WO2017177531A1 - 一种由芴制备9-芴酮的方法 - Google Patents

一种由芴制备9-芴酮的方法 Download PDF

Info

Publication number
WO2017177531A1
WO2017177531A1 PCT/CN2016/085081 CN2016085081W WO2017177531A1 WO 2017177531 A1 WO2017177531 A1 WO 2017177531A1 CN 2016085081 W CN2016085081 W CN 2016085081W WO 2017177531 A1 WO2017177531 A1 WO 2017177531A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorenone
reaction
hydrazine
group
solvent
Prior art date
Application number
PCT/CN2016/085081
Other languages
English (en)
French (fr)
Inventor
高占先
于丽梅
谢鹤
李汇丰
何永超
史正茂
Original Assignee
河南宝舜精细化工有限公司
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南宝舜精细化工有限公司, 大连理工大学 filed Critical 河南宝舜精细化工有限公司
Priority to JP2017538293A priority Critical patent/JP6392994B2/ja
Publication of WO2017177531A1 publication Critical patent/WO2017177531A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/26Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydration of carbon-to-carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/665Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
    • C07C49/675Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system having three rings

Definitions

  • the invention relates to a method for preparing 9-fluorenone (referred to as anthrone) by catalytic phase oxidation method, belonging to the field of organic synthesis.
  • Niobium is one of the important components of coal tar, accounting for 1-2% of the total coal tar.
  • the cost of separating rhodium from tar is relatively low.
  • the purity of industrial products obtained by separation is mostly ⁇ 95%.
  • the hydrazine can be converted into various substituted hydrazine derivatives such as a hydrocarbyl substituted hydrazine, a halogenated hydrazine, a nitro hydrazine, an acyl hydrazine, a carboxy hydrazine or the like.
  • 9-fluorenone abbreviated as anthrone, is a derivative of hydrazine deep-processed, and the purity of industrial fluorenone is ⁇ 95%.
  • Anthrone derivatives include the corresponding derivatives of 9-fluorenone which are converted by various substituted anthracene derivatives. They are important chemical raw materials. Many important lanthanide derivatives are synthesized from anthrone and its derivatives, such as bisphenol ketone. 9,9-bis(methoxymethyl)anthracene, and the like. Therefore, fluorenone and its derivatives are in high demand in the market, and the related fine chemical products have broad prospects for development. As a raw material for high-end manufacturing, anthrone requires a purity of ⁇ 99.5%. For the preparation of liquid crystal materials and polymer materials, high-purity anthrone is required. The composition of industrial products depends on the source of coal tar.
  • the reaction for preparing an anthrone from ruthenium oxidation is a process of oxidizing a fluorene methylene group to a carbonyl group.
  • the hydrogen atom on the methylene group is more active and is prone to oxidation. Therefore, there are many methods for synthesizing anthrone with hydrazine as a raw material. Depending on the oxidizing agent used and the reaction state, etc., the method of synthesizing anthrone with hydrazine is summarized into three major categories: air vapor phase oxidation, air liquid phase oxidation, and other oxidant oxidation methods.
  • the separation process has a large amount of solvent loss, a complicated process, and a large energy consumption, and it is necessary to consider the problem of recycling of the solvent.
  • DMI 1,3-dimethyl-2-imidazoline
  • sodium hydroxide as a catalyst
  • molecular oxygen as an oxidant
  • reaction at temperatures above 40 °C helium is also susceptible to deep oxidation [Chemical Industry and Engineering (2015) )].
  • chemical oxidants such as hydrogen peroxide, are oxidized, the production cost of fluorenone is higher.
  • CN102020543A reports that toluene is a solvent, a quaternary ammonium salt is a catalyst, and no method of adding alkali, the method of preparing an anthrone from air oxidized hydrazine seems simple. However, in the toluene solvent, only the quaternary ammonium salt is used as a catalyst, and no ruthenium is prepared by adding air to the ruthenium ketone, and the conversion of ruthenium is extremely low.
  • CN102391087A reports: using industrial hydrazine as a raw material, using benzene (toluene, xylene) as a solvent, sodium hydroxide as a catalyst, air as an oxidant, and quaternary ammonium salt as a phase transfer catalyst to prepare anthrone.
  • the disadvantage is that no water is added, and the quaternary ammonium salt is difficult to exert phase transfer; the reaction temperature is high, and the solvent loss is large.
  • Aromatic compounds can be used as a solvent for the preparation of anthrone by hydrazine oxidation.
  • Aromatic hydrocarbons of ⁇ C 9 are fractions of coal tar, especially a mixture of o-xylene, m-xylene and p-xylene. , a mixture of o-methyl ethylbenzene, m-methyl ethylbenzene and p-methyl ethylbenzene, and a mixture of o-toluene, meta-trimethylbenzene and mesitylene, which are not industrially useful and difficult to separate.
  • the coal tar fraction can be effectively utilized, and the coal tar industrial chain can be formed, and the production cost of the fluorenone can be reduced. Therefore, in recent years, aromatic compounds have been used as solvents, bases as catalysts, quaternary ammonium salts as phase transfer agents, and air oxime to produce 9-fluorenone.
  • aromatic compounds have been used as solvents, bases as catalysts, quaternary ammonium salts as phase transfer agents, and air oxime to produce 9-fluorenone.
  • CN201310355676.8, CA2013103556274.x, CA201310355847.7, CA201410074857.8, and CN 201410074024.1 report work in this area, and the effect is better.
  • phase transfer agents that are stable to high concentrations of base.
  • the above-mentioned technology can be recycled and reused by using alkali liquid and solvent separately, and the synthesis process is long and consumes a large amount of energy.
  • the lower boiling point of benzene and toluene is used as the solvent, and the solvent is entrained in the exhaust gas in a large amount, and the reaction is difficult to maintain effectively; the reaction is a two-phase reaction using pyridine and its hydrocarbon derivative as a solvent. Therefore, it is necessary to screen reasonable reaction process conditions.
  • the present invention provides a substitute for a quaternary ammonium salt with a crown ether.
  • the crown ether ether compound is completely different from the structure of the quaternary ammonium salt, and the ether is stable to strong oxidizing agents, strong reducing agents, and strong bases.
  • Replacing the quaternary ammonium salt with crown ether can not only retain the advantages of mild reaction conditions, high conversion of hydrazine, high selectivity of fluorenone, but also long-term recycling of solvent, lye, crown ether, etc.
  • the prior art quaternary ammonium salt is easily decomposed and cannot be used for a long time.
  • the present invention proposes a more optimized synthesis process in the selection of a solvent, optimization of reaction conditions, and the advantages of combining crown ethers, and has remarkable practicality in industrial production.
  • hydrazine as a raw material, a base as a catalyst, an organic solvent containing an aromatic ring in the molecule and water as a solvent, a crown ether as a phase transfer agent, and an oxygen-containing gas as an oxidant to prepare a 9-fluorenone. Specifically, the following steps are included:
  • the mixture of the hydrazine raw material, the aromatic ring-containing organic solvent and the crown ether in the molecule is stirred at 50 to 65 ° C, and the alkali solution is added.
  • the present invention is not limited to this feeding sequence and feeding mode, as long as it is reasonable.
  • the reaction with an oxygen-containing gas is carried out.
  • a small amount of organic solvent entrained in the reaction tail gas is recovered by freezing or oil absorption to prevent it from polluting the environment.
  • the reaction liquid is cooled, the fluorenone is crystallized, and the reaction mixture is filtered to obtain 9-fluorenone crystals and a filtrate, and the filtrate is directly used for the next reaction, and the 9-fluorenone crystal is simply washed. Dry to become a product.
  • the bismuth raw material is a high-purity bismuth having a purity of ⁇ 99.5% of coarse and coarse mash;
  • the bismuth raw material further includes various substituted hydrazines
  • the base is a hydroxide of an alkali metal, an alkali metal carbonate, and an alkali metal hydrogencarbonate in the periodic table;
  • the organic solvent containing an aromatic ring in the molecule is selected from one of ⁇ C 9 aromatic hydrocarbons, nitrogen heterocyclic compounds and 9-fluorenone having a boiling point of ⁇ 138 ° C;
  • the structural formula of the crown ether is Wherein an integer of n ⁇ 4; R 2 and R 3 attached to adjacent carbon atoms of the crown ether are the same or different and are respectively selected from hydrogen or a linear hydrocarbon group of C 1-10 , a branched hydrocarbon group, a cycloalkyl hydrocarbon group. a hydrocarbyl cycloalkyl group, a hydrocarbyl aryl group, an aryl hydrocarbyl group, or R 2 and R 3 form a cyclohexane ring structure and a crown ether ring to form a fused ring structure, or R 2 and R 3 form a benzene ring structure and a crown ether ring. Thick ring structure.
  • the same crown ether can form a plurality of cyclohexane ring structures and a crown ether ring to form a fused ring structure, and a plurality of benzene ring structures and a crown ether ring form a fused ring structure.
  • the cerium raw material is added in a solution, a saturated solution or a suspension which forms cerium with an organic solvent;
  • the oxygen-containing gas selects one of clean air, oxygen-enriched air, and oxygen, and enters the reaction system through a gas disperser;
  • the molar ratio of the cerium raw material to the crown ether is 5 to 200:1;
  • the concentration of the alkali solution is 25 to 55%
  • the volume ratio of the organic solvent to the alkali solution is 1:0.3 to 1.5;
  • the oxygen-containing gas is a wetting gas, and oxygen is excessive in order to ensure rapid and complete conversion of hydrazine to anthrone.
  • the reaction temperature of the present invention can be taken in a wide range, for example, the reaction can be smoothly carried out at 10 to 100 ° C, but from the viewpoint of practical application and energy saving, the reaction is generally better at 50 to 65 ° C;
  • the ruthenium raw materials used in the present invention are divided into two kinds of specifications, one is industrial (crude) ruthenium, and its purity is ⁇ 95%, which can be directly converted into fluorenone with a purity of ⁇ 95% for general industrial use.
  • the second type is high-purity hydrazine, which is a high-purity hydrazine with a purity of ⁇ 99.5% purified by purity ⁇ 95%, which can be directly converted into high-purity fluorenone with a purity of ⁇ 99.5% for high-end manufacturing. raw material.
  • the outstanding advantage of the present invention is that under the characteristic reaction conditions of the present invention, the reaction of converting hydrazine into 9-fluorenone is a high atomic economic reaction, and hydrazine can be quantitatively converted, 100% of 9-fluorenone, and impurities in bismuth. No change.
  • the high-purity lanthanum is a high-purity lanthanum having a purity of ⁇ 99.5% obtained by industrial recrystallization from a solvent such as industrial ethanol, ethanol, propanol, butanol, toluene, xylene, cyclohexane or the like as a solvent.
  • the ruthenium raw material used in the present invention is not limited to industrial (rough) ruthenium and high-purity ruthenium, and includes various substituted oximes, as described in the following reaction formula.
  • the solvent of the present invention is an aromatic ring-containing organic solvent in the molecule selected from at least one of a ⁇ C 9 aromatic hydrocarbon having a boiling point of ⁇ 138 ° C, a nitrogen heterocyclic compound, and a product 9-fluorenone.
  • the aromatic hydrocarbon solvent of ⁇ C 9 having a boiling point of ⁇ 138 ° C is selected from the group consisting of o-xylene, m-xylene, p-xylene, o-methyl ethylbenzene, m-methyl ethylbenzene, p-methyl ethylbenzene, o-toluene, a mixture of one or more of meta-xylene, mesitylene, propylbenzene, and cumene. Preference is given to mixing xylene, mixed methyl ethylbenzene or mixed trimethylbenzene as solvent.
  • the solvent with a lower boiling point such as benzene or toluene as the reaction proceeds, entrains a large amount of solvent into the system by the reaction tail gas, so that the oil-water ratio of the reaction system changes, the reaction effect deteriorates, and the environment is polluted.
  • the nitrogen heterocyclic compound is used as a solvent, and is a mixture of one or more selected from the group consisting of quinoline, a hydrocarbyl derivative of quinoline, a hydrocarbyl derivative of isoquinoline and isoquinoline.
  • quinoline or isoquinoline is used as a solvent.
  • the low-boiling pyridine or pyridine hydrocarbyl derivative is a solvent, and is mutually miscible with water.
  • the structure of the selected 9-fluorenone is consistent with the structure of the hydrazine raw material; the purity of 9-fluorenone is consistent with the purity of hydrazine; the procedure for separating and purifying the fluorenone can be simplified, and Achieve the lowest cost of anthrone production.
  • the base used in the present invention is an alkali metal hydroxide, an alkali metal carbonate, and an alkali metal hydrogencarbonate in the periodic table.
  • the alkali metal therein is an ordinary alkali metal such as lithium, sodium and potassium.
  • the crown ether used in the present invention has the formula
  • n 4 to 10.
  • the R 2 and R 3 attached to the adjacent carbon atom of the crown ether are the same or different, respectively, hydrogen or a C 1-10 linear hydrocarbon group, a branched hydrocarbon group, a cycloalkyl hydrocarbon group, a hydrocarbon group cycloalkyl group, a hydrocarbon group a aryl group, or an aryl hydrocarbon group, or R 2 and R 3 form a cyclohexane ring structure and a crown ether ring to form a fused ring structure, such as cyclohexane and crown ether, cyclohexane and 18-crown-6, dicyclohexane.
  • R 2 and R 3 form an aromatic ring and a crown ether ring to form a fused aromatic ring structure, such as benzo-crown ether, benzo-18-crown-6, dibenzo-18-crown-6 and the like.
  • the cyclohexane and crown ether is fused with at least one cyclohexane and a crown ether, and at least one benzene ring of the benzo crown ether is fused to the crown ether.
  • the ruthenium raw material of the present invention may be added in an amount of a ruthenium solution, a saturated solution of ruthenium or a ruthenium suspension, depending on the desired reaction rate, and also determines the utilization rate of the reaction equipment. In general, the mass transfer heat transfer rate of the solution is good, and the utilization rate of the suspension device is high.
  • the ratio of other materials is generally: the molar ratio of cerium to crown ether is 5 to 200:1; the concentration of the alkali solution is 25 to 55 wt%; and the volume ratio of organic solvent to alkali solution is 1:0.3 to 1.5. The combined effect of the reaction under such conditions is good.
  • the oxidizing agent of the present invention is a molecular oxygen-containing gas and may be clean air, oxygen-enriched air or oxygen.
  • the molecular oxygen-containing gas is wetted by water vapor at the reaction temperature before entering the reactor, and the wet oxygen-containing gas enters the reactor through the gas disperser.
  • the high aeration rate has the function of a stirrer, and the gas disperser has the function of Conducive to the high dispersion of oxygen, is conducive to mass transfer heat transfer of gas-liquid-liquid phase medium.
  • the gas feed rate is from 300 to 600 ml/min.
  • the gas disperser is fired in a microporous glass sand board.
  • the reactor When oxygen is used as the oxidant, the reactor is sealed and the oxygen is slightly excess, typically no more than one percent excess. Otherwise, a side reaction may occur.
  • the stirring rate is very important for the phase transfer catalysis reaction.
  • the sufficient stirring rate ensures that the gas-liquid-liquid phase medium is well mixed and evenly contacted to ensure good mass transfer heat transfer.
  • the agitation rate is from 200 to 400 rpm.
  • the reaction temperature of the reaction is very wide, and it can be used at 0 to 100 °C.
  • the reaction temperature depends on other conditions, and the reaction temperature determines the energy consumption and also determines the reaction time, which is determined comprehensively.
  • the general case is 50 to 65 ° C.
  • the reaction temperature is 58 to 60 ° C.
  • the reaction off-gas recovers a small amount of solvent entrained by freezing or oil absorption, reducing the environmental pollution of the solvent.
  • the solvent having a high boiling point can be recovered by a freezing method, and the xylene in the exhaust gas is recovered by using a high-boiling ⁇ -methylnaphthalene absorption agent, and the two methods are not strictly limited.
  • 9-fluorenone is used as a solvent, no ketone is entrained in the exhaust gas, and the process can be simplified without considering the solvent recovery problem.
  • oxygen is used as the oxidant, there is no oxidation tail gas.
  • the ruthenium conversion can reach or easily reach 100%.
  • the ruthenium conversion rate reaches ⁇ 98.5%, the reaction time is short, and the reaction liquid is subjected to a simple post-treatment process such as cooling, crystallization, filtration, etc., and the filtrate is directly recycled.
  • the fluorenone crystals do not contain hydrazine.
  • the product 9-fluorenone is used as a solvent, and the structure of the selected 9-fluorenone is consistent with the structure of hydrazine; the purity of 9-fluorenone is consistent with the purity of hydrazine to simplify the separation process.
  • the reaction temperature is 58-83 ° C. It is selected from the reaction temperature of 58-60 ° C, which is determined by the lowest eutectic point and operating stability of anthrone and hydrazine. Energy consumption is higher than 60 ° C.
  • reaction temperature is 58 ° C
  • a small amount of a mixture of anthrone and hydrazine is added as a reactant to ensure that a thin organic solution layer is formed on the surface of the water layer at the reaction temperature, and one, multiple or continuous addition is carried out with the conversion of hydrazine. ⁇
  • the reaction mixture of hydrazine and 9-fluorenone In the suspension of solution or bismuth, after the conversion rate of hydrazine reaches the requirement, the reaction is stopped, the reaction solution is introduced into a hot organic solvent, mixed, dissolved, and the dissolved mixture is separated by hot separation, and the aqueous layer is used for the next cycle reaction, oil layer After cooling and filtration, the 9-fluorenone crystals are simply washed and dried to obtain the product fluorenone, and the organic solution of the filtrate is retained for recycling.
  • the molar ratio of anthrone and hydrazine in the mixture of anthrone and hydrazine was 61:39
  • the reaction solution is introduced into a hot organic solvent, or a hot solvent is introduced into the reaction solution.
  • the solvent is a ⁇ C 9 aromatic hydrocarbon solvent selected from the group consisting of benzene, toluene, o-xylene, m-xylene, and p-. a mixture of one or more of toluene.
  • xylene is mixed as a solvent.
  • at least one of cyclohexane, cycloheptane, hexane and heptane may also be used; cyclohexane is preferred.
  • the preparation method of the present invention is also applicable to the preparation of derivatives of anthrone in the following reaction formula:
  • R 1 to R 8 are the same or different and are selected from hydrogen, a halogen atom or an inert substituent, and the inert substituent is a substituent which does not react under the reaction conditions, and is selected from C 1 to An alkyl group of C 10 , a C 1 -C 10 alkoxy group, a C 6 -C 10 alkaryl group, a C 6 -C 10 aralkyl group, a C 1 -C 10 acyl group, a nitro group and a carboxyl group;
  • the C 1 -C 10 alkyl group is selected from the group consisting of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, decyl, decyl, isopropyl, isobutyl, iso Pentyl, cyclopentyl, cyclohexyl, methylcyclopentyl, dimethylcyclopentyl and dimethylcyclohexyl;
  • the C 1 -C 10 alkoxy group is selected from the group consisting of methoxy, ethoxy, propoxy, isobutoxy, tert-butoxy, cyclopentyloxy, cyclohexyloxy and phenoxy;
  • the C 6 -C 10 alkaryl group and the C 6 -C 10 aralkyl group are selected from the group consisting of phenyl, benzyl and tolyl;
  • the C 1 -C 10 acyl group is selected from the group consisting of formyl, acetyl, octanoyl and isovaleryl;
  • the progress of the reaction is preferably monitored by thin layer chromatography.
  • the reaction was followed by thin layer chromatography, and the conversion of hydrazine was detected by sampling until the spots of cockroaches disappeared, and the reaction was continued for 1-2 hours to stop the reaction.
  • the preparation method according to the invention can be produced by using different structures and different purity specifications according to the application. 9-fluorenone of the structure and corresponding purity specifications.
  • the reaction is a high atomic economic reaction, only a small amount of water is a by-product, and hydrazine can be converted into 9-fluorenone by 100%, and the impurities in the hydrazine do not participate in the reaction.
  • Air is the cheapest oxidant, and it is easy to separate.
  • the obtained reaction liquid can be cooled, crystallized, filtered and washed to obtain the product fluorenone. Without further purification of the product, the filtrate can be directly recycled, and the synthesis process is simple.
  • the present invention is Green synthesis method.
  • hydrazine can be reacted in a solvent in a suspended state, thereby improving the utilization efficiency of the reactor.
  • the preparation method of the invention has mild reaction conditions, and after the reaction liquid is cooled and the crystal ketone is separated, the filtrate containing the solvent, the alkali, the crown ether and the unreacted ruthenium raw material or even the by-product water is directly recycled, and the use is high.
  • the boiling point oil absorption reaction tail gas entrains the solvent, which is an energy-saving and environment-friendly green synthesis process.
  • the spot plate was sampled, the spot of the cockroach disappeared, and the reaction was continued for 1 hour.
  • the sample was analyzed by gas chromatography.
  • the chromatogram was compared with the chromatogram of the ruthenium raw material, and the peak of ruthenium was lacking, and only the peak of fluorenone was increased.
  • the reaction solution was cooled, the fluorenone was crystallized, the mixture was filtered, and the filtrate was recovered for recycling, and the crystalline fluorenone was washed with a small amount of water, and the crystal was naturally dried in the air.
  • the weight was 32.42 g, and the purity was 100% by gas chromatography.
  • the ⁇ -methylnaphthalene absorbent is weighted and has water droplets present.
  • Example 2 The same as in Example 1 except that 6.7 g of potassium hydroxide was used instead of 6.7 g of potassium hydroxide. After 5 h of reaction, thin layer chromatography showed that the spot of the ruthenium material disappeared, and the reaction was stopped after 1 h of reaction. Chromatographic reaction showed a ⁇ 100% conversion with only one peak of fluorenone. The reaction solution was cooled, the fluorenone was crystallized, the mixture was filtered, and the filtrate was recovered for recycling, and the crystalline fluorenone was washed with a small amount of water, and the crystal was naturally dried in the air. The weight was weighed to 30.73 g, and its purity was 100% by gas chromatography.
  • Example 2 According to the procedure of Example 1, 17.64 g of pure anthrone was added, 10.78 g of industrial hydrazine, 18-crown-6 0.82 g, and 45 wt%.
  • the KOH solution was 6 ml to a four-necked flask and the bath temperature was maintained at 58 °C. After 4 h of reaction, thin layer chromatography showed that the spot of the ruthenium material disappeared, and the reaction was stopped after 1 h of reaction. Chromatographic analysis showed complete conversion of hydrazine and only increased one peak of fluorenone.
  • the reaction solution is introduced into hot cyclohexane to dissolve, and the aqueous layer is separated for next reaction, the oil layer is cooled, the fluorenone is crystallized, the mixture is filtered, the filtrate is recovered for use, the crystal fluorenone is washed with a small amount of water, and the air is naturally dried. Crystal.
  • the weight was 21.68 g, and the purity was 100% by gas chromatography.
  • reaction was terminated, the reaction solution was poured into hot toluene, and the aqueous layer was separated, the toluene layer was cooled, the oxime was crystallized, and the toluene was collected by suction filtration, and the fluorenone crystals were washed with a small amount of water and dried in the air to obtain 39.82 g of pure anthrone.
  • Example 2 According to the procedure of Example 1, 45 ml of xylene, 42.00 g of industrial hydrazine, 3.2 g of 18-crown-6, 7.3 g of K 2 CO 3 and 9 ml of water were placed in a four-necked flask at a stirring rate of 300 rpm, water bath temperature. At 58 ° C, clean air was passed through 300*2 ml/min. After 21 h of reaction, thin layer chromatography showed that the spot of the bismuth material disappeared.
  • Example 2 According to the procedure of Example 1, 45 ml of xylene, 42.00 g of industrial hydrazine, 3.2 g of 18-crown-6, 7.3 g of NaOH and 9 ml of water were placed in a four-necked flask at a stirring rate of 300 rpm, and the water bath temperature was 58 ° C. After passing clean air 300*2ml/min, after 21 hours of reaction, thin layer chromatography showed that the spot of the raw material disappeared.
  • Example 2 According to the procedure of Example 1, 45 ml of xylene, 42.00 g of industrial hydrazine, 2.62 g of 15-crown-5, 7.4 g of KOH and 9 ml of water were placed in a four-necked flask at a stirring rate of 300 rpm, and the water bath temperature was 58 ° C. After passing clean air 300*2ml/min, after 7.5 hours of reaction, thin layer chromatography showed that the spot of the raw material disappeared.
  • Example 1 According to the procedure of Example 1, 50 ml of xylene, 40.03 g of industrial hydrazine, 8.11 g of 18-crown-6, and 24 ml of 40 wt% of KOH solution were placed in a four-necked flask, and after 7 hours of reaction, thin layer chromatography showed that the bismuth raw material spots disappeared. After the reaction was continued for 1 h, the reaction was stopped. The reaction solution was cooled, the fluorenone was crystallized, the mixture was filtered, and the filtrate was recovered for use. The crystalline fluorenone was washed with a small amount of water, naturally dried in air, weighed 23.94 g, and the purity was 100% by gas chromatography.
  • the separated filtrate was used to replace 50 ml of xylene, 8.11 g of 18-crown-6 and 24 ml of 40% KOH solution, and 40 g of industrial hydrazine was added to do the above experiment.
  • thin layer chromatography showed that the bismuth material spots disappeared and the reaction continued for 1 h. Stop the reaction afterwards.
  • Chromatographic reaction showed a ⁇ 100% conversion with only one peak of fluorenone.
  • the reaction solution was cooled, the fluorenone was crystallized, the mixture was filtered, and the filtrate was recovered for use, and the crystalline fluorenone was washed with a small amount of water and left to dry naturally in the air.
  • the crystal was weighed 38.82 g, and its purity was 100% by gas chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种由芴制备9-芴酮的方法,以芴为原料,以碱为催化剂,以含芳香环的有机溶剂和水为溶剂,以冠醚为相转移剂制备9-芴酮,本发明的制备方法是以工业芴和高纯度芴分别制备工业9-芴酮和高纯度9-芴酮。在发明的条件下,芴的转化率可达到100%,芴酮的选择性达到100%;反应液冷却、分出晶体芴酮后,含溶剂、碱、冠醚、芴、芴酮的滤液直接循环利用,用高沸点溶剂吸收反应尾气中的溶剂,是一条节能、环境友好的化学合成工艺。

Description

一种由芴制备9-芴酮的方法 技术领域
本发明涉及一种由相转移法催化氧化芴制备9-芴酮(简称芴酮)的方法,属于有机合成领域。
背景技术
芴是煤焦油的重要组分之一,占煤焦油总量的1~2%。从焦油中分离芴的成本是比较低的。目前,分离得到芴的工业品的纯度多数≥95%。芴可以转化成各种取代芴衍生物,如烃基取代芴、卤代芴、硝基芴、酰基芴、羧基芴等。9-芴酮,简称芴酮,是芴深加工的芴的衍生物,工业品芴酮纯度要求≥95%。芴酮衍生物包括各种取代芴衍生物转化得到的9-芴酮相应的衍生物,是重要化工原料,很多重要芴系衍生物是由芴酮及其衍生物合成的,如双酚芴酮、9,9-双(甲氧甲基)芴等。因此,芴酮及其衍生物在市场上需求量大,与其相关的精细化工产品发展前景广阔。芴酮作为高端制造的原料,要求其纯度≥99.5%,如制备显示材料液晶,高分子材料等都需要高纯度的芴酮。工业品芴的组成取决于煤焦油的来源,一般情况所含杂质多数是含氧化物。因此,芴的纯化精制相对产物芴酮的纯化精制容易得多,芴纯化精制后剩余物可以直接回到煤焦油中,不产生二次废弃物。
早在20世纪30-50年代,已经开展对芴酮的合成及其应用的研究,但是大规模生产芴酮的工艺及生产厂家却不多见报道。近年来报道逐渐在增加。
由芴氧化制备芴酮的反应是将芴亚甲基氧化为羰基的过程。芴亚甲基上氢原子较为活泼,容易发生氧化反应。因此,有关以芴为原料合成芴酮的方法较多。根据使用的氧化剂和反应状态等,芴氧化合成芴酮的方法概括成三大类:空气气相氧化法、空气液相氧化法和其它氧化剂氧化法。US5902907(1999)和CN101385990A(2009)报道了气相氧化法,芴以气态形式同空气在高于380℃的固相催化剂床层中反应。由于反应温度较高,芴容易发生深度氧化,生成各种难以分离的副产物。空气液相氧化法大多数是以吡啶(US4218400)、二甲基亚砜[US3875237、山西化工(1989)、燃料与化工(1999)和上海化工(2005)]等极性非质子溶剂为反应溶剂,碱金属氢氧化物为催化剂,气液相反应。其分离过程溶剂损耗量大,过程复杂,能耗大,需要考虑溶剂的回收利用问题。以1,3-二甲基-2-咪唑啉(DMI)为溶剂,氢氧化钠为催化剂,分子氧为氧化剂,在高于40℃下反应,芴也容易深度氧化[化学工业与工程(2015)]。而化学品氧化剂,如双氧水氧化,芴酮的生产成本较高。
CN102020543A报道甲苯为溶剂,季铵盐为催化剂,不加碱,由空气氧化芴制备芴酮的方法看似简单。但是,在甲苯溶剂中只使用季铵盐为催化剂,不加碱,空气氧化芴制备芴酮,芴的转化率极低。
CN102391087A报道:以工业芴为原料,以苯系(甲苯、二甲苯)为溶剂,氢氧化钠为催化剂,空气为氧化剂,季铵盐为相转移催化剂制备芴酮。其缺点是不加水,季铵盐难发挥相转移作用;反应温度高,溶剂损失大等问题。
具有芳香性的化合物(包括杂环芳香性化合物)都可以作为芴氧化制备芴酮的溶剂,≤C9的芳烃是煤焦油的馏分,尤其是邻二甲苯、间二甲苯和对二甲苯的混合物,邻甲基乙苯、间甲基乙苯和对甲基乙苯的混合物以及邻三甲苯、偏三甲苯和均三甲苯的混合物,工业用途不多,分离又比较困难。以其混合物做溶剂,可以有效地利用煤焦油馏分,能形成煤焦油工业产业链,降低芴酮的生产成本。因此,近年以具有芳香性的化合物为溶剂,碱为催化剂,季铵盐为相转移剂,空气氧化芴制备9-芴酮的方法报道较多。CN201310355676.8、CA2013103556274.x、CA201310355847.7、CA201410074857.8和CN 201410074024.1报道了这方面的工作,效果也比较好。但是,在较高温度或在较长时间下,季铵盐与高浓度的强碱氢氧化钠,尤其是氧化钾等作用发生分解而失去相转移的功能,难以维持季铵盐循环利用。需要寻找对高浓度碱稳定的相转移剂。此外,从实用性考虑,上述技术采用碱液和溶剂分别回收、精制才能循环利用,合成工艺沉长,耗能较大。采用较低沸点的苯、甲苯为溶剂,溶剂大量被尾气夹带,反应难以维持有效进行;采用吡啶及其烃基衍生物为溶剂,反应是二相反应。因此,需要筛选合理的反应工艺条件。
发明内容
为解决现有技术存在的在较高温度或在较长时间下,季铵盐与高浓度的强碱氢氧化钠等作用而发生分解的缺欠,本发明提供一种以冠醚替代季铵盐为相转移剂,催化氧化芴制备芴酮的新方法。冠醚属醚类化合物,与季铵盐的结构完全不同,醚对强氧化剂、强还原剂和强碱等是稳定的。以冠醚替代季铵盐,既可保留相转移催化反应的反应条件温和、芴高转化率、芴酮选择性高的优点,又可直接长时间循环利用溶剂、碱液、冠醚等,克服了已有技术的季铵盐易分解不能长时间循化使用的缺欠问题。
为解决现有技术的合成工艺方面的问题,本发明在溶剂的选择、反应条件的优化、以及结合冠醚的优点,提出更优化的合成工艺,具有显著的工业生产的实践性。
本发明的技术目的通过以下技术方案实现:
以芴为原料,以碱为催化剂,以分子中含芳环的有机溶剂和水为溶剂,以冠醚为相转移剂,以含氧气体为氧化剂制备9-芴酮。具体包括如下步骤:
将芴原料、分子中含芳环的有机溶剂和冠醚的混合物,在50~65℃搅拌下,加入碱溶液,本发明不限于这种加料顺序和加料方式,只要合理即可以。通入含氧气体反应。通过冷冻或油吸收方式回收反应尾气夹带的少量有机溶剂,防止其污染环境。至芴转化率≥98.5%时,反应结束后,冷却反应液,芴酮结晶,过滤反应混合物,得到9-芴酮晶体和滤液,滤液直接用于下一次反应,9-芴酮晶体经过简单洗涤、干燥成为产物。
所述的芴原料是粗芴和粗芴经过精制纯度≥99.5%的高纯度芴二种规格的芴;
所述的芴原料还包括各种取代芴;
所述的碱是周期表中碱金属的氢氧化物、碱金属的碳酸盐和碱金属的碳酸氢盐;
所述分子中含芳环的有机溶剂选自沸点≥138℃的≤C9的芳香烃、氮杂环化合物和9-芴酮中的一种;
所述的冠醚的结构通式为
Figure PCTCN2016085081-appb-000001
其中n≥4的整数;冠醚相邻碳原子上连接的R2和R3是相同的或不同的,分别选自氢或C1~10的直链烃基、支链烃基、环烷基烃基、烃基环烷基、烃基芳基、芳基烃基,或R2和R3形成环己烷环结构与冠醚环构成稠环结构,或R2和R3形成苯环结构与冠醚环构成稠环结构。随着n值增大,同一个冠醚可形成多个环己烷环结构与冠醚环构成稠环结构、多个苯环结构与冠醚环构成稠环结构。
所述芴原料的加入量为与有机溶剂形成芴的溶液、饱和溶液或悬浮液;
所述的含氧气体选择洁净的空气、富氧的空气、氧气中的一种,通过气体分散器进入反应体系;
所述芴原料与冠醚的摩尔比为5~200:1;
所述碱溶液的浓度为25~55%;
所述有机溶剂与碱溶液的体积比为1:0.3~1.5;
所述的含氧气体是润湿的气体,为保证芴快速、完全转化成芴酮,氧是过量的。
本发明的反应温度可以在较宽的范围取值,如在10~100℃反应都能顺利进行,但从实际应用性和节能二个角度考虑,一般是在50~65℃反应较好;
本发明使用的芴原料分为二种规格,一种是工业(粗)芴,其纯度≥95%,可以直接转化成纯度≥95%的芴酮,供一般工业用途。第二种是高纯度芴,是由纯度≥95%的粗芴经过精制得到的纯度≥99.5%的高纯度芴,其可以直接转化成纯度≥99.5%的高纯度芴酮,供高端制造用的原料。如制造显示材料,发光材料等。
本发明的突出优点是在本发明的特征反应条件下,芴转化成9-芴酮的反应是高原子经济性反应,芴可定量地转化、100%的生成9-芴酮,芴中的杂质不发生变化。
工业芴中多数杂质是含氧化合物,其结构接近芴酮的结构,精制纯化芴比精制纯化芴酮容易,且不产生二次废弃物。因此,在制备高纯度芴酮时,选择高纯度芴为原料是合理的方案。
高纯度芴是由工业芴经过工业乙醇、乙醇、丙醇、丁醇、甲苯、二甲苯、环己烷等溶剂或其混合物等作溶剂重结晶得到的纯度≥99.5%的高纯度芴。
本发明使用的芴原料不限于工业(粗)芴和高纯度芴二种,还包括各种取代芴,详见下文的反应式。
本发明的溶剂是分子中含芳环的有机溶剂,选自沸点≥138℃的≤C9的芳香烃、氮杂环化合物和产物9-芴酮中的至少一种。
所述沸点≥138℃的≤C9的芳香烃溶剂选自邻二甲苯、间二甲苯、对二甲苯、邻甲基乙苯、间甲基乙苯、对甲基乙苯、邻三甲苯、偏三甲苯、均三甲苯、丙基苯和异丙基苯中的一种或多种的混合物。优选混合二甲苯、混合甲基乙苯或混合三甲苯作溶剂。而苯、甲苯等沸点较低的溶剂,随着反应进行大量的溶剂被反应尾气夹带出体系,使反应体系的油水比改变,反应效果变坏,同时污染环境。
所述氮杂环化合物做溶剂,选自喹啉、喹啉的烃基衍生物、异喹啉和异喹啉的烃基衍生物中的一种或几种的混合物。优选喹啉、异喹啉做溶剂。低沸点的吡啶、吡啶的烃基衍生物为溶剂,一方面与水互溶,另一方面也存在被反应尾气夹带出体系,使反应效果变坏,同时污染环境等问题。
所述产物9-芴酮做溶剂时,选择的9-芴酮的结构与芴原料的结构一致;9-芴酮的纯度与芴的纯度一致;既可简化分离精制芴酮的程序,又可实现芴酮生产最低成本。
本发明使用的碱是周期表中碱金属的氢氧化物、碱金属的碳酸盐和碱金属的碳酸氢盐。其中的碱金属是锂、钠和钾等普通常用碱金属。
本发明使用的冠醚是具有通式为
Figure PCTCN2016085081-appb-000002
的冠醚,其n=4~10的整数。例如冠醚12-冠-4、15-冠-5、18-冠-6、21-冠-7、24冠-8、27冠-9、30-冠-10等。冠醚相邻碳原子上连接的R2和R3是相同的或不同的,分别是氢或C1~10的直链烃基、支链烃基、环烷基烃基、烃基环烷基、烃基芳基、芳基烃基,或R2和R3形成环己烷环结构与冠醚环构成稠环结构,如环己烷并冠醚,环己烷并18-冠-6、二环己烷并18-冠-6等,或R2和R3形成芳环与冠醚环构成稠芳环结构,如苯并冠醚,苯并18-冠-6、二苯并18-冠-6等。环己烷并冠醚至少一个环己烷与冠醚稠合,苯并冠醚至少一个苯环与冠醚稠合。
本发明芴原料的加入量可与相应的溶剂形成芴的溶液、芴的饱和溶液或芴的悬浮液,取决于要求的反应速率,也决定反应设备的利用率。一般说来,溶液的传质传热速率较好,悬浮液的设备利用率高。
其它物料的配比一般是:芴与冠醚的摩尔比为5~200:1;碱溶液的浓度为25~55wt%;有机溶剂与碱溶液的体积比为1:0.3~1.5。在这样的条件下反应的综合效果较好。
本发明的氧化剂是含分子氧的气体,可以是清洁的空气、含富氧的空气或氧气。含分子氧的气体进入反应器前经过同反应温度的水蒸气润湿,润湿的含氧气体通过气体分散器进入反应器,足够高的通气速率有搅拌器的作用,气体分散器的作用有利于氧高度分散,有利于气-液-液相介质的传质传热。优选气体通入速率为300~600ml/min。气体分散器是微孔玻璃沙板烧制的。
使用氧气作氧化剂时,反应器是密封的,氧是微过量的,一般过量不超过百分之一。否则可能有副反应发生。
搅拌速率对相转移催化反应很重要,足够的搅拌速率保证气-液-液相介质充分混合均匀接触,保证良好地传质传热。优选搅拌速率为200~400转/min。
本反应的适应温度很宽,在0~100℃均可以。反应温度取决于其它条件,反应温度决定能耗、也决定反应时间,综合考虑确定。一般情况是50~65℃,当用9-芴酮做溶剂时,反应温度为58~60℃。
反应尾气通过冷冻或油吸收回收其夹带的少量溶剂,减少溶剂对环境的污染。例如高沸点的溶剂可用冷冻的方法回收,利用高沸点的α-甲基萘吸收等剂回收尾气中的二甲苯,二种方法未有严格的限制。当使用9-芴酮为溶剂时,尾气中无夹带芴酮,可以不考虑溶剂回收问题,简化工艺。以氧气为氧化剂时,无氧化尾气。
在本发明选择的条件下,芴转化率能达到或容易达到100%。芴转化率达到≥98.5%,反应时间较短,反应液经过冷却、结晶、过滤等简单的后处理过程得到的9-芴酮晶体和滤液,滤液直接循环使用。芴酮结晶不含芴。
本发明用产物9-芴酮做溶剂,选择的9-芴酮的结构与芴的结构一致;9-芴酮的纯度与芴的纯度一致,以简化分离过程。
在用产物9-芴酮为溶剂时,反应温度58-83℃都可以。选自反应温度为58~60℃,是由芴酮与芴最低共熔点和操作稳定性决定的,高于60℃浪费能源。反应温度为58℃时,先加入少量的芴酮和芴的混合物为反应物,保证在反应温度下在水层表面形成薄的有机溶液层,随着芴的转化,一次、多次或连续加入芴,保持反应混合物的芴与9-芴酮 呈溶液或呈芴的悬浮液,芴的转化率达到要求后,停止反应,将反应液导入热的有机溶剂混合、溶解,趁热分离溶解后的混合物,水层用于下次循环反应,油层冷却、过滤,得到9-芴酮晶体经过简单洗涤、干燥得到产物芴酮,滤液有机溶液保留循环使用。所述芴酮和芴的混合物中芴酮和芴的摩尔比为61:39。
在9-芴酮为溶剂时,反应液导入热的有机溶剂,或热的溶剂导入反应液,溶剂是≤C9芳香烃溶剂,选自苯、甲苯、邻二甲苯、间二甲苯、对二甲苯中的一种或多种的混合物。优选混合二甲苯作溶剂。此外,亦可选用环己烷、环庚烷、己烷、庚烷中至少一种;优先选用环己烷。
本发明所述的制备方法也适用于下述反应通式中芴酮的衍生物制备:
Figure PCTCN2016085081-appb-000003
所述通式中R1-R8是相同的或不同的,选自氢、卤原子或惰性取代基,所述的惰性取代基是在反应条件不发生反应的取代基,选自C1~C10的烷基、C1~C10的烷氧基、C6~C10的烷芳基、C6~C10的芳烷基、C1~C10的酰基、硝基和羧基;
所述C1~C10的烷基选自甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、异丙基、异丁基、异戊基、环戊基、环己基、甲基环戊基、二甲基环戊基和二甲基环己基;
所述C1~C10的烷氧基选自甲氧基、乙氧基、丙氧基、异丁氧基、叔丁氧基、环戊基氧基、环己基氧基和苯氧基;
所述C6~C10的烷芳基和C6~C10的芳烷基选自苯基、苯甲基和甲苯基;
所述C1~C10的酰基选自甲酰基、乙酰基、辛酰基和异戊酰基;
在本发明的条件下,优选采用薄层色谱监控反应进程。薄层色谱以硅胶G254涂板,做为固定相,以乙酸乙酯:石油醚=1:20(体积比)的混合溶液为展开剂。用薄层色谱跟踪反应,通过取样检测芴的转化情况,直至芴的斑点消失,再继续反应1-2h,停止反应。
本发明的有益效果是:
①本发明所述的制备方法,依据用途,可用不同结构、不同纯度规格的芴生产相 应结构、相应纯度规格的9-芴酮。
在本发明条件下,反应是高原子经济性反应,仅有少量的水为副产物,芴可以100%转化成9-芴酮,芴中的杂质不参与反应。空气是最便宜的氧化剂,又容易分离,所得反应液经过冷却、结晶、过滤和洗涤等简单操作即可得到产物芴酮,无需进一步纯化产物,滤液可直接循环利用,合成工艺简单,本发明是绿色合成方法。
②本发明所述的制备方法,在合适的条件下,高纯芴的转化率可达到100%,得到纯度100%的芴酮,满足高端制造对高纯度芴酮的需要。
③本发明所述的制备方法,芴可以悬浮状态在溶剂中反应,提高了反应器的利用效率。
④本发明所述的制备方法,反应条件温和,反应液冷却、分出晶体芴酮后,含溶剂、碱、冠醚和未反应的芴原料、甚至副产物水的滤液直接循环利用,用高沸点油吸收反应尾气夹带溶剂,是一条节能、环境友好的绿色合成工艺。
⑤当用9-芴酮做溶剂时,可实现连续生产过程,可以省去用高沸点油吸收反应尾气夹带溶剂的过程。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
将质量分数为95.44%的工业芴42.00g、18-冠-6 3.20g、二甲苯45ml依次加到250ml的四口烧瓶内,调节水浴温度保持50℃,用α-甲基萘吸收尾气夹带的溶剂,启动机械搅拌,调节搅拌速率300转/min,搅拌10min后,加入6.70g KOH和10.0ml水。待混合均匀后,开始通入300ml x 2/min的洁净润湿的空气,记录反应时间,用薄层色谱跟踪反应。反应10h后取样点版,芴的斑点消失,继续反应1h,取样做气相色谱分析,色谱图与芴原料的色谱图比较,缺少芴的峰,只增加芴酮的峰。冷却反应液,芴酮结晶,过滤混合物,滤液回收待循环用,用少量水洗涤晶体芴酮,放置空气中自然干燥晶体。称重32.42g,气相色谱分析其纯度为100%。α-甲基萘吸收剂增重且有水珠存在。
实施例2
除了以8.4g氢氧化钾代替6.7g氢氧化钾外,其它同实施例1。反应5h后,薄层色谱显示芴原料斑点消失,继续反应1h后停止反应。色谱分析反应液显示芴100%转化,只增加芴酮一个峰。冷却反应液,芴酮结晶,过滤混合物,滤液回收待循环用,用少量水洗涤晶体芴酮,放置空气中自然干燥晶体。称重30.73g,气相色谱分析其纯度为100%。
实施例3
按照实施例1的程序加入二甲苯45ml,工业芴62.62g,18-冠-6 4.80g,45wt%的KOH溶液10.0ml,水浴温度58℃。反应7h后,薄层色谱显示芴原料的斑点消失,继续反应1h后停止反应。色谱分析反应液显示芴100%转化,只增加芴酮一个峰。冷却反应液,芴酮结晶,过滤混合物,滤液回收待用,用少量水洗涤晶体芴酮,放置空气中自然干燥晶体。称重50.12g,气相色谱分析其纯度为100%。
实施例4
将30g异喹啉,40g工业芴,3.2g 18-冠-6和9ml 45wt%的KOH溶液加到四口烧瓶内,水浴温度58℃,按照实施例1进行反应,反应5h后,薄层色谱显示芴原料斑点消失,继续反应1h后停止反应。色谱分析反应液显示芴100%转化,只增加芴酮一个峰。冷却反应液,芴酮结晶,过滤混合物,回收滤液待用,用少量水洗涤晶体芴酮,放置空气中自然干燥晶体。.
实施例5
除用3.96g的15-冠-5替代4.80g 18-冠-6,45%的NaOH溶液替代45wt%的KOH溶液外,其它条件同实施例3,反应23h后,薄层色谱显示芴原料斑点消失,继续反应2h后停止反应。色谱分析反应液显示芴100%转化,只增加芴酮一个峰。冷却反应液,芴酮结晶,过滤混合物,滤液回收待用,用少量水洗涤晶体芴酮,放置空气中自然干燥晶体。称重48.55g,气相色谱分析其纯度为100%。
实施例6
按照实施例1的程序,加入纯芴酮17.64g,工业芴10.78g,18-冠-6 0.82g,45wt% 的KOH溶液6ml至四口瓶中,保持水浴温度58℃。反应4h后,薄层色谱显示芴原料斑点消失,继续反应1h后停止反应。色谱分析显示芴完全转化,只增加芴酮一个峰。将反应液导入热的环己烷中溶解,分出水层待下次反应循环利用,冷却油层,芴酮结晶,过滤混合物,滤液回收待用,用少量水洗涤晶体芴酮,放置空气中自然干燥晶体。称重21.68g,气相色谱分析其纯度为100%.
实施例7
在水浴温度75℃下,将20g纯度≥95%的工业芴溶于180mL工业乙醇,搅拌下冷却至35℃,芴结晶,减压过滤,洗涤滤饼,放在室温下自然干燥滤饼,得精制芴13.0g,气相分析芴纯度为100%。
用10.28g上述精制的芴代替实施例6中的10.78g工业芴,其它同实施例6,反应4h后,薄层色谱显示芴原料斑点消失,继续反应1h后停止反应。色谱分析反应液显示只有芴酮一个峰。冷却反应液,芴酮结晶,过滤混合物,滤液回收待用,用少量水洗涤晶体芴酮,放置空气中自然干燥晶体,得到27g纯芴酮。
实施例8
按照实施例5的程序,将17.64g的纯芴酮、10.78g工业芴、0.82g 18-冠-6、4.58g KOH、6ml水加到四口烧瓶内。反应5h后芴原料斑点接近消失,补加25.00g工业芴,继续反应11h,补加1.00g的18-冠-6,继续反应11h,芴原料斑点全部消失时,色谱分析反应液显示芴完全转化,只生成芴酮,其它组分峰数无变化。结束反应,反应液导入热甲苯中溶解,分出水层回收,甲苯层冷却,芴酮结晶,抽滤甲苯回收待用,用少量水洗涤芴酮晶体,空气中干燥,得到纯芴酮39.82g。
实施例9
按照实施例1的程序,将45ml的二甲苯,42.00g工业芴,3.2g 18-冠-6,7.3g K2CO3和9ml水装入四口烧瓶,搅拌速率300转/min,水浴温度58℃,通入洁净空气300*2ml/min,反应21h后,薄层色谱显示芴原料斑点消失。
实施例10
按照实施例1的程序,将45ml的二甲苯,42.00g工业芴,3.2g 18-冠-6,7.3g NaOH和9ml水装入四口烧瓶,搅拌速率300转/min,水浴温度58℃,通入洁净空气300*2ml/min,反应21h后,薄层色谱显示芴原料斑点消失。
实施例11
按照实施例1的程序,将45ml的二甲苯,42.00g工业芴,2.62g 15-冠-5,7.4g KOH和9ml水装入四口烧瓶,搅拌速率300转/min,水浴温度58℃,通入洁净空气300*2ml/min,反应7.5h后,薄层色谱显示芴原料斑点消失。
实施例12
按照实施例1的程序,将50ml二甲苯、40.03g工业芴、8.11g 18-冠-6、24ml 40wt%的KOH溶液加到四口烧瓶内,反应7h后,薄层色谱显示芴原料斑点消失,继续反应1h后停止反应。冷却反应液,芴酮结晶,过滤混合物,滤液回收待用,用少量水洗涤晶体芴酮,放置空气中自然干燥,称重23.94g,气相色谱分析其纯度为100%。
用分出的滤液替代50ml二甲苯、8.11g 18-冠-6和24ml 40%的KOH溶液,加入40g工业芴重做上述实验,反应10h后,薄层色谱显示芴原料斑点消失,继续反应1h后停止反应。色谱分析反应液显示芴100%转化,只增加芴酮一个峰。冷却反应液,芴酮结晶,过滤混合物,滤液回收待用,用少量水洗涤晶体芴酮,放置空气中自然干燥。称重晶体38.82g,气相色谱分析其纯度为100%。

Claims (9)

  1. 一种由芴制备9-芴酮的方法,其特征在于具体包括如下步骤:
    将芴原料、分子中含芳环的有机溶剂和冠醚混合,在50~65℃搅拌下,加入碱溶液,通入含氧气体至反应液中,通过冷冻或油吸收方式回收反应尾气夹带的少量有机溶剂,至芴转化率≥98.5%结束反应,冷却反应液,9-芴酮结晶,过滤反应混合物,得到9-芴酮晶体和滤液,滤液直接用于下一次反应,9-芴酮晶体经过简单的洗涤、干燥得产物;
    所述的芴原料选自粗芴及其衍生物或经过精制纯度≥99.5的高纯度芴及其衍生物;
    所述的碱选自周期表中碱金属的氢氧化物、碱金属的碳酸盐或碱金属的碳酸氢盐;
    所述分子中含芳环的有机机溶剂选自沸点≥138℃的≤C9的芳香烃、氮杂环化合物和9-芴酮中的一种;
    所述的冠醚的结构通式为
    Figure PCTCN2016085081-appb-100001
    其中n≥4的整数;R2和R3分别独立地选自氢原子或C1~10的直链烷基、支链烷基、环烷基烷基、烷基环烷基、烷基芳基或芳基烷基;或R2和R3形成环己烷环结构;或R2和R3形成芳环结构,所述环己烷环结构、芳环结构与冠醚环形成一个或多个稠合环结构;
    所述芴原料的加入量为与有机溶剂形成芴的溶液、饱和溶液或悬浮液;
    所述的含氧气体选择空气、富氧的空气、氧气中的一种,通过气体分散器进入反应体系;
    芴原料与冠醚的摩尔比为5~200:1;
    所述碱溶液的浓度为25~55wt%;
    所述有机溶剂与碱溶液的体积比为1:0.3~1.5;
    所述的含氧气体是洁净的润湿的含氧气体,氧是过量的。
  2. 根据权利要求1所述的制备方法,其特征在于:粗芴是纯度≥95%;高纯度芴是由粗芴经过工业乙醇、乙醇、丙醇、丁醇、苯、甲苯、二甲苯、环己烷等溶剂中至少一种作溶剂重结晶得到的纯度≥99.5%的高纯度芴。
  3. 根据权利要求1所述的制备方法,其特征在于:碱金属是锂、钠和钾。
  4. 根据权利要求1所述的方法,其特征在于:冠醚通式中4≤n≤10。
  5. 根据权利要求1所述的制备方法,其特征在于:所述有机溶剂选自沸点≥138℃的≤C9的芳香烃,选自邻二甲苯、间二甲苯、对二甲苯、邻甲基乙苯、间甲基乙苯、对甲基乙苯、邻三甲苯、偏三甲苯、均三甲苯、丙基苯和异丙基苯中的至少一种;或选自喹啉、喹啉的烃基衍生物、异喹啉和异喹啉的烃基衍生物中的至少一种;或芴原料相对应的产物9-芴酮。
  6. 根据权利要求1所述的制备方法,其特征在于:所述含氧气体选自清洁的空气、富氧的空气和纯氧气中的一种;选择纯氧气时,采用封闭式反应器,且氧是微过量的。
  7. 根据权利要求1和5所述的制备方法,其特征在于:当以产物9-芴酮为溶剂时,反应温度为58~60℃,先加入少量的芴酮和芴摩尔比为61:39的混合物进行反应,随着芴的转化,一次、多次或连续加入芴,保持反应混合物为芴与9-芴酮呈溶液或呈芴的悬浮液,芴的转化率达到要求后,停止反应,反应液体导入热的有机溶剂,分离反应混合物,回收水层用于下次反应,油层冷却后过滤得到9-芴酮晶体,经过简单洗涤、干燥得到产物芴酮;回收滤液有机溶液保留下次使用。
  8. 根据权利要求1、5和7所述的制备方法,其特征在于:将反应液导入有机溶剂,所述有机溶剂选自权利要求5中所述沸点≥138℃的≤C9的芳香烃以及苯、甲苯、环己烷、环庚烷、己烷、庚烷中至少一种溶剂。
  9. 根据权利要求1所述的制备方法,其特征在于:所述粗芴衍生物或高纯芴衍生物是芴芳环上氢被取代的衍生物,烷基取代芴、烷氧基取代芴、酰基取代芴、卤原子取代芴、羟基取代芴或羧基取代芴。
PCT/CN2016/085081 2016-04-14 2016-06-07 一种由芴制备9-芴酮的方法 WO2017177531A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017538293A JP6392994B2 (ja) 2016-04-14 2016-06-07 フルオレンから9−フルオレノンを製造する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610234707.8 2016-04-14
CN201610234707.8A CN105801389A (zh) 2016-04-14 2016-04-14 一种由芴制备9-芴酮的方法

Publications (1)

Publication Number Publication Date
WO2017177531A1 true WO2017177531A1 (zh) 2017-10-19

Family

ID=56460930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085081 WO2017177531A1 (zh) 2016-04-14 2016-06-07 一种由芴制备9-芴酮的方法

Country Status (3)

Country Link
JP (1) JP6392994B2 (zh)
CN (1) CN105801389A (zh)
WO (1) WO2017177531A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920908A (zh) * 2022-05-27 2022-08-19 福州大学 含芴酮的有机共轭聚合物及其在α-酮酯合成中的应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106673973B (zh) * 2016-12-28 2019-09-10 河北美星化工有限公司 一种芴氧化制备9-芴酮的方法
WO2022025071A1 (ja) * 2020-07-28 2022-02-03 三井化学株式会社 化合物、樹脂、ポリカーボネート樹脂、および光学成形体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251935A (ja) * 2010-06-02 2011-12-15 Taoka Chem Co Ltd 9−フルオレノン類の製造方法
CN103435456A (zh) * 2013-08-15 2013-12-11 宝舜科技股份有限公司 一种9-芴酮的制备方法
CN103435463A (zh) * 2013-08-15 2013-12-11 宝舜科技股份有限公司 一种四相相转移催化制备9-芴酮的方法
CN103787858A (zh) * 2014-03-03 2014-05-14 宝舜科技股份有限公司 由芴制备9-芴酮的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902907A (en) * 1995-12-11 1999-05-11 Nippon Shokubai Co., Ltd. Method for production of fluorenone
JPH11217348A (ja) * 1997-10-15 1999-08-10 Otsuka Pharmaceut Co Ltd フルオレノン誘導体の製造法
CN103804162B (zh) * 2014-03-03 2017-04-26 宝舜科技股份有限公司 一种由高纯度芴制备高纯度9‑芴酮的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251935A (ja) * 2010-06-02 2011-12-15 Taoka Chem Co Ltd 9−フルオレノン類の製造方法
CN103435456A (zh) * 2013-08-15 2013-12-11 宝舜科技股份有限公司 一种9-芴酮的制备方法
CN103435463A (zh) * 2013-08-15 2013-12-11 宝舜科技股份有限公司 一种四相相转移催化制备9-芴酮的方法
CN103787858A (zh) * 2014-03-03 2014-05-14 宝舜科技股份有限公司 由芴制备9-芴酮的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920908A (zh) * 2022-05-27 2022-08-19 福州大学 含芴酮的有机共轭聚合物及其在α-酮酯合成中的应用
CN114920908B (zh) * 2022-05-27 2023-04-21 福州大学 含芴酮的有机共轭聚合物及其在α-酮酯合成中的应用

Also Published As

Publication number Publication date
JP6392994B2 (ja) 2018-09-19
CN105801389A (zh) 2016-07-27
JP2018515422A (ja) 2018-06-14

Similar Documents

Publication Publication Date Title
CN102844115B (zh) 烷基化反应用催化剂及使用了该催化剂的烷基芳香族烃化合物的制造方法
CN109956870A (zh) 一种罗沙司他的合成方法及其中间体化合物
WO2017177531A1 (zh) 一种由芴制备9-芴酮的方法
CN109516998B (zh) 一种巴洛沙韦中间体的合成方法
Mitsudo et al. Site-selective sequential coupling reactions controlled by “Electrochemical Reaction Site Switching”: a straightforward approach to 1, 4-bis (diaryl) buta-1, 3-diynes
EP2573066B1 (en) Method for preparing a lactate
CN102442891A (zh) 达泊西汀的中间体化合物的制备方法
CN112480130A (zh) 大环扩展卟啉化合物及其制备方法
CN114516817B (zh) 一种化工中间体及制备方法
CN107501043B (zh) 一种由均苯三甲酸合成均苯三甲醛的方法
CN113957461B (zh) 一种1,1′-联萘类化合物的电化学合成方法
CN111848443A (zh) 一种水杨腈的制备方法
KR970009318B1 (ko) 스틸벤디카복실레이트 유도체의 제조방법
Shen et al. Bonded-and discreted-Lindqvist hexatungstate-based copper hybrids as heterogeneous catalysts for the one-pot synthesis of 2-phenylquinoxalines via 2-haloanilines with vinyl azides or 3-phenyl-2 H-azirines
EP0655051A1 (en) Process for preparing phenylterephthalic acid
CN115233243A (zh) 一种电催化下2,4,5-三取代噁唑衍生物的制备方法
CN103804162B (zh) 一种由高纯度芴制备高纯度9‑芴酮的方法
CN107021982A (zh) 三取代氧膦化合物或三取代二氧膦化合物的合成方法
US5334754A (en) Process for preparing 2,5-diphenylterephthalic acid by oxidation
CN110090644B (zh) 一种合成o-甲基己内酰亚胺的催化剂及应用方法
KR100621823B1 (ko) 2,6-디알킬테트랄린의 제조 방법
Kang et al. Synthesis of α, α′‐Bis (Substituted Benzylidene) Cycloalkanones Catalyzed by Amino‐Functionalized Ionic Liquid
CN117447362A (zh) 一种氧化偶氮苯类化合物的绿色合成方法
CN116102399A (zh) 一种联苯苄唑中间体4-(α-氯代苄基)联苯的制备方法
WO2022178692A1 (zh) 一种在碱金属氢化物作用下制备2-碘代芳醚的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017538293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898346

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898346

Country of ref document: EP

Kind code of ref document: A1