WO2014181527A1 - 原料流体濃度検出器 - Google Patents

原料流体濃度検出器 Download PDF

Info

Publication number
WO2014181527A1
WO2014181527A1 PCT/JP2014/002376 JP2014002376W WO2014181527A1 WO 2014181527 A1 WO2014181527 A1 WO 2014181527A1 JP 2014002376 W JP2014002376 W JP 2014002376W WO 2014181527 A1 WO2014181527 A1 WO 2014181527A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
raw material
detector
recess
material fluid
Prior art date
Application number
PCT/JP2014/002376
Other languages
English (en)
French (fr)
Inventor
出口 祥啓
正明 永瀬
土肥 亮介
池田 信一
西野 功二
山路 道雄
薬師神 忠幸
Original Assignee
国立大学法人徳島大学
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学, 株式会社フジキン filed Critical 国立大学法人徳島大学
Priority to SG11201509120VA priority Critical patent/SG11201509120VA/en
Priority to US14/888,841 priority patent/US9651467B2/en
Priority to CN201480008102.6A priority patent/CN105247344B/zh
Priority to KR1020157018464A priority patent/KR101722013B1/ko
Publication of WO2014181527A1 publication Critical patent/WO2014181527A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides

Definitions

  • the present invention relates to an improvement of a process fluid concentration meter used in a raw material fluid supply device or the like of a semiconductor manufacturing apparatus, and in particular, to achieve downsizing and an in-line type sensor unit of the concentration meter, as well as high precipitation and high photoreaction.
  • In-line photoanalytical raw material fluid that can maintain high transparency of the light transmission window and high cleanliness (particle resistance) inside the sensor for long periods of time even for corrosive and corrosive raw material fluids
  • the present invention relates to a concentration detector.
  • a photometric densitometer 22 is provided in the vicinity of the raw material vapor outlet of the temperature-controlled raw material tank 21, By adjusting the temperature of the raw material tank 21, the flow rate of the carrier gas CG, the in-tank vapor pressure Po, etc. according to the concentration detection signal from the concentration meter 22, a process gas 24 (for example, a tank) having a predetermined raw material concentration is supplied to the reaction furnace 23.
  • the process gas containing an organic metal material vapor such as trimethylgallium TMGa stored in the gas 21 is supplied.
  • 25 is a thermal mass flow controller
  • 26 is a pressure adjusting device for tank internal pressure.
  • FIG. 10 Japanese Unexamined Patent Application Publication No. 2004-108981
  • an optical cell (gas cell) 27 in which the gas G to be measured flows a light source 28 for irradiating the optical cell 27 with a light beam
  • a light receiving device for the light beam that has passed through the optical cell 27 a light receiving device for the light beam that has passed through the optical cell 27
  • an arithmetic unit 30 for calculating the concentration of the raw material by obtaining the absorbance from the signal of the light receiving device 29, and the like.
  • 31 is a main pipeline and 32 is a branch pipeline.
  • the so-called absorbance of the gas in the optical cell 27 is measured, and the gas concentration is calculated by applying Lambert-Beer's law to the absorbance measurement result.
  • an in-line sensor 33 incorporating an optical cell is fixed to a conduit 31, and the light intensity of the light transmitted through the optical cell is measured. Like to do.
  • the inline sensor 33 incorporating the photometric densitometer 22 and the optical cell (absorption cell) 27 is publicly known, and a detailed description thereof is omitted here.
  • the transparency of the light transmission window of the optical cell 27 needs to be stable over a long period of time, and when the transparency changes over time. Makes it difficult to measure the gas concentration stably.
  • quartz glass is often used as a constituent material of the light transmission window, so the light transmission window is corroded when measuring the concentration of organic source gas having high corrosivity or high precipitation.
  • the transparency of the raw material is lowered at an early stage due to the deposition of the raw material, and there remains a problem that a stable raw material gas concentration cannot be measured.
  • various structures inside the optical cell 27 need to be firmly fixed and held on the main body of the optical cell 27 with high airtightness. Therefore, various synthetic resin sealing materials, silver brazing, gold brazing, and the like are used in the optical cell 27.
  • the synthetic resin sealing material, silver brazing, and gold brazing members in the optical cell 27 are emission sources for releasing the gas and particles contained in each member itself into the organic raw material gas. There is a danger that there is a problem that the gas purity is actually lowered due to emission of particles. Therefore, it is not desirable to use silver brazing or gold brazing in the gas supply system for manufacturing semiconductors.
  • the above-mentioned problem in the raw material concentration meter used in the conventional raw material fluid supply device that is, (I) simplification and downsizing of the concentration meter, and reduction in product cost cannot be easily achieved.
  • the first aspect of the raw material fluid concentration detector is a photoanalytical raw material fluid comprising a detector body 2 and a light oscillation unit 5a and a light detection unit 5b provided on the upper surface or the lower surface of the detector body 2.
  • the concentration detector at least one recess 17 is formed on the upper surface and the lower surface of the detector body 2, and the fluid channel 2 a communicating from the fluid inlet of the detector body 2 to the recess 17 is communicated with the recess 17.
  • a fluid passage 2b that communicates with the fluid outlet of the detector body 2 from the concave portion 17, and the light oscillation portion 5a is disposed in at least one concave portion, and the light detection portion 5b is disposed in the remaining concave portion.
  • the light oscillation unit includes a light transmission plate, a light intensity detection photodiode, and a light oscillation light source (optical fiber).
  • the light detection unit includes a light transmission plate and a light intensity detection photodiode.
  • the light transmission plate disposed in the recess formed in the detector main body is hermetically fixed using a gasket type seal.
  • a fourth aspect of the raw material fluid concentration detector includes a detector body 2, a light oscillation unit 5a provided on the upper surface of the detector body 2, and a light detection unit 5b provided on the lower surface of the detector body 2.
  • An optical analysis type raw material fluid concentration detector comprising: a recess 17 provided on the upper and lower surfaces of the detector body 2 and communicated by a fluid passage 2b; a gasket-type seal 6 mounted in the recess 17; A first fixing flange 14 and a second fixing flange 16 which are arranged opposite to the mold seal 6 and which are airtightly sandwiched and fixedly bonded with a light transmission plate 11a; an optical fiber 9 provided in the second fixing flange 16; A photodiode 10 and a holding fixture 12 that hermetically fixes the joint-fixed flanges 14 and 16 into the recess of the detector body 2 via the gasket-type seal 6 are provided.
  • the fifth aspect of the raw material fluid concentration detector according to the present invention includes a detector body 2, a light oscillation unit 5a provided on the upper surface of the detector body 2, and a light detection unit 5b provided on the lower surface of the detector body 2.
  • the detector main body 2 includes a recess 17 provided on the upper surface and the lower surface, a fluid passage 2b communicating between both the recesses 17, a fluid inlet, and an upper surface, respectively.
  • a gasket housing portion 17a that includes a fluid passage 2a that communicates between the recess portions 17 and a fluid passage 2c that communicates between the fluid outlet and the recess portion 17 on the lower surface, and the light oscillation portion 5a and the light detection portion 5b are connected to the recess portion 17.
  • the light transmitting plate 11a and the protruding portion 16b having a stepped outer peripheral surface are inserted into the insertion concave portion 14b of the first fixing flange 14, and the light transmitting plate 11a is interposed between the light transmitting plate 11a and the insertion concave portion 14b.
  • the second fixing flange 16, the light intensity detecting photodiode 10 disposed and fixed outside the light transmitting plate 11 a in the second fixing flange 16, and the both fixing flanges 14 and 16 fitted and fixed are accommodated.
  • the flange housing portion 12a is provided in the center, and the two fixing flanges 14 and 16 housed in the flange housing portion 12a by tightening the fixing bolt 8 are hermetically fixed to the detector body 2 via the gasket type seal 6.
  • the sixth aspect of the raw material fluid concentration detector according to the present invention is the same as the fifth aspect described above in that the tip surface 16d of the protruding portion 16b of the second fixing flange 16 and the bottom surface 14c of the insertion recess 14b of the first fixing flange 14 are provided.
  • a seventh aspect of the raw material fluid concentration detector according to the present invention is such that, in the fifth aspect, the bottom surface 14e of the gasket housing portion 14d of the first fixing flange 14 is used as a gasket seal surface.
  • an optical fiber insertion hole 9a is provided in the second fixing flange 16 of the light oscillating portion 5a, and the photodiode 10 is replaced with a light transmitting plate. This is a photodiode for detecting the intensity of reflected light from 11a.
  • the photodiode 10 provided on the second fixed flange 16 of the light detection unit 5b has a transmitted light intensity from the light transmission plate 11a. This is a detection photodiode.
  • the tenth aspect of the raw material fluid concentration detector according to the present invention is the same as the fifth aspect described above, in which another light detector 5b is provided at an interval on the upper surface of the detector body 2, and the lower surface of the detector body 2
  • the concave portion 17 of the light detecting portion 5b provided on the lower surface and the concave portion 17 of the other light detecting portion 5b communicate with each other through the fluid passage 2c, and the reflected light intensity from the light transmitting plate 11a of the light detecting portion 5b provided on the lower surface is determined. This is configured to be detected by the other light detection unit 5b.
  • An eleventh aspect of the raw material fluid concentration detector according to the present invention is that in the fifth aspect, the raw material fluid is an organic raw material vapor having precipitation, high reactivity, or corrosiveness.
  • the light transmission plate 11a is made of sapphire in the fifth aspect.
  • At least one recess 17 is formed on the upper surface and the lower surface of the detector body 2, and a fluid flow path 2 a that communicates from the fluid inlet of the detector body 2 to the recess 17 and a fluid passage that communicates between the recesses 17. 2b and a fluid flow path 2c communicating from the recess 17 to the fluid outlet of the detector body 2, the light oscillation unit 5a is disposed in at least one recess, and the light detection unit 5b is disposed in the remaining recess. Therefore, the raw material concentration detector can be an in-line type and has a very simple configuration.
  • the light oscillation part 5a and the light detection part 5b include a gasket-type seal 6 mounted in the gasket housing part 17a, a first fixing flange 14 having an insertion concave part 14b disposed opposite thereto, and an insertion concave part 14b.
  • a second fixed flange 16 that is hermetically joined and fixed to the first fixed flange 14 by press-fitting into the first fixed flange 14; a sapphire light transmitting plate 11a that is hermetically sandwiched between the two flanges; Since the holding fixing body 12 that is pressed and fixed to the detector main body 2 is provided, the structures of the light oscillating portion 5a and the light detecting portion 5b can be simplified, and high airtightness can be maintained.
  • the light transmission window 11 is made of sapphire, the light transmittance does not decrease even if it is a depositing, reactive or corrosive fluid, and stable and highly accurate concentration measurement is possible. Further, since the gasket type seal is used, it is possible to eliminate impurities from entering the fluid as compared with a seal structure using other synthetic resin sealing materials, silver wax materials, gold wax materials, or the like.
  • a light transmission window which is a plate material 11 made of a brittle fracture material, is sandwiched between the first fixing flange 14 and the second fixing flange 16, and both flanges are hermetically bonded and fixed, and the light transmission window is mounted. Since the two flanges that are airtightly joined and fixed are hermetically inserted into the recess 17 by the holding fixing body 12 fixed to the main body 2, the light transmission window can be easily and highly airtight without using a sealing material. And can be firmly held and fixed.
  • the raw material fluid concentration detector of the present invention has excellent effects in terms of downsizing the equipment, reducing equipment costs, maintaining airtightness, ensuring stability of concentration measurement accuracy, and maintaining high gas purity. Play.
  • concentration detector which concerns on embodiment of this invention. It is a top view of the raw material fluid density
  • the raw material fluid concentration detector 1 has a detector main body 2 and inlets fixed to both sides thereof.
  • the detector body 2, the inlet block 3, and the outlet block 4 are made of stainless steel or the like, and fluid passages 2a, 2b, 2c, 3a, and 4a are provided in communication with each other.
  • the inlet block 3 and the outlet block 4 are hermetically fixed to both sides of the detector main body 2 by bolts (not shown) via gasket type seals 6.
  • 3b and 4b are joint parts
  • 7 is a leak inspection hole
  • 8 is a fixing bolt for the light oscillation part 5a.
  • the light detection unit 5b is also fixed by a fixing bolt 8 (not shown) in the same manner as the light oscillation unit 5a.
  • the light oscillating unit 5a and the light detecting unit 5b are juxtaposed on the upper surface side of the detector body 2 with a space therebetween, and a visible region from a light source device (not shown) including a light source, a diffraction grating, a mirror, and the like.
  • a light source device including a light source, a diffraction grating, a mirror, and the like.
  • Light having a predetermined wavelength in the ultraviolet region is incident on a light transmission plate 11a made of a brittle fracture material, that is, a light transmission plate material made of sapphire, through the optical fiber 9 in the light oscillation section 5a.
  • the incident light passes through the sapphire light transmission plate 11a and enters the fluid passage 2a, but a part of the incident light is reflected by the sapphire light transmission plate 11a.
  • the intensity of the reflected light is detected by the photodiode 10.
  • the light detection unit 5b is provided on the lower surface side of the detector body 2 obliquely below the light oscillation unit 5a so as to face the light oscillation unit 5a, and light incident from the light oscillation unit 5a through the fluid passage 2b. Is incident on the photodiode 10 in the light detector 5b through the sapphire light transmission plate 11a, and the light intensity of the incident light is detected.
  • a part of the incident light is also reflected by the sapphire light transmission plate 11a in the light detection section 5b on the lower surface side of the detector main body 2, but this reflected light passes through the fluid passage 2c. 2 is incident on the light detection unit 5b on the upper surface side, and the light detection unit 5b detects the intensity of the reflected light from the light detection unit 5b on the lower surface side.
  • the light intensity detected by the light detecting unit 5b on the lower surface side changes depending on the concentration of the raw material fluid (process fluid) flowing in the fluid passage 2b, and the detected light intensity signal is sent to a computing device (not shown).
  • the raw material concentration in the raw material fluid is calculated.
  • the raw material concentration C is basically calculated by the following equation (1) based on the absorbance A obtained with a spectrophotometer.
  • I 0 is the incident light intensity from the light oscillation unit 5a
  • I is the transmitted light intensity (incident light intensity to the photodiode 10 of the light detection unit 5b)
  • is the molar absorption coefficient of the raw material
  • C is the raw material concentration
  • A is the absorbance.
  • the light transmission characteristics of the light oscillation unit 5a and the light detection unit 5b change due to secular change or the like.
  • This change in the light transmission characteristic is caused by a photo of the light oscillation unit 5a on the upper surface side that detects reflected light. It appears as a change in the detection value of the diode 10 or the photodiode 10 of the light detection unit 5b on the upper surface side. Therefore, the incident light intensity I 0 and the transmitted light intensity I in the above equation (1) are corrected using the detection values of the photodiodes 10 of the light oscillation unit 5a and the light detection unit 5b on the upper surface side.
  • the light oscillating part 5a and the light detecting part 5b are identical in structure, and as shown in FIG. 3, a holding and fixing body 12 having a flange receiving hole 12a in the center made of stainless steel, and a detector A first fixing flange 14 provided on the outer surface of the main body 2, a second fixing flange 16, a sapphire light transmission plate 11 a that is hermetically sandwiched and fixed between both flanges 14, 16, and a position above the light transmission plate 11 a
  • the photodiode 10 is fixed to the second fixing flange 16.
  • the second fixing flange 16 and the first fixing flange 14 press-fit the protruding portion 16b of the second fixing flange 16 into the insertion recess 14b of the first fixing flange 14 with a force of 8 to 12N, as will be described later. Accordingly, the sapphire light transmissive plate 11a is sandwiched and fixed in an airtight manner with the tip surface 16d of the protruding portion 16b and the bottom surface 14c of the insertion recess 14b as a sealing surface.
  • the light oscillation unit 5 a and the light detection unit 5 b are hermetically fixed to the detector main body 2 by being installed and pressed and fixed to the detector main body 2.
  • 17 is a recess formed in the outer surface of the detector body 2
  • 6a is a gasket
  • 13 is a sealing surface between the two fixing flanges 14 and 16
  • 14e is a seal between the gasket 6a and the first fixing flange 14.
  • the surface 9a is an optical fiber insertion hole.
  • the light oscillating portion 5a and the light detecting portion 5b are provided on the upper surface side of the detector body 2 at intervals, but the light detecting portion 5b on the upper surface side is omitted.
  • the concave portion 17 of the light detecting portion 5b on the lower surface side and the fluid outlet side may be directly communicated with each other through the fluid passage 2c.
  • the light detection unit 5b is provided on the upper surface side of the detector main body 2, and the light oscillation unit 5a is provided on the lower surface side. That is, the light oscillation unit 5a is disposed in another recess in addition to being disposed in the recess closest to the entrance. It is also possible to use other materials such as quartz glass in place of the sapphire light transmission plate 11a.
  • the holding and fixing body 12 is provided with a flange accommodating hole 12a in the center of a square steel plate having a thickness of 12 to 15 mm, and fixing bolts 8 on both sides thereof. Insertion hole 12b is provided. Further, a lower end portion of the holding and fixing body 12 is formed with a step portion 12c that fits and presses the upper surface of the outer peripheral portion of the first fixing flange 14, and the lower portion of the flange accommodation hole 12a has an enlarged diameter. And formed in the accommodating portion of the first fixed flange 14.
  • the second fixed flange 16 is formed in a short cylindrical body made of stainless steel, and a central portion on one side thereof is a protrusion whose diameter is reduced in a stepped manner by two step portions 16a. It is formed in the part 16b. Further, the distal end surface 16d of the distal end portion of the projecting portion 16b having a reduced diameter is a seal surface that comes into contact with the thin light transmission plate 11a having a thickness of about 0.8 to 1.5 mm.
  • the first fixed flange 14 is formed in a disc shape from stainless steel, and is formed in an insertion recess 14b whose diameter is reduced stepwise by a three-step step portion 14a in the center portion. Yes.
  • the insertion recess 14 b is formed in a penetrating manner and communicates with the recess 17 of the detector body 2.
  • an intermediate portion of the three step portions 14a constitutes a housing portion for the sapphire light transmission plate 11a, on which the sapphire light transmission plate 11a is placed and fixed.
  • An accommodating portion 14d of the gasket 6a is formed on the lower surface side of the first fixing flange 14, and the upper half portion of the gasket type seal 6 is inserted and fixed therein.
  • the gasket type seal 6 includes a gasket housing portion 14d of the first fixing flange 14, a gasket housing portion 17a on the detector body 2 side, a ring-shaped gasket 6a, and a ring-shaped retainer 6b. And a ring-shaped guide ring 6c and the like, and is configured to be double-sealed by the seal surfaces 15 and 15.
  • the light transmission plate 11a made of sapphire constituting the light transmission window made of the plate material 11 made of the brittle fracture material is a so-called high-purity alumina (Al 2 O 3 ) single crystal having a thickness of 0.8 to 1.5 mm. It is formed and has excellent wear resistance, corrosion resistance (chemical resistance), heat resistance, etc., and it is used for semiconductor manufacturing and is corroded and altered by organic raw material gas. It has been confirmed that there is no.
  • the gasket-type seal 6, the sapphire light transmission plate 11a, the photodiode 10, and the like are well-known, and detailed description thereof is omitted here.
  • the raw material fluid concentration detector 1 is connected in-line to a process gas (organic raw material TMGa vapor) supply line for a semiconductor manufacturing apparatus, and light is oscillated from the light source device 18 through the optical fiber 9. Light was incident on the part 5a.
  • the photodiodes 10 of the light oscillating unit 5a and the light detecting unit 5b are selected to have a light receiving surface of 1.0 mm ⁇ 1.1 mm, a diameter of 504 mm, and a height of 3.6 mm, and the sapphire light transmitting plate 11a has a thickness. Further, the length of the flow path 2b between the light oscillation section 5a and the light detection section 5b is set to 30 mm, and the inner diameter of the flow path is set to 4.0 mm ⁇ .
  • the detection output from the photodiode 10 of the light oscillating unit 5a is input to the arithmetic unit 19 via the reflected light detection device 18a, and the detection from the photodiode 10 of the light detection unit 5b.
  • the output is input to the arithmetic device 19 via the output light detection device 18b.
  • the concentration of the organic raw material TMGa vapor flowing in the fluid passage 2a is set at a predetermined time interval using the equation (1). Calculate and record and display the result.
  • the detection output from the reflected light detection device 18a is used for correction of the raw material concentration detection value in the arithmetic device 19, whereby the so-called fluctuation of the incident light from the light source device 18 and the light of the sapphire light transmission plate 11a.
  • the measurement error of the raw material concentration caused by the secular change of transmittance is corrected.
  • the raw material fluid concentration detector according to the present invention can perform highly accurate concentration measurement that is not inferior to a conventional expensive concentration detector.
  • the present invention can be used for continuous detection of fluid concentration not only in semiconductor manufacturing gas supply systems, but also in all fluid supply pipelines and fluid handling equipment that handle precipitation, photoreactivity, and corrosive fluids. is there.
  • Optical oscillation part 5b is a light detection part 6 is a gasket type seal 6a is a gasket 6b is a ring-shaped retainer 6c is a guide ring 7 is a leak inspection hole 8 is a fixing bolt 9 is an optical fiber 9a is an optical fiber insertion hole 10 is a photodiode 11 is a plate made of a brittle fracture material (light transmission window).
  • 11a is a light transmission plate made of sapphire 12 is a holding and fixing body 12a is a flange housing portion 12b is a bolt insertion hole 12c is a stepped portion 13 is a sealing surface 14 is a first fixing flange 14a is a stepped portion 14b is an insertion recess 14c is a bottom surface of the recess ( Seal surface) 14d is a gasket housing portion 16 is a second fixing flange 16a is a stepped portion 16b is a projecting portion 16c is a photodiode housing recess 16d is a tip surface (seal surface) of the projecting portion
  • Reference numeral 17 denotes a recess 17a denotes a gasket housing part 18 denotes a light source device 18a denotes a reflected light detection device 18b denotes an output light detection device 19 denotes an arithmetic device 20 denotes a standard densitometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

 本発明は、有機原料流体の供給系等で使用する濃度計の構造の簡素化、小型化、製品コストの引下げを図り、光透過窓の透明度を一定に保って安定した濃度測定が出来ると共に、気密性能や耐パーティクル性を高めた濃度計を提供する。 本発明は、検出器本体2と、検出器本体2の上面または下面に設けた光発振部及び光検出部とからなる光分析式原料流体濃度検出器であって、検出器本体には上面及び下面に少なくとも一つの凹部を形成し、検出器本体の流体入口から凹部に連通する流体流路と、凹部間を連通する流体通路と、凹部から検出器本体の流体出口に連通する流体流路とを備えた構成とし、最も入口に近い凹部に光発振部を配置し、残りの凹部に光検出部を配置する構成とする。

Description

原料流体濃度検出器
 本発明は、半導体製造装置の原料流体供給装置等で使用するプロセス流体濃度計の改良に関するものであり、特に、濃度計のセンサー部の小型化及びインライン型を図ると共に、高析出性や高光反応性、腐食性の原料流体に対しても、長期に亘って安定した光透過窓の高透明度及びセンサー内部の高清浄度(耐パーティクル性)を保持できるようにしたインライン型光分析方式の原料流体濃度検出器に関するものである。
 半導体製造装置の原料流体供給装置等では、半導体製品の品質向上を図る点から、安定した濃度のプロセス原料流体を処理装置へ供給することが必要とされる。
 そのため、従前のこの種原料流体供給装置、例えば図9に示す如きバブリング型原料流体供給装置においては、温度制御された原料タンク21の原料蒸気出口の近傍に光分析方式の濃度計22を設け、当該濃度計22からの濃度検出信号によって原料タンク21の温度、キャリアガスCGの流量、タンク内蒸気圧力Po等を調整することにより、反応炉23へ所定の原料濃度のプロセスガス24(例えば、タンク21内に貯留したトリメチルガリウムTMGa等の有機金属材料蒸気を含んだプロセスガス)が供給されて行く。
 尚、図9において、25は熱式マスフローコントローラ、26はタンク内圧の圧力調整装置である。
 又、上記光分析方式の濃度計22としては、各種の構成の濃度計22が実用化されているが、大多数の濃度計22は、図10(特開平9-178652)及び図11(特開2004-108981号)に示すように、被測定ガスGが流通する光学セル(ガスセル)27と、光学セル27内へ光線を照射する光源28と、光学セル27内を通過した光線の受光装置29と、受光装置29の信号から吸光度を求めて原料濃度を算出する演算装置30等から形成されている。尚、31は主管路、32は分岐管路である。
 そして、図10の濃度計22においては、光学セル27内におけるガスの所謂吸光光度を測定すると共に、吸光度の測定結果にランバート・ベールの法則を適用してガス濃度を演算するようにしている。
 又、後者の特開2004-108981号においては、図11に示すように、光学セル(吸光セル)を内蔵したインラインセンサー33を管路31へ固定し、前記光学セルを透過した光の光度測定を行うようにしている。
 尚、上記光分析方式の濃度計22や光学セル(吸光セル)27を内蔵したインラインセンサー33は、公知であるためここではその詳細な説明を省略する。
 而して、原料ガス濃度の測定に際しては、先ず、光学セル27を管路32(又は管路31)へ接続固定することが必要になる。しかし、光学セル27と管路32(又は管路31)の接続部の気密性確保は容易でなく、例えば、通常のパッキン材やシール材を用いたねじ込み接続やフランジ接続工法では、高度な気密性を備えた接続固定が容易でなく、半導体製造装置の分野で要求される気密性能(外部リーク1×10-10Pa・m/sec以下)を確保することが、現実に達成できないと云う問題がある。
 又、安定したガス濃度測定を長期に亘って連続的に行なう為には、光学セル27の光透過窓の透明度が長期に亘って安定している必要があり、透明度が経時変化をする場合には、安定したガス濃度測定が困難となる。
 ところが、従前のガス濃度計においては、光透過窓の構成材として石英ガラスが多く用いられているため、高腐食性又は高析出性を有する有機原料ガスの濃度測定においては、光透過窓が腐食され、又は原料の析出によりその透明度が早期に低下することになり、安定した原料ガス濃度の測定ができないと云う問題が残されている。
 一方、光学セル27内部の各種構造物も、高い気密性をもって光学セル27の本体に堅固に固定保持する必要がある。そのため、光学セル27の内部では、各種の合成樹脂製シール材や銀蝋付け、金蝋付け等が使用されている。
 しかし、光学セル27内の合成樹脂製シール材や銀蝋付け、金蝋付け等の部材は、各部材自体の内部に含有されているガスやパーティクルを有機原料ガス内へ放出する放出源になる危険性があり、現実に、パーティクルの放出によるガス純度の低下が生ずると云う問題がある。そのため、半導体製造用ガス供給系に於いては、銀蝋付けや金蝋付けの使用は望ましいことでない。
 上述のように、従前の光分析方式の濃度計を用いた場合には、設備の小型化や設備費の低減が困難なだけでなく、ガス気密性の保持や濃度測定精度の安定性確保及び高ガス純度の保持等の点に多くの問題があり、特に、有機原料ガスの場合には、その腐食性に起因して生ずる光透過窓の透明度の低下や、シール用部材によるガス純度の低下及び気密性確保等の問題の解決が急がれている。
特開平9-178652号公報 特開2004-108981号公報 特開平11-280967号公報
 本発明は、従前の原料流体供給装置等で使用する原料濃度計に於ける上述のような問題、即ち(I)濃度計の構造の簡素化及び小型化並びに製品コストの引下げを容易に図れないこと、及び、(II)光透過窓の透明度が変動するため、安定且つ高精度な原料流体濃度の測定が出来ないこと等の問題を解決し、高腐食性の有機原料流体であっても、長期に亘って光透過窓の透明度が変動せずに高精度で安定した濃度測定が行なえ、しかも、小型で安価に製造できるようにしたインライン型の原料流体濃度検出器を提供することを、発明の主目的とするものである。
 本発明に係る原料流体濃度検出器の第1の態様は、検出器本体2と、検出器本体2の上面または下面に設けた光発振部5a及び光検出部5bとを備える光分析式原料流体濃度検出器であって、検出器本体2には上面及び下面に少なくとも一つの凹部17を形成し、検出器本体2の流体入口から凹部17に連通する流体流路2aと、凹部17間を連通する流体通路2bと、凹部17から検出器本体2の流体出口に連通する流体流路2cとを備え、少なくとも1つの凹部に光発振部5aを配置し、残りの凹部に光検出部5bを配置したことを発明の基本構成とする。
 本発明に係る原料流体濃度検出器の第2の態様は、上記第1の態様において、光発振部が、光透過板と、光強度検出用のフォトダイオードと、光発振用の光源(光ファイバ)を備え、光検出部が、光透過板と、光強度検出用のフォトダイオードと、を備える。
 本発明に係る原料流体濃度検出器の第3の態様は、前記第2の態様において、検出器本体に形成した凹部に配置する光透過板は、ガスケット型シールを用いて気密に固定される。
 本発明に係る原料流体濃度検出器の第4の態様は、検出器本体2と、検出器本体2の上面に設けた光発振部5a及び検出器本体2の下面に設けた光検出部5bとを備える光分析式原料流体濃度検出器であって、検出器本体2の上面及び下面に設けられ流体通路2bにより連通された凹部17と、当該凹部17内に装着したガスケット型シール6と、ガスケット型シール6と対向して配置され、光透過板11aを気密に挟着して接合固定した第一固定フランジ14及び第二固定フランジ16と、第二固定フランジ16内に設けた光ファイバ9及びフォトダイオード10と、前記接合固定した両固定フランジ14、16をガスケット型シール6を介して検出器本体2の凹部内へ気密に固定する保持固定体12と、を備える。
 本発明に係る原料流体濃度検出器の第5の態様は、検出器本体2と、検出器本体2の上面に設けた光発振部5aと、検出器本体2の下面に設けた光検出部5bとを備えた光分析式原料流体濃度検出器であって、前記検出器本体2が、上面及び下面に夫々設けた凹部17と、両凹部17間を連通する流体通路2bと、流体入口と上面の凹部17間を連通する流体通路2aと、流体出口と下面の凹部17間を連通する流体通路2cを備え、前記光発振部5a及び光検出部5bが、前記凹部17に繋がるガスケット収容部17a内に装着したガスケット型シール6と、内周面が階段状に縮径した挿入凹部14bを有し、前記ガスケット型シール6と対向状に配置した第一固定フランジ14と、前記第一固定フランジ14の挿入凹部14bの最奥部に配置した光透過板11aと、前記第一固定フランジ14の挿入凹部14b内へ階段状外周面を有する突出部16bを挿入して前記光透過板11aを挟んで前記挿入凹部14bへ気密に接合固定した第二固定フランジ16と、第二固定フランジ16内の前記光透過板11aの外側に配設固定した光強度検出用のフォトダイオード10と、前記嵌合固定した両固定フランジ14、16を収容するフランジ収納部12aを中央に備え、固定用ボルト8の締め込みによりフランジ収納部12a内に収納した両固定フランジ14、16をガスケット型シール6を介して検出器本体2へ気密に固定する保持固定体12と、を備える。
 本発明に係る原料流体濃度検出器の第6の態様は、上記第5の態様において、第二固定フランジ16の突出部16bの先端面16dと、第一固定フランジ14の挿入凹部14bの底面14cを光透過板11aのシール面とした。
 本発明に係る原料流体濃度検出器の第7の態様は、上記第5の態様において、第一固定フランジ14のガスケット収容部14dの底面14eをガスケットシール面とするようにしたものである。
 本発明に係る原料流体濃度検出器の第8の態様は、上記第5の態様において、光発振部5aの第二固定フランジ16に光ファイバ挿入孔9aを設けると共に、フォトダイオード10を光透過板11aからの反射光強度の検出用フォトダイオードとしたものである。
 本発明に係る原料流体濃度検出器の第9の態様は、上記第5の態様において、光検出部5bの第二固定フランジ16に設けたフォトダイオード10を光透過板11aからの透過光強度の検出用フォトダイオードとしたものである。
 本発明に係る原料流体濃度検出器の第10の態様は、上記第5の態様において、検出器本体2の上面に間隔を置いて他の光検出部5bを設けると共に、検出器本体2の下面に設けた光検出部5bの凹部17と前記他の光検出部5bの凹部17間を流体通路2cにより連通し、前記下面に設けた光検出部5bの光透過板11aからの反射光強度を前記他の光検出部5bにて検出するように構成したものである。
 本発明に係る原料流体濃度検出器の第11の態様は、上記第5の態様において、原料流体を、析出性又は高反応性若しくは腐食性の有機原料蒸気としたものである。
 本発明に係る原料流体濃度検出器の第12の態様は、上記第5の態様において、光透過板11aをサファイア製としたものである。
 本発明は、検出器本体2には上面及び下面に少なくとも一つの凹部17を形成し、検出器本体2の流体入口から凹部17に連通する流体流路2aと、凹部17間を連通する流体通路2bと、凹部17から検出器本体2の流体出口に連通する流体流路2cとを備え、少なくとも1つの凹部に光発振部5aを配置し、残りの凹部に光検出部5bを配置しているため、原料濃度検出器をインライン型で且つ極めて簡単な構成のものとすることが出来る。
 又、光発振部5a及び光検出部5bが、前記ガスケット収容部17a内に装着したガスケット型シール6と、これと対向状に配置した挿入凹部14bを有する第一固定フランジ14と、挿入凹部14bへ突出部16bを挿入して圧入により第一固定フランジ14へ気密に接合固定した第二固定フランジ16と、両フランジ間に気密に挟持したサファイア製光透過板11aと、両フランジ14,16を検出器本体2へ押圧固定する保持固定体12を備えるため、光発振部5a及び光検出部5bの構造を単純化できると共に、高度な気密性を保持できる。
 更に、光透過窓11をサファイア製としているため、析出性や反応性、腐食性流体であっても光透過率が低下せず、安定した高精度な濃度測定が可能となる。
また、ガスケット型シールを用いているため、他の合成樹脂製シール材や銀蝋材、金蝋材等を用いるシール構造に比較して、流体内への不純物の混入を皆無にすることが出来る。
 加えて、脆性破壊材料から成る板材11である光透過窓を第一固定フランジ14と第二固定フランジ16の間に挟み込みしたうえ両フランジを気密に接合固定すると共に、当該光透過窓を装着して気密に接合固定した両フランジを、本体2へ固定した保持固定体12により凹部17内へ気密に挿着するようにしているため、シール材を用いないで光透過窓を高気密性で容易に、且つ堅固に保持固定することが出来る。
 このように、本発明の原料流体濃度検出器は、設備の小型化や設備費の削減、気密性の保持、濃度測定精度の安定性確保及び高ガス純度の保持等の点で、優れた効果を奏する。
本発明の実施形態に係る原料流体濃度検出器の縦断面概要図である。 図1の原料流体濃度検出器の平面図である。 図1の原料流体濃度検出器の光発振部の縦断面概要図である。 図3の光発振部の保持固定体の縦断面図及び平面図である。 図3の光発振部の第二固定フランジの縦断面図である。 図3の光発振部の第一固定フランジの縦断面図である。 図3の光発振部のガスケット型シールの概要を示す断面図である。 本発明に係る濃度計の試験装置の概要を示す系統図である。 従前の半導体製造装置用原料ガス供給装置の概要説明図である。 従前のガス濃度計の使用例を示すものである。 従前の他のガス濃度計の使用例を示すものである。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 図1及び図2は、本発明の第1実施形態に係る原料流体濃度検出器1を示すものであり、当該原料流体濃度検出器1は、検出器本体2と、その両側部に固定した入口ブロック3及び出口ブロック4と、検出器本体2の上面側に並列状に設けた光発振部5a及び光検出部5bと、検出器本体2の下面側に設けた光検出部5b等から構成されている。
 上記検出器本体2、入口ブロック3及び出口ブロック4はステンレス鋼等から形成されており、流体通路2a、2b、2c、3a、4aが夫々連通状に設けられている。また、検出器本体2の両側部にはガスケット型シール6を介して入口ブロック3及び出口ブロック4がボルト(図示省略)により気密に固定されている。尚、3b、4bは継手部、7は漏洩検査用孔、8は光発振部5aの固定用ボルトである。また、光検出部5bも前記光発振部5aと同様に固定用ボルト8により固定されている(図示省略)。
 上記光発振部5a及び光検出部5bは、検出器本体2の上面側に間隔を置いて並置されており、光源や回析格子やミラー等からなる光源装置(図示省略)からの可視領域又は紫外領域の所定波長の光が、光ファイバ9を経て前記光発振部5a内の脆性破壊材料から成る板材11、即ち、サファイア製光透過板材から成る光透過板11aへ入射される。
 前記入射された光の大部分は、サファイア製光透過板11aを透過して流体通路2a内へ入射されるが、前記入射された光の一部はサファイア製光透過板11aにより反射され、この反射光の強度がフォトダイオード10により検出される。
 前記光検出部5bは、光発振部5aの斜め下方の検出器本体2の下面側に前記光発振部5aと対向状に設けられており、流体通路2bを通して光発振部5aから入射された光が、サファイア製光透過板11aを通して光検出部5b内のフォトダイオード10へ入射され、当該入射光の光強度が検出される。
 また、検出器本体2の下面側の光検出部5b内のサファイア製光透過板11aに於いても、入射光の一部が反射されるが、この反射光は、流体通路2cを通して検出器本体2の上面側の光検出部5bへ入射され、当該光検出部5bで前記下面側の光検出部5bからの反射光の強度が検出される。
 前記下面側の光検出部5bにおいて検出された光強度は、流体通路2b内を流通する原料流体(プロセス用流体)の濃度等によって変化し、検出した光強度信号は演算装置(図示省略)へ入力され、ここで原料流体内の原料濃度が演算される。
 尚、原料濃度Cは、基本的には、分光光度計で求めた吸光度Aを基にして、次の(1)式により演算される。
 A=log10(I0/I)=ε×C×I・・・(1)
 但し、(1)式において、I0は光発振部5aからの入射光強度、Iは透過光強度(光検出部5bのフォトダイオード10への入射光強度)、εは原料のモル吸光係数、Cは原料濃度、Aは吸光度である。
 また、経年変化等により、光発振部5aや光検出部5bの光透過特性は変化することに成るが、この光透過特性の変化は、反射光を検出する上面側の光発振部5aのフォトダイオード10や上面側の光検出部5bのフォトダイオード10の検出値の変化として現れる。そのため、当該上面側の光発振部5a及び光検出部5bの各フォトダイオード10の検出値を用いて、上記(1)式における入射光強度I0や透過光強度Iの補正が行われる。
 前記光発振部5a及び光検出部5bは、構造的には全く同一のものであり、図3に示すように、ステンレス鋼製の中央にフランジ収容孔12aを有する保持固定体12と、検出器本体2の外表面に設けた第一固定フランジ14と、第二固定フランジ16と、両フランジ14,16間に気密に挟み込み固定したサファイア製光透過板11aと、光透過板11aの上方に位置して第二固定フランジ16に固定したフォトダイオード10等とから形成されている。
 即ち、第二固定フランジ16と第一固定フランジ14とは、後述するように第二固定フランジ16の突出部16bを第一固定フランジ14の挿入凹部14b内へ8~12Nの力で圧入することにより、突出部16bの先端面16dと挿入凹部14bの底面14cとをシール面として、サファイア製光透過板11aを挟み込み固定した状態で気密に一体化されている。
 そして、この第二固定フランジ16と第一固定フランジ14を一体化したものを保持固定体12のフランジ収容孔12a内へ挿入し、保持固定体12を固定用ボルト8によりガスケット型シール6を介設して検出器本体2へ押圧固定することにより、光発振部5a及び光検出部5bは検出器本体2へ気密に固定されている。
 尚、図3において、17は検出器本体2の外表面に形成した凹部、6aはガスケット、13は両固定フランジ14,16間のシール面、14eはガスケット6aと第一固定フランジ14間のシール面、9aは光ファイバの挿入孔である。
 また、前記図1の実施形態においては、検出器本体2の上面側に光発振部5a及び光検出部5bを間隔を置いて設けるようにしているが、上面側の光検出部5bを省略し、且つ下面側の光検出部5bの凹部17と流体出口側とを流体通路2cにより直接連通しても良いことは勿論である。
 更に、検出器本体2の上面側に光検出部5bを、下面側に光発振部5aを設ける、つまり、光発振部5aは入口に最も近い凹部に配置する以外に、別の凹部に設置することも可能であり、また、前記サファイア製光透過板11aに代えて、その他の材質、例えば石英ガラス等を使用することも可能である。
 具体的には、前記保持固定体12は、図4に示すように、厚さ12~15mmの四角型鋼板の中央部にフランジ収容孔12aが設けられており、その両側部に固定用ボルト8の挿入孔12bが設けられている。
 また、保持固定体12の下端部には、第一固定フランジ14の外周部上面に嵌合してこれを押圧するための段部12cが形成されており、フランジ収容孔12aの下方は拡径されて、第一固定フランジ14の収容部に形成されている。
 前記第二固定フランジ16は、図5に示すようにステンレス鋼製の短い円柱体に形成されており、その一側の中央部は、2段の段部16aにより階段状に縮径された突出部16bに形成されている。
 又、縮径された突出部16bの先端部の先端面16dは、厚さ0.8~1.5mm程度の薄い光透過板11aに当接するシール面になっている。
 前記第一固定フランジ14は、図6に示すようにステンレス鋼により円盤状に形成されており、中央部には3段の段部14aにより階段状に縮径された挿入凹部14bに形成されている。又、この挿入凹部14bは貫通状に形成されており、検出器本体2の凹部17に連通されている。
 更に、前記3段の段部14aの中間部は、サファイア製光透過板11aの収納部を成しており、ここにサファイア製光透過板11aが載置固定されている。
 尚、第一固定フランジ14の下面側にはガスケット6aの収容部14dが形成されており、ここにガスケット型シール6の上半部が挿入固定される。
 前記ガスケット型シール6は、図7に示すように、第一固定フランジ14のガスケット収容部14dと、検出器本体2側のガスケット収容部17aと、リング状のガスケット6aと、リング状のリテイナー6bと、リング状のガイドリング6c等から構成されており、シール面15、15によって2重にシールされる構成となっている。
 又、前記脆性破壊材料から成る板材11製の光透過窓を構成するサファイア製光透過板11aは、所謂高純度のアルミナ(Al2O3)の単結晶であり、厚さ0.8~1.5mmに形成されていて、耐摩耗性、耐腐食性(耐薬品性)、耐熱性等に優れており、半導体製造用に使用され有機原料ガスにより腐食や変質され、その光透明度が変化することは殆ど無いことが確認されている。
 尚、上記ガスケット型シール6、サファイア製光透過板11a及びフォトダイオード10等は公知なものであるため、ここではその詳細な説明は省略する。
 次に、本発明に係る原料流体濃度検出器1の濃度検出試験とその結果について説明する。
 先ず、図8に示すように、半導体製造装置用のプロセスガス(有機原料TMGa蒸気)の供給管路へ原料流体濃度検出器1をインライン状に接続し、光源装置18より光ファイバ9を通して光発振部5aへ光を入射した。尚、光発振部5a及び光検出部5bのフォトダイオード10は、受光面1.0mm×1.1mm、直径504mm、高さ3.6mmに選定されている、また、サファイア製光透過板11aは、厚さ1.0mm、直径8.0mm、であり、更に、光発振部5aと光検出部5b間の流通路2bの長さは30mm、流路の内径は4.0mmΦに設定されている。
 光発振部5aへ光を入射し、光発振部5aのフォトダイオード10からの検出出力を反射光検出装置18aを介して演算装置19へ入力すると共に、光検出部5bのフォトダイオード10からの検出出力を出力光検出装置18bを介して演算装置19へ入力し、ここで、前記(1)式を用いて、流体通路2a内を流通する有機原料TMGa蒸気の濃度を所定の時間間隔を置いて演算し、その結果を記録、表示する。
 前記反射光検出装置18aからの検出出力は、演算装置19に於ける原料濃度検出値の補正に用いられ、これにより、光源装置18からの入射光の所謂揺らぎやサファイア製光透過板11aの光透過率の経年変化等により生ずる原料濃度の測定誤差が補正される。
 試験の結果から、本発明に係る原料流体濃度検出器は、従前の高価な濃度検出計に劣ることない高精度な濃度測定が可能なことが、確認されている。
 本願発明は、半導体製造用ガス供給系のみならず、析出性や光反応性、腐食性流体を取り扱うあらゆる流体供給管路や流体使用機器類における流体濃度の連続的検出に使用することが可能である。
 1は原料流体濃度検出器
 2は検出器本体
 2aは流体通路
 2bは流体通路
 2cは流体通路
 3は入口ブロック
 3aは流体通路
 3bは継手部
 4は出口ブロック
 4aは流体通路
 4bは継手部
 5aは光発振部
 5bは光検出部
 6はガスケット型シール
 6aはガスケット
 6bはリング状リテイナー
 6cはガイドリング
 7は漏洩検査用孔
 8は固定用ボルト
 9は光ファイバ
 9aは光ファイバ挿入孔
 10はフォトダイオード
 11は脆性破壊材料から成る板材(光透過窓)
 11aはサファイア製光透過板
 12は保持固定体
 12aはフランジ収納部
 12bはボルト挿入孔
 12cは段部
 13はシール面
 14は第一固定フランジ
 14aは階段部
 14bは挿入凹部
 14cは凹部の底面(シール面)
 14dはガスケット収容部
 16は第二固定フランジ
 16aは階段部
 16bは突出部
 16cはフォトダイオード収納凹部
 16dは突出部の先端面(シール面)
 17は凹部
 17aはガスケット収容部
 18は光源装置
 18aは反射光検出装置
 18bは出力光検出装置
 19は演算装置
 20は標準濃度計

Claims (12)

  1.  検出器本体と、検出器本体の上面または下面に設けた光発振部及び光検出部とを備える光分析式原料流体濃度検出器であって、検出器本体には上面及び下面の其々に少なくとも一つの凹部が形成され、検出器本体の流体入口から凹部に連通する流体流路と、凹部間を連通する流体通路と、凹部から検出器本体の流体出口に連通する流体流路とを備え、少なくとも1つの凹部に光発振部が配置され、残りの凹部に光検出部が配置された、原料流体濃度検出器。
  2.  光発振部が、光透過板と、光強度検出用のフォトダイオードと、光発振用の光源(光ファイバ)とを備え、光検出部が、光透過板と、光強度検出用のフォトダイオードと、を備える、請求項1に記載の原料流体濃度検出器。
  3.  検出器本体に形成した凹部に配置する光透過板は、ガスケット型シールを用いて気密に固定されるようにした、請求項2に記載の原料流体濃度検出器。
  4.  検出器本体と、検出器本体の上面に設けた光発振部及び検出器本体の下面に設けた光検出部とを備える光分析式原料流体濃度検出器であって、検出器本体の上面及び下面に設けられ流体通路により連通された凹部と、当該凹部内に装着したガスケット型シールと、ガスケット型シールと対向して配置され、光透過板を気密に挟着して接合固定した第一固定フランジ及び第二固定フランジと、第二固定フランジ内に設けた光ファイバ及びフォトダイオードと、前記接合固定した両固定フランジをガスケット型シールを介して検出器本体の凹部内へ気密に固定する保持固定体と、を備える原料流体濃度検出器。
  5.  検出器本体と、検出器本体の上面に設けた光発振部と、検出器本体の下面に設けた光検出部とを備えた光分析式原料流体濃度検出器であって、前記検出器本体が、上面及び下面に夫々設けた凹部と、両凹部間を連通する流体通路と、流体入口と上面の凹部間を連通する流体通路と、流体出口と下面の凹部間を連通する流体通路を備え、また、前記光発振部及び光検出部の各々が、前記凹部に繋がるガスケット収容部内に装着したガスケット型シールと、内周面が階段状に縮径した挿入凹部を有し、前記ガスケット型シールと対向状に配置した第一固定フランジと、前記第一固定フランジの挿入凹部の最奥部に配置した光透過板と、前記第一固定フランジの挿入凹部内に階段状外周面を有する突出部を挿入して前記光透過板を挟んで前記第一固定フランジへ気密に接合固定した第二固定フランジと、第二固定フランジ内の前記光透過板の外側に配設固定した光強度検出用のフォトダイオードと、前記接合固定した両固定フランジを収容するフランジ収納部を中央に備え、固定用ボルトの締め込みによりフランジ収納部内に収納した両固定フランジをガスケット型シールを介して検出器本体へ気密に固定する保持固定体と、を備える原料流体濃度検出器。
  6.  第二固定フランジの突出部の先端面と、第一固定フランジの挿入凹部の底面を光透過板のシール面とした請求項5に記載の原料流体濃度検出器。
  7.  第一固定フランジのガスケット収容部の底面をガスケットシール面とした請求項5に記載の原料流体濃度検出器。
  8.  光発振部の第二固定フランジに光ファイバ挿入孔を設けると共に、フォトダイオードを光透過板からの反射光強度の検出用フォトダイオードとした請求項5に記載の原料流体濃度検出器。
  9.  光検出部の第二固定フランジに設けたフォトダイオードを光透過板からの透過光強度の検出用フォトダイオードとした請求項5に記載の原料流体濃度検出器。
  10.  検出器本体の上面に間隔を置いて他の光検出部を設けると共に、検出器本体の下面に設けた光検出部の凹部と前記他の光検出部の凹部間を流体通路により連通し、前記下面に設けた光検出部の光透過板からの反射光強度を前記他の光検出部にて検出するようにした請求項5に記載の原料流体濃度検出器。
  11.  原料流体を、析出性又は高反応性若しくは腐食性の有機原料蒸気とした請求項5に記載の原料流体濃度検出器。
  12.  光透過板をサファイア製光透過板とした請求項5に記載の原料流体濃度検出器。
PCT/JP2014/002376 2013-05-09 2014-04-30 原料流体濃度検出器 WO2014181527A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201509120VA SG11201509120VA (en) 2013-05-09 2014-04-30 Raw material fluid density detector
US14/888,841 US9651467B2 (en) 2013-05-09 2014-04-30 Raw material fluid density detector
CN201480008102.6A CN105247344B (zh) 2013-05-09 2014-04-30 原料流体浓度检测器
KR1020157018464A KR101722013B1 (ko) 2013-05-09 2014-04-30 원료 유체 농도 검출기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-099081 2013-05-09
JP2013099081 2013-05-09

Publications (1)

Publication Number Publication Date
WO2014181527A1 true WO2014181527A1 (ja) 2014-11-13

Family

ID=51867018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002376 WO2014181527A1 (ja) 2013-05-09 2014-04-30 原料流体濃度検出器

Country Status (7)

Country Link
US (1) US9651467B2 (ja)
JP (1) JP6326284B2 (ja)
KR (1) KR101722013B1 (ja)
CN (1) CN105247344B (ja)
SG (1) SG11201509120VA (ja)
TW (1) TWI515421B (ja)
WO (1) WO2014181527A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016017122A1 (ja) * 2014-07-29 2017-04-27 国立大学法人徳島大学 インライン型濃度計測装置
KR20230140581A (ko) 2021-07-31 2023-10-06 가부시키가이샤 후지킨 농도 측정 장치

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973969B2 (ja) * 2013-07-31 2016-08-23 国立大学法人徳島大学 インライン型濃度計及び濃度検出方法
US10913071B2 (en) 2016-03-09 2021-02-09 Pearson Incorporated Scalper apparatus and processing system
EP3444591B1 (en) * 2016-04-15 2023-06-28 PHC Holdings Corporation Gas sensor and constant-temperature apparatus
RU2638578C1 (ru) * 2016-07-11 2017-12-14 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Дифференциальный измеритель оптической плотности жидкой среды
US10322487B1 (en) 2016-07-15 2019-06-18 Pearson Incorporated Roller mill grinding apparatus with regenerative capability
JP6912766B2 (ja) * 2016-07-29 2021-08-04 国立大学法人徳島大学 濃度測定装置
TWI603069B (zh) * 2016-09-05 2017-10-21 浚洸光學科技股份有限公司 液體濃度的檢測裝置
SG11201907543XA (en) * 2017-03-15 2019-09-27 Fujikin Kk Joint and fluid control device
US10807098B1 (en) 2017-07-26 2020-10-20 Pearson Incorporated Systems and methods for step grinding
US11325133B1 (en) 2018-07-26 2022-05-10 Pearson Incorporated Systems and methods for monitoring the roll diameter and shock loads in a milling apparatus
WO2020066732A1 (ja) * 2018-09-25 2020-04-02 株式会社フジキン 濃度測定装置
US10751722B1 (en) 2018-10-24 2020-08-25 Pearson Incorporated System for processing cannabis crop materials
US10785906B2 (en) 2019-02-19 2020-09-29 Pearson Incorporated Plant processing system
US10757860B1 (en) 2019-10-31 2020-09-01 Hemp Processing Solutions, LLC Stripper apparatus crop harvesting system
US10933424B1 (en) 2019-12-11 2021-03-02 Pearson Incorporated Grinding roll improvements
CN113551704B (zh) * 2021-07-09 2022-08-09 山西辉能科技有限公司 一种在线微水密度用变送器
CN116728744B (zh) * 2023-05-25 2023-11-24 广州市日博精密机械有限公司 一种用于制造具有法兰型瓶口的瓶子生产工艺及吹瓶机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331000A (ja) * 1992-05-26 1993-12-14 Kobe Steel Ltd 高圧下物質観察装置
JPH11280967A (ja) * 1998-03-31 1999-10-15 Fujikin Inc 流体継手
JP2005331045A (ja) * 2004-05-20 2005-12-02 Japan Atom Energy Res Inst 光学計測機器用フランジ付き超高真空観測窓の気密方法
JP2007305945A (ja) * 2006-05-15 2007-11-22 Univ Waseda モールド支持構造及びモールド支持方法
JP2008218698A (ja) * 2007-03-05 2008-09-18 Hitachi Kokusai Electric Inc 熱処理装置
JP3155842U (ja) * 2009-09-18 2009-12-03 テルモ株式会社 成分測定装置
JP2010530067A (ja) * 2007-06-15 2010-09-02 ビーピー ケミカルズ リミテッド 気相プロセス流のオンライン分析方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187721A (en) * 1977-07-25 1980-02-12 S & F Associates Method and structure for flow measurement
JP3155842B2 (ja) * 1992-10-30 2001-04-16 キヤノン株式会社 像ぶれ補正装置
JP3299102B2 (ja) * 1995-01-31 2002-07-08 株式会社堀場製作所 半導体特殊ガス用赤外線ガス分析計
JPH09178652A (ja) 1995-12-26 1997-07-11 Ebara Jitsugyo Kk ガス濃度測定装置及び方法
JP3663722B2 (ja) * 1996-03-05 2005-06-22 昭和電工株式会社 化合物半導体成長層及びその製造方法
JPH11166886A (ja) * 1997-12-04 1999-06-22 Hitachi Ltd 液体クロマトグラフ装置
JPH11183366A (ja) * 1997-12-25 1999-07-09 Nippon Sanso Kk 分光分析用測定セル
JP3884562B2 (ja) * 1998-04-23 2007-02-21 株式会社堀場製作所 流体試料用フローセル
JP2003207448A (ja) * 2002-01-09 2003-07-25 Horiba Ltd ガス分析装置
JP3821227B2 (ja) 2002-09-19 2006-09-13 信越化学工業株式会社 有機金属化合物の気化供給装置
JP2007527997A (ja) * 2004-03-06 2007-10-04 マイケル トレイナー, 粒子のサイズおよび形状を決定する方法および装置
GB0516477D0 (en) * 2005-08-11 2005-09-14 Optical Reference Systems Ltd Apparatus for measuring semiconductor physical characteristics
JP2007088423A (ja) * 2005-08-23 2007-04-05 Dainippon Screen Mfg Co Ltd 高圧処理装置および高圧処理方法
CN201307087Y (zh) * 2008-12-06 2009-09-09 中国海洋大学 海洋环境下的光谱观测窗口
CN102288544B (zh) * 2010-06-17 2013-05-22 北京利达科信环境安全技术有限公司 浊度流通池
JP5714977B2 (ja) * 2010-06-28 2015-05-07 株式会社堀場製作所 光学測定装置
CN202794018U (zh) * 2012-09-13 2013-03-13 山东省科学院海洋仪器仪表研究所 一种光纤接口的z型流通池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331000A (ja) * 1992-05-26 1993-12-14 Kobe Steel Ltd 高圧下物質観察装置
JPH11280967A (ja) * 1998-03-31 1999-10-15 Fujikin Inc 流体継手
JP2005331045A (ja) * 2004-05-20 2005-12-02 Japan Atom Energy Res Inst 光学計測機器用フランジ付き超高真空観測窓の気密方法
JP2007305945A (ja) * 2006-05-15 2007-11-22 Univ Waseda モールド支持構造及びモールド支持方法
JP2008218698A (ja) * 2007-03-05 2008-09-18 Hitachi Kokusai Electric Inc 熱処理装置
JP2010530067A (ja) * 2007-06-15 2010-09-02 ビーピー ケミカルズ リミテッド 気相プロセス流のオンライン分析方法
JP3155842U (ja) * 2009-09-18 2009-12-03 テルモ株式会社 成分測定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016017122A1 (ja) * 2014-07-29 2017-04-27 国立大学法人徳島大学 インライン型濃度計測装置
KR20230140581A (ko) 2021-07-31 2023-10-06 가부시키가이샤 후지킨 농도 측정 장치

Also Published As

Publication number Publication date
KR20150093232A (ko) 2015-08-17
TWI515421B (zh) 2016-01-01
CN105247344B (zh) 2018-11-13
TW201510501A (zh) 2015-03-16
CN105247344A (zh) 2016-01-13
KR101722013B1 (ko) 2017-03-31
JP6326284B2 (ja) 2018-05-16
US20160061704A1 (en) 2016-03-03
US9651467B2 (en) 2017-05-16
JP2014238391A (ja) 2014-12-18
SG11201509120VA (en) 2015-12-30

Similar Documents

Publication Publication Date Title
JP6326284B2 (ja) 原料流体濃度検出器
JP5885699B2 (ja) 脆性破壊性光透過窓板の固定構造及びこれを用いた脆性破壊性光透過窓板の固定方法
JP2014219294A5 (ja)
JP5973969B2 (ja) インライン型濃度計及び濃度検出方法
US7755763B2 (en) Attenuated total reflection sensor
US9304079B2 (en) Gas analyser
US8077315B2 (en) Multiple path length transmittance measuring device
JP6715727B2 (ja) Cp2Mg濃度測定装置
US20140240701A1 (en) Micro Volume Inline Optical Sensor
TWI792164B (zh) 濃度測定裝置
JP2008216094A (ja) 透過光測定用フローセル
JP2007155494A (ja) ツインフローセルとそれを用いる濃度測定システム
US20220172969A1 (en) Concentration measurement device
JP6653881B2 (ja) インライン型濃度計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157018464

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14888841

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794984

Country of ref document: EP

Kind code of ref document: A1