JP6653881B2 - インライン型濃度計測装置 - Google Patents

インライン型濃度計測装置 Download PDF

Info

Publication number
JP6653881B2
JP6653881B2 JP2016537745A JP2016537745A JP6653881B2 JP 6653881 B2 JP6653881 B2 JP 6653881B2 JP 2016537745 A JP2016537745 A JP 2016537745A JP 2016537745 A JP2016537745 A JP 2016537745A JP 6653881 B2 JP6653881 B2 JP 6653881B2
Authority
JP
Japan
Prior art keywords
gas
measurement cell
optical path
flow path
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016537745A
Other languages
English (en)
Other versions
JPWO2016017122A1 (ja
Inventor
出口 祥啓
祥啓 出口
正明 永瀬
正明 永瀬
池田 信一
信一 池田
山路 道雄
道雄 山路
薬師神 忠幸
忠幸 薬師神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
University of Tokushima
Original Assignee
Fujikin Inc
University of Tokushima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikin Inc, University of Tokushima filed Critical Fujikin Inc
Publication of JPWO2016017122A1 publication Critical patent/JPWO2016017122A1/ja
Application granted granted Critical
Publication of JP6653881B2 publication Critical patent/JP6653881B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/151Gas blown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides

Landscapes

  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、半導体製造装置に有機金属(MO)ガス等の原料流体を供給するラインに組み込まれ、吸光光度法の原理に基づいてガス供給ライン中のガス濃度を計測するためのインライン型濃度計測装置に関する。
従来、半導体製造装置の原料流体供給ラインに組み込まれるインライン型濃度計が知られている(例えば特許文献1等)。
図8は、関連する濃度計測装置の一例の概略構成を示している。図8において、発光ダイオード等で構成された光源1から発せられた所定波長の光は、光ファイバー2を通じて光入射部3に伝送され、光入射部3に設けられた石英ガラスやサファイアガラス等の窓材4を介して、ガス流路5に入射され、ガス流路5内でガスによる吸収を受けた後、対向する窓材6を通過してフォトダイオード7を備える受光部8に受光される。フォトダイオード7は検出した光を電気信号に変換して出力し、その出力信号は電気配線9を通じて、CPUを内蔵する制御演算部10に送られ、制御演算部10が所定の演算処理を行ってガス濃度を表示部11に表示する。制御演算部10は、光源1に電力供給する電源12も制御する。光源1は、1又は2以上の波長の光を発することができる。
図8のガス流路5は、詳細な断面図を図9に示すように、ガス流路5が形成された金属製の測定セル本体15と、測定セル本体15にガスケット16を介して接続された光入射部3と、測定セル本体15にガスケット17を介して接続された受光部8と、を備えている。ガス流路5は、光入射部3と受光部8との間に直線状に貫通形成されて光路Lとなる光路用ガス流路部5aと、光路用ガス流路部5aに連通し測定セル本体15の底面15aに開口する左右一対の連通部5b、5cと、を備えている。光入射部3は、窓材4と光ファイバー2とが取り付けられている。受光部8は、窓材6とフォトダイオード7とが取り付けられている。測定セル本体15の底面15aには、ガス流入側の継手20とガス流出側の継手21が接続される。
特開2000−206045号公報
しかしながら、図9に示す構造のインライン型濃度計測装置は、MOガスを流すと窓材4、6上への有機金属材料が堆積し、窓材4,6を頻繁に交換しなければならなくなるという問題があった。
本発明者等は、鋭意研究の結果、図10に拡大して示すように、例えば窓材4に関して、窓材4の付近にガスが滞留しやすくなるデッドスペースDが生じているために、MOガスを流すと窓材4上への有機金属材料が堆積しやすくなっていることを見出した。窓材6(図9)についても同様である。
そこで、上記問題を解消するため、本発明に係るインライン型濃度計測装置の第1の態様は、ガス流路が形成された測定セル本体と、該測定セル本体に接続されて窓材を備える光入射部と、前記測定セル本体に接続されて窓材を備える受光部と、を備え、前記ガス流路は、前記光入射部の窓材と前記受光部の窓材との間に直線状に形成されて光路となる光路用ガス流路部と、前記測定セル本体に形成されたガス流入口から前記光路用ガス流路部に連通する第一連通部と、前記測定セル本体に形成されたガス流出口から前記光路用ガス流路部に連通する第二連通部と、を備え、前記第一連通部が前記ガス流入口から前記光入射部の窓材に向けて斜めに延びる。
本発明に係るインライン型濃度計測装置の第2の態様は、上記第1の態様において、前記第二連通部が前記ガス流出口から前記受光部の窓材に向けて斜めに延びる。
本発明に係るインライン型濃度計測装置の第3の態様は、ガス流路が形成された測定セル本体と、該測定セル本体に接続されて窓材を備える光入射部と、前記測定セル本体に接続されて窓材を備える受光部と、を備え、前記ガス流路は、前記光入射部の窓材と前記受光部の窓材との間に直線状に形成されて光路となる光路用ガス流路部と、前記測定セル本体に形成されたガス流入口から前記光路用ガス流路部に連通する第一連通部と、前記測定セル本体に形成されたガス流出口から前記光路用ガス流路部に連通する第二連通部と、を備え、前記第二連通部が前記ガス流出口から前記受光部の窓材に向けて斜めに延びる。
本発明に係るインライン型濃度計測装置の第4の態様は、上記第1又は第3の態様において、前記第一連通部の流路断面積が、前記光路用ガス流路部の流路断面積より小さい。
本発明に係るインライン型濃度計測装置の第5の態様は、上記第1又は第3の態様において、前記光入射部が、光ファイバーを保持するとともに前記窓材を前記測定セル本体との間で挟持する保持体と、を備え、前記測定セル本体及び前記保持体の一方に嵌合凹部が形成されるとともに、該嵌合凹部に嵌合する嵌合凸部が前記測定セル本体及び前記保持体の他方に形成され、前記窓材は、前記嵌合凹部の凹底と前記嵌合凸部と突端面との間で挟持されている。
本発明に係るインライン型濃度計測装置の第6の態様は、上記第5の態様において、前記嵌合凹部が段付凹部に形成されるとともに、前記嵌合凸部が前記段付凹部に嵌合する段付凸部に形成され、前記嵌合凹部の段部と前記嵌合凸部の段部とが互いに当接することによりシール面が形成されている。
本発明に係るインライン型濃度計測装置の第7の態様は、上記第1又は第3の態様において、前記受光部が、フォトダイオードを保持するとともに前記窓材を前記測定セル本体との間で挟持する保持体を備え、前記測定セル本体及び前記保持体の一方に嵌合凹部が形成されるとともに、該嵌合凹部に嵌合する嵌合凸部が前記測定セル本体及び前記保持体の他方に形成され、前記窓材は、前記嵌合凹部の凹底と前記嵌合凸部と突端面との間で挟持されている。
本発明に係るインライン型濃度計測装置の第8の態様は、上記第7の態様において、前記嵌合凹部が段付凹部に形成されるとともに、前記嵌合凸部が前記段付凹部に嵌合する段付凸部に形成され、前記嵌合凹部の段部と前記嵌合凸部の段部とが互いに当接することによりシール面が形成されている。
本発明に係るインライン型濃度計測装置の第9の態様は、上記第1又は第3の態様において、前記光入射部が、前記光路用ガス流路部に入射する入射光を平行光にするためのコリメートレンズを備える。
本発明に係るインライン型濃度計測装置の第10の態様は、上記第1又は第3の態様において、前記窓材が、前記光路用ガス流路部の光路と斜めに交差するように構成されている。
本発明に係るインライン型濃度計測装置の第11の態様は、上記第1又は第3の態様において、前記第一連通部にガスを送るガス流入路が連通して設けられ、該ガス流入路の流路断面積が前記第一連通部の流路断面積より大きい。
本発明によれば、前記測定セル本体に形成されたガス流入口から前記光路用ガス流路部に連通する第一連通部を、前記ガス流入口から前記光入射部の窓材に向けて斜めに延びる構成としたので、窓材の表面にガスの流れを生じさせることで、窓材付近のガスの滞留を無くすことにより、前記光入射部の窓材の表面への望ましくない材料の堆積を減少させることができる。
また、前記第二連通部についても、前記ガス流出口から前記受光部の窓材に向けて斜めに延びるようにすることで、前記受光部の窓材の表面への望ましくない材料の堆積を減少させることができる。
また、前記第一連通部の流路断面積を前記光路用ガス流路部の流路断面積より小さくすることにより、前記光路用ガス流路部より前記第一連通部の流速を上げて、有機金属材料等の光入射部への堆積を減少させることができる。
本発明に係るインライン型濃度計測装置の第1実施形態を一部省略して示す要部断面図である。 本発明に係るインライン型濃度計測装置の第2実施形態を、カップリングを外した状態で示す断面図である。 図2のインライン型濃度計測装置を、カップリングを結合した状態で示す断面図である。 本発明に係るインライン型濃度計測装置の第3実施形態を示す断面図である。 本発明に係るインライン型濃度計測装置の第4実施形態を示す断面図である。 本発明に係るインライン型濃度計測装置の第5実施形態を示す断面図である。 本発明に係るインライン型濃度計測装置の第6実施形態を示す断面図である。 関連する濃度測定装置の基本構成を示す概略構成図である。 関連するインライン型濃度計測装置の要部を示す断面図である。 図9の一部を拡大して示す断面図である。
本発明に係るインライン型濃度計測装置の実施形態について、以下に図面を参照して説明する。なお、背景技術を含め全図及び全実施形態を通じて同一又は類似の構成部分に同符号を付し、以下の説明において重複説明を省略する場合がある。
図1は、本発明に係るインライン型濃度計測装置の第1実施形態を示している。第1実施形態のインライン型濃度計測装置は、ガス流路5が形成された測定セル本体15と、該測定セル本体15に接続されて窓材4を備える光入射部3と、測定セル本体15に接続されて窓材6を備える受光部8と、を備える。ガス流路5は、光入射部3の窓材4と受光部8の窓材6との間に直線状に形成されて光路となる光路用ガス流路部5aと、測定セル本体15に形成されたガス流入口5B1から光路用ガス流路部5aに連通する第一連通部5Bと、測定セル本体15に形成されたガス流出口5C1から光路用ガス流路部5aに連通する第二連通部5Cと、を備える。第一連通部5Bは、ガス流入口5B1から光入射部3の窓材4に向けて斜めに延びている。
測定セル本体15は、図1に示す例では、左右のブロック体15L、15Rと、左右のブロック体15L、15Rを連結する管体15Mと、を備えている。管体15Mは、連続する筒状であるが、図1では中間部を図示省略されている。測定セル本体は、種々形状を採用でき、例えば、筒状の管体に代えて、図7に示されているように全体形状を直方体として一つのブロック体で形成することもできる。
ガス流入口5B1及びガス流出口5C1は、測定セル本体15の表面(図示例では底面)に形成された凹所15b、15cに開口している。この凹所15b、15cには、ガスケットを介して継手J1,J2が接続される(図2、図3参照)。
また、第二連通部5Cは、ガス流出口5C1から受光部8の窓材6に向けて斜めに延びている。
第一連通部5Bの流路断面積は、光路用ガス流路部5aの流路断面積より小さく形成されており、望ましくは、第一連通部5Bの流路断面積は、光路用ガス流路部5aの流路断面積の1/2以下である。
光入射部3は、光ファイバー2を保持するとともにガス流路5に面した窓材4を測定セル本体15との間で挟持する保持体25を備える。測定セル本体15に嵌合凹部15dが形成されるとともに、嵌合凹部15dに嵌合する嵌合凸部25aが保持体25に形成されている。窓材4は、嵌合凹部15dの凹底面と保持体25の嵌合凸部25aと突端面との間で挟持されている。
窓材4,6には、サファイアガラス板が好適に用いられ得る。保持体25と測定セル本体15との間にガスケット26が介在されている。第一連通部5Bは、窓材4上に開口して光路用ガス流路部5aと連通している。
嵌合凹部15dが段部15eの付いた段付凹部に形成されるとともに、嵌合凸部25aが段付の嵌合凹部15dに嵌合する段部25bの付いた段付凸部に形成され、嵌合凹部15dの段部15eと嵌合凸部25aの段部25bとが互いに当接することによりその当接面にシール面を形成している。
受光部8は、ガス流路5に面した窓材6と、フォトダイオード7と、フォトダイオード7を保持するとともに窓材6を測定セル本体15との間で挟持する保持体30と、を備え、測定セル本体15に嵌合凹部15fが形成されるとともに、嵌合凹部15fに嵌合する嵌合凸部30aが保持体30に形成されている。窓材6は、嵌合凹部15fの凹底面と保持体30の嵌合凸部30aの突端面との間で挟持されている。
嵌合凹部15fが段部15gの付いた段付凹部に形成されるとともに、嵌合凸部30aが段部15gの付いた嵌合凹部15fに嵌合する段部30bのついた段付凸部に形成され、嵌合凹部15fの段部15gと嵌合凸部30aの段部30bとが互いに当接することによりその当接面がシール面を形成している。
図2及び図3は、本発明に係るインライン型濃度計測装置の第2実施形態を示す。第2実施形態のインライン型濃度計測装置は、光路用ガス流路部5aが形成されている管体15Mが、雄雌のカップリング15M1、15M2によって中間部で着脱可能に接続される。符号15M3は、シーリング用のガスケットである。ガス流入口5B1、ガス流出口5C1には、其々、図示しない配管に接続するための継手J1,J2がシーリング用ガスケットS1,S2を介して接続されている。継手J1にガス流入路P1が形成されている。ガス流入路P1は、第一連通路5Bと連通する。ガス流入路P1の流路断面積は、第一連通路5Bの流路断面積より大きい。そのため、ガス流入路P1を通過したガスは、第一連通路5Bを通過する際に流速が増す。継手J2にはガス流出路P2が形成されている。
図4は、本発明に係るインライン型濃度計測装置の第3実施形態を示す。上記第1実施形態及び第2実施形態では窓材4、6が光路と直交する例を示したが、第3実施形態のインライン型濃度計測装置は、窓材4、6が光路Lと斜めに交差するように構成されている。斯かる構成を得るため、測定セル本体15は、保持体15L、15Rが取り付けられる面が斜めにカットされている。光路Lに直交する面に対する窓材4,6の傾斜角度θは、例えば10°〜45°とすることができる。窓材4、6を光路Lに対して傾斜させることにより、窓材4、6での光の反射による測定誤差の影響の軽減を図ることができる。
図5は、本発明に係るインライン型濃度計測装置の第4実施形態を示す。第4実施形態のインライン型濃度計測装置は、光路用ガス流路部5aに入射する光を平行光にするコリメートレンズ40を光入射部3に備えている。コリメートレンズ40は、窓材4の裏側、すなわち窓材4を挟んで光路用ガス流路部5aと反対の側に配設され得る。光路用ガス流路部5aへの入射光をコリメートレンズ40により平行光とすることでセル内への光量を増加させ、測定精度の向上を図ることができる。図示例において、コリメートレンズ40は、筒体41内に収容されて固定されている。筒体41が保持体25の孔25hに挿入され、筒体41に溶接されたフランジ42が保持体25にボルト43で固定されている。筒体41の後部外周面に形成された螺子部41aに、光ファイバー2を保持しているコネクタ2aが接続されている。
図6及び図7は、本発明に係るインライン型濃度計測装置の第5実施形態及び第6実施形態を示す。第5実施形態及び第6実施形態のインライン型濃度計測装置は、いずれも、光路用ガス流路部5aが高さ方向に向けられた縦型タイプを示している。図7に示された第6実施形態は、光路用ガス流路部5aの長さが、図6に示された第5実施形態の光路用ガス流路部5aの長さより長いタイプである。第5実施形態及び第6実施形態の測定セル本体15は、一つのブロック体で形成されている。測定セル本体15の中心部を上下方向に光路用ガス流路部5aが貫通している。測定セル本体15の一方の側面にガス流入口5B1が形成され、他方の側面にガス流出口5C1が形成されている。第一連通部5Bによってガス流入部5B1と光路用ガス流路部5aとが連通している。第一連通部5Bは、光入射部3の窓材4に向けて斜めに延びている。第二連通部5Cによって光路用ガス流路部5aとガス流出口5C1とが連通している。第二連通部5Cは、ガス流出口5C1から受光部8の窓材6に向けて斜めに延びている。第一連通部5B及び第二連通部5Cの流路断面積は、光路用ガス流路部5aの流路断面積より小さく形成されている。測定セル本体15の左右の側面に中間ブロックM1,M2が連結され、中間ブロックM1,M2に継手J1,J2が取り付けられている。中間ブロックM1及び継手J1を連通するガス流入路P1が、第一連通部5Bに連通する。中間ブロックM2及び継手J2を連通するガス流出路P2が、第2連通部5Cに連通する。ガス流入路P1の流路断面積は、第一連通路5Bの流路断面積より大きく形成されている。そのため、ガス流入路P1を通過したガスは、第一連通路5Bを通過する際に流速が増す。このような縦型タイプのインライン型濃度計測装置は、第1〜第4実施形態のような横長タイプのものに比べ、接地面積を小さくすることができる。
上記構成を備えるインライン型濃度計測装置は、測定セル本体15に形成されたガス流入口5B1から光路用ガス流路部5aに連通する第一連通部5Bを、ガス流入口5B1から光入射部3の窓材4に向けて斜めに延びるようにしたことにより、第一連通部5Bから流入するガスの流れが窓材4の表面に向けられるので、窓材4の表面付近でのガスの滞留を防ぎ、窓材4の表面への有機金属材料等の付着を減少させることができる。
また、第一連通部5Bの流路断面積を光路用ガス流路部5aの流路断面積より小さくすることにより、光路用ガス流路部5aより第一連通部5Bの流速を上げて、有機金属材料等の光入射部3の窓材4への堆積を減少させることができる。
また、第一連通部5Bの流路断面積を、第一連通部5Bにガスを送るガス流入路P1の流路断面積より小さくすることにより、第一連通部5Bの流速を上げて、有機金属材料等の光入射部3の窓材4への堆積を減少させることができる。
本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。上記実施形態では、測定セル本体に嵌合凹部を形成して保持体に嵌合凸部を形成したが、その逆に、測定セル本体に嵌合凸部を形成して保持体に嵌合凹部を形成することもできる。
2 光ファイバー
3 光入射部
4 窓材
5 ガス流路
5a 光路用ガス流路部
5B 第一連通路
5B1 ガス流入口
5C 第二連通路
5C1 ガス流出口
6 窓材
7 フォトダイオード
8 受光部
15 測定セル本体
15d 嵌合凹部
15e 段部
15f 嵌合凹部
15g 段部
25 保持体
25a 嵌合凸部
25b 段部
30 保持体
30a 嵌合凸部
30b 段部
P1 ガス流入路

Claims (11)

  1. ガス流路が形成された測定セル本体と、該測定セル本体に接続されて窓材を備える光入射部と、前記測定セル本体に接続されて窓材を備える受光部と、を備え、
    前記ガス流路は、第1の端部と第2の端部とを有し前記第1の端部に配置された前記光入射部の窓材と前記第2の端部に配置された前記受光部の窓材との間に直線状に形成されて光路となる光路用ガス流路部と、前記測定セル本体に形成されたガス流入口から前記光路用ガス流路部に連通する第一連通部と、前記測定セル本体に形成されたガス流出口から前記光路用ガス流路部に連通する第二連通部と、を備え、
    前記測定セル本体は、前記光入射部の窓材を嵌合凹部の底面において支持するブロック体であって前記嵌合凹部に対応する嵌合凸部を有する前記光入射部の保持体との間で前記光入射部の窓材を挟持するブロック体を含み、前記第一連通部は、前記ブロック体において前記ガス流入口から前記光路用ガス流路部の前記第1の端部に延びる直線状の穴として形成されており、
    前記第一連通部は、前記第1の端部よりも前記ガス流入口が前記光路用ガス流路部の中心直交面に対してより近く位置するようにして、前記ガス流入口から前記第1の端部に配置された前記光入射部の窓材の露出面周縁部に向けて前記ブロック体の内部を斜めに直線状に延び、
    前記第1の端部において鋭角に折れ曲がる流路に沿って流れるガスによって前記光入射部の窓材の露出面全体にガスの流れを発生させ、前記ガスが滞留するガス滞留部が形成されないように構成されていることを特徴とするインライン型濃度計測装置。
  2. 前記第二連通部が前記ガス流出口から前記受光部の窓材に向けて斜めに延びていることを特徴とする請求項1に記載のインライン型濃度計測装置。
  3. ガス流路が形成された測定セル本体と、該測定セル本体に接続されて窓材を備える光入射部と、前記測定セル本体に接続されて窓材を備える受光部と、を備え、
    前記ガス流路は、第1の端部と第2の端部とを有し前記第1の端部に配置された前記光入射部の窓材と前記第2の端部に配置された前記受光部の窓材との間に直線状に形成されて光路となる光路用ガス流路部と、前記測定セル本体に形成されたガス流入口から前記光路用ガス流路部に連通する第一連通部と、前記測定セル本体に形成されたガス流出口から前記光路用ガス流路部に連通する第二連通部と、を備え、
    前記測定セル本体は、前記受光部の窓材を嵌合凹部の底面において支持するブロック体であって前記嵌合凹部に対応する嵌合凸部を有する前記受光部の保持体との間で前記受光部の窓材を挟持するブロック体を含み、前記第二連通部は、前記ブロック体において前記ガス流出口から前記光路用ガス流路部の前記第2の端部に延びる直線状の穴として形成されており、
    前記第二連通部は、前記第2の端部よりも前記ガス流出口が前記光路用ガス流路部の中心直交面に対してより近く位置するようにして、前記ガス流出口から前記第2の端部に配置された前記受光部の窓材の露出面周縁部に向けて前記ブロック体の内部を斜めに直線状に延び、
    前記第2の端部において鋭角に折れ曲がる流路に沿って流れるガスによって前記受光部の窓材の露出面全体にガスの流れを発生させ、前記ガスが滞留するガス滞留部が形成されないように構成されていることを特徴とするインライン型濃度計測装置。
  4. 前記第一連通部の流路断面積が、前記光路用ガス流路部の流路断面積より小さいことを特徴とする請求項1又は3に記載のインライン型濃度計測装置。
  5. 前記光入射部の保持体が、光ファイバーを保持するとともに前記窓材を前記測定セル本体との間で挟持し、
    記窓材は、前記嵌合凹部の凹底と前記嵌合凸部突端面との間で挟持されていることを特徴とする請求項に記載のインライン型濃度計測装置。
  6. 前記嵌合凹部が段付凹部に形成されるとともに、前記嵌合凸部が前記段付凹部に嵌合する段付凸部に形成され、前記嵌合凹部の段部と前記嵌合凸部の段部とが互いに当接することによりシール面を形成していることを特徴とする請求項5に記載のインライン型濃度計測装置。
  7. 前記受光部の保持体が、フォトダイオードを保持するとともに前記窓材を前記測定セル本体との間で挟持し、
    記窓材は、前記嵌合凹部の凹底と前記嵌合凸部突端面との間で挟持されていることを特徴とする請求項に記載のインライン型濃度計測装置。
  8. 前記嵌合凹部が段付凹部に形成されるとともに、前記嵌合凸部が前記段付凹部に嵌合する段付凸部に形成され、前記嵌合凹部の段部と前記嵌合凸部の段部とが互いに当接することによりシール面を形成していることを特徴とする請求項7に記載のインライン型濃度計測装置。
  9. 前記光入射部が、光路用ガス流路部に入射する入射光を平行光にするためのコリメートレンズを備えることを特徴とする請求項1又は3に記載のインライン型濃度計測装置。
  10. 前記光入射部の窓材および前記受光部の窓材のうちの少なくとも一方が、前記光路用ガス流路部の光路と斜めに交差するように構成されていることを特徴とする請求項1又は3に記載のインライン型濃度計測装置。
  11. 前記第一連通部にガスを送るガス流入路が連通して設けられ、該ガス流入路の流路断面積が前記第一連通部の流路断面積より大きいことを特徴とする請求項1又は3に記載のインライン型濃度計測装置。

JP2016537745A 2014-07-29 2015-07-23 インライン型濃度計測装置 Active JP6653881B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014154307 2014-07-29
JP2014154307 2014-07-29
PCT/JP2015/003692 WO2016017122A1 (ja) 2014-07-29 2015-07-23 インライン型濃度計測装置

Publications (2)

Publication Number Publication Date
JPWO2016017122A1 JPWO2016017122A1 (ja) 2017-04-27
JP6653881B2 true JP6653881B2 (ja) 2020-02-26

Family

ID=55217042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016537745A Active JP6653881B2 (ja) 2014-07-29 2015-07-23 インライン型濃度計測装置

Country Status (6)

Country Link
US (1) US10222323B2 (ja)
JP (1) JP6653881B2 (ja)
KR (2) KR102128293B1 (ja)
CN (1) CN106662524A (ja)
TW (1) TWI681181B (ja)
WO (1) WO2016017122A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102454649B1 (ko) 2018-09-25 2022-10-17 가부시키가이샤 후지킨 농도 측정 장치
JPWO2020196442A1 (ja) * 2019-03-28 2020-10-01
JP7393753B2 (ja) 2021-07-31 2023-12-07 株式会社フジキン 濃度測定装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3727050A (en) * 1971-09-20 1973-04-10 Perkin Elmer Corp Gas analyzer
DE2904909C3 (de) * 1979-02-09 1981-11-12 Fa. Carl Zeiss, 7920 Heidenheim Küvette für optische Messungen
US4455089A (en) * 1982-08-25 1984-06-19 Iowa State University Research Foundation, Inc. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry
JPS60231140A (ja) * 1984-04-28 1985-11-16 Fuji Electric Co Ltd 光学的ガス濃度計
US5942755A (en) * 1997-02-19 1999-08-24 Dragerwerk Ag Infrared optical gas-measuring system
JPH11166886A (ja) * 1997-12-04 1999-06-22 Hitachi Ltd 液体クロマトグラフ装置
JPH11183366A (ja) 1997-12-25 1999-07-09 Nippon Sanso Kk 分光分析用測定セル
JP2000206045A (ja) 1999-01-18 2000-07-28 Horiba Ltd インラインモニタ
DE10106046A1 (de) * 2001-02-09 2002-08-29 Draeger Medical Ag Kombinierter Atemstromsensor
JP2004183771A (ja) * 2002-12-03 2004-07-02 Fujikin Inc 流体制御装置
JP4006733B2 (ja) * 2002-12-16 2007-11-14 学校法人東海大学 燃焼排気中のすす凝集体の質量濃度測定方法及び装置
US20050063869A1 (en) * 2003-09-24 2005-03-24 Stephane Follonier Device, system and method of detecting targets in a fluid sample
US7352464B2 (en) * 2004-01-05 2008-04-01 Southwest Sciences Incorporated Oxygen sensor for aircraft fuel inerting systems
US20080106737A1 (en) * 2005-08-16 2008-05-08 Amnon Weichselbaum Detecting and counting bacteria suspended in biological fluids
US7547904B2 (en) * 2005-12-22 2009-06-16 Palo Alto Research Center Incorporated Sensing photon energies emanating from channels or moving objects
DE102006004916B3 (de) * 2006-02-01 2007-06-14 GEA Process Engineering (NPS) Ltd., Eastleigh Vorrichtung zur optischen Messung von Stoffkonzentrationen
US7649189B2 (en) * 2006-12-04 2010-01-19 Honeywell International Inc. CRDS mirror for normal incidence fiber optic coupling
US7612885B2 (en) * 2006-12-22 2009-11-03 Honeywell International Inc Spectroscopy method and apparatus for detecting low concentration gases
US8325329B2 (en) * 2007-10-26 2012-12-04 Arkray, Inc. Sample detector and measurement device equipped with the same
GB2454517B (en) * 2007-11-09 2010-10-06 Scottish & Newcastle Plc Ice fraction sensor
JP5357506B2 (ja) * 2008-10-29 2013-12-04 三菱重工業株式会社 濃度測定方法および装置
CN101694457B (zh) * 2009-10-19 2011-01-05 浙江大学 一种气体浓度测量仪
JP5606056B2 (ja) 2009-12-17 2014-10-15 三菱重工業株式会社 ガス計測セル及びこれを用いたガス濃度計測装置
US8437000B2 (en) * 2010-06-29 2013-05-07 Honeywell International Inc. Multiple wavelength cavity ring down gas sensor
JP2012137429A (ja) * 2010-12-27 2012-07-19 Mitsubishi Heavy Ind Ltd レーザ計測装置
EP2604999A1 (de) * 2011-12-15 2013-06-19 Mettler-Toledo AG Gasmessgerät
JP6116117B2 (ja) * 2011-12-22 2017-04-19 株式会社堀場製作所 水分濃度測定装置の校正方法及び校正装置
CN202994224U (zh) * 2012-06-01 2013-06-12 矢崎能源系统公司 流量测量装置
JP2014044145A (ja) * 2012-08-28 2014-03-13 Shimadzu Corp フローセル
JP2014055784A (ja) * 2012-09-11 2014-03-27 Shimadzu Corp フローセル
JP2014102152A (ja) * 2012-11-20 2014-06-05 Fuji Electric Co Ltd レーザ式ガス分析計
US20140268157A1 (en) * 2013-03-13 2014-09-18 Campbell Scientific, Inc. Open-path gas analyzer with environmental protection
US9651467B2 (en) * 2013-05-09 2017-05-16 Tokushima University Raw material fluid density detector
US9612198B2 (en) * 2014-06-25 2017-04-04 Oridion Medical 1987 Ltd. Nano-opto-mechanical sensor
US9244003B1 (en) * 2015-02-12 2016-01-26 Yokogawa Electric Corporation Alignment flange mounted optical window for a laser gas analyzer

Also Published As

Publication number Publication date
KR20160120336A (ko) 2016-10-17
JPWO2016017122A1 (ja) 2017-04-27
WO2016017122A1 (ja) 2016-02-04
TWI681181B (zh) 2020-01-01
US20170199117A1 (en) 2017-07-13
TW201610414A (zh) 2016-03-16
KR20180095113A (ko) 2018-08-24
CN106662524A (zh) 2017-05-10
KR102128293B1 (ko) 2020-06-30
US10222323B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
JP6326284B2 (ja) 原料流体濃度検出器
JP6653881B2 (ja) インライン型濃度計測装置
US9983051B2 (en) Fastening structure for brittle-fracturable panel, and method for fastening light transmission window panel comprising brittle-fracturable panel employing same
JP2014219294A5 (ja)
JP6715727B2 (ja) Cp2Mg濃度測定装置
US20180140981A1 (en) Exchange unit and flow circuit system using same
TWI792164B (zh) 濃度測定裝置
US20180080862A1 (en) Measuring device
JP7559061B2 (ja) 光学測定装置及び水質分析システム
US20220172969A1 (en) Concentration measurement device
JP6037383B2 (ja) 面積式流量計の取付機構及び面積式流量計の取付方法
JP7065851B2 (ja) 光学フローセル
JP6197093B1 (ja) オゾン濃度測定装置
JP6197094B1 (ja) オゾン濃度測定装置
JP2016218019A (ja) 超音波トランスデューサの設置方法及び超音波トランスデューサの設置キット
JP2007033189A (ja) ガスメータ取付構造
JP2019158746A (ja) 超音波流量計

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200116

R150 Certificate of patent or registration of utility model

Ref document number: 6653881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250