WO2014178482A2 - 담지 촉매를 이용한 디메틸카보네이트의 제조방법 - Google Patents

담지 촉매를 이용한 디메틸카보네이트의 제조방법 Download PDF

Info

Publication number
WO2014178482A2
WO2014178482A2 PCT/KR2013/005744 KR2013005744W WO2014178482A2 WO 2014178482 A2 WO2014178482 A2 WO 2014178482A2 KR 2013005744 W KR2013005744 W KR 2013005744W WO 2014178482 A2 WO2014178482 A2 WO 2014178482A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
precursor
oxide
dimethyl carbonate
metal oxide
Prior art date
Application number
PCT/KR2013/005744
Other languages
English (en)
French (fr)
Other versions
WO2014178482A3 (ko
Inventor
이창훈
권오성
김동백
이연주
장복남
강기혁
송인규
Original Assignee
제일모직 주식회사
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사, 서울대학교산학협력단 filed Critical 제일모직 주식회사
Publication of WO2014178482A2 publication Critical patent/WO2014178482A2/ko
Publication of WO2014178482A3 publication Critical patent/WO2014178482A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/04Preparation of esters of carbonic or haloformic acids from carbon dioxide or inorganic carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the present invention relates to a method for producing dimethyl carbonate using a supported catalyst. More specifically, the present invention relates to a method for preparing dimethyl carbonate using a supported catalyst which can improve acid-base characteristics to produce dimethyl carbonate in high yield from methanol and carbon dioxide.
  • Dimethylcarbonate is an environmentally friendly alternative chemical, and its applications and demands are rapidly increasing.
  • dimethyl carbonate is a fuel additive for improving the octane number, and has been spotlighted as a substitute for methyl tert-butyl ether (MTBE), which has environmental pollution problems. It is also used as an intermediate of a product.
  • MTBE methyl tert-butyl ether
  • dimethyl carbonate has high solubility and can therefore be used as an environmentally friendly solvent to replace halogenated solvents such as chlorobenzene.
  • methyl nitrite method methanol is oxidized using nitrogen dioxide in the first step to generate methyl nitrite, and then methyl nitrite and carbon monoxide are reacted with carbon monoxide in the first step under palladium catalyst conditions to produce dimethyl carbonate. to be.
  • Nitrogen monoxide produced as a byproduct in the methyl nitrite method has the advantage of being oxidized back to nitrogen dioxide as a reactant and reusable in the first step, but this process also uses toxic carbon monoxide as a reactant and nitrogen monoxide, which is one of the products. There is a problem of corrosion of the reactor.
  • Another method for preparing dimethyl carbonate is a transesterification process consisting of a multi-step process for producing dimethyl carbonate by reacting ethylene oxide with carbon dioxide under a catalyst
  • a transesterification process consisting of a multi-step process for producing dimethyl carbonate by reacting ethylene oxide with carbon dioxide under a catalyst
  • US Patent No. 5,489,703 US Patent No. 5,292,917; J. F. Knifton, R. G. Duranleau, J. Mol. Catal., Vol. 67, p. 389 (1991); T. Tatsumi, Y. Watanabe, K. A. Koyano, Chem. Commn., 19, 2281 (1996).
  • the transesterification method uses a raw material with less corrosion problems and is cheaper and less toxic.
  • the ethylene glycol produced as a reaction by-product can be recycled to the reactant ethylene oxide through an appropriate chemical reaction. have.
  • the process shows low catalytic activity despite the reaction at high temperature and high pressure and short catalyst life. Since the organic solvent used in the reaction forms triple azeotropy between methanol and dimethyl carbonate, The disadvantage is that a large amount of energy is required to separate and purify.
  • Each of the processes uses toxic reactants such as phosgene, nitrogen monoxide and carbon monoxide, or problems such as corrosion of the reactor, high process cost due to the multi-stage process, and difficulty in separation and purification due to by-product generation.
  • homogeneous and heterogeneous catalysts may be used.
  • the homogeneous catalyst has good activity, it is difficult to use industrially since it is difficult to separate the catalyst after the production of dimethyl carbonate. Therefore, the research of heterogeneous catalysts is actively progressing.
  • Another object of the present invention is to provide a manufacturing method for synthesizing dimethyl carbonate in high yield by applying an absorbent.
  • One aspect of the present invention relates to a method for preparing dimethyl carbonate.
  • the production method includes the step of reacting methanol and carbon dioxide in the presence of a supported catalyst comprising a catalyst supported on a metal oxide carrier comprising at least one of cerium oxide (CeO 2 ) and zinc oxide (ZnO), the catalyst Includes at least one of metal oxides of nickel oxide (NiO) and zirconium oxide (ZrO 2 ).
  • the metal oxide carrier may comprise about 40 to about 99 mmol% of cerium oxide and about 1 to about 60 mmol% of zinc oxide.
  • the supported catalyst, the content of the catalyst may be about 1 to about 15% by weight, the content of the metal oxide carrier may be about 85 to about 99% by weight.
  • the supported catalyst may include: (a) adding an aqueous ammonia solution to a first precursor solution in which at least one cerium oxide precursor and a zinc oxide precursor are dissolved to form a precipitate; (b) filtering, drying, and calcining the precipitate to prepare a metal oxide carrier; (c) impregnating the metal oxide carrier with a second precursor solution in which at least one nickel oxide precursor and a zirconium oxide precursor are dissolved; And (d) drying and firing the resultant to prepare a supported catalyst.
  • the cerium oxide precursor, the zinc oxide precursor, the nickel oxide precursor, and the zirconium oxide precursor are each independently a nitrate-based, chloride-based, bromide-based, acetate-based, and acetylacetonate-based compound of each metal. It may include more.
  • the solvents of the first and second precursor solutions may each independently include one or more water and alcohols.
  • the pH range of the mixed solution of the first precursor solution and the aqueous ammonia solution from which the precipitate is prepared may be about 7 to about 11.
  • the firing of the steps (b) and (d) may be independently performed at about 400 to about 1,000 ° C.
  • reaction may be carried out at a temperature of about 130 to about 200 °C and pressure conditions of about 10 to about 200 bar.
  • reaction can be carried out in the presence of an absorbent.
  • the absorbent may include at least one of molecular sieve, silica gel, activated carbon, and alumina gel.
  • the molecular sieve may have a pore size of about 3 to about 10 mm 3.
  • the molecular sieve may have a particle size of about 4 to about 12 mesh (U.S. mesh).
  • the present invention provides a method for producing dimethyl carbonate which directly synthesizes dimethyl carbonate from methanol and carbon dioxide, which is an environmentally friendly raw material, by using a supported catalyst capable of producing a high yield of dimethyl carbonate from methanol and carbon dioxide due to improved acid-base characteristics. It has the effect of the invention.
  • Method for preparing dimethyl carbonate according to the present invention comprises the steps of reacting methanol and carbon dioxide in the presence of a supported catalyst comprising a catalyst supported on a metal oxide carrier comprising at least one of cerium oxide (CeO 2 ) and zinc oxide (ZnO) It includes, the catalyst is characterized in that it comprises one or more of metal oxides of nickel oxide (NiO) and zirconium oxide (ZrO 2 ).
  • the supported catalyst used in the present invention can prepare dimethyl carbonate from methanol and carbon dioxide, and includes a metal oxide carrier comprising at least one of cerium oxide (CeO 2 ) and zinc oxide (ZnO), and the metal oxide carrier. And one or more of metal oxides of nickel oxide (NiO) and zirconium oxide (ZrO 2 ).
  • the metal oxide carrier is a cerium oxide carrier, zinc oxide carrier, or a composite metal oxide carrier of cerium oxide and zinc oxide prepared by precipitation or co-precipitation.
  • a composite metal oxide carrier comprising about 40 to about 99 mmol% cerium oxide and about 1 to about 60 mol% zinc oxide, preferably about 50 to about 80 mmol% cerium oxide and about 20 to about zinc oxide It may be a composite metal oxide carrier comprising 50 mol%, more preferably about 65 to about 75 mol% cerium oxide and about 25 to about 35 mol% zinc oxide.
  • Dimethyl carbonate can be produced in a high yield from methanol and carbon dioxide in the above range.
  • the metal oxide carrier may be used as a catalyst by itself, but the catalyst of the present invention may be used as a carrier to improve acid-base characteristics of the metal oxide carrier and to prepare dimethyl carbonate in high yield from methanol and carbon dioxide. It can be.
  • the metal oxide carrier may be in the form of fine and medium pore particles, and may have a surface area of about 5 to about 200 m 2 / g, a pore size of about 0.1 to about 20 nm, and an average particle diameter of about 5 to about 100 nm. This is not restrictive.
  • the catalyst is a metal oxide supported on the metal oxide carrier through an impregnation method, and includes at least one of nickel oxide (NiO) and zirconium oxide (ZrO 2 ), preferably nickel oxide.
  • the supported catalyst of the present invention can improve the acid and base properties of the metal oxide support by supporting the metal oxide (catalyst) on the metal oxide support, and can produce dimethyl carbonate in high yield.
  • the content of the metal oxide is about 1 to about 15% by weight, preferably about 2 to about 10% by weight, more preferably about 4 to about 6% by weight
  • the content of the metal oxide carrier is about 85 to about 99% by weight, preferably about 90 to about 98% by weight, more preferably about 94 to about 96% by weight.
  • the acid-base property is improved, so that dimethyl carbonate can be produced in high yield from methanol and carbon dioxide.
  • the supported catalyst may have a form in which the catalyst is supported on the outer and inner surfaces of the metal oxide carrier, the surface area is about 5 to about 200 m 2 / g, the pore size is about 0.1 to about 20 nm, the average particle diameter is about 5 to about 100 nm, but is not limited thereto.
  • the supported catalyst of the present invention may be prepared by preparing the metal oxide carrier by precipitation or coprecipitation and by supporting the catalyst (metal oxide) by impregnation on the metal oxide carrier. It may be prepared according to the manufacturing method.
  • the preparation method of the supported catalyst comprises the steps of (a) adding ammonia aqueous solution to a first precursor solution in which at least one cerium oxide precursor and zinc oxide precursor are dissolved to form a precipitate, (b) filtering, drying and calcining the precipitate. Preparing a metal oxide carrier, (c) impregnating the metal oxide carrier with a second precursor solution in which one or more nickel oxide precursors and zirconium oxide precursors are dissolved, and (d) drying and firing the resultant. Preparing the supported catalyst.
  • one or more of the cerium oxide precursor and the zinc oxide precursor may be dissolved in a solvent (first solvent).
  • the cerium oxide precursor and the zinc oxide precursor are generally used in the art, but are not particularly limited, but each independently a nitrate-based, chloride-based, bromide-based, acetate-based, and acetylacetonate-based compound of each metal.
  • Nitrate-based compounds such as cerium nitrate hydrate (Ce (NO 3 ) 3 .6H 2 O) and zinc nitrate hydrate (Zn (NO 3 ) 2 .6H 2 O). have.
  • the amount of the cerium oxide precursor and the zinc oxide precursor used may be the same as the content of cerium oxide and zinc oxide of the metal oxide carrier to be prepared, for example, cerium oxide precursor alone or zinc oxide precursor alone, or cerium oxide precursor.
  • Oxide precursors and zinc oxide precursors may be used in combination, for example, in ratios of about 40 to about 99 mol% and about 1 to about 60 mol%, respectively.
  • the first solvent one or more alcohols such as water, methanol and ethanol may be used, and preferably ethanol may be used. If the solvent is an amount capable of dissolving the cerium oxide precursor and / or zinc oxide precursor, although not limited, for example, about 4 ml or more may be used for 1 g of the cerium oxide precursor and / or the zinc oxide precursor.
  • aqueous ammonia solution for example, an aqueous ammonia solution having an ammonia content of about 25 to about 30 wt%, preferably about 28 to about 30 wt% may be used.
  • the aqueous ammonia solution is the first precursor solution (mixed solution of the first precursor solution and the aqueous ammonia solution) pH of about 7 to about 11, for example, pH of about 8 to about 10, preferably May be injected until the pH is about 10.
  • the rate of injecting the aqueous ammonia solution may be about 5 to about 80 ml / h, preferably about 20 to about 70 ml / h, more preferably about 30 to about 60 ml / h.
  • a precipitate of solid (solid) which is a hydroxide form of the cerium oxide precursor and / or the zinc oxide precursor, may be produced.
  • filtration of the precipitate may be performed by a conventional method, for example, the precipitate may be filtered under reduced pressure, and may include a process of washing with alcohol, such as water and ethanol.
  • the drying of the precipitate may be performed for about 12 hours or more at a temperature of about 70 to about 150 °C, for example, about 80 to about 100 °C.
  • a temperature of about 70 to about 150 °C for example, about 80 to about 100 °C.
  • the calcination of the step (b) is for oxidizing the precipitate to the metal oxide carrier, about 400 to about 1,000 °C, preferably, about 500 to about 800 °C, more preferably about 500 to about 600 °C At a temperature of, for example, about 3 to about 12 hours, preferably about 3 to about 8 hours.
  • the nitrate group, chloride group, bromide group, acetate group, acetylacetonate group, and the like, which are present in the metal oxide carrier are completely removed, as well as maintaining high catalytic activity.
  • nickel oxide precursor and the zirconium oxide precursor may be dissolved in a solvent (second solvent).
  • the nickel oxide precursor and the zirconium oxide precursor are generally used in the art, but are not particularly limited, and each of at least one nitrate-based, chloride-based, bromide-based, acetate-based, and acetylacetonate-based compound of each metal May include, preferably nickel nitrate hydrate (Ni (NO 3 ) 2 .6H 2 O) and zirconium nitrate hydrate (Zr (NO 3 ) 4 .5H 2 O), zirconyl oxynitrate hydrate (ZrO (NO 3) may be the nitrate-based compounds such as 2 ⁇ xH 2 O).
  • the amount of the nickel oxide precursor and / or zirconium oxide precursor may be used to obtain a content (support amount) of the metal oxide (catalyst) supported on the metal oxide carrier, for example, the amount of the metal oxide (catalyst)
  • the nickel oxide precursor alone or the zirconium oxide precursor alone or nickel oxide is used so that the content is about 1 to about 15% by weight, preferably about 2 to about 10% by weight, more preferably about 4 to about 6% by weight.
  • a precursor and a zirconium oxide precursor can be mixed and used, Preferably a nickel oxide precursor can be used.
  • the content ratio (weight ratio) may be 1: about 0.01 to about 100, but is not limited thereto.
  • the second solvent one or more alcohols such as water, methanol and ethanol may be used, and water may be preferably used.
  • the solvent is not limited as long as it can dissolve the nickel oxide precursor and / or zirconium oxide precursor, but for example, about 4 ml or more may be used for 1 g of the cerium oxide precursor and / or zinc oxide precursor.
  • step (c) may be carried out by a conventional impregnation method, for example, after the second precursor solution is added to the metal oxide carrier, if necessary, about 40 to about 80 ° C., preferably Can be performed by evaporating the solvent at about 50 to about 60 ° C.
  • drying of the resultant is for removing the solvent, impurities, etc., for example, about 70 to about 150 At a temperature of about 80 ° C., preferably about 80 to about 100 ° C., for at least about 12 hours.
  • the firing of the step (d) is for oxidizing and supporting the nickel oxide precursor and / or zirconium oxide precursor impregnated in the metal oxide carrier with a metal oxide, about 400 to about 1,000 ° C., preferably, about 500 To about 800 ° C, more preferably about 500 to about 600 ° C, for example, about 3 to about 12 hours, preferably about 3 to about 8 hours.
  • Ammonium hydroxide components such as nitrate group, chloride group, bromide group, acetate group, acetylacetonate group, etc., which may be present in the supported catalyst prepared in the above range, can be completely removed and high catalyst activity can be maintained.
  • Method for producing dimethyl carbonate using the supported catalyst according to the present invention is characterized in that it comprises the step of reacting methanol and carbon dioxide in the presence of the supported catalyst, the reaction can be carried out by a conventional batch reaction, for example, a temperature of about 130 to about 200 ° C., preferably about 140 to about 190 ° C., more preferably about 150 to about 180 ° C. and about 10 to about 200 bar, preferably about 15 to about 100 bar, more Preferably at a pressure condition of about 20 to about 70 bar. In the above range, the reaction rate is fast and dimethyl carbonate can be produced in high yield.
  • the batch reaction is carried out in consideration of the conversion rate and the reactor volume, and since it is a liquid phase process that does not overheat, it is easy to regenerate the catalyst because there is no decrease in catalyst activity due to coke formation.
  • the catalytic reaction of the present invention is a heterogeneous reaction using methanol as a liquid reactant, carbon dioxide and a solid catalyst as a gaseous reactant, and is a reaction requiring no separate solvent.
  • the stirring of the reactor may use a magnetic bar or the like, for example, a stirring speed of about 300 to about 1,000 rpm, preferably about 750 to about 950 rpm, and about 1 to about 24 hours, preferably about 2 kPa to about
  • the reaction may be performed under a reaction time of 5 hours, but is preferably performed in a region where the mass transfer of the interface between carbon dioxide and methanol is maximized in consideration of the state of the catalyst and the viscosity of the solvent. Such a reaction can be easily carried out by those skilled in the art.
  • the catalyst may be used in an amount of about 1 to about 20 parts by weight, preferably about 1 to about 5 parts by weight, based on 100 parts by weight of the total reactants. In this range, mass transfer between the catalyst and carbon dioxide and methanol can be maximized.
  • the catalytic reaction of the present invention may be carried out in the presence of an absorbent.
  • a conventional solid absorbent may be used, and for example, may include molecular sieve, silica gel, activated carbon, alumina gel, a mixture thereof, and the like.
  • molecular sieves capable of selective moisture absorption and strong mechanical strength may be used, but are not limited thereto.
  • the molecular sieve may have a pore size of about 3 to about 10 mm 3, preferably about 3 to about 5 mm 3, and a particle size of about 4 to about 12 mesh (US mesh), preferably about 8 mm To about 12 mesh.
  • the yield of dimethyl carbonate may be excellent in the above range.
  • the absorbent may be used in an amount of about 1 to about 30 parts by weight, preferably about 6 to about 15 parts by weight, based on 100 parts by weight of the supported catalyst. Within this range it is possible to minimize the effect on mass transfer between the catalyst and carbon dioxide and methanol.
  • cerium nitrate hydrate (Ce (NO 3 ) 3 .6H 2 O) and zinc nitrate hydrate (Zn (NO 3 ) 2 .6H 2 O) were each prepared with a molar ratio of cerium oxide and zinc oxide of 0: 1.0 ( Production example 1), 0.1: 0.9 (manufacturing example 2), 0.3: 0.7 (manufacturing example 3), 0.5: 0.5 (manufacturing example 4), 0.7: 0.3 (manufacturing example 5), 0.9: 0.1 (manufacturing example 6), And 1.0: 0 (Preparation Example 7), which was placed in a beaker and dissolved in 4 ml / g of ethanol (precursor g) to prepare a precursor solution.
  • an aqueous ammonia solution having an ammonia content of 28 to 30% by weight was injected into the precursor solution until reaching pH 10 at a rate of 60 ml / h, and then further stirred at 50 ° C. for about 3 hours. Thereafter, the precipitate produced in the mixed solution of the precursor solution and the aqueous ammonia solution was washed with distilled water while filtering under reduced pressure to remove the remaining aqueous ammonia solution, and washed again with ethanol to prevent the shrinkage phenomenon during drying. The precipitate washed was dried in an oven at 100 ° C. for 24 hours. The dried precipitate was made into a powder form, and heated in a air atmosphere at a rate of 5 ° C.
  • the metal oxide carrier thus prepared was represented by CeO 2 (X) -ZnO (1-X), where X represents the mole fraction of CeO 2 in the two components. More specifically, the metal oxide carrier (CeO 2 (0.7) -ZnO (0.3)) of Preparation Example 7 was composed of 7.349 g of cerium nitrate hydrate (Ce (NO 3 ) 3 .6H 2 O) and zinc nitrate hydrate (Zn ( 2.200 g of NO 3 ) 2 .6H 2 O) was prepared using a precursor solution dissolved in 38 ml of ethanol in a beaker.
  • cerium nitrate hydrate (Ce (NO 3 ) 3 .6H 2 O) and cerium chloride hydrate (CeCl 3 .7H 2 O) are placed in a beaker, dissolved in an appropriate amount of distilled water, and prepared in another beaker.
  • citric acid as the molar equivalent was dissolved in distilled water.
  • the two aqueous solutions were mixed and stirred for a sufficient time. Thereafter, the solution was stirred while heating at a temperature in the range of 50 to 60 ° C until it began to swell into a sponge form.
  • the beaker When the NOx gas started to swell in the aqueous solution, the beaker was transferred to an oven, dried at 80 ° C. for 3 hours, and further dried at 170 ° C. for 3 hours to further remove NOx gas and citric acid contained in the catalyst precursor. Thereafter, the catalyst precursor in the form of a sponge was ground to a powder form, and heated to 5 ° C. per minute to a temperature of 500 ° C. under an air atmosphere, and then calcined for 3 hours to prepare a CeO 2 catalyst.
  • the surfactant (dodecylamine (CH 3 (CH 2 ) 10 CH 2 NH 2 )) is dissolved in distilled water so as to have a concentration of 0.1 M in the beaker, and the catalyst precursor (cerium nitrate corresponding to four times the number of moles of the surfactant in another beaker). Laterate hydrate (Ce (NO 3 ) 3 .6H 2 O) and cerium chloride hydrate (CeCl 3 .7H 2 O) were dissolved in distilled water. Next, the aqueous surfactant solution and the catalyst precursor solution were mixed and stirred at room temperature for 1 hour, and then further stirred at 40 ° C. for 24 hours.
  • the beaker was then sealed and hydrothermally synthesized at 80 ° C. for 5 days. Thereafter, the beaker was opened again and dried at 80 ° C., when the surfactant reached the critical micelle concentration, the precipitate was combined with the precursor. Thereafter, the formed precipitate was washed by filtration under reduced pressure and dried completely at 40 ° C.
  • the dried catalyst was made into powder, and the temperature was raised to a temperature of 500 ° C. in an air atmosphere at a rate of 1 ° C. per minute, and then calcined for 3 hours to prepare a CeO 2 catalyst.
  • dimethyl carbonate was prepared in the same manner as in Preparation Examples 1 to 7, except that the CeO 2 catalyst of Comparative Example 2 was used as a catalyst instead of the metal oxide carrier of Preparation Example 7, and the catalyst (carrier) preparation method Table 2 shows the results of evaluating the performance of the catalyst (carrier) according to the invention.
  • Quantitative catalyst precursors (cerium nitrate hydrate (Ce (NO 3 ) 3 .6H 2 O) and cerium chloride hydrate (CeCl 3 .7H 2 O)) were placed in a beaker and dissolved in ethanol, which is 18 times the number of moles of the precursor. .
  • the polyacrylic acid corresponding to 1.5 times the number of moles of the precursor is completely dissolved, and distilled water corresponding to 3 times the number of the precursor moles is stirred, and stirred for about 2 hours.
  • Mole of propylene oxide was injected. Then, when the gel was formed, the stirring was stopped and stored at room temperature for 4 days.
  • Ni (NO 3 ) 2 .6H 2 O nickel oxide precursor
  • Example 3 and 15 were dissolved in distilled water in a beaker to the weight percent to prepare a precursor solution.
  • the CeO 2 (0.7) -ZnO (0.3) metal oxide carrier prepared in Preparation Example 5 was added to the precursor solution, and stirred at 60 ° C. until distilled water completely evaporated to obtain a solid material. Thereafter, the solid material was further dried in an oven at 70 ° C. for 24 hours.
  • the supported catalyst thus prepared was designated as YNiO / CeO 2 (0.7) -ZnO (0.3), wherein Y represents a supported amount (% by weight) of the supported metal oxide.
  • Example 2 the supported catalyst of Example 2 (5NiO / CeO 2 (0.7) -ZnO (0.3)) was added 0.421 g of nickel nitrate hydrate (Ni (NO 3 ) 2 .6H 2 O) in a beaker and 30 ml of distilled water. 2 g of the metal oxide carrier (CeO 2 (0.7) -ZnO (0.3)) of Preparation Example 5 was used.
  • dimethyl carbonate was prepared in the same manner as in Preparation Examples 1 to 7, except that the supported catalyst of each Example was used as a catalyst instead of the metal oxide support of Preparation Example 5, and the evaluation results are shown in Tables 3 and 4. It was.
  • the supported catalyst (5ZrO 2 / CeO) in the same manner as in Example 2, except that zirconyl oxynitrate hydrate (ZrO (NO 3 ) 2 .xH 2 O) was used as the zirconium oxide precursor instead of the nickel nitrate hydrate. 2 (0.7) -ZnO (0.3)) was prepared.
  • ZrO (NO 3 ) 2 .xH 2 O zirconyl oxynitrate hydrate
  • 2 (0.7) -ZnO (0.3) was prepared.
  • the supported catalyst of Example 5 was used as a catalyst instead of the metal oxide carrier of Preparation Example 5 to prepare a dimethyl carbonate in the same manner as in Preparation Examples 1 to 7, and the evaluation results are shown in Table 4. .
  • the supported catalyst (5Co 3 O 4 / CeO 2 (0.7)) in the same manner as in Example 2 except that cobalt nitrate hydrate (Co (NO 3 ) 2 .6H 2 O) was used instead of the nickel nitrate hydrate. -ZnO (0.3)) was prepared.
  • dimethyl carbonate was prepared in the same manner as in 1 to 7 except that the supported catalyst of Comparative Example 4 was used as a catalyst instead of the metal oxide carrier of Preparation Example 5, and the evaluation results are shown in Table 4 below.
  • a supported catalyst (5SnO / CeO 2 (0.7) -ZnO (0.3)) was prepared in the same manner as in Example 2, except that tin chloride (SnCl 2 ) was used instead of the nickel nitrate hydrate.
  • dimethyl carbonate was prepared in the same manner as in 1 to 7 except that the supported catalyst of Comparative Example 5 was used as a catalyst instead of the metal oxide carrier of Preparation Example 5, and the evaluation results are shown in Table 4 below.
  • Supported catalyst (5La 2 O 3 / CeO 2 (0.7)) in the same manner as in Example 2 except that lanthanum nitrate hydrate (La (NO 3 ) 3 .xH 2 O) was used instead of the nickel nitrate hydrate. -ZnO (0.3)) was prepared.
  • lanthanum nitrate hydrate La (NO 3 ) 3 .xH 2 O
  • -ZnO 0.3
  • the supported catalyst (5MgO / CeO 2 (0.7) -ZnO () was prepared in the same manner as in Example 2 except that magnesium nitrate hydrate (Mg (NO 3 ) 2 .6H 2 O) was used instead of the nickel nitrate hydrate. 0.3)).
  • dimethyl carbonate was prepared in the same manner as in 1 to 7 except that the supported catalyst of Comparative Example 7 was used as a catalyst instead of the metal oxide carrier of Preparation Example 5, and the evaluation results are shown in Table 4 below.
  • Supported catalyst (5Ga 2 O 3 / CeO 2 (0.7)) in the same manner as in Example 2 except that gallium nitrate hydrate (Ga (NO 3 ) 3 .xH 2 O) was used instead of the nickel nitrate hydrate. -ZnO (0.3)) was prepared.
  • dimethyl carbonate was prepared in the same manner as in 1 to 7 except that the supported catalyst of Comparative Example 8 was used as a catalyst instead of the metal oxide carrier of Preparation Example 5, and the evaluation results are shown in Table 4 below.
  • a supported catalyst (5SrO / CeO 2 (0.7) -ZnO (0.3)) was prepared in the same manner as in Example 2 except that strontium nitrate (Sr (NO 3 ) 2 ) was used instead of the nickel nitrate hydrate. It was.
  • dimethyl carbonate was prepared in the same manner as in 1 to 7 except that the supported catalyst of Comparative Example 9 was used as a catalyst instead of the metal oxide carrier of Preparation Example 5, and the evaluation results are shown in Table 4 below.
  • the supported catalyst (5Fe 2 O 3 / CeO 2 (0.7)) in the same manner as in Example 2 except that iron nitrate hydrate (Fe (NO 3 ) 3 .9H 2 O) was used instead of the nickel nitrate hydrate. -ZnO (0.3)) was prepared.
  • dimethyl carbonate was prepared in the same manner as in 1 to 7 except that the supported catalyst of Comparative Example 10 was used as a catalyst instead of the metal oxide carrier of Preparation Example 5, and the evaluation results are shown in Table 4 below.
  • the supported catalyst (5V 2 O 3 / CeO 2 (0.7) -ZnO (0.3)) in the same manner as in Example 2 except that ammonium metavanadate (NH 4 VO 3 ) was used instead of the nickel nitrate hydrate. ) was prepared.
  • dimethyl carbonate was prepared in the same manner as in 1 to 7 except that the supported catalyst of Comparative Example 11 was used as a catalyst instead of the metal oxide carrier of Preparation Example 5, and the evaluation results are shown in Table 4 below.
  • the supported catalysts (Examples 1 to 5) according to the present invention, when preparing dimethyl carbonate from methanol and carbon dioxide, the amount of dimethyl carbonate produced per 1 g of (supported) catalyst is 2.80 mmol or more, CeO 2 (X) -ZnO ( It can be seen that the catalyst activity is higher than that of the catalyst such as 1-X), so that dimethyl carbonate can be produced with high yield.
  • the amount of dimethyl carbonate produced increases when an absorbent is used.
  • the absorbent is 2.4 g of a molecular sieve having a pore size of 3 mm 3 and a particle size of 8 to 12 mesh (US mesh), and the reaction conditions are performed at about 750 rpm or more, about 180 ° C., or about 18 hours or more. In this case, it can be seen that the amount of dimethyl carbonate is greatly increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명의 디메틸카보네이트의 제조방법은 세륨 옥사이드(CeO2) 및 징크 옥사이드(ZnO) 중 1종 이상 포함하는 금속산화물 담체에 담지된 촉매를 포함하는 담지 촉매 존재 하에, 메탄올 및 이산화탄소를 반응시키는 단계를 포함하며, 상기 촉매는 니켈 옥사이드(NiO) 및 지르코늄 옥사이드(ZrO2)의 금속산화물 중 1종 이상을 포함하는 것을 특징으로 한다. 상기 담지 촉매는 산-염기 특성이 향상되어 메탄올과 이산화탄소로부터 디메틸카보네이트를 고수율로 제조할 수 있다.

Description

담지 촉매를 이용한 디메틸카보네이트의 제조방법
본 발명은 담지 촉매를 이용한 디메틸카보네이트의 제조방법에 관한 것이다. 보다 구체적으로 본 발명은 산-염기 특성이 향상되어 메탄올과 이산화탄소로부터 디메틸카보네이트를 고수율로 제조할 수 있는 담지 촉매를 이용한 디메틸카보네이트의 제조방법에 관한 것이다.
디메틸카보네이트는 환경 친화적인 대체 화학물질로서 그 응용분야와 수요가 급격하게 증가하고 있다. 예를 들면, 디메틸카보네이트는 옥탄가를 향상시키기 위한 연료 첨가제로서 환경오염 문제가 있는 메틸t-부틸에테르(methyl tert-butyl ether: MTBE)를 대체할 물질로 각광 받고 있으며, 이차전지의 전해질, 정밀화학 제품의 중간체 등으로도 사용된다. 또한, 정밀화학의 카르보닐화제 혹은 메틸화제로서 사용될 뿐만 아니라, 독성이 강한 포스겐, 염화메틸 등의 폐액 처리에 사용되는 디메틸황산 등을 대체할 수 있다. 더욱이, 디메틸카보네이트는 높은 용해성을 가지므로 클로로벤젠과 같은 할로겐화된 용매를 대체할 친환경 용매로도 사용될 수 있다.
디메틸카보네이트를 제조하는 공정으로는 여러 공정들이 알려져 있으며, 대표적으로는 메탄올과 유독성 물질로 알려진 포스겐을 이용하여 디메틸카보네이트를 제조하는 포스겐법이 있다. 하지만, 반응물인 포스겐은 매우 유독한 물질로 알려져 있기 때문에, 현재는 이 공정을 대체할 다른 여러 가지 공정들이 개발되고 있다. 그 중 대표적인 공정으로 염화구리(I) 촉매 하에 산소와 일산화탄소를 메탄올과 반응시켜 디메틸카보네이트를 제조하는 메탄올 산화법[미국특허 제5,478,962호; 미국특허 제5,686,644호; U. Romano, R. Tesel, M. M. Mauri, P. Rebora, Ind. Eng. Chem. Prod. Res. Rev., 19권, 396쪽 (1980); M. A. Pacheco, C. L. Marshall, Energy and Fuels, 11권, 2쪽 (1997)]이 있다. 하지만 이 공정은 촉매의 짧은 수명, 반응기 부식 문제, 및 일산화탄소와 같은 독성이 있는 반응물을 사용한다는 단점이 있다. 또한, 반응 중 부산물로 생성되는 물은 분리 정제에 많은 에너지 비용이 들어가게 한다.
다른 대체 공정으로는 다단계 공정으로 이루어진 메틸나이트라이트법[J. Kizlink, Collect. Czech. Chem. Comm., 58권, 1399쪽 (1993); S. T. King, J. Catal., 161권, 530쪽 (1996); S. Uchiumi, K. Ateka, T. Matsuraki, J. Organomet. Chem. 576권, 279쪽 (1999); T. Matsuraki, A. Nakamura, Catal. Surv. Jpn., 1권, 77쪽 (1997)]이 있다. 상기 메틸나이트라이트법은 첫 번째 단계에서 이산화질소를 이용하여 메탄올을 산화시켜 메틸나이트라이트를 생성한 다음, 팔라듐 촉매 조건 하에서 첫 번째 단계에서 생성된 메틸나이트라이트와 일산화탄소를 반응시켜 디메틸카보네이트를 생성하는 방법이다. 상기 메틸나이트라이트법에서 부산물로 생성되는 일산화질소는 반응물인 이산화질소로 다시 산화시켜 첫 번째 단계에서 재사용이 가능하다는 이점이 있지만, 이 공정 또한 독성이 있는 일산화탄소를 반응물로 사용하고 생성물 중 하나인 일산화질소가 반응기를 부식시킨다는 문제점이 있다.
디메틸카보네이트를 제조하는 또 다른 방법으로는 촉매 하에서 에틸렌 옥사이드와 이산화탄소를 반응시켜 디메틸카보네이트를 제조하는 다단계 공정으로 이루어진 에스테르 교환법[미국특허 제5,489,703호; 미국특허 제5,292,917호; J. F. Knifton, R. G. Duranleau, J. Mol. Catal., 67권, 389쪽 (1991); T. Tatsumi, Y. Watanabe, K. A. Koyano, Chem. Commn., 19권, 2281쪽 (1996)]이 있다. 상기 에스테르 교환법은 앞선 공정과 비교하여, 반응기의 부식 문제가 적고 값싸고 독성이 적은 원료를 사용하며, 반응 부산물로 생성되는 에틸렌 글리콜은 적절한 화학 반응을 통하여 반응물인 에틸렌 옥사이드로 재순환이 가능하다는 장점이 있다. 그러나, 상기 공정은 고온 고압에서의 반응임에도 불구하고 낮은 촉매 활성을 보이고 촉매의 수명이 짧으며, 반응에서 사용되는 유기용매는 메탄올과 디메틸카보네이트간에 3중 공비점을 형성하기 때문에 반응 후 디메틸카보네이트의 분리 정제에 많은 에너지가 들어가게 된다는 단점이 있다.
상기 공정들은 각기 포스겐, 일산화질소, 일산화탄소와 같은 유독한 반응물을 사용하거나 반응기의 부식 문제, 다단계 공정으로 인한 높은 공정 비용 그리고 부산물 생성으로 인한 분리정제의 어려움 등의 문제점들이 있다.
이러한 문제점을 극복하기 위해, 최근에는 메탄올과 이산화탄소로부터 디메틸카보네이트를 직접 제조하는 방법[K. Tomishige, T. Sakaihori, Y. Ikeda, K. Fugimoto, Catal. Lett., 58권, 225쪽 (1999); S. Fang, K. Fujimoto, Appl. Catal. A, 142권, L1쪽 (1996)]이 제시되었다. 디메틸카보네이트의 직접 제조법은 공정이 간단하고 원료로 사용되는 메탄올과 이산화탄소의 가격이 저렴하며 포스겐과 같은 맹독성 물질을 사용하지 않는 환경 친화적인 공정이지만 열역학적인 제약을 강하게 받는 공정이므로 디메틸카보네이트의 수율이 낮다는 문제점이 있다. 또한, 디메틸카보네이트의 직접 제조에 적용하기 위한 다양한 촉매 군이 연구되었지만 아직까지 적합한 촉매 시스템 및 효율적인 제조방법이 제시되지 못하고 있다[Q. H. Cai, L. Zhang, Y.K. Shan, M.Y. He, Chinese J. Chem., 22권, 422쪽 (2004); T. Zhao, Y. Han, Y. Sun, Studies Sur. Sci. & Catal., 130권, 461쪽 (2000)].
통상적으로 디메틸카보네이트 제조 시, 균일계 및 불균일계 촉매를 사용할 수 있으나, 균일계 촉매는 활성이 좋은 반면, 디메틸카보네이트 제조 후 촉매를 분리하는데 어려움이 있으므로 산업적 활용이 어렵다는 단점이 있다. 따라서, 불균일계 촉매의 연구가 활발히 진행되고 있다.
따라서, 본 발명에서 수행한 암모니아 수용액을 이용한 공침법으로 제조한 세륨 옥사이드-징크 옥사이드 복합 산화물 담체에 함침법으로 니켈 옥사이드를 담지시킨 담지 촉매를 적용한 디메틸카보네이트의 직접 제조는 그 기술적 파급 효과가 크다고 판단된다.
본 발명의 목적은 산-염기 특성이 향상되어 메탄올과 이산화탄소로부터 디메틸카보네이트를 고수율로 제조할 수 있는 담지 촉매를 이용하여 환경친화적 원료인 메탄올과 이산화탄소로부터 디메틸카보네이트를 직접 합성하는 제조방법을 제공하기 위한 것이다.
본 발명의 다른 목적은 흡수제를 적용하여 고수율로 디메틸카보네이트를 합성하는 제조방법을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명의 하나의 관점은 디메틸카보네이트의 제조방법에 관한 것이다. 상기 제조방법은 세륨 옥사이드(CeO2) 및 징크 옥사이드(ZnO) 중 1종 이상 포함하는 금속산화물 담체에 담지된 촉매를 포함하는 담지 촉매 존재 하에, 메탄올 및 이산화탄소를 반응시키는 단계를 포함하며, 상기 촉매는 니켈 옥사이드(NiO) 및 지르코늄 옥사이드(ZrO2)의 금속산화물 중 1종 이상을 포함한다.
구체예에서, 상기 금속산화물 담체는 상기 세륨 옥사이드 약 40 내지 약 99 몰% 및 상기 징크 옥사이드 약 1 내지 약 60 몰%를 포함할 수 있다.
구체예에서, 상기 담지 촉매 중, 상기 촉매의 함량은 약 1 내지 약 15 중량%이고, 상기 금속산화물 담체의 함량은 약 85 내지 약 99 중량%일 수 있다.
구체예에서, 상기 담지 촉매는, (a) 세륨 옥사이드 전구체 및 징크 옥사이드 전구체를 1종 이상 용해시킨 제1 전구체 용액에 암모니아 수용액을 가하여 침전물을 형성하는 단계; (b) 상기 침전물을 여과, 건조, 및 소성하여 금속산화물 담체를 제조하는 단계; (c) 상기 금속산화물 담체에 니켈 옥사이드 전구체 및 지르코늄 옥사이드 전구체를 1종 이상 용해시킨 제2 전구체 용액에 넣어 함침시키는 단계; 및 (d) 상기 결과물을 건조 및 소성하여 담지 촉매를 제조하는 단계를 포함하여 제조될 수 있다.
바람직하게는 상기 세륨 옥사이드 전구체, 상기 징크 옥사이드 전구체, 상기 니켈 옥사이드 전구체 및 상기 지르코늄 옥사이드 전구체는 각각 독립적으로 각 금속의 나이트레이트계, 클로라이드계, 브로마이드계, 아세테이트계 및 아세틸아세토네이트계 화합물을 1종 이상 포함할 수 있다.
바람직하게는 상기 제1 및 제2 전구체 용액의 용매는 각각 독립적으로 물 및 알코올을 1종 이상 포함할 수 있다.
바람직하게는 상기 침전물이 제조되는 상기 제1 전구체 용액 및 상기 암모니아 수용액의 혼합 용액의 pH 범위는 약 7 내지 약 11일 수 있다.
바람직하게는 상기 (b) 단계 및 (d) 단계의 소성은 각각 독립적으로 약 400 내지 약 1,000℃에서 수행할 수 있다.
바람직하게는 상기 반응은 약 130 내지 약 200℃의 온도 및 약 10 내지 약 200 bar의 압력 조건에서 수행될 수 있다.
구체예에서, 상기 반응은 흡수제 존재 하에 수행될 수 있다.
바람직하게는 상기 흡수제는 분자체(molecular sieve), 실리카겔, 활성탄, 및 알루미나겔 중 1종 이상을 포함할 수 있다.
바람직하게는 상기 분자체는 기공 크기가 약 3 내지 약 10 Å일 수 있다.
바람직하게는 상기 분자체는 입자 크기가 약 4 내지 약 12 메쉬(U.S. mesh)일 수 있다.
본 발명은 산-염기 특성이 향상되어 메탄올과 이산화탄소로부터 디메틸카보네이트를 고수율로 제조할 수 있는 담지 촉매를 이용하여 환경친화적 원료인 메탄올과 이산화탄소로부터 디메틸카보네이트를 직접 합성하는 디메틸 카보네이트의 제조방법을 제공하는 발명의 효과를 갖는다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 디메틸카보네이트의 제조방법은 세륨 옥사이드(CeO2) 및 징크 옥사이드(ZnO) 중 1종 이상 포함하는 금속산화물 담체에 담지된 촉매를 포함하는 담지 촉매 존재 하에, 메탄올 및 이산화탄소를 반응시키는 단계를 포함하며, 상기 촉매는 니켈 옥사이드(NiO) 및 지르코늄 옥사이드(ZrO2)의 금속산화물 중 1종 이상을 포함하는 것을 특징으로 한다.
본 발명에 사용되는 담지 촉매는 메탄올과 이산화탄소로부터 디메틸카보네이트를 제조할 수 있는 것으로서, 세륨 옥사이드(CeO2) 및 징크 옥사이드(ZnO)를 1종 이상 포함하는 금속산화물 담체, 및 상기 금속산화물 담체에 담지된 촉매를 포함하며, 상기 촉매는 니켈 옥사이드(NiO) 및 지르코늄 옥사이드(ZrO2)의 금속산화물 중 1종 이상을 포함한다.
상기 금속산화물 담체는 침전법(precipitation) 또는 공침법(co-precipitation)으로 제조되는 세륨 옥사이드 담체, 징크 옥사이드 담체, 또는 세륨 옥사이드 및 징크 옥사이드의 복합 금속산화물 담체이다. 예를 들면, 세륨 옥사이드 약 40 내지 약 99 몰% 및 징크 옥사이드 약 1 내지 약 60 몰%를 포함하는 복합 금속산화물 담체, 바람직하게는 세륨 옥사이드 약 50 내지 약 80 몰% 및 징크 옥사이드 약 20 내지 약 50 몰%, 더욱 바람직하게는 세륨 옥사이드 약 65 내지 약 75 몰% 및 징크 옥사이드 약 25 내지 약 35 몰%를 포함하는 복합 금속산화물 담체일 수 있다. 상기 범위에서 메탄올과 이산화탄소로부터 디메틸카보네이트를 고수율로 제조할 수 있다. 상기 금속산화물 담체는 그 자체로도 촉매로 사용될 수 있으나, 본 발명의 촉매는 이를 담체로 사용하여 상기 금속산화물 담체의 산-염기 특성을 향상시키고, 메탄올과 이산화탄소로부터 디메틸카보네이트를 고수율로 제조할 수 있는 것이다.
상기 금속산화물 담체는 미세 및 중형 기공성 입자 형태일 수 있으며, 표면적이 약 5 내지 약 200 m2/g, 공극 크기가 약 0.1 내지 약 20 nm, 평균 입경이 약 5 내지 약 100 nm일 수 있으나, 이에 제한되지 않는다.
상기 촉매는 상기 금속산화물 담체에 함침법(impregnation method)을 통해 담지되는 금속산화물로서, 니켈 옥사이드(NiO) 및 지르코늄 옥사이드(ZrO2)를 1종 이상 포함하며, 바람직하게는 니켈 옥사이드이다. 본 발명의 담지 촉매는 상기 금속산화물(촉매)을 상기 금속산화물 담체에 담지시킴으로써, 상기 금속산화물 담체의 산 특성 및 염기 특성을 향상시킬 수 있고, 고수율로 디메틸카보네이트를 제조할 수 있다.
구체예에서, 본 발명의 담지 촉매 중, 상기 금속산화물의 함량은 약 1 내지 약 15 중량%, 바람직하게는 약 2 내지 약 10 중량%, 더욱 바람직하게는 약 4 내지 약 6 중량%이고, 상기 금속산화물 담체의 함량은 약 85 내지 약 99 중량%, 바람직하게는 약 90 내지 약 98 중량%, 더욱 바람직하게는 약 94 내지 약 96 중량%이다. 상기 범위에서 산-염기 특성이 향상되어 메탄올과 이산화탄소로부터 디메틸카보네이트를 고수율로 제조할 수 있다.
상기 담지 촉매는 상기 촉매가 상기 금속산화물 담체의 외부 및 내부 표면에 담지된 형태일 수 있으며, 표면적이 약 5 내지 약 200 m2/g, 공극 크기가 약 0.1 내지 약 20 nm, 평균 입경이 약 5 내지 약 100 nm일 수 있으나, 이에 제한되지 않는다.
본 발명의 담지 촉매는 침전법 또는 공침법으로 상기 금속산화물 담체를 제조하고, 상기 금속산화물 담체에 함침법으로 상기 촉매(금속산화물)를 담지하여 제조할 수 있으며, 예를 들면, 하기 담지 촉매의 제조방법에 따라 제조될 수 있다.
상기 담지 촉매의 제조방법은 (a) 세륨 옥사이드 전구체 및 징크 옥사이드 전구체를 1종 이상 용해시킨 제1 전구체 용액에 암모니아 수용액을 가하여 침전물을 형성하는 단계, (b) 상기 침전물을 여과, 건조 및 소성하여 금속산화물 담체를 제조하는 단계, (c) 상기 금속산화물 담체에 니켈 옥사이드 전구체 및 지르코늄 옥사이드 전구체를 1종 이상 용해시킨 제2 전구체 용액에 넣어 함침시키는 단계, 및 (d) 상기 결과물을 건조 및 소성하여 상기 담지 촉매를 제조하는 단계를 포함한다.
상기 (a) 단계에서, 상기 제1 전구체 용액으로는 상기 세륨 옥사이드 전구체 및 징크 옥사이드 전구체 1종 이상을 용매(제1 용매)에 용해시킨 것을 사용할 수 있다. 상기 세륨 옥사이드 전구체 및 징크 옥사이드 전구체는 당 분야에서 일반적으로 사용되는 것으로 특별히 한정하지는 않으나, 각각 독립적으로 각 금속의 나이트레이트계, 클로라이드계, 브로마이드계, 아세테이트계 및 아세틸아세토네이트계 화합물을 1종 이상 포함할 수 있고, 바람직하게는 세륨 나이트레이트 하이드레이트(Ce(NO3)3ㆍ6H2O) 및 징크 나이트레이트 하이드레이트(Zn(NO3)2ㆍ6H2O) 등의 나이트레이트계 화합물을 사용할 수 있다. 상기 세륨 옥사이드 전구체 및 징크 옥사이드 전구체의 사용량은 제조하고자 하는 금속산화물 담체의 세륨 옥사이드 및 징크 옥사이드의 함량과 동일하게 사용할 수 있으며, 예를 들면, 세륨 옥사이드 전구체 단독 또는 징크 옥사이드 전구체 단독으로 사용하거나, 세륨 옥사이드 전구체 및 징크 옥사이드 전구체를 예를 들면, 각각 약 40 내지 약 99 몰% 및 약 1 내지 약 60 몰%의 비율로 혼합하여 사용할 수 있다.
또한, 상기 제1 용매로는 물 및 메탄올, 에탄올 등의 알코올을 1종 이상 사용할 수 있으며, 바람직하게는 에탄올을 사용할 수 있다. 상기 용매는 상기 세륨 옥사이드 전구체 및/또는 징크 옥사이드 전구체를 용해시킬 수 있는 양이면, 제한되지 않으나, 예를 들면, 상기 세륨 옥사이드 전구체 및/또는 징크 옥사이드 전구체 1g에 대하여 약 4 ml 이상 사용될 수 있다.
또한, 상기 암모니아 수용액으로는 예를 들면, 암모니아 함량이 약 25 내지 약 30 중량%, 바람직하게는 약 28 내지 약 30 중량%인 암모니아 수용액을 사용할 수 있다.
상기 (a) 단계에서, 상기 암모니아 수용액은 상기 제1 전구체 용액(상기 제1 전구체 용액 및 상기 암모니아 수용액의 혼합 용액)이 pH 약 7 내지 약 11, 예를 들면, pH 약 8 내지 약 10, 바람직하게는 pH 약 10이 될 때까지 주입할 수 있다. 또한, 상기 암모니아 수용액을 주입하는 속도는 약 5 내지 약 80 ml/h, 바람직하게는 약 20 내지 약 70 ml/h, 더욱 바람직하게는 약 30 내지 약 60 ml/h일 수 있다. 상기 pH 범위 및 주입 속도 범위에서 고수율로 상기 세륨 옥사이드 전구체 및/또는 징크 옥사이드 전구체의 수산화물 형태인 (고체) 침전물이 생성될 수 있다.
또한, 상기 (a) 단계에서, 상기 침전물을 더욱 생성하기 위하여, 상기 제1 전구체 용액 및 상기 암모니아 수용액의 혼합 용액을 약 30 내지 약 70℃, 예를 들면, 약 45 내지 약 55℃의 온도에서, 약 1시간 이상 가열 및 교반할 수 있다. 이러한 가열 및 교반 과정을 통하여, 수산화암모늄과 결합하지 못한 세륨 옥사이드 전구체 및/또는 징크 옥사이드 전구체들의 추가적인 침전이 발생할 수 있으며, 세륨 옥사이드 전구체 및 징크 옥사이드 전구체를 모두 사용하였을 경우, pH 약 10 이상에서 용해되었던 징크 옥사이드 전구체 수산화물이 다시 세륨 옥사이드 전구체 수산화물과 결합하면서 침전될 수 있다.
상기 (b) 단계에서, 상기 침전물의 여과는 통상의 방법으로 수행될 수 있으며, 예를 들면, 상기 침전물을 감압 여과하고, 물 및 에탄올 등의 알코올류로 세척하는 과정을 포함할 수 있다.
또한, 상기 침전물의 건조는 약 70 내지 약 150℃, 예를 들면, 약 80 내지 약 100℃의 온도에서 약 12시간 이상 수행되는 것일 수 있다. 이러한 열 건조에 의해 상기 용매, 잔류 암모니아 수용액, 불순물 등이 제거된다.
또한, 상기 (b) 단계의 소성은 상기 침전물을 금속산화물 담체로 산화시키기 위한 것으로서, 약 400 내지 약 1,000℃, 바람직하게는, 약 500 내지 약 800℃, 더욱 바람직하게는 약 500 내지 약 600℃의 온도에서, 예를 들면, 약 3 내지 약 12시간, 바람직하게는 약 3 내지 약 8시간 동안 수행되는 것일 수 있다. 상기 범위에서 금속산화물 담체에 존재할 수 있는 나이트레이트기, 클로라이드기, 브로마이드기, 아세테이트기, 아세틸아세토네이트기 등과 수산화암모늄 성분이 완전히 제거될 뿐만 아니라 높은 촉매 활성을 유지할 수 있다.
상기 (c) 단계에서, 상기 제2 전구체 용액으로는 상기 니켈 옥사이드 전구체 및 지르코늄 옥사이드 전구체 1종 이상을 용매(제2 용매)에 용해시킨 것을 사용할 수 있다. 상기 니켈 옥사이드 전구체 및 지르코늄 옥사이드 전구체는 당 분야에서 일반적으로 사용되는 것으로 특별히 한정하지는 않으나, 각각 독립적으로 각 금속의 나이트레이트계, 클로라이드계, 브로마이드계, 아세테이트계 및 아세틸아세토네이트계 화합물을 1종 이상 포함할 수 있고, 바람직하게는 니켈 나이트레이트 하이드레이트(Ni(NO3)2ㆍ6H2O) 및 지르코늄 나이트레이트 하이드레이트(Zr(NO3)4ㆍ5H2O), 지르코닐 옥시나이트레이트 하이드레이트(ZrO(NO3)2ㆍxH2O) 등의 나이트레이트계 화합물을 사용할 수 있다.
상기 니켈 옥사이드 전구체 및/또는 지르코늄 옥사이드 전구체의 사용량은 상기 금속산화물 담체에 담지되는 상기 금속산화물(촉매)의 함량(담지량)을 얻을 수 있도록 사용할 수 있으며, 예를 들면, 상기 금속산화물(촉매)의 함량이 약 1 내지 약 15 중량%, 바람직하게는 약 2 내지 약 10 중량%, 더욱 바람직하게는 약 4 내지 약 6 중량%가 되도록, 니켈 옥사이드 전구체 단독 또는 지르코늄 옥사이드 전구체 단독으로 사용하거나, 니켈 옥사이드 전구체 및 지르코늄 옥사이드 전구체를 혼합하여 사용할 수 있고, 바람직하게는 니켈 옥사이드 전구체를 사용할 수 있다. 상기 니켈 옥사이드 전구체 및 지르코늄 옥사이드 전구체 혼합 사용 시, 함량비(중량비)는 1 : 약 0.01 내지 약 100일 수 있으나, 이에 제한되지 않는다.
또한, 상기 제2 용매로는 물 및 메탄올, 에탄올 등의 알코올을 1종 이상 사용할 수 있으며, 바람직하게는 물을 사용할 수 있다. 상기 용매는 상기 니켈 옥사이드 전구체 및/또는 지르코늄 옥사이드 전구체를 용해시킬 수 있는 양이면 제한되지 않으나, 예를 들면, 상기 세륨 옥사이드 전구체 및/또는 징크 옥사이드 전구체 1g에 대하여 약 4 ml 이상 사용될 수 있다.
상기 (c) 단계의 함침은 통상적인 함침 방법에 의하여 수행될 수 있으며, 예를 들면, 상기 금속산화물 담체에 상기 제2 전구체 용액을 넣은 후, 필요에 따라, 약 40 내지 약 80℃, 바람직하게는 약 50 내지 약 60℃에서 용매를 증발시켜 수행할 수 있다.
상기 (d) 단계에서, 상기 결과물(상기 니켈 옥사이드 전구체 및/또는 지르코늄 옥사이드 전구체가 함침된 금속산화물 담체)의 건조는 상기 용매, 불순물 등을 제거하기 위한 것으로서, 예를 들면, 약 70 내지 약 150℃, 바람직하게는 약 80 내지 약 100℃의 온도에서 약 12시간 이상 수행될 수 있다.
또한, 상기 (d) 단계의 소성은 상기 금속산화물 담체에 함침된 니켈 옥사이드 전구체 및/또는 지르코늄 옥사이드 전구체를 금속산화물로 산화 및 담지시키기 위한 것으로서, 약 400 내지 약 1,000℃, 바람직하게는, 약 500 내지 약 800℃, 더욱 바람직하게는 약 500 내지 약 600℃의 온도에서, 예를 들면, 약 3 내지 약 12시간, 바람직하게는 약 3 내지 약 8시간 동안 수행되는 것일 수 있다. 상기 범위에서 제조되는 담지 촉매에 존재할 수 있는 나이트레이트기, 클로라이드기, 브로마이드기, 아세테이트기, 아세틸아세토네이트기 등과 수산화암모늄 성분이 완전히 제거될 뿐만 아니라 높은 촉매 활성을 유지할 수 있다.
본 발명에 따른 담지 촉매를 이용한 디메틸카보네이트의 제조방법은 담지 촉매 존재 하에, 메탄올 및 이산화탄소를 반응시키는 단계를 포함하는 것을 특징으로 하며, 상기 반응은 통상적인 회분식 반응에 의해 수행될 수 있으며, 예를 들면, 약 130 내지 약 200℃, 바람직하게는 약 140 내지 약 190℃, 더욱 바람직하게는 약 150 내지 약 180℃의 온도 및 약 10 내지 약 200 bar, 바람직하게는 약 15 내지 약 100 bar, 더욱 바람직하게는 약 20 내지 약 70 bar의 압력 조건에서 수행될 수 있다. 상기 범위에서 반응 속도가 빠르고, 높은 수율로 디메틸카보네이트를 제조할 수 있다.
통상적으로 회분식 반응은 전환율과 반응기 부피를 고려하여 수행되며, 과열되지 않는 액상 공정이므로, 코크 생성에 의한 촉매 활성의 저하가 없기 때문에 촉매 재생이 용이하다.
또한, 본 발명의 촉매 반응은 액상 반응물인 메탄올과 기상 반응물인 이산화탄소 및 고체 촉매를 사용하는 불균일계 반응이고, 별도의 용매가 필요 없는 반응이다. 반응기의 교반은 마그네틱 바 등을 사용할 수 있으며, 예를 들면, 약 300 내지 약 1,000 rpm, 바람직하게는 약 750 내지 약 950 rpm의 교반 속도 및 약 1 내지 약 24시간, 바람직하게는 약 2 내지 약 5시간의 반응 시간 조건에서 수행될 수 있으나, 촉매의 상태와 용매의 점도 등을 고려하여 이산화탄소와 메탄올 간 계면의 물질 전달이 최대인 영역에서 행하는 것이 바람직하다. 이러한 반응은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 용이하게 수행될 수 있다.
구체예에서, 상기 촉매는 전체 반응물 100 중량부에 대하여, 약 1 내지 약 20 중량부, 바람직하게는 약 1 내지 약 5 중량부로 사용될 수 있다. 상기 범위에서 촉매와 이산화탄소 및 메탄올 간 물질 전달이 최대화될 수 있다.
일 구체예에서, 본 발명의 촉매 반응은 흡수제 존재 하에 수행될 수 있다.
상기 흡수제로는 통상의 고체 흡수제를 사용할 수 있으며, 예를 들면, 분자체(molecular sieve), 실리카겔, 활성탄, 알루미나겔, 이들의 혼합물 등을 포함할 수 있다. 바람직하게는 선택적 수분 흡수가 가능하고 기계적 강도가 강한 분자체가 사용될 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 분자체는 기공 크기가 약 3 내지 약 10 Å, 바람직하게는 약 3 내지 약 5 Å일 수 있고, 입자 크기가 약 4 내지 약 12 메쉬(U.S. mesh), 바람직하게는 약 8 내지 약 12 메쉬(U.S. mesh)일 수 있다. 상기 범위에서 디메틸카보네이트의 수율이 우수할 수 있다.
구체예에서, 상기 흡수제는 상기 담지 촉매 100 중량부에 대하여, 약 1 내지 약 30 중량부, 바람직하게는 약 6 내지 약 15 중량부로 사용될 수 있다. 상기 범위에서 촉매와 이산화탄소 및 메탄올 간 물질 전달에 대한 영향을 최소화할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
실시예
제조예 1~7: 금속산화물 담체의 제조 및 평가
전구체로서, 세륨 나이트레이트 하이드레이트(Ce(NO3)3ㆍ6H2O)와 징크 나이트레이트 하이드레이트(Zn(NO3)2ㆍ6H2O)를 세륨 옥사이드와 징크 옥사이드의 몰비가 각각 0:1.0(제조예 1), 0.1:0.9(제조예 2), 0.3:0.7(제조예 3), 0.5:0.5(제조예 4), 0.7:0.3(제조예 5), 0.9:0.1(제조예 6), 및 1.0:0(제조예 7)이 되도록 비커에 담은 후, 4 ml/전구체(g)의 에탄올에 용해시켜 전구체 용액을 제조하였다. 다음으로, 암모니아 함량이 28 내지 30 중량%인 암모니아 수용액을 60 ml/h 속도로 pH 10에 도달할 때까지 상기 전구체 용액에 주입한 후, 50℃에서 약 3시간 정도 추가적으로 교반시켰다. 이후, 상기 전구체 용액 및 암모니아 수용액의 혼합 용액 내에 생성된 침전물을 감압 여과하면서 증류수로 세척하여 남아있는 암모니아 수용액을 제거하고, 건조 시 수축되는 현상을 막기 위해 에탄올로 다시 세척하였다. 세척된 상기 침전물은 100℃의 오븐에서 24시간 동안 건조시켰다. 건조된 침전물을 가루형태로 만들어 주고, 공기 분위기 하에서, 500℃까지 분당 5 ℃의 속도로 승온한 후, 3시간 동안 유지하여 소성하였다. 이렇게 제조된 금속산화물 담체는 CeO2(X)-ZnO(1-X)로 표시하였으며, 여기서, X는 두 성분 내 CeO2의 몰 분율을 나타낸다. 보다 구체적으로, 제조예 7의 금속산화물 담체(CeO2(0.7)-ZnO(0.3))는 세륨 나이트레이트 하이드레이트(Ce(NO3)3ㆍ6H2O) 7.349 g과 징크 나이트레이트 하이드레이트(Zn(NO3)2ㆍ6H2O) 2.200 g를 비커에 담아 38ml의 에탄올에 용해시킨 전구체 용액을 사용하여 제조하였다.
다음으로, 제조된 금속산화물 담체의 평가를 위하여, 각각의 금속산화물 담체를 촉매로 사용하여 메탄올과 이산화탄소를 이용한 디메틸카보네이트 직접 합성법을 수행하였다. 메탄올과 이산화탄소를 이용한 디메틸카보네이트의 직접 합성 반응은 메탄올과 이산화탄소를 이용한 디메틸카보네이트의 직접 제조는 촉매(금속산화물 담체) 0.7 g과 반응물인 메탄올을 30 ml 넣어준 후, 가스 크로마토그래피를 이용하여 내부표준법으로 생성물을 검출하기 위해 내부표준물질로 벤젠을 0.5 ml 주입하였다. 다음으로, 이산화탄소로 퍼지를 한 후, 이산화탄소를 주입하여 40 bar의 압력이 되면, 170℃까지 승온시켰다. 승온 후, 이산화탄소를 주입하여 60 bar의 압력 조건을 만들었으며, 600 rpm의 교반 속도로 3시간 동안 반응을 진행하였다. 반응 종료 후, 액상 생성물과 촉매를 여과로 분리한 후, 생성물을 가스 크로마토그래피 장비(GC)로 분석하였다. 분석 결과, 디메틸카보네이트 이외에 어떤 부생성물도 생성되지 않았다. 담체의 세륨 옥사이드(CeO2) 및 징크 옥사이드(ZnO) 함량비에 따른 촉매 성능 평가 결과는 표 1에 나타내었다.
표 1
촉매(금속산화물 담체) 디메틸카보네이트 생성량 (mmol/g-촉매) 생성물 선택도 (%)
디메틸 카보네이트 디메틸에테르
제조예 1 ZnO 0.43 100 0
제조예 2 CeO2(0.1)-ZnO(0.9) 1.59 100 0
제조예 3 CeO2(0.3)-ZnO(0.7) 1.71 100 0
제조예 4 CeO2(0.5)-ZnO(0.5) 2.54 100 0
제조예 5 CeO2(0.7)-ZnO(0.3) 2.73 100 0
제조예 6 CeO2(0.9)-ZnO(0.1) 2.38 100 0
제조예 7 CeO2 2.11 100 0
비교예 1: 졸-겔법(시트르산)을 이용한 금속산화물 촉매의 제조 및 평가
촉매 전구체로서, 세륨 나이트레이트 하이드레이트(Ce(NO3)3ㆍ6H2O)와 세륨 클로라이드 하이드레이트(CeCl3ㆍ7H2O)를 비커에 담아 적정량의 증류수에 용해시키고 다른 비커에 제조하고자 하는 촉매의 몰 당량에 해당하는 만큼의 시트르산을 증류수에 용해시켰다. 전구체와 시트르산이 완전히 용해되면 두 수용액을 섞어주고 충분한 시간 동안 교반시켰다. 이후, 50 내지 60℃ 사이의 온도범위에서 가열하면서 수용액이 스펀지 형태로 부풀기 시작할 때까지 교반시켰다. 수용액에서 NOx 기체가 발생하면서 부풀기 시작하면 비커를 오븐으로 옮겨 80℃에서 3시간 건조 후, 170℃에서 3시간을 더 건조하여, 상기 촉매 전구체에 포함되어 있던 NOx 기체와 시트르산을 추가적으로 제거하였다. 이후, 스펀지 형태의 촉매 전구체를 분쇄하여 가루형태로 만들고, 공기 분위기 하에서 500℃의 온도까지 분당 5 ℃로 승온한 뒤 3 시간 동안 소성하여 CeO2 촉매를 제조하였다. 다음으로, 상기 제조예 7의 금속산화물 담체 대신 비교예 1의 CeO2 촉매를 촉매로 사용한 것을 제외하고는 상기 제조예 1 내지 7과 동일한 방법으로 디메틸카보네이트를 제조하고, 촉매(담체) 제조방법에 따른 촉매(담체)의 성능 평가 결과를 표 2에 나타내었다.
비교예 2: 졸-겔법(계면활성제)을 이용한 금속산화물 촉매의 제조 및 평가
비커에 0.1 M 농도가 되도록 계면활성제(도데실아민(CH3(CH2)10CH2NH2))를 증류수에 용해시키고, 다른 비커에 계면활성제 몰수의 4배에 해당하는 촉매 전구체(세륨 나이트레이트 하이드레이트(Ce(NO3)3ㆍ6H2O)와 세륨 클로라이드 하이드레이트(CeCl3ㆍ7H2O))를 증류수에 용해시켰다. 다음으로, 계면활성제 수용액과 상기 촉매 전구체 용액을 혼합하고 상온에서 1시간 동안 교반한 후,  40℃에서 24시간 동안 추가로 교반시켰다. 이후, 비커를 밀봉하여 80℃에서 5일 동안 수열합성을 시켰다. 이후, 다시 비커를 개봉하여 80℃에서 건조시키면 계면활성제가 임계 미셸 농도에 도달하면서 상기 전구체와 결합하여 침전물이 형성되었다. 이후, 형성된 침전물은 감압 여과하여 세척한 후, 40℃에서 완전히 건조하였다. 건조된 촉매를 가루형태로 만들어 주고, 공기 분위기 하에서 500℃의 온도까지 분당 1℃의 속도로 승온한 뒤 3 시간 동안 소성하여 CeO2 촉매를 제조하였다. 다음으로, 상기 제조예 7의 금속산화물 담체 대신 비교예 2의 CeO2 촉매를 촉매로 사용한 것을 제외하고는 상기 제조예 1 내지 7과 동일한 방법으로 디메틸카보네이트를 제조하고, 촉매(담체) 제조방법에 따른 촉매(담체)의 성능 평가 결과를 표 2에 나타내었다.
비교예 3: 졸-겔법(프로필렌옥사이드)을 이용한 금속산화물 촉매의 제조 및 평가
정량된 촉매 전구체(세륨 나이트레이트 하이드레이트(Ce(NO3)3ㆍ6H2O)와 세륨 클로라이드 하이드레이트(CeCl3ㆍ7H2O))를 비커에 담아 전구체 몰수의 18 배에 해당하는 에탄올에 용해시켰다. 다음으로, 상기 전구체가 완전히 용해되면, 전구체 몰수의 1.5배에 해당하는 폴리아크릴릭산을 넣고 완전히 용해시키고, 상기 전구체 몰수의 3배에 해당하는 증류수를 넣고 약 2 시간 동안 교반한 다음, 증류수와 동일한 몰수의 프로필렌옥사이드를 주입하였다. 이후, 겔이 형성되면 교반을 중지하고 상온에서 4일 동안 보관하였다. 이후, 에탄올로 약 3회 정도 세척한 후, 80℃ 오븐에서 3일 동안 건조시켰다. 건조 후 남은 생성물은 가루형태로 만들어 주고, 공기 분위기 하에서 500℃의 온도까지 분당 5℃의 속도로 승온한 뒤 3 시간 동안 소성하여 CeO2 촉매를 제조하였다. 다음으로, 상기 제조예 7의 금속산화물 담체 대신 비교예 3의 CeO2 촉매를 촉매로 사용한 것을 제외하고는 상기 제조예 1 내지 7과 동일한 방법으로 디메틸카보네이트를 제조하고, 촉매(담체) 제조방법에 따른 촉매(담체)의 성능 평가 결과를 표 2에 나타내었다.
표 2
사용된 촉매 제조법 디메틸카보네이트 생성량 (mmol/g-촉매) 생성물 선택도 (%)
디메틸 카보네이트 디메틸에테르
비교예 1 시트르산을 이용한 졸-겔법 0.43 100 0
비교예 2 계면활성제를 이용한 졸-겔법 1.59 100 0
비교예 3 프로필렌옥사이드를이용한 졸-겔법 1.71 100 0
제조예 7 공침법 2.11 100 0
실시예 1~4: 니켈 옥사이드를 담지한 담지 촉매의 제조 및 평가
니켈 옥사이드 전구체인 니켈 나이트레이트 하이드레이트(Ni(NO3)2ㆍ6H2O) 를 제조된 담지 촉매에서의 니켈 옥사이드의 함량이 각각 1(실시예 1), 5(실시예 2), 10(실시예 3) 및 15(실시예 4) 중량%가 되도록 비커에 담아 증류수에 용해시켜,  전구체 용액을 제조하였다. 다음으로, 상기 전구체 용액에 상기 제조예 5에서 제조된 CeO2(0.7)-ZnO(0.3) 금속산화물 담체를 넣은 후, 60℃에서 증류수가 완전히 증발할 때까지 교반시켜 고체물질을 얻었다. 이후, 상기 고체물질을 70℃ 오븐에 24시간 동안 추가적으로 건조시켰다. 건조 후, 상기 고체물질을 가루형태로 만들어 주고 공기 분위기 하에서, 500℃의 온도까지 분당 5℃의 속도로 승온한 뒤, 3시간 동안 소성하여 금속산화물 담체에 니켈 옥사이드가 담지된 담지 촉매를 제조하였다. 이렇게 제조된 담지 촉매를 YNiO/CeO2(0.7)-ZnO(0.3)이라 표시하였으며, 이때 Y는 담지되는 금속산화물의 담지량(중량%)를 나타낸다. 보다 구체적으로, 실시예 2의 담지 촉매(5NiO/CeO2(0.7)-ZnO(0.3))는 니켈 나이트레이트 하이드레이트(Ni(NO3)2ㆍ6H2O) 0.421 g을 비커에 담아 증류수 30 ml에 용해시킨 전구체 용액 및 2 g의 제조예 5의 금속산화물 담체(CeO2(0.7)-ZnO(0.3))를 사용하였다.
다음으로, 상기 제조예 5의 금속산화물 담체 대신 각 실시예의 담지 촉매를 촉매로 사용한 것을 제외하고는 상기 제조예 1 내지 7과 동일한 방법으로 디메틸카보네이트를 제조하고, 평가 결과를 표 3 및 4에 나타내었다.
표 3
  담지 촉매 및 촉매(금속산화물 담체) 디메틸카보네이트 생성량 (mmol/g-촉매) 생성물 선택도 (%)
디메틸 카보네이트 디메틸에테르
실시예 1 1NiO/CeO2(0.7)-ZnO(0.3) 2.82 100 0
실시예 2 5NiO/CeO2(0.7)-ZnO(0.3) 3.05 100 0
실시예 3 10NiO/CeO2(0.7)-ZnO(0.3) 2.95 100 0
실시예 4 15NiO/CeO2(0.7)-ZnO(0.3) 2.80 100 0
제조예 5 CeO2(0.7)-ZnO(0.3) 2.73 100 0
실시예 5: 지르코늄 옥사이드를 담지한 담지 촉매의 제조 및 평가
상기 니켈 나이트레이트 하이드레이트 대신에 지르코늄 옥사이드 전구체로서 지르코닐 옥시 나이트레이트 하이드레이트(ZrO(NO3)2ㆍxH2O)를 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 담지 촉매(5ZrO2/CeO2(0.7)-ZnO(0.3))를 제조하였다. 다음으로, 상기 제조예 5의 금속산화물 담체 대신 실시예 5의 담지 촉매를 촉매로 사용한 것을 제외하고는 상기 제조예 1 내지 7과 동일한 방법으로 디메틸카보네이트를 제조하고, 평가 결과를 표 4에 나타내었다.
비교예 4: 코발트 옥사이드를 담지한 담지 촉매의 제조 및 평가
상기 니켈 나이트레이트 하이드레이트 대신에 코발트 나이트레이트 하이드레이트(Co(NO3)2ㆍ6H2O)를 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 담지 촉매(5Co3O4/CeO2(0.7)-ZnO(0.3))를 제조하였다. 다음으로, 상기 제조예 5의 금속산화물 담체 대신 비교예 4의 담지 촉매를 촉매로 사용한 것을 제외하고는 상기 1 내지 7과 동일한 방법으로 디메틸카보네이트를 제조하고, 평가 결과를 표 4에 나타내었다.
비교예 5: 틴 옥사이드를 담지한 담지 촉매의 제조 및 평가
상기 니켈 나이트레이트 하이드레이트 대신에 틴 클로라이드(SnCl2)를 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 담지 촉매(5SnO/CeO2(0.7)-ZnO(0.3))를 제조하였다. 다음으로, 상기 제조예 5의 금속산화물 담체 대신 비교예 5의 담지 촉매를 촉매로 사용한 것을 제외하고는 상기 1 내지 7과 동일한 방법으로 디메틸카보네이트를 제조하고, 평가 결과를 표 4에 나타내었다.
비교예 6: 란타늄 옥사이드를 담지한 담지 촉매의 제조 및 평가
상기 니켈 나이트레이트 하이드레이트 대신에 란타늄 나이트레이트 하이드레이트(La(NO3)3ㆍxH2O)를 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 담지 촉매(5La2O3/CeO2(0.7)-ZnO(0.3))를 제조하였다. 다음으로, 상기 제조예 5의 금속산화물 담체 대신 비교예 6의 담지 촉매를 촉매로 사용한 것을 제외하고는 상기 1 내지 7과 동일한 방법으로 디메틸카보네이트를 제조하고, 평가 결과를 표 4에 나타내었다.
비교예 7: 마그네슘 옥사이드를 담지한 담지 촉매의 제조 및 평가
상기 니켈 나이트레이트 하이드레이트 대신에 마그네슘 나이트레이트 하이드레이트(Mg(NO3)2ㆍ6H2O)를 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 담지 촉매(5MgO/CeO2(0.7)-ZnO(0.3))를 제조하였다. 다음으로, 상기 제조예 5의 금속산화물 담체 대신 비교예 7의 담지 촉매를 촉매로 사용한 것을 제외하고는 상기 1 내지 7과 동일한 방법으로 디메틸카보네이트를 제조하고, 평가 결과를 표 4에 나타내었다.
비교예 8: 갈륨 옥사이드를 담지한 담지 촉매의 제조 및 평가
상기 니켈 나이트레이트 하이드레이트 대신에 갈륨 나이트레이트 하이드레이트(Ga(NO3)3ㆍxH2O)를 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 담지 촉매(5Ga2O3/CeO2(0.7)-ZnO(0.3))를 제조하였다. 다음으로, 상기 제조예 5의 금속산화물 담체 대신 비교예 8의 담지 촉매를 촉매로 사용한 것을 제외하고는 상기 1 내지 7과 동일한 방법으로 디메틸카보네이트를 제조하고, 평가 결과를 표 4에 나타내었다.
비교예 9: 스트론튬 옥사이드를 담지한 담지 촉매의 제조 및 평가
상기 니켈 나이트레이트 하이드레이트 대신에 스트론튬 나이트레이트(Sr(NO3)2)를 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 담지 촉매(5SrO/CeO2(0.7)-ZnO(0.3))를 제조하였다. 다음으로, 상기 제조예 5의 금속산화물 담체 대신 비교예 9의 담지 촉매를 촉매로 사용한 것을 제외하고는 상기 1 내지 7과 동일한 방법으로 디메틸카보네이트를 제조하고, 평가 결과를 표 4에 나타내었다.
비교예 10: 아이언 옥사이드를 담지한 담지 촉매의 제조 및 평가
상기 니켈 나이트레이트 하이드레이트 대신에 아이언 나이트레이트 하이드레이트(Fe(NO3)3ㆍ9H2O)를 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 담지 촉매(5Fe2O3/CeO2(0.7)-ZnO(0.3))를 제조하였다. 다음으로, 상기 제조예 5의 금속산화물 담체 대신 비교예 10의 담지 촉매를 촉매로 사용한 것을 제외하고는 상기 1 내지 7과 동일한 방법으로 디메틸카보네이트를 제조하고, 평가 결과를 표 4에 나타내었다.
비교예 11: 바나듐 옥사이드를 담지한 담지 촉매의 제조 및 평가
상기 니켈 나이트레이트 하이드레이트 대신에 암모니움 메타바나데이트(NH4VO3)를 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 담지 촉매(5V2O3/CeO2(0.7)-ZnO(0.3))를 제조하였다. 다음으로, 상기 제조예 5의 금속산화물 담체 대신 비교예 11의 담지 촉매를 촉매로 사용한 것을 제외하고는 상기 1 내지 7과 동일한 방법으로 디메틸카보네이트를 제조하고, 평가 결과를 표 4에 나타내었다.
표 4
  담지 촉매 및 촉매(금속산화물 담체) 디메틸카보네이트 생성량 (mmol/g-촉매) 생성물 선택도 (%)
디메틸 카보네이트 디메틸에테르
실시예 2 5NiO/CeO2(0.7)-ZnO(0.3) 3.05 100 0
실시예 5 5ZrO2/CeO2(0.7)-ZnO(0.3) 2.91 100 0
비교예 4 5Co3O4/CeO2(0.7)-ZnO(0.3) 2.26 100 0
비교예 5 5SnO/CeO2(0.7)-ZnO(0.3) 2.20 100 0
비교예 6 5La2O3/CeO2(0.7)-ZnO(0.3) 2.18 100 0
비교예 7 5MgO/CeO2(0.7)-ZnO(0.3) 2.16 100 0
비교예 8 5Ga2O3/CeO2(0.7)-ZnO(0.3) 2.13 100 0
비교예 9 5SrO/CeO2(0.7)-ZnO(0.3) 2.03 100 0
비교예 10 5Fe2O3/CeO2(0.7)-ZnO(0.3) 1.51 100 0
비교예 11 5V2O5/CeO2(0.7)-ZnO(0.3) 1.40 100 0
제조예 5 CeO2(0.7)-ZnO(0.3) 2.73 100 0
상기 결과로부터, 본 발명에 따른 담지 촉매(실시예 1 내지 5)는 메탄올 및 이산화탄소로부터 디메틸카보네이트 제조 시, (담지) 촉매 1g 당 디메틸카보네이트 생성량이 2.80 mmol 이상으로, CeO2(X)-ZnO(1-X) 등의 촉매보다 촉매 활성이 높아 고수율로 디메틸카보네이트를 제조할 수 있음을 알 수 있다. 또한, 표 2의 결과로부터 졸-겔법에 비해 공침법으로 제조한 담체의 촉매 활성이 우수함을 알 수 있고, 표 4의 결과로부터 니켈 옥사이드 및 지르코늄 옥사이드를 제외한 금속산화물이 담지될 경우(비교예 4~11), 금속산화물 담지 시 보다 오히려 촉매 활성이 저하됨을 알 수 있다.
실시예 6~30: 흡수제 존재 하에 디메틸카보네이트의 제조 및 평가  
하기 표 5의 조성 및 함량에 따라 흡수제(분자체(기공 크기: 3 Å, 4 Å, 5 Å, 및 10 Å, 입자 크기: 8 내지 12 메쉬(U.S. mesh, 1.5 내지 2.2 mm), 4 내지 8 메쉬(U.S. mesh, 2.4~5.2 mm)), 실리카겔(제조사: 삼전화학, 제품명: silicagel blue), 활성탄(제조사: 시그마알드리치, 제품명: activated charcoal), 또는 알루미나겔(제조사: 시그마알드리치, 제품명: aluminum oxide)을 추가로 넣어주고, 하기 표 5의 조건에 따라, 교반 속도, 반응 온도 및 시간을 조절한 것을 제외하고는, 상기 실시예 2(담지 촉매: 5ZrO2/CeO2(0.7)-ZnO(0.3))와 동일한 방법으로 디메틸카보네이트를 제조하고, 평가 결과를 표 5에 나타내었다.
표 5
  흡수제 교반 속도(rpm) 반응 온도 (℃) 반응 시간 (hr) 디메틸카보네이트 생성량 (mmol/g-촉매)
종류 기공 크기 입자크기(mesh) 함량(g)
실시예 6 분자체 3Å 8~12 0.4 600 170 3 3.52
실시예 7 분자체 3Å 8~12 0.8 600 170 3 3.96
실시예 8 분자체 3Å 8~12 1.2 600 170 3 4.21
실시예 9 분자체 3Å 8~12 1.6 600 170 3 4.53
실시예 10 분자체 3Å 8~12 2.0 600 170 3 4.61
실시예 11 분자체 3Å 8~12 2.4 600 170 3 4.71
실시예 12 분자체 3Å 8~12 2.4 450 170 3 4.26
실시예 13 분자체 3Å 8~12 2.4 750 170 3 4.92
실시예 14 분자체 3Å 8~12 2.4 900 170 3 4.91
실시예 15 분자체 3Å 8~12 2.4 600 160 3 4.88
실시예 16 분자체 3Å 8~12 2.4 600 180 3 5.04
실시예 17 분자체 3Å 8~12 2.4 600 190 3 4.97
실시예 18 분자체 3Å 8~12 2.4 600 200 3 4.77
실시예 19 분자체 3Å 8~12 0.4 600 170 6 3.78
실시예 20 분자체 3Å 8~12 0.4 600 170 12 4.66
실시예 21 분자체 3Å 8~12 0.4 600 170 18 5.02
실시예 22 분자체 3Å 8~12 0.4 600 170 24 5.04
실시예 23 분자체 3Å 8~12 0.4 600 170 30 5.07
실시예 24 분자체 3Å 4~8 0.4 600 170 3 3.44
실시예 25 분자체 4Å 4~8 0.4 600 170 3 3.11
실시예 26 분자체 5Å 4~8 0.4 600 170 3 2.97
실시예 27 분자체 10Å 4~8 0.4 600 170 3 2.92
실시예 28 실리카겔 - - 0.4 600 170 3 3.13
실시예 29 활성탄 - - 0.4 600 170 3 3.06
실시예 30 알루미나겔 - - 0.4 600 170 3 3.03
표 5의 결과로부터 알 수 있듯이, 본 발명의 담지 촉매를 사용한 디메틸카보네이트 제조 시, 흡수제를 사용할 경우, 디메틸카보네이트 생성량이 증가함을 알 수 있다. 특히, 흡수제는 기공 크기가 3 Å이고, 입자 크기가 8 내지 12 메쉬(U.S. mesh)인 분자체를 2.4 g 사용하고, 반응 조건을 약 750 rpm 이상, 약 180℃, 약 18 시간 이상으로 수행할 경우, 디메틸카보네이트의 생성량이 크게 증가함을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (13)

  1. 세륨 옥사이드(CeO2) 및 징크 옥사이드(ZnO) 중 1종 이상 포함하는 금속산화물 담체에 담지된 촉매를 포함하는 담지 촉매 존재 하에, 메탄올 및 이산화탄소를 반응시키는 단계를 포함하며,
    상기 촉매는 니켈 옥사이드(NiO) 및 지르코늄 옥사이드(ZrO2)의 금속산화물 중 1종 이상을 포함하는 것을 특징으로 하는 디메틸카보네이트의 제조방법.
  2. 제1항에 있어서, 상기 금속산화물 담체는 상기 세륨 옥사이드 약 40 내지 약 99 몰% 및 상기 징크 옥사이드 약 1 내지 약 60 몰%를 포함하는 것을 특징으로 하는 디메틸카보네이트의 제조방법.
  3. 제1항에 있어서, 상기 담지 촉매 중, 상기 촉매의 함량은 약 1 내지 약 15 중량%이고, 상기 금속산화물 담체의 함량은 약 85 내지 약 99 중량%인 것을 특징으로 하는 디메틸카보네이트의 제조방법.
  4. 제1항에 있어서, 상기 담지 촉매는,
    (a) 세륨 옥사이드 전구체 및 징크 옥사이드 전구체를 1종 이상 용해시킨 제1 전구체 용액에 암모니아 수용액을 가하여 침전물을 형성하는 단계;
    (b) 상기 침전물을 여과, 건조, 및 소성하여 금속산화물 담체를 제조하는 단계;
    (c) 상기 금속산화물 담체에 니켈 옥사이드 전구체 및 지르코늄 옥사이드 전구체를 1종 이상 용해시킨 제2 전구체 용액에 넣어 함침시키는 단계; 및
    (d) 상기 결과물을 건조 및 소성하여 담지 촉매를 제조하는 단계를 포함하여 제조되는 것을 특징으로 하는 디메틸카보네이트의 제조방법.
  5. 제4항에 있어서, 상기 세륨 옥사이드 전구체, 상기 징크 옥사이드 전구체, 상기 니켈 옥사이드 전구체 및 상기 지르코늄 옥사이드 전구체는 각각 독립적으로 각 금속의 나이트레이트계, 클로라이드계, 브로마이드계, 아세테이트계 및 아세틸아세토네이트계 화합물을 1종 이상 포함하는 것을 특징으로 하는 디메틸카보네이트의 제조방법.
  6. 제4항에 있어서, 상기 제1 및 제2 전구체 용액의 용매는 각각 독립적으로 물 및 알코올을 1종 이상 포함하는 것을 특징으로 하는 디메틸카보네이트의 제조방법.
  7. 제4항에 있어서, 상기 침전물이 제조되는 상기 제1 전구체 용액 및 상기 암모니아 수용액의 혼합 용액의 pH 범위는 약 7 내지 약 11인 것을 특징으로 하는 디메틸카보네이트의 제조방법.
  8. 제4항에 있어서, 상기 (b) 단계 및 (d) 단계의 소성은 각각 독립적으로 약 400 내지 약 1,000℃에서 수행하는 것을 특징으로 하는 디메틸카보네이트의 제조방법.
  9. 제1항에 있어서, 상기 반응은 약 130 내지 약 200℃의 온도 및 약 10 내지 약 200 bar의 압력 조건에서 수행되는 것을 특징으로 하는 디메틸카보네이트의 제조방법.
  10. 제1항에 있어서, 상기 반응은 흡수제 존재 하에 수행되는 것을 특징으로 하는 디메틸카보네이트의 제조방법.
  11. 제10항에 있어서, 상기 흡수제는 분자체(molecular sieve), 실리카겔, 활성탄, 및 알루미나겔 중 1종 이상을 포함하는 것을 특징으로 하는 디메틸카보네이트의 제조방법.
  12. 제11항에 있어서, 상기 분자체는 기공 크기가 약 3 내지 약 10 Å인 것을 특징으로 하는 디메틸카보네이트의 제조방법.
  13. 제11항에 있어서, 상기 분자체는 입자 크기가 약 4 내지 약 12 메쉬(U.S. mesh)인 것을 특징으로 하는 디메틸카보네이트의 제조방법.
PCT/KR2013/005744 2013-04-30 2013-06-28 담지 촉매를 이용한 디메틸카보네이트의 제조방법 WO2014178482A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130048909A KR101584399B1 (ko) 2013-04-30 2013-04-30 담지 촉매를 이용한 디메틸카보네이트의 제조방법
KR10-2013-0048909 2013-04-30

Publications (2)

Publication Number Publication Date
WO2014178482A2 true WO2014178482A2 (ko) 2014-11-06
WO2014178482A3 WO2014178482A3 (ko) 2015-05-07

Family

ID=51844068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005744 WO2014178482A2 (ko) 2013-04-30 2013-06-28 담지 촉매를 이용한 디메틸카보네이트의 제조방법

Country Status (2)

Country Link
KR (1) KR101584399B1 (ko)
WO (1) WO2014178482A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115282892A (zh) * 2022-08-04 2022-11-04 淮阴工学院 一种三明治式长效阻盐的凝胶光热蒸发器的制备方法
CN115991650A (zh) * 2021-10-19 2023-04-21 中国科学院大连化学物理研究所 一种二氧化碳和甲醇直接制备碳酸二甲酯的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017093472A1 (de) 2015-12-02 2017-06-08 Ait Austrian Institute Of Technology Gmbh Verfahren und vorrichtung zur kontinuierlichen herstellung von organischen carbonaten aus co2
CN108383728A (zh) * 2018-03-21 2018-08-10 刘桀曦 一种以二氧化碳为原料一锅法制碳酸二乙酯的方法
JP7455303B2 (ja) * 2019-10-29 2024-03-26 国立大学法人東北大学 有機カーボネート製造用触媒および有機カーボネートの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1623758A1 (en) * 2003-04-18 2006-02-08 Mitsubishi Heavy Industries, Ltd. Catalyst for dimethyl carbonate synthesis
KR20070072653A (ko) * 2006-01-02 2007-07-05 재단법인서울대학교산학협력재단 헤테로폴리산 담지 촉매 및 상기 촉매를 이용한디메틸카보네이트의 제조방법
KR101200022B1 (ko) * 2010-10-06 2012-11-09 서울대학교산학협력단 디메틸카보네이트 제조용 세리아-지르코니아 복합 담체에 담지된 갈륨 옥사이드 촉매, 그 제조방법 및 상기 촉매를 이용한 디메틸카보네이트의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1623758A1 (en) * 2003-04-18 2006-02-08 Mitsubishi Heavy Industries, Ltd. Catalyst for dimethyl carbonate synthesis
KR20070072653A (ko) * 2006-01-02 2007-07-05 재단법인서울대학교산학협력재단 헤테로폴리산 담지 촉매 및 상기 촉매를 이용한디메틸카보네이트의 제조방법
KR101200022B1 (ko) * 2010-10-06 2012-11-09 서울대학교산학협력단 디메틸카보네이트 제조용 세리아-지르코니아 복합 담체에 담지된 갈륨 옥사이드 촉매, 그 제조방법 및 상기 촉매를 이용한 디메틸카보네이트의 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SEO, EUN SIL ET AL.: 'Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol' HWAHAK KONGHAK vol. 40, no. 1, 2002, pages 9 - 15 *
TOM1SHIGE, KEIICHI ET AL.: 'CeO2-ZrO2 Solid Solution Catalyst for Selective Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide' CATALYSIS LETTERS vol. 76, no. 1-2, 2001, pages 71 - 74 *
VLASENKO, N. V. ET AL.: 'Effect of Acid-Base Characteristics of ZrO2-Y2O3 on Catalytic Properties in Carboxylation of Methanol' THEORETICAL AND EXPERIMENTAL CHEMISTRY vol. 45, no. 4, 2009, pages 271 - 275 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115991650A (zh) * 2021-10-19 2023-04-21 中国科学院大连化学物理研究所 一种二氧化碳和甲醇直接制备碳酸二甲酯的方法
CN115282892A (zh) * 2022-08-04 2022-11-04 淮阴工学院 一种三明治式长效阻盐的凝胶光热蒸发器的制备方法
CN115282892B (zh) * 2022-08-04 2023-09-29 淮阴工学院 一种三明治式长效阻盐的凝胶光热蒸发器的制备方法

Also Published As

Publication number Publication date
KR101584399B1 (ko) 2016-01-11
KR20140129935A (ko) 2014-11-07
WO2014178482A3 (ko) 2015-05-07

Similar Documents

Publication Publication Date Title
WO2010011101A2 (ko) 합성가스로부터 메탄올 합성용 촉매 및 이의 제조방법
WO2014178482A2 (ko) 담지 촉매를 이용한 디메틸카보네이트의 제조방법
WO2022055225A1 (ko) 암모니아 분해 반응용 촉매 및 이를 이용한 수소 생산방법
WO2019054557A1 (ko) 탄소 침적의 감소를 위해, 금속이온이 치환된 페로브스카이트 금속산화물 촉매 및 이의 제조 방법, 그리고 이를 이용한 메탄 개질 반응 방법
KR0166148B1 (ko) 고분산 혼합 금속산화물 담지 촉매의 제조방법
US20060009537A1 (en) Catalysts and processes for the manufacture of lower aliphatic alcohols from syngas
WO2009110698A2 (ko) 모노카르복실산 또는 그의 유도체로부터 일가 알콜의 제조방법
US5171920A (en) Process for obtaining at least one tertiary olefin by decomposition of the corresponding ether
WO2011040775A2 (ko) 질소산화물 분해용 혼합금속산화물 촉매
JP2005170774A (ja) 複合酸化物及びその製造方法並びに排ガス浄化用触媒
CA2751471A1 (en) Novel zirconia ceria compositions
WO2023033528A1 (ko) 양이온-음이온 이중 가수분해를 이용한 암모니아 분해용 촉매 제조방법
WO2014163235A1 (ko) 배기가스의 처리용 혼합금속산화물 촉매, 이의 제조방법 및 이를 이용한 배기가스의 처리방법
CA2085315A1 (en) Process for the preparation of synthetic gases
KR101200022B1 (ko) 디메틸카보네이트 제조용 세리아-지르코니아 복합 담체에 담지된 갈륨 옥사이드 촉매, 그 제조방법 및 상기 촉매를 이용한 디메틸카보네이트의 제조방법
CN101328124B (zh) 一种合成二甘醇双烯丙基碳酸酯的酯交换法
WO2017177531A1 (zh) 一种由芴制备9-芴酮的方法
WO2021172829A1 (ko) 잔류염소 제거 방법 및 그 방법에 의한 질소산화물 저감용 scr 촉매, 이의 제조방법
WO2010098220A1 (ja) ジフルオロメチルカルボニル化合物の製造方法
WO2017039218A1 (ko) 아크릴산 제조용 불균일계 촉매 및 이를 이용한 아크릴산 제조방법
KR101549728B1 (ko) 담지 촉매, 이의 제조방법 및 이를 이용한 디메틸카보네이트의 제조방법
WO2019199042A1 (ko) 금속 복합 촉매의 제조방법 및 이에 의해 제조된 금속 복합 촉매
KR101329994B1 (ko) 복합 금속 산화물 촉매, 그의 제조방법, 및 상기 복합 금속 산화물 촉매를 이용한 디메틸카보네이트의 제조방법
KR101439839B1 (ko) 디메틸카보네이트 제조를 위한 담지 촉매, 이의 제조방법 및 이를 이용한 디메틸카보네이트의 제조방법
KR101525943B1 (ko) 디메틸에테르와 아세트산의 동시 제조용 불균일계 구리촉매

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 13883360

Country of ref document: EP

Kind code of ref document: A2