012-07-17 2015-03-25 日本电气株式会社 锂二次电池
CN103151559A (zh) * 2013-02-05 2013-06-12 深圳新宙邦科技股份有限公司 一种锂离子电池用非水电解液及其相应的锂离子电池
WO2014181877A1 (ja) * 2013-05-10 2014-11-13 日本電気株式会社 二次電池用電解液および二次電池

Also Published As

Publication number Publication date
US20220255120A1 (en) 2022-08-11
CN112310466A (zh) 2021-02-02
CN112310466B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
CN109950620B (zh) 一种锂离子电池用非水电解液及锂离子电池
EP3483972B1 (en) Non-aqueous electrolyte solution for lithium-ion battery, and lithium-ion battery using the same
JP6963068B2 (ja) リチウムイオン電池用非水電解液
CN109994776B (zh) 一种锂离子电池非水电解液及锂离子电池
CN111525190B (zh) 电解液及锂离子电池
WO2021135920A1 (zh) 一种锂离子电池
CN112310467A (zh) 一种锂离子电池
CN109768327B (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
WO2021120434A1 (zh) 一种电解液及电化学装置
WO2021018243A1 (zh) 一种锂离子电池电极及包括该电极的锂离子电池
CN110416611B (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
WO2019210559A1 (zh) 一种锂离子电池非水电解液及锂离子电池
CN112310474A (zh) 锂离子电池非水电解液及包含该电解液的锂离子电池
WO2021018244A1 (zh) 锂离子电池非水电解液及包含该电解液的锂离子电池
CN111384439A (zh) 一种非水电解液及锂离子电池
CN114447432B (zh) 一种锂离子电池非水电解液及锂离子电池
WO2022042374A1 (zh) 锂离子电池非水电解液以及锂离子电池
CN111370764B (zh) 非水电解液及含有该非水电解液的锂离子电池
CN112310341B (zh) 一种锂离子电池电极及包括该电极的锂离子电池
CN110247116B (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
CN110911744B (zh) 一种锂离子电池非水电解液及锂离子电池
CN111725563B (zh) 一种锂离子电池非水电解液及锂离子电池
WO2022089126A1 (zh) 锂离子电池非水电解液以及锂离子电池
CN111864262A (zh) 一种锂离子电池非水电解液及锂离子电池
WO2022213823A1 (zh) 一种锂离子电池非水电解液及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847168

Country of ref document: EP

Kind code of ref document: A1