WO2014178437A1 - 遠心鋳造製熱間圧延用複合ロール - Google Patents

遠心鋳造製熱間圧延用複合ロール Download PDF

Info

Publication number
WO2014178437A1
WO2014178437A1 PCT/JP2014/062146 JP2014062146W WO2014178437A1 WO 2014178437 A1 WO2014178437 A1 WO 2014178437A1 JP 2014062146 W JP2014062146 W JP 2014062146W WO 2014178437 A1 WO2014178437 A1 WO 2014178437A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer layer
mass
roll
content
intermediate layer
Prior art date
Application number
PCT/JP2014/062146
Other languages
English (en)
French (fr)
Inventor
小田 望
尭之 瀬川
泰則 野崎
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to EP14791769.4A priority Critical patent/EP2902124B8/en
Priority to KR1020157011349A priority patent/KR101587215B1/ko
Priority to JP2015503390A priority patent/JP5768947B2/ja
Priority to US14/758,694 priority patent/US9358758B2/en
Priority to CN201480022521.5A priority patent/CN105121044B/zh
Publication of WO2014178437A1 publication Critical patent/WO2014178437A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/021Rolls for sheets or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • C21D5/04Heat treatments of cast-iron of white cast-iron
    • C21D5/06Malleabilising
    • C21D5/14Graphitising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • B21B27/032Rolls for sheets or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/006Graphite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material

Definitions

  • the present invention relates to a composite roll for hot rolling made by centrifugal casting in which an outer layer excellent in wear resistance, seizure resistance and accident resistance and a shaft core portion excellent in toughness are integrated via an intermediate layer.
  • the present invention relates to a composite roll for hot rolling made by centrifugal casting suitable for a work roll for finish rolling of a hot strip mill of a thin steel plate.
  • a heated slab with a thickness of several hundred mm manufactured by continuous casting or the like is rolled into a steel sheet with a thickness of several to several tens of mm by a hot strip mill having a roughing mill and a finish rolling mill.
  • a finishing mill is usually a series of 5 to 7 quadruple rolling mills arranged in series. In the case of a 7-stand finishing mill, the first stand to the third stand are referred to as the front stand, and the fourth stand to the seventh stand are referred to as the rear stand.
  • the work roll used in such a hot strip mill is in contact with the hot thin plate, damage such as abrasion, rough skin, heat cracks, and the like generated on the outer layer surface due to thermal and mechanical rolling load occurs. Therefore, after grinding and removing these damages, the work roll is subjected to rolling again. Grinding and removing the damage on the surface layer of the outer layer of the roll is called “machining”.
  • the work roll is discarded after being cut from the initial diameter to the minimum diameter (disposal diameter) that can be used for rolling.
  • the diameter from the initial diameter to the scrap diameter is called the effective rolling diameter.
  • the outer layer has excellent wear resistance, seizure resistance and accident resistance in order to prevent the hot rolling roll from causing large surface damage such as heat cracks.
  • Japanese Patent Laid-Open No. 2005-105296 describes mass%, C: 2.5 to 3.5%, Si: 1.0 to 2.5%, Mn: 0.3 to 1%, Ni: 3 to 5%, Cr: 1.5 to 2.5%, Mo : 1.0-4%, V: 1.4-3.0%, Nb: 0.1-0.5%, B: 0.0005-0.2%, the composition consisting of the balance Fe and inevitable impurities, and at least part of the base:
  • An outer layer of a roll for hot rolling excellent in wear resistance and surface roughness resistance having a structure containing 50,000 to 1,000,000 pieces / mm 2 of fine carbide of 0.1 to 5 ⁇ m is disclosed.
  • 2005-105296 discloses that secondary carbide is precipitated in the base to prevent rough skin when the wear resistance of Ni grain roll is improved by MC carbide. It is described that it is preferable to put in. However, in the process of cooling from the quenching process, a temperature difference occurs between the roll surface and the inside, and compressive residual stress is added to the roll surface side. This stress is superimposed on the compressive residual stress due to transformation expansion of the outer layer, and the compressive residual stress on the roll surface becomes very high. Thus, when the compressive residual stress is high, cracks are likely to occur.
  • JP-A-2004-82209 discloses that the chemical components of the outer shell layer are in a mass ratio of C: 3.0 to 4.0%, Si: 0.8 to 2.5%, Mn: 0.2 to 1.2%, Ni: 3.0 to 5.0%, Cr: 0.5 to 2.5%, Mo: 0.1 to 3.0%, V: 1.0 to 5.0%, balance Fe and unavoidable impurities, shaft center part is made of plain cast iron or spheroidal graphite cast iron containing C: 2.5 to 4.0% In addition, a composite roll for hot rolling made by centrifugal casting that satisfies the relationship of 0.03 ⁇ T / R ⁇ 0.5 in the thickness (T) of the outer shell layer and the radius (R) of the shaft core portion is disclosed.
  • This composite roll has seizure resistance and wear resistance, and prevents radish cracking during production and chill peeling during use.
  • the tempering treatment at 430 ° C. is performed as the heat treatment, the hardness of the outer layer of the roll is not sufficient, and therefore the wear resistance is also inferior.
  • Japanese Patent Laid-Open No. 2002-88444 includes an outer layer formed of wear-resistant cast iron, an intermediate layer welded to the inner peripheral surface of the outer layer, and a shaft core portion welded to the inner peripheral surface of the intermediate layer.
  • the chemical composition of C is 1.0 to 3.0%, Si is 0.1 to 2.0%, Mn is 0.1 to 2.0%, Ni is 0.1 to 4.5%, Cr is 3.0 to 10.0%, Mo is 0.1 to 9.0%, W: 1.5 to 10.0%, V and / or Nb: total 3.0 to 10.0%, and the balance substantially consisting of Fe.
  • the chemical composition of the intermediate layer is% by weight, C: 1.0 to 2.5%, Si: 0.2 to 3.0%, Mn: 0.2 to 1.5%, Ni: 4.0% or less, Cr: 4.0% or less, Mo: 4.0% or less, W and / or V: 12% or less in total, at least one of W, V and Nb: 12 in total %, And the balance substantially consists of Fe, and the shaft core part discloses a composite roll made of flake graphite cast iron, spheroidal graphite cast iron or graphite steel.
  • the outer layer contains a very large amount of 3.0 to 10.0%, graphite is difficult to crystallize and is inferior in seizure resistance and fracture toughness.
  • fracture toughness is low due to crystallization of Cr carbide (M 7 C 3 , M 23 C 6 etc.). If the fracture toughness is low, cracks generated in a rolling accident are likely to progress.
  • Japanese Patent Application Laid-Open No. 09-170041 is a centrifugal casting roll in which an outer layer containing graphite and a shaft core made of ductile cast iron are welded and integrated through an intermediate layer of graphite steel, and the outer layer has a C: 2.5 to 4.7 %, Si: 0.8-3.2%, Mn: 0.1-2.0%, Cr: 0.4-1.9%, Mo: 0.6-5.0%, V: 3.0-10.0%, and Nb: 0.6-7.0%
  • the shaft core is C: 2.8 to 3.8%, Si: 2.0 to 3.0%, Mn: 0.3 to 1.0 %, P: 0.10% or less, S: 0.04% or less, Ni: 0.3 to 2.0%, Cr: 1.5% or less, and
  • the object of the present invention is to provide excellent wear resistance and seizure resistance, high fracture toughness value, excellent accident resistance, and good welding of the outer layer, the intermediate layer and the shaft core, and the inner layer of the outer layer.
  • a composite roll for hot rolling made by centrifugal casting that is suitable for work rolls for the final stage of hot strip mills, which has less spotted segregation of bainite and / or martensite dendrites and excellent radial homogeneity of the outer layer structure. It is to be.
  • the composite roll for centrifugal rolling made by centrifugal casting according to the present invention is as follows: (a) by weight basis, C: 2.5-3.5%, Si: 1.3-2.4%, Mn: 0.2-1.5%, Ni: 3.5-5.0%, Cr : 0.8-1.5%, Mo: 2.5-5.0%, V: 1.8-4.0%, and Nb: 0.2-1.5%, the balance consists of Fe and inevitable impurities, and the mass ratio of Nb / V is 0.1- Cast iron having a chemical composition satisfying the condition of 0.7, Mo / V mass ratio of 0.7 to 2.5, 2.5 ⁇ V + 1.2 Nb ⁇ 5.5, and a structure having a graphite phase of 0.3 to 10% on an area basis And (b) a shaft core portion made of ductile cast iron having a ferrite area ratio of 35% or less, and (c) a cast iron intermediate layer.
  • the total amount of V and Nb near the boundary with the shaft core portion in the intermediate layer is 70% or less of the total amount of V and Nb in the discarded diameter of the outer layer, and the shaft core portion in the intermediate layer It is preferable that the Cr content in the vicinity of the boundary portion with the outer layer is 80% or more of the Cr content in the discarded diameter of the outer layer.
  • the outer layer may further contain W: 0.1 to 5.0%.
  • the chemical composition of the outer layer is represented by the following formulas (1) to (3): Si ⁇ 3.2 / [0.283 (C-0.2 V-0.13 Nb) +0.62] ... (1), (C-0.2 V-0.13 Nb) + (Cr + Mo + 0.5 W) ⁇ 9.5 ... (2) and 1.5 ⁇ Mo + 0.5 W ⁇ 5.5 ... (3) It is preferable to satisfy the following conditions.
  • the outer layer was further selected from the group consisting of Ti: 0.003-5.0%, Al: 0.01-2.0%, Zr: 0.01-0.5%, B: 0.001-0.5%, and Co: 0.1-10.0% on a mass basis. You may contain at least 1 type.
  • the outer layer base preferably has a Vickers hardness of 560 or more.
  • the circumferential compressive residual stress of the outer layer surface at the center in the roll axis direction is preferably 150 to 500 MPa in terms of discarded diameter.
  • the fracture toughness value K IC of the outer layer is preferably 18.5 MPa ⁇ m 1/2 or more.
  • the Si content in the outer layer base is preferably 3.2% by mass or less.
  • the centrifugally cast composite rolling roll of the present invention is not only excellent in wear resistance and seizure resistance, but also has high fracture toughness value, and is also excellent in accident resistance, and has an outer layer, an intermediate layer and a shaft core portion. Good welding. Furthermore, there is little spotted segregation of bainite and / or martensite dendrite in the outer layer, and the outer layer structure is excellent in the radial uniformity. When the homogeneity is inferior, the dendritic segregation of dendrites with a small amount of carbide wears preferentially over the surrounding structure, and the worn portions are transferred to the rolled material in the form of spots, thereby deteriorating the quality of the rolled product. Use of the centrifugally cast composite rolling roll of the present invention excellent in homogeneity can prevent such deterioration of the quality of the rolled product.
  • FIG. 4 is a graph showing the relationship between the Si content of a matrix composition equivalent alloy and the fracture toughness value K IC . It is the schematic which shows a rolling abrasion tester. It is the schematic which shows a friction thermal shock tester. 6 is a graph schematically showing the distribution of Cr, V, and Nb in the vicinity of the boundary between the intermediate layer and the shaft core. It is a graph which shows the method of determining a boundary part from distribution of Cr.
  • FIG. 3 is a partial enlarged cross-sectional view showing the vicinity of the boundary between the intermediate layer and the shaft core, and shows the definition of the total amount of V and Nb and the content of Cr in the vicinity of the boundary with the shaft core in the intermediate layer It is an expanded sectional view.
  • 10 is a graph showing the distribution of Cr, V, and Nb in the vicinity of the intermediate layer of Example 8.
  • 10 is a graph showing the distribution of Cr, V, and Nb in the vicinity of the intermediate layer of Example 9.
  • 2 is a photomicrograph showing the metal structure of the outer layer of Example 1.
  • FIG. It is a schematic front view which shows the test piece for a fracture toughness value measurement.
  • composition of composite roll for hot rolling made by centrifugal casting (A) Outer layer (1) Composition (i) Essential composition (a) C: 2.5-3.5% by mass C combines with V, Nb, Cr, Mo and W to form hard carbides, which contributes to improved wear resistance.
  • the graphitization promoting elements such as Si and Ni crystallize in the structure as graphite, thereby giving seizure resistance to the outer layer and improving toughness of the outer layer.
  • C is less than 2.5% by mass, not only the crystallization of graphite is insufficient, but also the amount of hard carbides crystallized is too small to provide sufficient wear resistance to the outer layer.
  • the lower limit of the C content is preferably 2.55% by mass, more preferably 2.65% by mass.
  • the upper limit of the C content is preferably 3.45% by mass, more preferably 3.4% by mass, and most preferably 3.35% by mass.
  • Si 1.3-2.4% by mass
  • Si has a function of reducing oxide defects by deoxidation of the molten metal and promoting crystallization of graphite, and contributes to seizure resistance and suppression of crack propagation. If Si is less than 1.3% by mass, the deoxidizing action of the molten metal is insufficient, and the action of crystallization of graphite is small. On the other hand, if Si exceeds 2.4% by mass, the alloy matrix becomes brittle and the toughness of the outer layer decreases.
  • the lower limit of the Si content is preferably 1.4% by mass, and more preferably 1.5% by mass.
  • the upper limit of the Si content is preferably 2.3% by mass, more preferably 2.25% by mass, and most preferably 2.2% by mass.
  • Mn 0.2 to 1.5 mass%
  • Mn has an action of fixing S as an impurity as MnS. If Mn is less than 0.2% by mass, these effects are insufficient. On the other hand, even if Mn exceeds 1.5% by mass, further effects cannot be obtained.
  • the lower limit of the Mn content is preferably 0.3% by mass, more preferably 0.4% by mass, and most preferably .0.5% by mass.
  • the upper limit of the Mn content is preferably 1.4% by mass, more preferably 1.3% by mass, and most preferably 1.2% by mass.
  • Ni has the effect of crystallizing graphite and contributes to seizure resistance. Ni also has the effect of improving the hardenability of the base structure. In the present invention, it is desirable not to perform quenching in order to limit the compressive residual stress on the roll surface. If quenching is not performed, the outer layer needs to be cured by cooling after casting. For this reason, the quenchability which raise
  • Ni exceeds 5.0% by mass, austenite is excessively stabilized, and transformation to bainite or martensite is difficult.
  • the lower limit of the Ni content is preferably 3.6% by mass, more preferably 3.8% by mass, and most preferably 3.9% by mass.
  • the upper limit of the Ni content is preferably 4.9% by mass, more preferably 4.8% by mass, and most preferably 4.7% by mass.
  • (e) Cr 0.8 to 1.5 mass% Cr is an element effective for improving the hardenability and maintaining the hardness by making the base a bainite or martensite and maintaining the wear resistance. If Cr is less than 0.8% by mass, the effect of addition is insufficient. On the other hand, if Cr exceeds 1.5% by mass, it not only inhibits crystallization of graphite, but also forms coarse eutectic carbides and lowers the fracture toughness value.
  • the upper limit of the Cr content is preferably 1.45% by mass, more preferably 1.4% by mass, and most preferably 1.35% by mass.
  • Mo 2.5-5.0 mass% Mo combines with C to form hard Mo carbides (M 6 C, M 2 C), increasing the hardness of the outer layer and improving the hardenability of the matrix. Mo also produces tough and hard MC carbides together with V and Nb to improve wear resistance. In addition, Mo increases the specific gravity of the residual eutectic melt during the solidification process of the alloy melt, prevents centrifugation of the primary ⁇ phase, and suppresses the appearance of spotted segregation of bainite and / or martensite dendrites. If Mo is less than 2.5% by mass, these effects are insufficient.
  • the lower limit of the Mo content is preferably 2.6% by mass, more preferably 2.7% by mass.
  • the upper limit of the Mo content is preferably 4.6% by mass, more preferably 4.4% by mass, and most preferably 4.2% by mass.
  • V is an element that combines with C to form hard MC carbide.
  • This MC carbide has a Vickers hardness Hv of 2500 to 3000, and is the hardest of the carbides.
  • Hv Vickers hardness
  • V exceeds 4.0% by mass
  • MC carbide with a low specific gravity is concentrated inside the outer layer due to the centrifugal force during centrifugal casting, and not only the radial segregation of MC carbide becomes significant, but also MC carbide becomes coarse.
  • the alloy structure becomes rough, and the surface becomes rough during rolling.
  • MC carbide is a carbide mainly composed of V, Nb, or Mo.
  • the amount of crystallization is related not only to V but also to the amount of Nb. Furthermore, the interaction between V and other elements changes the amount of Si solid solution and the amount of coarse carbides formed in the matrix, as will be described later.
  • the lower limit of the content of V is preferably 2.0% by mass, more preferably 2.1% by mass, and most preferably 2.2% by mass.
  • the upper limit of the V content is preferably 3.9% by mass, more preferably 3.8% by mass, and most preferably 3.7% by mass.
  • Nb 0.2 to 1.5 mass% Nb combines with C to form MC carbide. Nb, combined with V and Mo, solidifies in MC carbide and strengthens MC carbide, improving the wear resistance of the outer layer.
  • the NbC-based MC carbide has a smaller difference from the molten metal density than the VC-based MC carbide, thereby reducing the segregation of the MC carbide.
  • Nb increases the specific gravity of the residual eutectic melt during the solidification process of the molten alloy, prevents centrifugation of the primary ⁇ phase, and dendritic bainite and / or martensite transformed from austenite segregates in the form of spots. Suppress.
  • Nb is less than 0.2% by mass, these effects are insufficient. On the other hand, when Nb exceeds 1.5% by mass, MC carbides aggregate and it becomes difficult to obtain a healthy outer layer.
  • the lower limit of the Nb content is preferably 0.3% by mass, more preferably 0.4% by mass.
  • the upper limit of the Nb content is preferably 1.4% by mass, more preferably 1.3% by mass, and most preferably 1.2% by mass.
  • Nb / V 0.1 to 0.7
  • Mo / V 0.7 to 2.5
  • V + 1.2 Nb 2.5 to 5.5% by mass
  • V, Nb, and Mo all have the effect of increasing hard MC carbide essential for wear resistance
  • the total amount of these elements needs to be set to a predetermined level or more.
  • V is an element that decreases the specific gravity of the molten metal
  • Nb and Mo are elements that increase the specific gravity of the molten metal. Therefore, if the contents of Nb and Mo are not balanced with respect to V, the difference between the specific gravity of the molten metal and the specific gravity of austenite becomes large, and carbon is significantly concentrated due to the movement of austenite to the outer layer side by centrifugal force. As a result, austenite dendrites are likely to segregate.
  • the mass ratio of Nb / V is 0.1 to 0.7
  • the mass ratio of Mo / V is 0.7 to 2.5
  • V + 1.2% Nb is 2.5 to 5.5 mass%. If Nb / V, Mo / V, and V + 1.2 Nb are within these ranges, carbides based on V will contain appropriate amounts of Nb and Mo, the carbides will become heavy, and the dispersion of the carbides will be made uniform. Therefore, the occurrence of spot-like segregation of bainite and / or martensite dendrite is prevented. In particular, when V + 1.2% Nb exceeds 5.5%, MC carbide with a small specific gravity crystallized excessively concentrates on the inner side of the outer layer during the centrifugal casting process and inhibits welding with the intermediate layer.
  • the lower limit of the mass ratio of Nb / V is preferably 0.12, more preferably 0.14, and most preferably 0.18.
  • the upper limit of the mass ratio of Nb / V is preferably 0.6, more preferably 0.55, and most preferably 0.5.
  • the lower limit of the Mo / V mass ratio is preferably 0.75, more preferably 0.8, and most preferably 0.85.
  • the upper limit of the mass ratio of Mo / V is preferably 2.2, more preferably 1.95, and most preferably 1.75.
  • the lower limit of V + 1.2 Nb is preferably 2.6% by mass, more preferably 2.7% by mass, and most preferably 2.8% by mass.
  • the upper limit of V + 1.2 Nb is preferably 5.35% by mass, more preferably 5.2% by mass, and most preferably 5.0% by mass.
  • the outer layer of the centrifugally cast composite rolling roll of the present invention may contain at least one of the following elements in addition to the above essential composition requirements.
  • W 0.1-5.0% by mass W combines with C to form hard M 6 C and M 2 C carbides and contributes to improved wear resistance of the outer layer. It also has the effect of reducing the segregation by increasing the specific gravity by dissolving in MC carbide. However, if W exceeds 5.0% by mass, the specific gravity of the molten metal is increased, so that carbide segregation is likely to occur. Therefore, when adding W, the preferable content is 5.0 mass% or less. On the other hand, when W is less than 0.1% by mass, the effect of addition is insufficient.
  • the upper limit of the W content is preferably 4.5% by mass, more preferably 4.0% by mass, and most preferably 3.0% by mass.
  • Ti 0.003 to 5.0 mass% Ti combines with N and O, which are graphitization inhibiting elements, to form oxides or nitrides. Oxides or nitrides are suspended in the molten metal to become nuclei, and MC carbides are refined and homogenized. However, if Ti exceeds 5.0% by mass, the viscosity of the molten metal increases and casting defects are likely to occur. Therefore, when adding Ti, the preferable content is 5.0 mass% or less. On the other hand, when Ti is less than 0.003 mass%, the effect of addition is insufficient.
  • the lower limit of the Ti content is preferably 0.005% by mass.
  • the upper limit of the Ti content is more preferably 3.0% by mass, and most preferably 1.0% by mass.
  • Al 0.01-2.0 mass% Al combines with N and O, which are graphitization-inhibiting elements, to form oxides or nitrides, which are suspended in the molten metal to form nuclei, and MC carbides are crystallized finely and uniformly.
  • N and O which are graphitization-inhibiting elements
  • the preferable content of Al is 2.0% by mass or less.
  • the Al content is less than 0.01% by mass, the effect of addition is insufficient.
  • the upper limit of the Al content is more preferably 1.5% by mass, and most preferably 1.0% by mass.
  • Zr 0.01 to 0.5 mass% Zr combines with C to form MC carbide, improving the wear resistance of the outer layer. Moreover, since the Zr oxide produced
  • B 0.001 to 0.5 mass% B has the effect of refining the carbide.
  • a small amount of B contributes to crystallization of graphite.
  • the content of B is preferably 0.5% by mass or less.
  • the upper limit of the B content is preferably 0.3% by mass, more preferably 0.1% by mass, and most preferably 0.05% by mass.
  • Co 0.1-10.0 mass%
  • Co is an element effective for strengthening the base organization. Co also facilitates crystallization of graphite. However, when Co exceeds 10% by mass, the toughness of the outer layer decreases. Therefore, the content of Co is preferably 10% by mass or less. On the other hand, if Co is less than 0.1% by mass, the effect of addition is insufficient.
  • the upper limit of the Co content is preferably 8.0% by mass, more preferably 6.0% by mass, and most preferably 4.0% by mass.
  • the mass ratio of Mo / Cr is preferably in the range of 1.7 to 5.0.
  • the mass ratio of Mo / Cr is less than 1.7, the Mo content is not sufficient with respect to the Cr content, and the area ratio of carbide particles mainly composed of Mo decreases.
  • the mass ratio of Mo / Cr exceeds 5.0, carbides mainly composed of Mo increase, and the carbides become coarse, resulting in poor fracture toughness. Therefore, the mass ratio of Mo / Cr is preferably 1.7 to 5.0.
  • the lower limit of the mass ratio of Mo / Cr is more preferably 1.8.
  • the upper limit of the Mo / Cr mass ratio is more preferably 4.7, and most preferably 4.5.
  • the fracture toughness value of the base of the outer layer of the roll cannot be measured, for the alloy corresponding to the base of the outer layer of the roll (excluding the influence of carbide), if the relationship between the amount of Si solid solution and the fracture toughness value is investigated, the roll The relationship between the amount of Si solid solution and the fracture toughness value at the base of the outer layer can be estimated. Therefore, for the purpose of eliminating the influence of the amount of carbide, the C content is set to 1% by mass and the content of carbide forming elements such as V and Nb is reduced to have various compositions corresponding to the base of the roll outer layer.
  • the alloy samples were prepared, and the fracture toughness value of each sample was measured.
  • Figure 1 shows the relationship between the amount of Si solid solution and the fracture toughness value of the matrix composition equivalent alloy.
  • the fracture toughness value of the sample is approximately 22 MPa ⁇ m 1/2 or more when the Si solid solution amount in the matrix composition equivalent alloy is 3.2% or less, but if it exceeds 3.2%, 19 MPa ⁇ m Decrease below 1/2 . From this, it can be estimated that the fracture toughness value of the base of the outer layer of the roll also decreases rapidly when the Si solid solution amount of the base exceeds 3.2%.
  • Si ⁇ 3.2 / [0.283 (C ⁇ 0.2 V ⁇ 0.13 Nb) +0 .62] was found to be necessary.
  • Mo and W have the effect of forming MC, M 2 C or M 6 C hard carbides. Since the action of Mo is twice that of W, the total content of Mo and W can be expressed as (Mo + 0.5 W). (Mo + 0.5 W) forms M 2 C and M 6 C carbides and improves wear resistance, so it should be 1.5% or more, but if too much, network-like eutectic carbides will increase. , 5.5% or less.
  • the balance of the outer layer composition is substantially composed of Fe and inevitable impurities.
  • P and S cause deterioration of mechanical properties, so it is preferable to reduce them as much as possible.
  • the P content is preferably 0.1% by mass or less
  • the S content is preferably 0.1% by mass or less.
  • elements such as Cu, Sb, Te, and Ce may be 0.7% by mass or less in total.
  • the structure of the outer layer of the centrifugally cast composite rolling roll of the present invention has a base, graphite, MC carbide, cementite, MC carbide, and carbides other than cementite (M 2 C, M 6 C, etc.).
  • the structure of the outer layer of the centrifugally cast composite rolling roll of the present invention has a graphite phase of 0.3 to 10 area%.
  • the outer layer structure also preferably has 3-20 area% MC carbides.
  • the outer layer base structure is preferably substantially composed of martensite, bainite or pearlite. It is preferable that the outer base matrix further has a cementite phase of 15 to 45 area%.
  • the area ratio of the graphite phase (graphite particles) crystallized in the outer layer structure is 0.3 to 10%.
  • the area ratio of the graphite phase is preferably 0.5 to 8%, more preferably 1 to 7%.
  • Abrasion resistance of the outer layer is obtained by hard carbides such as MC, M 2 C, and M 6 C and a hard matrix structure.
  • hard carbides such as MC, M 2 C, and M 6 C
  • MC carbides composed of V, Nb, etc. are very hard.
  • (V + 1.2 Nb) is 2.5% by mass or more, sufficient MC carbides are crystallized.
  • a hard base structure is obtained by elements such as Mo and W.
  • (b) Seizure resistance In order to prevent seizure of the steel sheet during narrowing, it is effective to contain a predetermined amount of carbide and Si and a predetermined amount of graphite. For this purpose, 2.5% by mass or more of C and 1.3% by mass or more of Si are required.
  • the outer layer of the roll needs a predetermined compressive residual stress to prevent the occurrence of cracks. However, if the compressive residual stress exceeds a predetermined value, the progress of cracks is promoted and accelerated. Since the residual stress is generated by elastic deformation due to the difference in strain between the outer layer and the shaft core portion, the elastic deformation increases correspondingly and the compressive residual stress increases as the outer layer becomes thinner.
  • the value of the circumferential compressive residual stress on the outer layer surface is obtained at the center of the roll axis direction at the waste diameter at which the compressive residual stress is maximized.
  • the outer layer compressive residual stress at the scrap diameter at the center in the roll axis direction is preferably 150 to 500 MPa, more preferably 200 to 400 MPa so as to prevent cracks from occurring and prevent the development of cracks. .
  • tempering at 450 to 550 ° C is performed at least once after casting.
  • the holding at 450 to 550 ° C. is preferably 1 hour or longer.
  • Residual austenite is transformed into hard martensite or bainite by this tempering temperature, and compressive residual stress is imparted to the roll surface by this transformation expansion.
  • Such transformation increases the base hardness and improves the wear resistance. If the roll is quenched to a temperature higher than the austenitizing temperature of the base of the outer layer (about 770 ° C or higher), the compressive residual stress on the roll surface exceeds 500 ⁇ MPa, so that the cracks tend to progress quickly.
  • the Vickers hardness of the outer base is preferably 560 or more. When the Vickers hardness of the outer base is less than 560, rolling causes significant wear of the base part and falling off of carbides.
  • a Vickers hardness of 560 or more can be obtained by adding Mo and W so as to satisfy 1.5 ⁇ (Mo + 0.5 W).
  • (B) Shaft core part In order to increase the life of the journal part (shaft core part) as the outer layer extends its life, it is essential to improve the wear resistance of the journal part. If the backlash between the bearings increases due to the wear of the journal part, the centrifugally cast composite roll must be discarded.
  • ductile cast iron having a ferrite area ratio of 35% or less is used for the shaft core part in which the journal part having a portion in contact with the bearing is formed.
  • the ferrite area ratio of the ductile cast iron for the shaft core is preferably 32% or less, and most preferably 29% or less.
  • the ferrite area ratio of ductile cast iron is affected by the amount of alloying elements.
  • the composition of ductile cast iron with a ferrite area ratio of 35% or less is C: 2.3-3.6%, Si: 1.5-3.5%, Mn: 0.2-2.0%, Ni: 0.3-2.0%, Cr: 0.05- It contains 1.0%, Mo: 0.05-1.0%, Mg: 0.01-0.08%, and V: 0.05-1.0%, and the balance is Fe and inevitable impurities.
  • Nb 0.7% or less and W: 0.7% or less may be contained.
  • a total of at least one of Cu, Sn, As and Sb may be added in an amount of 0.005 to 0.5%.
  • Ductile cast iron mainly contains ferrite and pearlite at the iron base, and mainly contains graphite and a small amount of cementite.
  • the Cr content in the vicinity of the boundary with the shaft core in the intermediate layer is 80% or more of the Cr content in the scrap diameter of the outer layer, ensuring the amount of eutectic carbide and solidifying during centrifugal casting Prevent shrinkage.
  • the intermediate layer has a total amount of V and Nb in the intermediate layer near the boundary with the shaft core portion of 70% or less of the total amount of V and Nb in the discarded diameter of the outer layer.
  • the average thickness of the intermediate layer is preferably 1 to 70 mm, more preferably 3 to 50 mm, and more preferably 5 to 30 mm. Is most preferred.
  • the intermediate layer does not necessarily have a uniform thickness over the entire region of the joint, and a part of the joint may be thin.
  • the melt for the intermediate layer is (a) the total amount of V and Nb is 50% or less of the total amount of V and Nb in the melt for the outer layer, and (b) the Cr content is Cr in the melt for the outer layer. It is 80% or more of the content, and (c) the C content is within ⁇ 35% of the C content in the outer layer molten metal.
  • the total amount of V and Nb in the melt for the intermediate layer is more than 50% of the total amount of V and Nb in the melt for the outer layer, Inside V and Nb diffuse into the shaft core, and the bonding strength between the intermediate layer and the shaft core is low.
  • the total amount of V and Nb in the melt for the intermediate layer is preferably 45% or less, more preferably 40% or less of the total amount of V and Nb in the melt for the outer layer.
  • the V content of the melt for the intermediate layer is preferably 0 to 3.0%, more preferably 0 to 2.8%.
  • the Nb content of the melt for the intermediate layer is preferably 0 to 3.0%, more preferably 0 to 2.8%.
  • composition requirement (b) IV if the Cr content in the melt for the intermediate layer is less than 80% of the Cr content in the melt for the outer layer, solidification shrinkage at the time of centrifugal casting may increase.
  • the Cr content in the intermediate layer molten metal is preferably 82% or more, more preferably 85% or more of the Cr content in the outer layer molten metal.
  • the Cr content in the intermediate layer molten metal is preferably 300% or less, more preferably 200% or less of the Cr content in the outer layer molten metal.
  • the Cr content in the molten intermediate layer is preferably 0.8 to 3.3%, more preferably 0.8 to 3.0%.
  • composition requirement (c) if the C content in the melt for the intermediate layer is not within ⁇ 35% of the C content in the melt for the outer layer, the bonding strength between the intermediate layer and the outer layer is low due to the difference in the C content.
  • the C content in the intermediate layer molten metal is preferably within ⁇ 30%, more preferably within ⁇ 25% of the C content in the outer layer molten metal.
  • the C content of the melt for the intermediate layer is preferably 1.6 to 3.8%, more preferably 1.8 to 3.6%.
  • the preferred specific composition of the melt for the intermediate layer satisfying the above composition requirements (a) to (c) is C: 1.6 to 3.8%, Si: 0.2 to 3.5%, Mn: 0.2 to 2.0%, Ni: 0 to 5.0% , Cr: 0.8 to 3.0%, Mo: 0 to 3.0%, V: 0 to 2.0%, Nb: 0 to 2.0%, and W: 0 to 3.0%, the balance being Fe and inevitable impurities.
  • the upper limit of each content of V and Nb is more preferably 0.5%.
  • the outer layer component diffuses in the outer region of the intermediate layer (the side closer to the inner surface of the outer layer). Therefore, the solidified composition of the intermediate layer is not only different from the molten metal composition but also has a gradient in the roll radial direction. Specifically, (a) the total amount of V and Nb in the middle layer near the boundary with the shaft core is 70% or less of the total amount of V and Nb in the discarded diameter of the outer layer, and (b ) The Cr content near the boundary with the shaft core in the intermediate layer is 80% or more of the Cr content in the discarded diameter of the outer layer.
  • the solidification composition requirements (a) and (b) of the intermediate layer By satisfying the solidification composition requirements (a) and (b) of the intermediate layer, a high bonding strength (tensile strength of 300 MPa or more) is obtained between the outer layer and the intermediate layer, and between the intermediate layer and the shaft core.
  • the total amount of V and Nb in the middle layer near the boundary with the shaft core is preferably 68% or less of the total amount of V and Nb in the discarded diameter of the outer layer, and 65% or less. Is more preferable.
  • the Cr content in the middle layer near the boundary with the shaft core portion is preferably 82% or more, more preferably 85% or more of the Cr content in the discarded diameter of the outer layer.
  • the upper limit is preferably 300% or less, and more preferably 200% or less.
  • the intermediate layer is formed on the inner surface of the outer layer and the shaft core portion is formed on the inner surface of the intermediate layer, not only the components of both diffuse at the boundary between the outer layer and the intermediate layer, but also between the intermediate layer and the shaft core portion. Both components diffuse at the boundary. Therefore, the concentration of the alloy element generally decreases from the outer layer to the shaft core portion through the intermediate layer. In particular, the concentration of these elements is remarkably reduced at the boundary between the intermediate layer and the shaft core portion having different concentrations of carbide forming elements V, Nb, and Cr.
  • FIG. 4-1 When an intermediate layer having the same Cr content as the outer layer or less than the outer layer is formed, the results of examining the concentration change of V, Nb and Cr at the boundary between the intermediate layer and the shaft core part are shown in FIG. 4-1.
  • V and Nb gradually decrease from the intermediate layer to the shaft core, so it is difficult to specify the boundary range.
  • B As shown in Fig. 4-1, the Cr concentration is It was found that there was almost no change from the outer layer to the intermediate layer, but it suddenly decreased at the boundary and became constant at the shaft core. It was also found that when the intermediate layer having a higher Cr content than the outer layer was formed, the gradient of the decrease in Cr concentration at the boundary portion was even greater.
  • the Cr concentration drops sharply at the boundary, so it can be said that it is better to use a change in Cr concentration to specify the range of the boundary. Therefore, as shown in FIG. 4-2, the positions of the inflection points A 1 and A 2 of the Cr concentration curve are defined as the radially outer position and the inner position of the boundary portion, respectively. In order to obtain such an inflection point, it is preferable to analyze the Cr concentration at a pitch of 3 mm or less in the radial direction.
  • Figure 4-3 shows an enlarged cross section (cross section perpendicular to the axial direction) of the composite roll near the boundary.
  • the radial position of the end 20 of the boundary is generally not constant.
  • the concentrations of V, Nb, and Cr are measured at a constant pitch P along the radial straight line L.
  • the measurement points M 1 , M 2 , M 3. -Is hardly located at the edge 20 of the boundary. That is, the outer end A1 of the boundary part is often not coincident with any of the measurement points M 1 , M 2 , M 3 .
  • the concentration of V, Nb and Cr at the measurement point (M2 in the illustrated example) is adopted.
  • the total amount of V and Nb at the position A 3 or the outermost measurement point M2 closest to the position A 3 is defined as “the total amount of V and Nb in the vicinity of the boundary with the shaft core portion in the intermediate layer”.
  • the Cr content in the position A 3 or nearest outer measurement point M2 is defined as "Cr content in the vicinity of the boundary between the axis portion in the intermediate layer.”
  • the total amount of V and Nb in the vicinity of the boundary with the shaft core part has a relatively large degree of variation depending on the measurement position. Therefore, in the present invention, measurement was performed at any three locations according to the above method. The average value is adopted.
  • the size of the centrifugally cast composite rolling roll of the present invention is not particularly limited, but preferred examples include an outer layer having an outer diameter of 200 to 1300 mm, a roll body length of 500 to 6000 mm, and outer layer rolling.
  • the thickness of the used layer (rolling effective diameter) is 50 to 200 mm.
  • the centrifugally cast composite rolling roll of the present invention comprises (a) casting a molten outer layer having the above composition in a rotating cylindrical mold for centrifugal casting, and (b) an outer layer. (C) During or after solidification of the intermediate layer, a cylindrical mold having the outer layer and the intermediate layer is erected, and the upper and lower ends thereof are A mold for stationary casting is provided by providing a mold and a lower mold, and (d) a hollow mold (cavity) formed by the cylindrical mold having the upper mold, the outer layer and the intermediate layer, and the lower mold. Manufactured by casting molten metal for the core. Note that a casting mold in which a cylindrical mold for forming the outer layer and the intermediate layer and an upper mold and a lower mold for forming the shaft core are integrally provided in advance may be used as the stationary casting mold.
  • the casting temperature of the outer layer molten metal is within the range of Ts + 30 ° C to Ts + 180 ° C (where Ts is the austenite crystallization start temperature). By the casting temperature within this range, the time during which the liquid phase remains can be shortened, the centrifugal separation of the ⁇ phase crystallized from the liquid by solidification can be suppressed, and segregation can be suppressed. When the casting temperature is lower than Ts + 30 ° C., solidification of the cast molten metal is too fast, and foreign matters such as fine inclusions solidify before separation by centrifugal force, so foreign matter defects tend to remain.
  • the casting temperature is higher than Ts + 180 ° C., a spot-like region (segregation region) in which coarse dendrites gather inside the outer layer is generated.
  • the casting temperature is preferably Ts + 30 ° C. to Ts + 100 ° C., more preferably Ts + 80 ° C. to Ts + 100 ° C.
  • the austenite crystallization start temperature Ts is a start temperature of solidification exotherm measured by a differential thermal analyzer.
  • the outer layer molten metal is cast into a centrifugal casting mold from a ladle through a funnel, a pouring nozzle, etc., or from a tundish through a pouring nozzle, etc. The temperature of the molten metal in the ladle or tundish.
  • Centrifugal force when casting the outer layer with a centrifugal casting mold is in the range of 60 to 150 G in multiples of gravity.
  • the acceleration during solidification is limited to slow the movement speed of the ⁇ phase, thereby suppressing the ⁇ phase centrifugation (suppressing segregation).
  • the gravity multiple is less than 60 G, the outer layer melt is insufficiently wound (leaning).
  • the gravity multiple exceeds 150 G, ⁇ -phase centrifugation becomes prominent, and coarse dendrites are generated in the molten metal residue with little ⁇ -phase.
  • the mold for centrifugal casting is preferably made of tough ductile cast iron having a thickness of 120 to 450 mm. If the mold is as thin as less than 120 mm, the cooling capacity of the mold is insufficient, and shrinkage defects are likely to occur in the outer layer. On the other hand, the cooling capacity is saturated even when the thickness of the mold exceeds 450 mm. A more preferable thickness of the mold is 150 to 410 mm.
  • the centrifugal casting mold may be a horizontal mold, an inclined mold, or a vertical mold.
  • Coating mold A coating mold mainly composed of silica, alumina, magnesia or zircon is preferably applied to the inner surface of the mold to a thickness of 0.5 to 5 mm in order to prevent the outer layer from being seized on the mold. . If the coating mold is thicker than 5 mm, cooling of the molten metal is slow and the remaining time of the liquid phase is long, so that the ⁇ phase is easily centrifuged and segregation is likely to occur. On the other hand, if the coating mold is thinner than 0.5 mm, the effect of preventing seizure of the outer layer is insufficient. A more preferable thickness of the coating mold is 0.5 to 4 mm.
  • an inoculum such as Fe-Si or Ca-Si may be added to the molten metal.
  • the molten metal composition is determined in consideration of the composition change due to the addition of the inoculum.
  • an inoculation method a method of adding the inoculum to the molten metal coming out of the melting furnace, a method of adding the inoculum to the molten metal in a ladle, tundish, funnel, etc., a method of adding the inoculum directly to the molten metal in the mold Etc.
  • Standing casting mold is formed by standing up a mold having an outer layer and an intermediate layer while the intermediate layer is solidified or after solidification, and providing an upper mold and a lower mold at the upper and lower ends, respectively.
  • the mold and the lower mold communicate with the mold having the outer layer and the intermediate layer, the mold and the lower mold having the upper mold, the outer layer, and the intermediate layer form an integral hollow portion (cavity).
  • Ductile cast iron which is a molten metal for the shaft core, is cast into the cavity. After the inner surface of the intermediate layer is redissolved, the shaft core portion is solidified, so that both are metal-bonded.
  • the composition of the solidified intermediate layer is not only different from the melt composition but also has a gradient.
  • the total amount of V and Nb in the vicinity of the boundary with the shaft core in the intermediate layer is 70% or less, preferably 60% or less of the total amount of V and Nb in the discarded diameter of the outer layer. More preferably 50% or less, and most preferably 40% or less.
  • Examples 1-7, Comparative Examples 1-5 Manufacture of composite rolls Cylindrical molds for centrifugal casting made of ductile cast iron with a high-speed rotating inner diameter of 400 mm, length of 1500 mm, and thickness of 276 mm for each molten metal having the composition (mass%) shown in Table 1
  • the inner layer was cast by casting and the outer layer was centrifugally cast.
  • the casting temperature of the outer layer melt was between Ts + 80 ° C. and Ts + 100 ° C. (where Ts is the austenite crystallization start temperature).
  • the gravity multiple at the outer perimeter was 120 G.
  • the average thickness of the outer layer obtained was 96 mm and the scrap diameter was 65 mm from the surface.
  • a stationary casting mold was constructed.
  • C 3.2%, Si: 2.6%, Mn: 0.6%, P: 0.03% or less, Ni: 0.6%, Cr in the cavity of the stationary casting mold composed of the upper mold, middle mold and lower mold : 0.1%, Mo: 0.1%, V: 0.1%, Mg: 0.07%, the balance is substantially cast with ductile cast iron melt for the shaft core part, which has a composition of Fe and inevitable impurities. Static casting.
  • the casting temperature of the ductile cast iron melt for the shaft core was 1450 ° C. As a result of inspection by ultrasonic flaw detection, it was confirmed that there was no defect in the obtained joint portion between the shaft core portion and the intermediate layer, and that both were welded soundly.
  • the stationary casting mold was disassembled, and the obtained composite roll was taken out and tempered at 500 ° C. for 10 hours.
  • the composite roll of each Example and the comparative example was obtained.
  • the composition of the outer layer is shown in Table 1-1 and Table 1-2.
  • the values and the value on the left side of the following formula (2) are shown in Table 1-3.
  • Si content (% by mass) in the outer base A test piece cut from the outer layer of the composite roll of each example and comparative example (position about 100 mm away from the roll barrel end face in the roll axis direction) is being used as a base by an energy dispersive X-ray analyzer (EDX). The Si content of was measured.
  • EDX energy dispersive X-ray analyzer
  • FIG. 6 shows a metallographic photograph of the outer layer of Example 1. This is one that corrodes using Pilacle as the corrosive liquid.
  • 21 represents MC carbide
  • 22 represents graphite
  • 23 represents M 6 C carbide
  • 24 represents matrix
  • 25 represents cementite.
  • the rolling wear tester includes a rolling mill 1, test rolls 2 and 3 incorporated in the rolling mill 1, a heating furnace 4 for preheating the rolled material 8, a cooling water tank 5 for cooling the rolled material 8, and a rolling A winder 6 that applies a constant tension to the winder 6 and a controller 7 that adjusts the tension.
  • the rolling wear conditions were as follows.
  • seizure test was conducted on each test roll using a frictional thermal shock tester shown in FIG.
  • the frictional thermal shock testing machine rotates the pinion 13 by dropping the weight 12 on the rack 11 and brings the biting material 15 into strong contact with the test material 14.
  • Seizure was evaluated according to the following criteria. The results are shown in Table 4. The less seizure, the better the seizure resistance. ⁇ : No seizure. ⁇ : There is slight seizure. ⁇ : Significant seizure.
  • each outer layer of Examples 1 to 7 has an area ratio of graphite particles in the range of 0.3 to 10% and an area ratio of MC carbide in the range of 3 to 20%.
  • the Si content in the matrix was 3.2% by mass or less, the structure was excellent in homogeneity, and the ferrite area ratio of the shaft core part (journal part) was 35% or less.
  • any outer layer of Examples 1 to 7 has a fracture toughness value of 18.5 MPa ⁇ m 1/2 or more, a Vickers hardness of 560 or more, and a compressive residual stress at a discarded diameter of 150 to 500 MPa. In addition, it had excellent wear resistance, seizure resistance and accident resistance.
  • the outer layer of Comparative Example 1 had a fracture toughness value as low as 17.9 MPa ⁇ m 1/2, and the wear depth (wear resistance) was relatively large at 2.61 ⁇ m.
  • the outer layer of Comparative Example 2 had a fracture toughness value as low as 17.1 MPa ⁇ m 1/2 and an insufficient seizure resistance. Since the outer layer of Comparative Example 3 had an MC carbide area ratio of 1.29%, the depth of wear was as large as 3.11 ⁇ m.
  • the outer layer of Comparative Example 4 had a base Vickers hardness Hv as low as 532, a poor structure homogeneity, and an area ratio of the graphite particles as small as 0.12%, which was poor in seizure resistance.
  • the outer layer of Comparative Example 5 was inferior in seizure resistance due to poor structure homogeneity and a small area ratio of graphite particles of 0.28%.
  • Example 8 In the same manner as in Examples 1 to 7, the outer layer molten metal and the intermediate layer molten metal having the composition shown in Table 5 were formed into a cylindrical shape for centrifugal casting made of ductile cast iron having an inner diameter of 760 mm, a length of 2700 mm, and a thickness of 320 mm.
  • the mold was cast into a mold (coating mold mainly composed of 3 mm thick zircon on the inner surface), and an outer layer having an average thickness of 91 mm and an intermediate layer having an average thickness of 20 mm were formed by centrifugal casting. Thereafter, an axial core portion was formed by the same method as in Examples 1 to 7.
  • the distribution of Cr, V, and Nb in the vicinity of the intermediate layer was measured on a test piece cut out from a position about 100 mm away from the roll barrel end surface of the obtained composite roll in the roll axis direction. The results are shown in Figure 5-1.
  • Table 6 shows the content of Cr, V and Nb in the position of the outer diameter of the outer layer and the position near the boundary with the shaft core in the intermediate layer, the total amount of V and Nb, and Cr in the vicinity of the boundary.
  • the ratio of the content / Cr content at the disposal diameter position and the ratio of the total amount of V and Nb near the boundary / the total amount of V and Nb at the disposal diameter position are shown.
  • Example 9 In the same manner as in Examples 1 to 7, the outer layer molten metal and the intermediate layer molten metal having the composition shown in Table 7 were formed into a cylindrical shape for centrifugal casting made of ductile cast iron having an inner diameter of 795 mm, a length of 2700 mm, and a thickness of 302.5 mm.
  • the mold was cast into a mold (coating mold mainly composed of zircon having a thickness of 3 mm on the inner surface), and an outer layer having an average thickness of 85 mm and an intermediate layer having an average thickness of 10 mm were formed by centrifugal casting. Thereafter, an axial core portion was formed by the same method as in Examples 1 to 7.
  • the distribution of Cr, V, and Nb in the vicinity of the intermediate layer was measured on a test piece cut out from a position about 100 mm away from the roll barrel end surface of the obtained composite roll in the roll axis direction. The results are shown in Figure 5-2.
  • Table 8 shows the content of Cr, V, and Nb in the position of the outer diameter of the outer layer and the position near the boundary with the shaft core in the intermediate layer, and the total amount of V and Nb, and Cr in the vicinity of the boundary.
  • the ratio of the content / Cr content at the disposal diameter position and the ratio of the total amount of V and Nb near the boundary / the total amount of V and Nb at the disposal diameter position are shown.
  • Example 8 and 9 For the centrifugally cast composite rolling rolls of Examples 8 and 9, the structure and properties were measured in the same manner as in Examples 1-7. Table 2 shows the measurement results of the tissues, and Table 3 shows the measurement results of the characteristics. As is clear from Table 2 and Table 3, also in Examples 8 and 9, the outer layer has a graphite area ratio in the range of 0.3 to 10%, and the Si content in the matrix is 3.2% by mass or less. In addition, the homogeneity of the structure was excellent, and the ferrite area ratio of the shaft core portion (journal portion) was 35% or less.
  • Examples 8 and 9 also had a fracture toughness value of 18.5 MPa ⁇ m 1/2 or more, a Vickers hardness of 560 or more, and a compressive residual stress at a disposal diameter in the range of 150 to 500 MPa. Had.
  • the centrifugal cast composite rolling rolls of Examples 8 and 9 were subjected to performance tests in the same manner as in Examples 1-7.
  • Table 4 shows the results of the performance test.
  • the outer layers of Examples 8 and 9 also had excellent wear resistance, seizure resistance, and accident resistance.

Abstract

 (a) 質量基準でC:2.5~3.5%、Si:1.3~2.4%、Mn:0.2~1.5%、Ni:3.5~5.0%、Cr:0.8~1.5%、Mo:2.5~5.0%、V:1.8~4.0%、及びNb:0.2~1.5%を含有し、残部がFe及び不可避的不純物からなり、Nb/Vの質量比が0.1~0.7で、Mo/Vの質量比が0.7~2.5であり、かつ2.5≦V+1.2 Nb≦5.5の条件を満たす化学組成と、面積基準で0.3~10%の黒鉛相を有する組織とを有する鋳鉄からなる外層と、(b) フェライト面積率が35%以下のダクタイル鋳鉄からなる軸芯部と、(c) 鋳鉄製中間層とからなる遠心鋳造製熱間圧延用複合ロール。

Description

遠心鋳造製熱間圧延用複合ロール
 本発明は、耐摩耗性、耐焼付き性及び耐事故性に優れた外層と靱性に優れた軸芯部とが中間層を介して一体化された遠心鋳造製熱間圧延用複合ロールに関し、特に薄鋼板のホットストリップミルの仕上げ圧延用ワークロールに好適な遠心鋳造製熱間圧延用複合ロールに関する。
 連続鋳造等で製造した厚さ数百mmの加熱スラブは、粗圧延機及び仕上げ圧延機を有するホットストリップミルで数~数十mmの厚さの鋼板に圧延される。仕上げ圧延機は通常、5~7スタンドの四重式圧延機を直列に配置したものである。7スタンドの仕上げ圧延機の場合、第一スタンドから第三スタンドまでを前段スタンドと呼び、第四スタンドから第七スタンドまでを後段スタンドと呼ぶ。
 このようなホットストリップミルに用いられるワークロールは、熱間薄板に接触するので、熱的及び機械的な圧延負荷により外層表面に生じた摩耗、肌荒れ、ヒートクラック等の損傷が生じる。従って、これらの損傷を研削除去した後、ワークロールは再び圧延に供される。ロール外層の表層部の損傷の研削除去は「改削」と呼ばれる。ワークロールは、初径から圧延に使用可能な最小径(廃却径)まで改削された後、廃却される。初径から廃却径までを圧延有効径と呼ぶ。圧延有効径では、熱間圧延用ロールはヒートクラックのような大きな表面損傷を防止するために、外層は優れた耐摩耗性、耐焼付き性及び耐事故性を有するのが望ましい。
 改削には、通常の圧延摩耗による表面損傷を除去するための軽改削と、圧延事故による表面損傷を除去するための重改削とがある。特に後段の仕上げスタンドでは、折れ込んだり切れたりした圧延鋼板が重なって圧延される「絞り込み」と呼ばれる圧延事故が起こり易い。このような事故が起こるとロール表面が局部的に強圧を受け、鋼板がロール表面に焼き付くので、高熱及び高負荷によりクラックが入り、進展しやすい。特に圧延事故で発生したクラックは極めて深いことが多い。従って、熱間圧延用ロールは、圧延による摩耗が少ない(優れた耐摩耗性を有する)だけでなく、圧延事故でも焼き付きにくく(優れた耐焼付き性を有し)、クラックの進展が少ない(優れた耐事故性を有する)ことが要求される。
 このように優れた耐摩耗性、耐焼付き性及び耐事故性が要求されるホットストリップミルの仕上げ後段スタンド用のワークロールとして、耐焼付き性が良好な高合金グレン鋳鉄に耐摩耗性を向上させるためにMo、V等の硬質炭化物形成元素を添加した合金を外層材とした複合ロールが提案されている。
 例えば、特開2005-105296号は、質量%で、C:2.5~3.5%、Si:1.0~2.5%、Mn:0.3~1%、Ni:3~5%、Cr:1.5~2.5%,Mo:1.0~4%、V:1.4~3.0%、Nb:0.1~0.5%、B:0.0005~0.2%を含み、残部Fe及び不可避的不純物からなる組成と、少なくとも基地の一部に最大長さ:0.1~5μmの微細炭化物を50000~1000000個/mm2含む組織とを有する耐摩耗性及び耐肌荒れ性に優れた熱間圧延用ロール外層を開示している。特開2005-105296号は、Niグレンロールの耐摩耗性をMC炭化物により向上させる際に、肌荒れを防止するために基地中に二次炭化物を析出させており、そのために800~950℃の焼き入れを行うのが好ましいと記載している。しかし、このような焼き入れ処理から冷却する過程でロール表面と内部に温度差が生じ、ロール表面側に圧縮残留応力が付加される。この応力は外層の変態膨張による圧縮残留応力に重畳され、ロール表面の圧縮残留応力は非常に高くなる。このように圧縮残留応力が高いとクラックが発生しやすい。
 また特開2004-82209号は、外殻層の化学成分が質量比で、C:3.0~4.0%、Si:0.8~2.5%、Mn:0.2~1.2%、Ni:3.0~5.0%、Cr:0.5~2.5%、Mo:0.1~3.0%、V:1.0~5.0%、残部Fe及び不可避的不純物からなり、軸芯部がC:2.5~4.0%を含有する普通鋳鉄又は球状黒鉛鋳鉄で形成されており、外殻層の厚み(T)と軸芯部の半径(R)が0.03≦T/R≦0.5の関係を満足する遠心鋳造製熱間圧延用複合ロールを開示している。この複合ロールは耐焼付性及び耐摩耗性を有するとともに、製造時の大根割れ及び使用時のチル剥げを防止している。しかし、熱処理として430℃の焼戻し処理を行っているだけであるので、ロール外層の硬さは十分でなく、従って耐摩耗性も劣る。
 特開2002-88444号は、耐摩耗鋳鉄で形成された外層と、外層の内周面に溶着された中間層と、中間層の内周面に溶着された軸芯部とからなり、前記外層の化学組成は重量%で、C:1.0~3.0%、Si:0.1~2.0%、Mn:0.1~2.0%、Ni:0.1~4.5%、Cr:3.0~10.0%、Mo:0.1~9.0%、W:1.5~10.0%、V及び/又はNb:合計3.0~10.0%、及び残部実質的にFeからなり、前記中間層の化学組成は重量%で、C:1.0~2.5%、Si:0.2~3.0%、Mn:0.2~1.5%、Ni:4.0%以下、Cr:4.0%以下、Mo:4.0%以下、W及び/又はV:合計12%以下、W,V及びNbの少なくとも一種:合計12%以下、及び残部実質的にFeからなり、前記軸芯部は片状黒鉛鋳鉄、球状黒鉛鋳鉄又は黒鉛鋼からなる複合ロールを開示している。しかし、外層は3.0~10.0%と非常に多いCrを含有するので、黒鉛が晶出しにくくなり耐焼付き性及び破壊靭性に劣る。また、Cr炭化物(M7C3、M23C6等)の晶出により破壊靱性が低い。破壊靱性が低いと、圧延事故で発生したクラックが進展しやすくなる。
 特開平09-170041号は、黒鉛を含有する外層とダクタイル鋳鉄製軸芯とが黒鉛鋼の中間層を介して溶着一体化した遠心鋳造製ロールであって、前記外層は、C:2.5~4.7%、Si:0.8~3.2%、Mn:0.1~2.0%、Cr:0.4~1.9%、Mo:0.6~5.0%、V:3.0~10.0%、及びNb:0.6~7.0%を含有するとともに、下記式(1)~(4):2.0+0.15V+0.10Nb≦C(%)・・・(1)、1.1≦Mo/Cr・・・(2)、Nb/V≦0.8・・・(3)、及び0.2≦Nb/V・・・(4)を満足し、残部Fe及び不可避的不純物からなり、前記軸芯は、C:2.8~3.8%、Si:2.0~3.0%、Mn:0.3~1.0%、P:0.10%以下、S:0.04%以下、Ni:0.3~2.0%、Cr:1.5%以下、及びMo:1.0%以下を含有し、残部Fe及び不可避的不純物からなり、前記中間層は、C:1.0~2.0%、Si:1.6~2.4%、Mn:0.2~1.0%、P:0.05%以下、S:0.03%以下、Ni:0.1~3.5%、Cr:1.5%以下、及びMo:0.1~0.8%を含有し、残部Fe及び不可避的不純物からなる遠心鋳造製ロールを開示している。しかし、黒鉛鋼の中間層の場合、外層よりも中間層の凝固開始温度が高いので、外層もしくは中間層に引け巣等の鋳造欠陥が発生しやすいという問題がある。
 従って本発明の目的は、耐摩耗性及び耐焼付き性に優れ、高い破壊靱性値を有するために耐事故性に優れ、かつ外層、中間層及び軸芯部の溶着が良好であり、さらに外層内部にベイナイト及び/又はマルテンサイトのデンドライトの斑点状偏析が少なく、外層組織の半径方向均質性に優れた、ホットストリップミルの仕上げ後段用ワークロールに好適な遠心鋳造製熱間圧延用複合ロールを提供することである。
 本発明の遠心鋳造製熱間圧延用複合ロールは、(a) 質量基準で、C:2.5~3.5%、Si:1.3~2.4%、Mn:0.2~1.5%、Ni:3.5~5.0%、Cr:0.8~1.5%、Mo:2.5~5.0%、V:1.8~4.0%、及びNb:0.2~1.5%を含有し、残部がFe及び不可避的不純物からなり、Nb/Vの質量比が0.1~0.7で、Mo/Vの質量比が0.7~2.5であり、かつ2.5≦V+1.2 Nb≦5.5の条件を満たす化学組成と、面積基準で0.3~10%の黒鉛相を有する組織とを有する鋳鉄からなる外層と、(b) フェライト面積率が35%以下のダクタイル鋳鉄からなる軸芯部と、(c) 鋳鉄製中間層とからなることを特徴とする。
 前記中間層内で軸芯部との境界部付近におけるV及びNbの合計量は前記外層の廃却径におけるV及びNbの合計量の70%以下であり、かつ前記中間層内で軸芯部との境界部付近におけるCr含有量は前記外層の廃却径におけるCr含有量の80%以上であるのが好ましい。
 前記外層はさらにW:0.1~5.0%を含有しても良い。
 前記外層の化学組成は、下記式(1)~(3):
 Si≦3.2/[0.283 (C-0.2 V-0.13 Nb)+0.62]・・・(1)、
 (C-0.2 V-0.13 Nb)+(Cr+Mo+0.5 W) ≦9.5・・・(2)、及び
 1.5≦Mo+0.5 W≦5.5・・・(3)
の条件をみたすのが好ましい。
 前記外層はさらに、質量基準でTi:0.003~5.0%、Al:0.01~2.0%、Zr:0.01~0.5%、B:0.001~0.5%、及びCo:0.1~10.0%からなる群から選ばれた少なくとも一種を含有しても良い。
 前記外層の基地は560以上のビッカース硬さを有するのが好ましい。
 ロール軸方向中央における前記外層表面の円周方向圧縮残留応力は廃却径で150~500 MPaであるのが好ましい。
 前記外層の破壊靭性値KICは18.5 MPa・m1/2以上であるのが好ましい。
 前記外層の基地中のSi含有量は3.2質量%以下であるのが好ましい。
 本発明の遠心鋳造製複合圧延ロールは、耐摩耗性及び耐焼付き性に優れているだけでなく高い破壊靱性値を有するために耐事故性にも優れ、かつ外層、中間層及び軸芯部の溶着が良好である。さらに、外層内部にベイナイト及び/又はマルテンサイトのデンドライトの斑点状偏析が少なく、外層組織の半径方向均質性に優れている。均質性に劣る場合、炭化物量が少ないデンドライトの斑点状偏析は周囲の組織より優先的に摩耗し、かつ摩耗部分は圧延材に斑点状に転写されるので、圧延製品の品質を劣化させる。均質性に優れた本発明の遠心鋳造製複合圧延ロールを用いると、このような圧延製品の品質の劣化を防止できる。
基地組成相当合金のSi含有量と破壊靭性値KICとの関係を示すグラフである。 圧延摩耗試験機を示す概略図である。 摩擦熱衝撃試験機を示す概略図である。 中間層と軸芯部との境界部近傍におけるCr、V及びNbの分布を概略的に示すグラフである。 Crの分布から境界部を決める方法を示すグラフである。 中間層と軸芯部との境界部付近を示す部分拡大断面図であって、中間層内で軸芯部との境界部付近におけるV及びNbの合計量及びCrの含有量の定義を示す部分拡大断面図である。 実施例8の中間層近傍におけるCr、V及びNbの分布を示すグラフである。 実施例9の中間層近傍におけるCr、V及びNbの分布を示すグラフである。 実施例1の外層の金属組織を示す顕微鏡写真である。 破壊靱性値測定用試験片を示す概略正面図である。
 本発明の実施形態を以下詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で種々の変更をしても良い。特に断りがなければ、単に「%」と記載しているときは「質量%」を意味する。
[1] 遠心鋳造製熱間圧延用複合ロールの構成
(A) 外層
(1) 組成
(i) 必須組成
(a) C:2.5~3.5質量%
 CはV、Nb、Cr、Mo及びWと結合して硬質の炭化物を生成し、耐摩耗性の向上に寄与する。またSi及びNi等の黒鉛化促進元素により組織中に黒鉛として晶出し、もって外層に耐焼付性を付与するとともに、外層の靭性を向上させる。Cが2.5質量%未満では黒鉛の晶出が不十分であるだけでなく、硬質の炭化物の晶出量が少なすぎて外層に十分な耐摩耗性を付与することができない。さらに、Cが2.5質量%未満では、オーステナイト晶出から共晶炭化物晶出までの温度差が大きいので、オーステナイトが遠心力により外周側に移動し、外層内部の溶湯では炭素が濃化しやすくなる。その結果、炭素濃化溶湯中でオーステナイトの粗大デンドライトの発生及び成長が起こりやすくなる。オーステナイトのデンドライトはベイナイト及び/又はマルテンサイトに変態し、粗大な斑点状偏析となる。
 一方、Cが3.5質量%を超えると黒鉛が過剰となるとともに、その形状も紐状となり、外層の強度が低下する。また炭化物の晶出量が過多となって外層の靱性が低下し、耐クラック性が低下するため、圧延によるクラックが深くなり、ロール損失が増加する。Cの含有量の下限は好ましくは2.55質量%であり、より好ましくは2.65質量%である。またCの含有量の上限は好ましくは3.45質量%であり、より好ましくは3.4質量%であり、最も好ましくは3.35質量%である。
(b) Si:1.3~2.4質量%
 Siは溶湯の脱酸により酸化物の欠陥を減少するとともに、黒鉛の晶出を助長する作用を有し、耐焼付き性及び亀裂の進展の抑制に寄与する。Siが1.3質量%未満では溶湯の脱酸作用が不十分であり、黒鉛晶出の作用も少ない。一方、Siが2.4質量%を超えると合金基地が脆化し、外層の靱性は低下する。Siの含有量の下限は好ましくは1.4質量%であり、より好ましくは1.5質量%である。Siの含有量の上限は好ましくは2.3質量%であり、より好ましくは2.25質量%であり、最も好ましくは2.2質量%である。
(c) Mn:0.2~1.5質量%
 Mnは溶湯の脱酸作用の他に、不純物であるSをMnSとして固定する作用を有する。Mnが0.2質量%未満ではそれらの効果は不十分である。一方、Mnが1.5質量%を超えてもさらなる効果は得られない。Mnの含有量の下限は好ましくは0.3質量%であり、より好ましくは0.4質量%であり、最も好ましくは.0.5質量%である。Mnの含有量の上限は好ましくは1.4質量%であり、より好ましくは1.3質量%であり、最も好ましくは1.2質量%である。
(d) Ni:3.5~5.0質量%
 Niは黒鉛を晶出させる作用があり、耐焼付き性に寄与する。Niはまた基地組織の焼入れ性を向上させる作用を有する。本発明ではロール表面の圧縮残留応力を制限するために焼き入れを行わないのが望ましく、焼き入れを行わない場合、鋳造後の冷却により外層が硬化する必要がある。このため、遠心鋳造鋳型内での冷却によりパーライト変態を起こさずにべイナイト変態又はマルテンサイト変態を起こさせる焼き入れ性が必要となる。Niが3.5質量%未満ではその作用が十分に得られない。一方、Niが5.0質量%を超えるとオーステナイトが安定化しすぎ、ベイナイト又はマルテンサイトに変態しにくくなる。Niの含有量の下限は好ましくは3.6質量%であり、より好ましくは3.8質量%であり、最も好ましくは3.9質量%である。Niの含有量の上限は好ましくは4.9質量%であり、より好ましくは4.8質量%であり、最も好ましくは4.7質量%である。
(e) Cr:0.8~1.5質量%
 Crは焼き入れ性を向上させるとともに、基地をベイナイト又はマルテンサイトにして硬さを保持し、耐摩耗性を維持するのに有効な元素である。Crが0.8質量%未満ではその添加効果は不十分である。一方、Crが1.5質量%を超えると、黒鉛の晶出を阻害するだけでなく、粗大な共晶炭化物を形成し、破壊靭性値を低下させる。Crの含有量の上限は好ましくは1.45質量%であり、より好ましくは1.4質量%であり、最も好ましくは1.35質量%である。
(f) Mo:2.5~5.0質量%
 MoはCと結合して硬質のMo炭化物(M6C、M2C)を形成し、外層の硬さを増加させるとともに、基地の焼入れ性を向上させる。また、MoはV及びNbとともに強靭かつ硬質なMC炭化物を生成し、耐摩耗性を向上させる。その上、Moは合金溶湯の凝固過程で残留共晶溶湯の比重を増加させ、初晶γ相の遠心分離を防ぎ、ベイナイト及び/又はマルテンサイトのデンドライトの斑点状偏析の出現を抑える。Moが2.5質量%未満ではそれらの効果は不十分である。一方、Moが5.0質量%を超えると、外層の靭性が劣化し、白銑化傾向が強くなるので黒鉛の晶出を阻害し、かつ破壊靭性値を低下させる。Moの含有量の下限は好ましくは2.6質量%であり、より好ましくは2.7質量%である。Moの含有量の上限は好ましくは4.6質量%であり、より好ましくは4.4質量%であり、最も好ましくは4.2質量%である。
(g) V:1.8~4.0質量%
 VはCと結合して硬質のMC炭化物を生成する元素である。このMC炭化物は2500~3000のビッカース硬さHvを有し、炭化物の中で最も硬い。Vが1.8質量%未満では、MC炭化物の晶出量は不十分である。一方、Vが4.0質量%を超えると、比重の軽いMC炭化物が遠心鋳造中の遠心力により外層の内側に濃化し、MC炭化物の半径方向偏析が著しくなるだけでなく、MC炭化物が粗大化して合金組織が粗くなり、圧延時に肌荒れしやすくなる。MC炭化物はV、Nb又はMoが主体の炭化物であり、後述するようにこの晶出量はVだけでなくNbの量にも関係する。さらに、Vと他元素との相互作用により、後述するように基地中へのSi固溶量及び粗大炭化物の形成量が変化する。Vの含有量の下限は好ましくは2.0質量%であり、より好ましくは2.1質量%であり、最も好ましくは2.2質量%である。Vの含有量の上限は好ましくは3.9質量%であり、より好ましくは3.8質量%であり、最も好ましくは3.7質量%である。
(h) Nb:0.2~1.5質量%
 NbはCと結合してMC炭化物を生成する。NbはV及びMoとの複合添加により、MC炭化物に固溶してMC炭化物を強化し、外層の耐摩耗性を向上させる。NbC系のMC炭化物は、VC系のMC炭化物より溶湯密度との差が小さいので、MC炭化物の偏析を軽減させる。さらに、Nbは合金溶湯の凝固過程で残留共晶溶湯の比重を増加させ、初晶γ相の遠心分離を防ぎ、オーステナイトから変態したデンドライト状のベイナイト及び/又はマルテンサイトが斑点状に偏析するのを抑える。Nbが0.2質量%未満ではこれらの効果は不十分である。一方、Nbが1.5質量%を超えると、MC炭化物が凝集し、健全な外層を得にくくなる。Nbの含有量の下限は好ましくは0.3質量%であり、より好ましくは0.4質量%である。Nbの含有量の上限は好ましくは1.4質量%であり、より好ましくは1.3質量%であり、最も好ましくは1.2質量%である。
(i) Nb/V:0.1~0.7、Mo/V:0.7~2.5、及びV+1.2 Nb:2.5~5.5質量%
 V、Nb及びMoはいずれも耐摩耗性に必須な硬質MC炭化物を増加させる作用を有するので、これらの元素の合計添加量を所定のレベル以上にする必要がある。また、Vは溶湯の比重を低下させる元素であるのに対し、Nb及びMoは溶湯の比重を増加させる元素である。従って、Vに対してNb及びMoの含有量がバランスしていないと、溶湯の比重とオーステナイトの比重との差が大きくなり、遠心力によるオーステナイトの外層側への移動により炭素が顕著に濃化され、その結果オーステナイトのデンドライトが偏析しやすくなる。
 そのため、Nb/Vの質量比を0.1~0.7とし、Mo/Vの質量比を0.7~2.5とし、かつV+1.2 Nbを2.5~5.5質量%とする。Nb/V、Mo/V及びV+1.2 Nbがこれらの範囲内であると、Vを主体とする炭化物中に適量のNb及びMoが入って炭化物が重くなり、炭化物の分散が均一化され、もってベイナイト及び/又はマルテンサイトのデンドライトの斑点状偏析の発生が防止される。特に、V+1.2 Nbが5.5%を超えると、過剰に晶出した比重の小さいMC炭化物が遠心鋳造過程で外層の内側に濃化し、中間層との溶着を阻害する。
 Nb/Vの質量比の下限は好ましくは0.12であり、より好ましくは0.14であり、最も好ましくは0.18である。Nb/Vの質量比の上限は好ましくは0.6であり、より好ましくは0.55であり、最も好ましくは0.5である。
 Mo/Vの質量比の下限は好ましくは0.75であり、より好ましくは0.8であり、最も好ましくは0.85である。Mo/Vの質量比の上限は好ましくは2.2であり、より好ましくは1.95であり、最も好ましくは1.75である。
 V+1.2 Nbの下限は好ましくは2.6質量%であり、より好ましくは2.7質量%であり、最も好ましくは2.8質量%である。V+1.2 Nbの上限は好ましくは5.35質量%であり、より好ましくは5.2質量%であり、最も好ましくは5.0質量%である。
(ii) 任意組成
 本発明の遠心鋳造製複合圧延ロールの外層は、上記必須組成要件の他に、少なくとも一種の下記の元素を含有しても良い。
(a) W:0.1~5.0質量%
 WはCと結合して硬質のM6C及びM2Cの炭化物を生成し、外層の耐摩耗性向上に寄与する。またMC炭化物にも固溶してその比重を増加させ、偏析を軽減させる作用を有する。しかし、Wが5.0質量%を超えると、溶湯の比重を重くするため、炭化物偏析が発生しやすくなる。従って、Wを添加する場合、その好ましい含有量は5.0質量%以下である。一方、Wが0.1質量%未満ではその添加効果は不十分である。Wの含有量の上限は好ましくは4.5質量%であり、より好ましくは4.0質量%であり、最も好ましくは3.0質量%である。
(b) Ti:0.003~5.0質量%
 Tiは黒鉛化阻害元素であるN及びOと結合し、酸化物又は窒化物を形成する。酸化物又は窒化物は溶湯中に懸濁されて核となり、MC炭化物を微細化及び均質化する。しかし、Tiが5.0質量%を超えると、溶湯の粘性が増加し、鋳造欠陥が発生しやすくなる。従って、Tiを添加する場合、その好ましい含有量は5.0質量%以下である。一方、Tiが0.003質量%未満ではその添加効果は不十分である。Tiの含有量の下限は好ましくは0.005質量%である。Tiの含有量の上限はより好ましくは3.0質量%であり、最も好ましくは1.0質量%である。
(c) Al:0.01~2.0質量%
 Alは黒鉛化阻害元素であるN及びOと結合して、酸化物又は窒化物を形成し、それが溶湯中に懸濁されて核となり、MC炭化物を微細均一に晶出させる。しかし、Alが2.0質量%を超えると、外層が脆くなり、機械的性質の劣化を招く。従って、Alの好ましい含有量は2.0質量%以下である。一方、Alの含有量が0.01質量%未満では、その添加効果は不十分である。Alの含有量の上限はより好ましくは1.5質量%であり、最も好ましくは1.0質量%である。
(d) Zr:0.01~0.5質量%
 ZrはCと結合してMC炭化物を生成し、外層の耐摩耗性を向上させる。また溶湯中で生成したZr酸化物は結晶核として作用するために、凝固組織が微細になる。またMC炭化物の比重を増加させ偏析を防止する。しかし、Zrが0.5質量%を超えると、介在物を生成し好ましくない。従って、Zrの含有量は0.5質量%以下が好ましい。一方、Zrが0.01質量%未満では、その添加効果は不十分である。Zrの含有量の上限は好ましくは0.3質量%であり、より好ましくは0.2質量%であり、最も好ましくは0.1質量%である。
(e) B:0.001~0.5質量%
 Bは炭化物を微細化する作用を有する。また微量のBは黒鉛の晶出に寄与する。しかし、Bが0.5質量%を超えると、白銑化効果が強くなり黒鉛が晶出しにくくなる。従って、Bの含有量は0.5質量%以下が好ましい。一方、Bが0.001質量%未満では、その添加効果は不十分である。Bの含有量の上限は好ましくは0.3質量%であり、より好ましくは0.1質量%であり、最も好ましくは0.05質量%である。
(f) Co:0.1~10.0質量%
 Coは基地組織の強化に有効な元素である。また、Coは黒鉛を晶出し易くする。しかし、Coが10質量%を超えると外層の靱性は低下する。従って、Coの含有量は10質量%以下が好ましい。一方、Coが0.1質量%未満では、その添加効果は不十分である。Coの含有量の上限は好ましくは8.0質量%であり、より好ましくは6.0質量%であり、最も好ましくは4.0質量%である。
(g) Mo/Cr:1.7~5.0
 Mo/Crの質量比は1.7~5.0の範囲内であるのが好ましい。Mo/Crの質量比が1.7未満では、Mo含有量がCr含有量に対して十分でなく、Moを主体とした炭化物粒子の面積率が低下する。一方、Mo/Crの質量比が5.0超ではMoを主体とする炭化物が多くなり、その炭化物が粗大化するので破壊靭性が劣る。従って、Mo/Crの質量比は1.7~5.0が好ましい。Mo/Crの質量比の下限はより好ましくは1.8である。Mo/Crの質量比の上限はより好ましくは4.7であり、最も好ましくは4.5である。
(iii) 好ましい組成関係
(a) Si≦3.2/[0.283 (C-0.2 V-0.13 Nb)+0.62]・・・(1) 
 耐事故性を改善するため、ロール外層の破壊靭性値を、例えばホットストリップミルの後段用ワークロールの場合、18.5 MPa・m1/2以上と高い破壊靱性を有する必要がある。ロール外層の基地の破壊靱性値を測定することはできないので、ロール外層の基地に相当する(炭化物の影響を排除した)合金について、Si固溶量と破壊靱性値との関係を調べれば、ロール外層の基地のSi固溶量と破壊靱性値との関係を推定することができる。従って、まず炭化物量の影響を排除する目的で、C含有量を1質量%にするとともにV、Nbなどの炭化物形成元素の含有量を低減して、ロール外層の基地に相当する組成を有する種々の合金試料を作製し、各試料の破壊靱性値を測定した。図1は基地組成相当合金のSi固溶量と破壊靱性値との関係を示す。図1に示すように、基地組成相当合金中のSi固溶量が3.2%以下では試料の破壊靱性値はほぼ22 MPa・m1/2以上であるが、3.2%を超えると19 MPa・m1/2以下に低下する。これから、ロール外層の基地の破壊靱性値も、基地のSi固溶量が3.2%を超えると急激に低下すると推定できる。基地中のSi固溶量を制限する合金組成について鋭意研究の結果、基地中のSi固溶量を3.2%以下とするには、Si≦3.2/[0.283 (C-0.2 V-0.13 Nb)+0.62]の条件を満たす必要があることが分った。
(b) (C-0.2 V-0.13 Nb)+(Cr+Mo+0.5 W)≦9.5・・・(2) 
 V、Nb、Cr、Mo及びWを含有する鋳鉄の凝固過程では、まずV及びNb等の粒状のMC炭化物及びオーステナイトが晶出した後、Cr、Mo及びWは液相中に濃化し、M2C、M6C、M7C3、M23C6、M3C等のネットワーク状の共晶炭化物として晶出する。外層の破壊靭性値は炭化物の量及び形状に大きく依存し、特にネットワーク状の共晶炭化物が多いか粗大であると、破壊靭性値は著しく低下する。MC炭化物を形成するV及びNbに対してCが過剰で、かつ凝固過程で液相中に濃化するCr、Mo及びWが過剰な場合、粗大炭化物が形成され、外層の破壊靭性値が低下する。V及びNbに対してCが過剰か否かは(C-0.2 V-0.13 Nb)の項により判定され、Cr、Mo及びWが過剰か否かは(Cr+Mo+0.5 W)の項により判定される。鋭意研究の結果、破壊靭性値を低下させないための組成条件は、(C-0.2 V-0.13 Nb)+(Cr+Mo+0.5 W)≦9.5を満たすことであることが分った。破壊靭性値を18.5 MPa・m1/2以上とするには、左辺の値を9.5以下にする必要がある。
(c) 1.5≦Mo+0.5 W≦5.5・・・(3) 
 Mo及びWはMC、M2C又はM6Cの硬質炭化物を形成する作用を有する。Moの作用はWの作用の2倍であるので、Mo及びWの合計含有量は(Mo+0.5 W)で表すことができる。(Mo+0.5 W)はM2C、M6Cの炭化物を形成し耐摩耗性を向上させるため、1.5%以上である必要があるが、多すぎるとネットワーク状の共晶炭化物が多くなるので、5.5%以下である必要がある。
(iv) 不純物
 外層組成の残部は実質的にFe及び不可避的不純物からなる。不可避的不純物のうち、P及びSは機械的性質の劣化を招くので、できるだけ少なくするのが好ましい。具体的には、Pの含有量は0.1質量%以下が好ましく、Sの含有量は0.1質量%以下が好ましい。その他の不可避的不純物として、Cu、Sb、Te、Ce等の元素は合計で0.7質量%以下であれば良い。
(2) 組織
 本発明の遠心鋳造製複合圧延ロールの外層の組織は、基地、黒鉛、MC炭化物、セメンタイト、MC炭化物及びセメンタイト以外の炭化物(M2C、M6C等)を有する。本発明の遠心鋳造製複合圧延ロールの外層の組織は0.3~10面積%の黒鉛相を有する。外層組織はまた、3~20面積%のMC炭化物を有するのが好ましい。外層の基地組織は実質的にマルテンサイト、ベイナイト又はパーライトからなるのが好ましい。外層の基地組織はさらに15~45面積%のセメンタイト相を有するのが好ましい。
(a) 黒鉛相の面積率:0.3~10%
 外層組織に晶出する黒鉛相(黒鉛粒子)の面積率は0.3~10%である。黒鉛相の面積率が0.3%未満では、外層の耐焼付性向上の効果が不十分である。一方、黒鉛相が10面積%を超えると、外層の機械的性質は低下する。黒鉛相の面積率は好ましくは0.5~8%であり、より好ましくは1~7%である。
(b) MC炭化物の面積率:3~20%
 外層組織に晶出するMC炭化物の面積率が3%未満であると、外層は十分な耐摩耗性を有さないことがある。また黒鉛との共存関係によりMC炭化物の面積率を20%超にするのは困難である。
(3) 特性
(a) 耐摩耗性
 外層の耐摩耗性は、MC、M2C、M6C等の硬質炭化物及び硬質な基地組織により得られる。特にV及びNb等からなるMC炭化物は非常に硬質であり、(V+1.2 Nb)が2.5質量%以上のとき、十分なMC炭化物が晶出する。また硬質な基地組織はMo、W等の元素により得られる。
(b) 耐焼付き性
 絞り込み時の鋼板の焼き付きを防止するために、所定量の炭化物及びSiを含有するとともに、所定量の黒鉛を有するのが効果的である。このために、2.5質量%以上のC及び1.3質量%以上のSiが必要である。
(c) 耐事故性
 発生したクラックの進展に対する抵抗の指標として破壊靱性値がある。破壊靭性値は、炭化物の形態、大きさ及び量、及び基地の靱性に依存する。炭化物が粗大であると、クラックが進展しやすい。粗大炭化物の生成は、MC炭化物晶出後に溶湯に残ったCの量と、粗大炭化物を形成しやすいCr、Mo及びWの量に依存することが分った。その結果、MC炭化物晶出後の残留C量を表す(C-0.2 V-0.13 Nb)の項と、Cr、Mo及びWの合計量を表す(Cr+Mo+0.5 W)との和が9.5質量%以下であれば、破壊靭性値を低下させる粗大炭化物の発生が抑制されていると判定できる。
 また基地の破壊靱性は、3.2質量%を超えるSiが固溶すると著しく低下することが分った。基地中のSi量を3.2質量%以下とするためには、Si≦3.2/[0.283 (C-0.2 V-0.13 Nb)+0.62]の条件を満たせば良い。
(d) 圧縮残留応力
 ロール外層には、クラック発生防止のために所定の圧縮残留応力が必要である。しかし、圧縮残留応力の所定値を超えると、クラックの進展を助長し早める。残留応力は外層と軸芯部の歪差による弾性変形により発生するので、外層が薄くなるとその分だけ弾性変形も大きくなり、圧縮残留応力も増大する。本発明では、圧縮残留応力が最大となる廃却径で、かつロール軸方向中央で外層表面の円周方向圧縮残留応力の値を求める。クラックの発生を防止するとともに、クラックの進展を助長しないように、ロール軸方向中央で廃却径における外層の圧縮残留応力は好ましくは150~500 MPaであり、より好ましくは200~400 MPaである。
 このような圧縮残留応力を得るため、鋳造後に450~550℃の焼戻し処理を1回以上行う。450~550℃の保持は1時間以上が好ましい。この焼戻し処理温度により残留オーステナイトは硬質のマルテンサイト又はベイナイトに変態し、この変態膨張によりロール表面に圧縮残留応力が付与される。このような変態により基地硬度が上がり、耐摩耗性が向上する。なお外層の基地のオーステナイト化温度(約770℃以上)以上にロールを加熱する焼き入れを行うと、ロール表面での圧縮残留応力が500 MPa超になるので、クラックの進展が早くなりやすい。
(e) ビッカース硬さ
 外層基地のビッカース硬さは560以上が好ましい。外層基地のビッカース硬さが560未満であると、圧延により基地部の優先的摩耗や炭化物の脱落が大きい。560以上のビッカース硬さは、Mo及びWを1.5≦(Mo+0.5 W)を満たすように添加することにより得られる。
(B) 軸芯部
 外層の長寿命化に応じてジャーナル部(軸芯部)の寿命も長くするために、ジャーナル部の耐摩耗性向上は必須である。ジャーナル部の摩耗により軸受との間のガタが大きくなると、遠心鋳造複合ロールを廃却せざるを得ない。高耐摩耗性のジャーナル部を提供するため、軸受と接触する部位のあるジャーナル部を形成した軸芯部にフェライト面積率が35%以下のダクタイル鋳鉄を使用する。ダクタイル鋳鉄では、球状黒鉛によりその周囲の炭素量が低下し、低硬度のフェライト組織となりやすい。フェライト面積率が多くなるほど基地の硬さは低下し、よって耐摩耗性が低下する。軸芯部用ダクタイル鋳鉄のフェライト面積率は好ましくは32%以下であり、最も好ましくは29%以下である。
 ダクタイル鋳鉄のフェライト面積率は、合金元素の量に影響される。フェライト面積率が35%以下となるダクタイル鋳鉄の組成は、質量基準でC:2.3~3.6%、Si:1.5~3.5%、Mn:0.2~2.0%、Ni:0.3~2.0%、Cr:0.05~1.0%、Mo:0.05~1.0%、Mg:0.01~0.08%、及びV:0.05~1.0%を含有し、残部Fe及び不可避的不純物である。上記必須元素の他に、Nb:0.7%以下、及びW:0.7%以下を含有しても良い。さらに、フェライト面積率を低下させるために、Cu、Sn、As及びSbの少なくとも一種を合計で0.005~0.5%添加しても良い。Pは通常不純物元素として0.005~0.05%程度ダクタイル鋳鉄に入っているが、フェライト面積率を低下させるために0.5%まで添加しても良い。ダクタイル鋳鉄は、鉄基地がフェライト及びパーライトを主体とし、その他は黒鉛及び微量のセメンタイトを主に含む。
(C) 中間層
 外層の内面に形成される中間層は遠心鋳造用金型表面から離れているため、その指向性凝固の程度が小さく、引け巣が発生しやすいが、本発明の鋳鉄製中間層は、中間層内で軸芯部との境界部付近におけるCr含有量が外層の廃却径におけるCr含有量の80%以上であることにより共晶炭化物量を確保し、遠心鋳造時の凝固引け巣を防止する。その上、中間層は中間層内で軸芯部との境界部付近におけるV及びNbの合計量が前記外層の廃却径におけるV及びNbの合計量の70%以下であるので、外層から軸芯部に拡散するV及びNbが少なく、外層と軸芯部との接合強度を高める。外層及び軸芯部との溶着を良好にするために、中間層の平均厚さを1~70 mmとするのが好ましく、3~50 mmとするのがより好ましく、5~30 mmとするのが最も好ましい。なお中間層は接合部全体の領域にわたって均一な厚みを有するとは限らず、接合部の一部が薄くなることもある。
(1) 溶湯組成
 中間層用溶湯は、(a) V及びNbの合計量が外層用溶湯におけるV及びNbの合計量の50%以下であり、(b) Cr含有量が外層用溶湯におけるCr含有量の80%以上であり、(c) C含有量が外層用溶湯におけるC含有量の±35%以内である。
 組成要件(a) について、中間層用溶湯におけるV及びNbの合計量が外層用溶湯におけるV及びNbの合計量の50%超であると、軸芯部用溶湯を鋳込んだときに中間層中のV及びNbが軸芯部に拡散し、中間層と軸芯部との接合強度が低い。中間層用溶湯におけるV及びNbの合計量は、外層用溶湯におけるV及びNbの合計量の45%以下が好ましく、40%以下がより好ましい。特に、中間層用溶湯のV含有量は0~3.0%が好ましく、0~2.8%がより好ましい。また、中間層用溶湯のNb含有量は0~3.0%が好ましく、0~2.8%がより好ましい。
 組成要件(b) について、中間層用溶湯におけるCr含有量が外層用溶湯におけるCr含有量の80%未満であると、遠心鋳造時の凝固引け巣が多くなるおそれがある。中間層用溶湯におけるCr含有量は、外層用溶湯におけるCr含有量の82%以上が好ましく、85%以上がより好ましい。また中間層用溶湯におけるCr含有量は、外層用溶湯におけるCr含有量の300%以下が好ましく、200%以下がより好ましい。特に、中間層用溶湯のCr含有量は0.8~3.3%が好ましく、0.8~3.0%がより好ましい。
 組成要件(c) について、中間層用溶湯におけるC含有量が外層用溶湯におけるC含有量の±35%以内でないと、C含有量の差により中間層と外層との接合強度が低い。中間層用溶湯におけるC含有量は、外層用溶湯におけるC含有量の±30%以内が好ましく、±25%以内がより好ましい。特に、中間層用溶湯のC含有量は1.6~3.8%が好ましく、1.8~3.6%がより好ましい。
 上記組成要件(a)~(c) を満たす中間層用溶湯の好ましい具体的組成は、C:1.6~3.8%、Si:0.2~3.5%、Mn:0.2~2.0%、Ni:0~5.0%、Cr:0.8~3.0%、Mo:0~3.0%、V:0~2.0%、Nb:0~2.0%、及びW:0~3.0%を含有し、残部Fe及び不可避的不純物である。V、Nbのそれぞれの含有量の上限は、0.5%がより好ましい。
(2) 凝固組成
 外層内面に中間層が形成され、かつ中間層内面に軸芯部が形成されるので、中間層の外側領域(外層内面に近い側)に外層成分が拡散する。そのため、中間層の凝固組成は溶湯組成と異なるだけでなく、ロール半径方向で勾配を有する。具体的には、(a) 中間層内で軸芯部との境界部付近におけるV及びNbの合計量は外層の廃却径におけるV及びNbの合計量の70%以下であり、かつ(b) 中間層内で軸芯部との境界部付近におけるCr含有量は外層の廃却径におけるCr含有量の80%以上である。中間層の凝固組成要件(a) 及び(b) を満たすことにより、外層と中間層、及び中間層と軸芯部との間に高い接合強度(引張強度が300 MPa以上)が得られる。組成要件(a) について、中間層内で軸芯部との境界部付近におけるV及びNbの合計量は、外層の廃却径におけるV及びNbの合計量の68%以下が好ましく、65%以下がより好ましい。組成要件(b) について、中間層内で軸芯部との境界部付近におけるCr含有量は外層の廃却径におけるCr含有量の82%以上が好ましく、85%以上がより好ましい。またその上限は300%以下が好ましく、200%以下がより好ましい。
 外層内面に中間層が形成され、かつ中間層内面に軸芯部が形成されるので、外層と中間層との境界で両者の成分が拡散しあうだけでなく、中間層と軸芯部との境界で両者の成分が拡散しあう。そのため、合金元素の濃度は、中間層を介して外層から軸芯部まで概ね低下する。特に炭化物形成元素であるV、Nb及びCrの濃度が異なる中間層と軸芯部との境界部では、これらの元素の濃度は著しく低下する。
 Cr含有量が外層と同程度又は外層より少ない中間層を形成した場合、中間層と軸芯部との境界部におけるV、Nb及びCrの濃度変化を調べた結果、図4-1に概略的に示すように、(a) V及びNbは中間層から軸芯部にかけて徐々に低下するので、境界部の範囲を特定しにくいが、(b) 図4-1に示すようにCrの濃度は外層から中間層までほとんど変化がないが、境界部で急激に低下し、軸芯部でまた一定になることが分った。また、外層よりCr含有量が多い中間層を形成した場合では、境界部におけるCr濃度の低下の勾配はいっそう大きくなることも分った。いずれの場合もCr濃度は境界部で急激に低下するので、境界部の範囲を特定するのにCrの濃度変化を用いるのが良いと言える。そこで、図4-2に示すように、Crの濃度曲線の変曲点A1,A2の位置をそれぞれ境界部の半径方向外側位置及び内側位置と定義する。このような変曲点を求めるためには、半径方向に3 mm以下のピッチでCrの濃度を分析するのが好ましい。
 図4-3は境界部付近における複合ロールの横断面(軸線方向に垂直な断面)を拡大して示す。図4-3に示すように、境界部の端部20の半径方向位置は一般に一定ではない。このような端部20を有する境界部の付近において、V、Nb及びCrの濃度を半径方向直線Lに沿って一定のピッチPで測定するが、測定点M1,M2,M3・・・のいずれかが境界部の端部20に位置することはほとんどない。すなわち、境界部の外端A1は測定点M1,M2,M3・・・のいずれとも一致しないことの方が多い。そこで、半径方向直線L上に、外端A1から距離X(=2 mm)だけ離れた半径方向外側(中間層側)の位置A3を設定し、(a) 位置A3にいずれかの測定点が一致する場合には、位置A3におけるV、Nb及びCrの濃度を採用し、(b) 位置A3にいずれの測定点も一致しない場合には、位置A3から最も近い外側の測定点(図示の例ではM2)におけるV、Nb及びCrの濃度を採用する。従って、位置A3又はそれに最も近い外側の測定点M2におけるV及びNbの合計量を「中間層内で軸芯部との境界部付近におけるV及びNbの合計量」と定義する。同様に、位置A3又はそれに最も近い外側の測定点M2におけるCr含有量を「中間層内で軸芯部との境界部付近におけるCr含有量」と定義する。M1,M2,M3・・・の例を図4-2にも記入する。
 なお、中間層内で軸芯部との境界部付近におけるV及びNbの合計量は、測定位置に応じて変動する程度が比較的大きいので、本発明では上記方法に従って任意の3箇所で測定した値の平均値を採用する。
(D) ロールサイズ
 本発明の遠心鋳造製複合圧延ロールのサイズは特に限定されないが、好ましい例は、外層の外径が200~1300 mmで、ロール胴長が500~6000 mmで、外層の圧延使用層(圧延有効径)の厚さが50~200 mmである。
[2] 遠心鋳造製複合圧延ロールの製造方法
 本発明の遠心鋳造製複合圧延ロールは、(a) 回転する遠心鋳造用円筒状金型に上記組成を有する外層用溶湯を鋳込み、(b) 外層の凝固中又は凝固後に中空状外層の内部に中間層用溶湯を鋳込み、(c) 中間層の凝固中又は凝固後に、外層及び中間層を有する円筒状金型を起立させ、その上下端に上型及び下型を設けて、静置鋳造用鋳型を構成し、(d) 前記上型、前記外層及び中間層を有する円筒状金型及び前記下型により構成される中空部(キャビティ)に軸芯部用溶湯を鋳込むことにより製造する。なお、外層及び中間層を形成する円筒状金型と、軸芯部を形成する上型及び下型が予め一体に設けられた鋳型を静置鋳造用鋳型としてもよい。
(A) 外層の形成
(1) 溶湯
 外層用溶湯の化学組成は、質量基準でC:2.5~3.5%、Si:1.3~2.4%、Mn:0.2~1.5%、Ni:3.5~5.0%、Cr:0.8~1.5%、Mo:2.5~5.0%、V:1.8~4.0%、及びNb:0.2~1.5%を含有し、残部はFe及び不可避的不純物からなり、Nb/Vの質量比が0.1~0.7であり、Mo/Vの質量比が0.7~2.5であり、V+1.2 Nbが2.5~5.5%である。
(2) 鋳込み温度
 外層用溶湯の鋳込み温度は、Ts+30℃~Ts+180℃(ただし、Tsはオーステナイト晶出開始温度である。)の範囲内である。この範囲内の鋳込み温度により、液相が残存する時間を短くし、液体から凝固により晶出したγ相の遠心分離を抑制し、偏析を抑えることができる。鋳込み温度がTs+30℃より低いと、鋳込んだ溶湯の凝固が速すぎ、微細な介在物などの異物が遠心力による分離の前に凝固するため、異物欠陥が残存しやすい。一方、鋳込み温度がTs+180℃より高いと、外層内部に粗大なデンドライトが集合した斑点状領域(偏析域)が生成される。鋳込み温度は好ましくはTs+30℃~Ts+100℃であり、より好ましくはTs+80℃~Ts+100℃である。なお、オーステナイト晶出開始温度Tsは、示差熱分析装置により測定した凝固発熱の開始温度である。通常外層用溶湯は取鍋から漏斗、注湯ノズル等を介して、又はタンディッシュから注湯ノズル等を介して、遠心鋳造用金型内に鋳込まれるので、本発明でいう鋳込み温度は、取鍋内又はタンディッシュ内の溶湯の温度をいう。
(3) 遠心力
 遠心鋳造用金型で外層を鋳造するときの遠心力は、重力倍数で60~150 Gの範囲内である。この範囲内の重力倍数で鋳込むと、凝固時の加速度を制限してγ相の移動速度を遅くし、もってγ相の遠心分離を抑制する(偏析を抑える)ことができる。重力倍数が60 G未満では、外層溶湯の巻き付きが不足する(レーニング)。一方、重力倍数が150 Gを超えると、γ相の遠心分離が顕著になり、γ相の少ない溶湯残液に粗大なデンドライトが生成する。その結果、外層内部にベイナイト及び/又はマルテンサイトのデンドライトの斑点状偏析が生成される。重力倍数(G No.)は、式:G No.=N×N×D/1,790,000[ただし、Nは金型の回転数(rpm)であり、Dは金型の内径(外層の外周に相当)(mm)である。]により求められる。
(4) 遠心鋳造用金型
 遠心鋳造用金型は厚さ120~450 mmの強靭なダクタイル鋳鉄からなるのが好ましい。金型が120 mm未満と薄いと、金型の冷却能が不足するため、外層内に引け巣欠陥が発生しやすい。一方、金型の厚さが450 mmを超えても冷却能は飽和している。金型のより好ましい厚さは150~410 mmである。遠心鋳造用金型は水平型、傾斜型又は垂直型のいずれでも良い。
(5) 塗型
 外層が金型に焼付くのを防止するために、金型内面にシリカ、アルミナ、マグネシア又はジルコンを主体とする塗型を0.5~5 mmの厚さに塗布するのが好ましい。塗型が5 mmより厚いと、溶湯の冷却が遅く液相の残存時間が長いので、γ相の遠心分離が起こりやすく、偏析が発生しやすい。一方、塗型が0.5 mmより薄いと、外層の焼付き防止効果が不十分である。塗型のより好ましい厚さは0.5~4 mmである。
(6) 接種剤
 黒鉛の晶出量を調整するため、溶湯にFe-Si、Ca-Si等の接種剤を添加しても良い。その場合、接種剤の添加による組成変化を考慮に入れて溶湯組成を決める。接種方法としては、溶解炉から出る溶湯に接種剤を添加する方法、取鍋、タンディッシュ、漏斗等の中の溶湯に接種剤を添加する方法、鋳型中の溶湯に接種剤を直接添加する方法等がある。
(B) 中間層の形成
 外層を鋳込んだ後、外層の凝固中又は凝固後に、(a) V及びNbの合計量が外層用溶湯におけるV及びNbの合計量の50%以下であり、(b) Cr含有量が外層用溶湯におけるCr含有量の80%以上であり、かつ(c) C含有量が外層用溶湯におけるC含有量の±35%以内である中間層用溶湯を鋳込む。外層の内面が再溶解した後中間層が凝固するので、両者は金属接合する。
(C) 軸芯部の形成
 中間層が凝固中又は凝固後に、外層及び中間層を有する金型を起立させ、その上下端にそれぞれ上型及び下型を設けて静置鋳造用鋳型を構成する。上型及び下型は外層及び中間層を有する金型に連通しているので、上型、外層及び中間層を有する金型及び下型は一体的な中空部(キャビティ)を形成する。そのキャビティに軸芯部用溶湯であるダクタイル鋳鉄を鋳込む。中間層の内面が再溶解した後、軸芯部が凝固するので、両者は金属接合する。
 外層と中間層との境界部で両層の元素が相互に拡散するので、凝固した中間層の組成はその溶湯組成と異なるだけでなく、勾配を有する。具体的には、中間層内で軸芯部との境界部付近におけるV及びNbの合計量は外層の廃却径におけるV及びNbの合計量の70%以下であり、好ましくは60%以下であり、より好ましくは50%以下であり、最も好ましくは40%以下である。
(D) 熱処理
 複合ロールの廃却径でかつロール軸方向中央で外層表面の円周方向圧縮残留応力を150~500 MPaとするために、軸芯部の鋳造後400~550℃の焼戻し処理を1回以上行うが、焼入れは行わないのが望ましい。
 本発明を以下の実施例により詳細に説明するが、本発明はそれらに限定されるものではない。
実施例1~7、比較例1~5
(1) 複合ロールの製造
 表1に示す組成(質量%)の各溶湯を、高速回転する内径400 mm、長さ1500 mm、及び厚さ276 mmのダクタイル鋳鉄製の遠心鋳造用円筒状金型(内面に厚さ3 mmのジルコンを主体とする塗型を塗布)に鋳込み、外層を遠心鋳造した。外層用溶湯の鋳込み温度はTs+80℃~Ts+100℃(ただし、Tsはオーステナイト晶出開始温度である。)の間であった。外層外周における重力倍数は120 Gであった。得られた外層の平均厚さは96 mmであり、廃却径は表面から65 mmであった。
 外層の最内面が凝固完了する前に、外層内面に、質量基準でC:3.1%、Si:1.5%、Mn:0.9%、Ni:2.8%、Cr:1.0%、Mo:0.2%、及びV:0.1%を含有し、残部Fe及び不可避的不純物(P:0.03%以下、S:0.02%以下、他の不純物)の組成を有する中間層用溶湯を鋳込み、中間層を遠心鋳造した。中間層用溶湯の鋳込み温度は1362℃であった。得られた中空状中間層は15 mmの平均厚さを有していた。また超音波探傷により検査した結果、外層と中間層の接合部に欠陥はなく、健全に溶着しているとこが確認できた。
 中空状中間層が凝固した後、遠心鋳造用円筒状金型の回転を止め、円筒状金型の上下端にそれぞれ上型(長さ1000 mm)及び下型(長さ1000 mm)を設けて静置鋳造用鋳型を構成した。上型、中間層を有する金型及び下型からなる静置鋳造用鋳型のキャビティに、C:3.2%、Si:2.6%、Mn:0.6%、P:0.03%以下、Ni:0.6%、Cr:0.1%、Mo:0.1%、V:0.1%、Mg:0.07%を含有し、残部が実質的にFe及び不可避的不純物の組成を有する軸芯部用ダクタイル鋳鉄溶湯を鋳込み、軸芯部を静置鋳造した。軸芯部用ダクタイル鋳鉄溶湯の鋳込み温度は1450℃であった。超音波探傷により検査した結果、得られた軸芯部と中間層の接合部に欠陥はなく、両者は健全に溶着していたことが確認できた。
 軸芯部の凝固完了後、静置鋳造用鋳型を解体して、得られた複合ロールを取り出し、500℃で10時間の焼戻し処理を行った。このようにして、各実施例及び比較例の複合ロールを得た。
 外層の組成を表1-1及び表1-2に示し、Nb/V、Mo/V、Mo/Cr、(V+1.2 Nb)、(Mo+0.5 W)及び下記式(1) の右辺の値、及び下記式(2) の左辺の値を表1-3に示す。
 Si≦3.2/[0.283 (C-0.2 V-0.13 Nb)+0.62]・・・(1)
 (C-0.2 V-0.13 Nb)+(Cr+Mo+0.5 W)≦9.5・・・(2)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
注:(1) 上記式(1) の右辺の値。
    (2) 上記式(2) の左辺の値。
(2) 組織の測定
(a) 外層における黒鉛粒子及びMC炭化物の面積率
 各実施例及び比較例の複合ロールの外層(ロール胴部端面からロール軸方向に約100 mm離れた位置)から切り出した試験片の光学顕微鏡写真から、画像解析ソフトを用いて、黒鉛粒子及びMC炭化物の面積率を求めた。
(b) 外層基地中のSi含有量(質量%)
 各実施例及び比較例の複合ロールの外層(ロール胴部端面からロール軸方向に約100 mm離れた位置)から切り出した試験片に対して、エネルギー分散型X線分析装置(EDX)により基地中のSi含有量を測定した。
(c) 組織の均質性
 各実施例及び比較例の外層表面(ロール胴部端面からロール軸方向に約100 mm離れた位置)からそれぞれ10 mm、30 mm及び50 mmの深さの面を鏡面研磨し、過硫酸アンモニウム水溶液で約1分間腐食した後、組織写真(倍率:5~10倍)を撮影した。各組織写真について、ベイナイト及び/又はマルテンサイトのデンドライトの直径1.5 mm以上の斑点状偏析の有無を観察し、下記基準により組織の均質性を評価した。
 ○:直径1.5 mm以上の斑点状偏析なし。
 ×:直径1.5 mm以上の斑点状偏析あり。
(d) 軸芯部(ジャーナル部)のフェライト面積率(%)
 各実施例及び比較例の複合ロールの軸芯部(ジャーナル部)から切り出した試験片の光学顕微鏡写真から、画像解析ソフトを用いて、フェライトの面積率(%)を測定した。
 図6は実施例1の外層の金属組織写真を示す。これは腐食液としてピラクルを用いて腐食したものである。図6において、21はMC炭化物を示し、22は黒鉛を示し、23はM6C炭化物を示し、24は基地を示し、25はセメンタイトを示す。 
(3) 特性の測定
(a) 外層の破壊靱性値(KIC
 各実施例及び比較例の複合ロールの外層の破壊靱性値KICはASTM規格E399に準拠して測定した。具体的には、図7に示すように、ASTM規格E399に準拠して破壊靱性値KICを測定するために各複合ロールの外層(ロール胴部端面からロール軸方向に約100 mm離れた位置)から切り出した試験片30(48 mm×50 mm×15 mm)は、ロール外層表面に対して平行に延在する中央ノッチ31と、ノッチ31の両側に位置する保持用の孔32,32とを有する。まず孔32,32に係合した部材によりノッチ31を開く方向に弱い応力F,Fをかけてノッチ31の底部を起点に予め亀裂33を入れた。次いで、試験片30にノッチ31を開く方向の応力F,Fを再度かけて亀裂33を進展させ、破壊に至るまでノッチ31の開口端Pで亀裂開口変位を測定した。応力と亀裂開口変位から破壊靱性値KIC(MPa・m1/2)を求めた。
(b) 外層の基地のビッカース硬さ(Hv)
 各実施例及び比較例の複合ロールの外層(ロール胴部端面からロール軸方向に約100 mm離れた位置)から切り出した試験片に対して、マイクロビッカース硬さ試験機により荷重200 gで基地のビッカース硬さを測定した。
(c) 外層のショア硬さ(Hs)
 各実施例及び比較例の複合ロールの製品初径に位置する外層の表面をショア硬さ計によりショア硬さを測定した。
(d) 外層の廃却径での圧縮残留応力(MPa)
 各実施例及び比較例の複合ロールの外層のロール軸方向中央で、外層の廃却径まで機械加工により除去した。各実施例及び比較例の複合ロールの外層の廃却径(製品初径表面から深さ50 mm)でかつロール軸方向中央で外層表面の円周方向圧縮残留応力をX線回折残留応力測定装置により測定した。
 組織の測定結果を表2に示し、特性の測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
注:(1) デンドライトの直径1.5 mm以上の斑点状偏析の有無により判定。
Figure JPOXMLDOC01-appb-T000005
注:(1) 破壊靱性値(KIC)。
  (2) 廃却径での圧縮残留応力。
(4) 性能試験
 各実施例及び比較例の外層材を用いて、外径60 mm、内径40 mm、及び幅40 mmのスリーブ構造の試験用ロールを作製した。耐摩耗性を評価するため、図2に示す圧延摩耗試験機を用いて、各試験用ロールに対して摩耗試験を行った。圧延摩耗試験機は、圧延機1と、圧延機1に組み込まれた試験用ロール2,3と、圧延材8を予熱する加熱炉4と、圧延材8を冷却する冷却水槽5と、圧延中に一定の張力を与える巻取機6と、張力を調節するコントローラ7とを具備する。圧延摩耗条件は以下の通りであった。圧延後、試験用ロールの表面に生じた摩耗の深さを触針式表面粗さ計により測定した。結果を表4に示す。
 圧延材:SUS304
 圧下率:25%
 圧延速度:150 m/分
 圧延材温度:900℃
 圧延距離:300 m/回
 ロール冷却:水冷
 ロール数:4重式
 耐焼付き性を評価するため、図3に示す摩擦熱衝撃試験機を用いて、各試験用ロールに対して焼付試験を行った。摩擦熱衝撃試験機は、ラック11に重り12を落下させることによりピニオン13を回動させ、試験材14に噛み込み材15を強く接触させるものである。焼付きを下記の基準で評価した。結果を表4に示す。焼付きが少ないほど耐焼付き性が良い。
 ○:焼付き無し。
 △:僅かな焼付き有り。
 ×:著しい焼付き有り。
Figure JPOXMLDOC01-appb-T000006
 表2~表4から明らかなように、実施例1~7のいずれの外層も、0.3~10%の範囲内の黒鉛粒子の面積率及び3~20%の範囲内のMC炭化物の面積率を有し、基地中のSi含有量は3.2質量%以下であり、かつ組織の均質性に優れており、また軸芯部(ジャーナル部)のフェライト面積率は35%以下であった。さらに実施例1~7のいずれの外層も、18.5 MPa・m1/2以上の破壊靱性値、560以上の基地のビッカース硬さ、及び150~500 MPaの廃却径での圧縮残留応力を有し、かつ優れた耐摩耗性、耐焼付性及び耐事故性を有していた。
 これに対して、比較例1の外層は破壊靱性値が17.9 MPa・m1/2と低く、摩耗の深さ(耐摩耗性)も2.61μmと比較的大きかった。比較例2の外層は破壊靱性値が17.1 MPa・m1/2と低く、耐焼付性も不十分であった。比較例3の外層は1.29%のMC炭化物面積率を有するので、摩耗の深さが3.11μmと大きかった。比較例4の外層は基地のビッカース硬さHvが532と低く、組織の均質性が悪く、また黒鉛粒子の面積率が0.12%と小さいために耐焼付性に劣っていた。比較例5の外層は組織の均質性が悪く、また黒鉛粒子の面積率が0.28%と小さいために耐焼付性に劣っていた。
実施例8
 実施例1~7と同じ方法により、表5に示す組成の外層用溶湯及び中間層用溶湯を、内径760 mm、長さ2700 mm、及び厚さ320 mmのダクタイル鋳鉄製の遠心鋳造用円筒状金型(内面に厚さ3 mmのジルコンを主体とする塗型を塗布)に鋳込み、遠心鋳造法により平均厚さ91 mmの外層、及び平均厚さ20 mmの中間層を形成した。その後、実施例1~7と同じ方法により軸芯部を形成した。得られた複合ロールのロール胴部端面からロール軸方向に約100 mm離れた位置から切り出した試験片に対して、中間層近傍におけるCr、V及びNbの分布を測定した。結果を図5-1に示す。
Figure JPOXMLDOC01-appb-T000007
 図5-1から明らかなように、廃却径の位置から境界部の端部(A3)の位置までの距離は約28 mmであった。表6は、外層の廃却径の位置及び中間層内で軸芯部との境界部付近の位置におけるCr、V及びNbの含有量、並びにVとNbの合計量、さらに境界部近傍におけるCr含有量/廃却径位置におけるCr含有量の比、及び境界部近傍におけるVとNbの合計量/廃却径位置におけるVとNbの合計量の比を示す。
Figure JPOXMLDOC01-appb-T000008
実施例9
 実施例1~7と同じ方法により、表7に示す組成の外層用溶湯及び中間層用溶湯を、内径795 mm、長さ2700 mm、及び厚さ302.5 mmのダクタイル鋳鉄製の遠心鋳造用円筒状金型(内面に厚さ3 mmのジルコンを主体とする塗型を塗布)に鋳込み、遠心鋳造法により平均厚さ85 mmの外層、及び平均厚さ10 mmの中間層を形成した。その後、実施例1~7と同じ方法により軸芯部を形成した。得られた複合ロールのロール胴部端面からロール軸方向に約100 mm離れた位置から切り出した試験片に対して、中間層近傍におけるCr、V及びNbの分布を測定した。結果を図5-2に示す。
Figure JPOXMLDOC01-appb-T000009
 図5-2から明らかなように、廃却径の位置から境界部の端部(A3)の位置までの距離は18 mmであった。表8は、外層の廃却径の位置及び中間層内で軸芯部との境界部付近の位置におけるCr、V及びNbの含有量、並びにVとNbの合計量、さらに境界部近傍におけるCr含有量/廃却径位置におけるCr含有量の比、及び境界部近傍におけるVとNbの合計量/廃却径位置におけるVとNbの合計量の比を示す。
Figure JPOXMLDOC01-appb-T000010
 図5-1及び図5-2、並びに表6及び表8から明らかなように、実施例8及び9のいずれでも、(a) 中間層内で軸芯部との境界部付近におけるV及びNbの合計量は、外層の廃却径におけるV及びNbの合計量の70%以下であり、かつ(b) 中間層内で軸芯部との境界部付近におけるCr含有量は外層の廃却径におけるCr含有量の80%以上であった。また実施例8及び9のいずれでも、超音波探傷により検査した結果、得られた軸芯部と中間層の接合部に欠陥はなく、両者は健全に溶着していたことが確認できた。
 実施例8及び9の遠心鋳造製複合圧延ロールについて、実施例1~7同様に組織及び特性の測定を行った。組織の測定結果を表2に示し、特性の測定結果を表3に示す。表2及び表3から明らかなように、実施例8及び9においても、外層は0.3~10%の範囲内の黒鉛面積率を有し、基地中のSi含有量は3.2質量%以下であり、かつ組織の均質性に優れており、また軸芯部(ジャーナル部)のフェライト面積率は35%以下であった。さらに実施例8及び9の外層も、18.5 MPa・m1/2以上の破壊靱性値、560以上の基地のビッカース硬さ、及び150~500 MPaの範囲内の廃却径での圧縮残留応力を有していた。
 実施例8及び9の遠心鋳造製複合圧延ロールについて、実施例1~7同様に性能試験を行った。性能試験の結果を表4に示す。表4から明らかなように、実施例8及び9の外層も優れた耐摩耗性、耐焼付性及び耐事故性を有していた。
 
1・・・圧延機
2・・・試験用ロール
3・・・試験用ロール
4・・・加熱炉
5・・・冷却水槽
6・・・巻取機
7・・・コントローラ
11・・・ラック
12・・・重り
13・・・ピニオン
14・・・試験材
15・・・噛み込み材
20・・・境界部の端部
21・・・MC炭化物
22・・・黒鉛
23・・・M6C炭化物
24・・・基地
25・・・セメンタイト

Claims (9)

  1. (a) 質量基準で、C:2.5~3.5%、Si:1.3~2.4%、Mn:0.2~1.5%、Ni:3.5~5.0%、Cr:0.8~1.5%、Mo:2.5~5.0%、V:1.8~4.0%、及びNb:0.2~1.5%を含有し、残部がFe及び不可避的不純物からなり、Nb/Vの質量比が0.1~0.7で、Mo/Vの質量比が0.7~2.5であり、かつ2.5≦V+1.2 Nb≦5.5の条件を満たす化学組成と、面積基準で0.3~10%の黒鉛相を有する組織とを有する鋳鉄からなる外層と、(b) フェライト面積率が35%以下のダクタイル鋳鉄からなる軸芯部と、(c) 鋳鉄製中間層とからなることを特徴とする遠心鋳造製熱間圧延用複合ロール。
  2. 請求項1に記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記中間層内で軸芯部との境界部付近におけるV及びNbの合計量が前記外層の廃却径におけるV及びNbの合計量の70%以下であり、かつ前記中間層内で軸芯部との境界部付近におけるCr含有量が前記外層の廃却径におけるCr含有量の80%以上であることを特徴とする遠心鋳造製熱間圧延用複合ロール。
  3. 請求項1又は2に記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層がさらにW:0.1~5.0%を含有することを特徴とする遠心鋳造製熱間圧延用複合ロール。
  4. 請求項3に記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層の化学組成が、下記式(1)~(3):
     Si≦3.2/[0.283 (C-0.2 V-0.13 Nb)+0.62]・・・(1)、
     (C-0.2 V-0.13 Nb)+(Cr+Mo+0.5 W) ≦9.5・・・(2)、及び
     1.5≦Mo+0.5 W≦5.5・・・(3)
    の条件をみたすことを特徴とする遠心鋳造製熱間圧延用複合ロール。
  5. 請求項1~4のいずれかに記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層がさらに質量基準でTi:0.003~5.0%、Al:0.01~2.0%、Zr:0.01~0.5%、B:0.001~0.5%、及びCo:0.1~10.0%からなる群から選ばれた少なくとも一種を含有することを特徴とする遠心鋳造熱間圧延用複合ロール。
  6. 請求項1~5のいずれかに記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層の基地が560以上のビッカース硬さを有することを特徴とする遠心鋳造製熱間圧延用複合ロール。
  7. 請求項1~6のいずれかに記載の遠心鋳造製熱間圧延用複合ロールにおいて、ロール軸方向中央における前記外層表面の円周方向圧縮残留応力が廃却径で150~500 MPaであることを特徴とする遠心鋳造製熱間圧延用複合ロール。
  8. 請求項1~7のいずれかに記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層の破壊靭性値KICが18.5 MPa・m1/2以上であることを特徴とする遠心鋳造熱間圧延用複合ロール。
  9. 請求項1~8のいずれかに記載の遠心鋳造製熱間圧延用複合ロールにおいて、前記外層の基地中のSi含有量が3.2質量%以下であることを特徴とする遠心鋳造熱間圧延用複合ロール。
PCT/JP2014/062146 2013-05-02 2014-05-02 遠心鋳造製熱間圧延用複合ロール WO2014178437A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14791769.4A EP2902124B8 (en) 2013-05-02 2014-05-02 Hot-rolling composite roll produced by centrifugal casting
KR1020157011349A KR101587215B1 (ko) 2013-05-02 2014-05-02 원심 주조제 열간 압연용 복합 롤
JP2015503390A JP5768947B2 (ja) 2013-05-02 2014-05-02 遠心鋳造製熱間圧延用複合ロール
US14/758,694 US9358758B2 (en) 2013-05-02 2014-05-02 Centrifugally cast hot-rolling composite roll
CN201480022521.5A CN105121044B (zh) 2013-05-02 2014-05-02 离心铸造制热轧用复合辊

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-097013 2013-05-02
JP2013097013 2013-05-02

Publications (1)

Publication Number Publication Date
WO2014178437A1 true WO2014178437A1 (ja) 2014-11-06

Family

ID=51843561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062146 WO2014178437A1 (ja) 2013-05-02 2014-05-02 遠心鋳造製熱間圧延用複合ロール

Country Status (7)

Country Link
US (1) US9358758B2 (ja)
EP (1) EP2902124B8 (ja)
JP (1) JP5768947B2 (ja)
KR (1) KR101587215B1 (ja)
CN (1) CN105121044B (ja)
TW (1) TWI633945B (ja)
WO (1) WO2014178437A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170570A1 (ja) * 2016-03-31 2017-10-05 日立金属株式会社 圧延ロール用外層及び圧延用複合ロール
JP6313844B1 (ja) * 2016-12-28 2018-04-18 株式会社クボタ 圧延用複合ロール
JP2018118319A (ja) * 2018-03-22 2018-08-02 株式会社クボタ 圧延用複合ロール
JP2019183276A (ja) * 2018-03-30 2019-10-24 日立金属株式会社 熱間圧延用遠心鋳造複合ロール及びその製造方法
JP7400718B2 (ja) 2018-08-08 2023-12-19 株式会社プロテリアル 圧延用遠心鋳造複合ロール及びその製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102148756B1 (ko) * 2014-03-12 2020-08-27 두산인프라코어 주식회사 내열 구상흑연주철, 이의 제조 방법 및 이를 포함하는 엔진 배기계
CN105127205B (zh) * 2015-08-31 2017-08-29 娄底市巨能高新耐磨材料有限公司 用于生产板带的大型镶套轧辊及其制备方法
FR3051852B1 (fr) * 2016-05-24 2018-06-15 Pfeiffer Vacuum Stator, arbre rotatif, pompe a vide de type seche et procedes de fabrication associes
EP3315624B1 (en) * 2016-09-05 2020-06-10 Tpr Co., Ltd. Cylindrical member made from lamellar graphite cast iron
JP6292362B1 (ja) * 2016-09-07 2018-03-14 Jfeスチール株式会社 熱間圧延用ロール外層材および熱間圧延用複合ロール
CN106834927B (zh) * 2017-01-25 2018-04-17 北京工业大学 耐磨双金属复合锤头及其制备方法
US11628481B2 (en) 2019-04-03 2023-04-18 Nippon Steel Rolls Corporation Centrifugally cast composite roll for rolling and method of manufacturing the same
WO2021075561A1 (ja) * 2019-10-16 2021-04-22 日立金属株式会社 熱間圧延用遠心鋳造複合ロール
RU2720271C1 (ru) * 2019-11-28 2020-04-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ярославский государственный технический университет" ФГБОУВО "ЯГТУ" Высокопрочный легированный антифрикционный чугун
CN113941694B (zh) * 2020-07-15 2023-08-11 四川维珍高新材料有限公司 一种大口径耐磨铸铁管的离心铸造方法
ES2921973B2 (es) * 2021-02-23 2023-03-17 Fundiciones Balaguer S A Procedimiento de obtención de un cilindro para molinería y producto obtenido
CN113897534B (zh) * 2021-10-06 2022-08-23 襄阳金耐特机械股份有限公司 一种韧性和高温性能优异的球墨铸铁及其应用
CN113897536B (zh) * 2021-10-06 2022-09-06 襄阳金耐特机械股份有限公司 一种韧性和高温性能优异的球墨铸铁的制备方法
CN113897535B (zh) * 2021-10-06 2022-08-26 襄阳金耐特机械股份有限公司 一种兼具韧性和高温性能的球墨铸铁及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170041A (ja) 1995-12-19 1997-06-30 Kawasaki Steel Corp 遠心鋳造製ロールとその製造方法
JP2000160277A (ja) * 2000-01-01 2000-06-13 Kubota Corp 複合ロール
JP2002088444A (ja) 2001-07-12 2002-03-27 Kubota Corp 複合ロール
JP2002088445A (ja) * 2001-07-12 2002-03-27 Kubota Corp 複合ロール
JP2004082209A (ja) 2002-06-24 2004-03-18 Nippon Steel Corp 遠心鋳造製熱間圧延用複合ロール
JP2005105296A (ja) 2003-09-26 2005-04-21 Jfe Steel Kk 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP2009066633A (ja) * 2007-09-14 2009-04-02 Kubota Corp 圧延用複合ロール

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1032262C (zh) * 1991-09-12 1996-07-10 川崎制铁株式会社 轧辊外层材料和离心铸造的复合轧辊
DE69227504T2 (de) 1991-09-12 1999-04-08 Kawasaki Steel Co Material für aussenschicht einer umformwalze und durch schleuderguss hergestellte verbundwalze
WO1994022606A1 (en) * 1993-03-31 1994-10-13 Hitachi Metals, Ltd. Wear- and seizure-resistant roll for hot rolling
JPH0860289A (ja) * 1994-08-24 1996-03-05 Nippon Steel Corp 遠心鋳造複合ロール
JP3632640B2 (ja) 2001-08-31 2005-03-23 Jfeスチール株式会社 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP3925308B2 (ja) * 2002-05-29 2007-06-06 Jfeスチール株式会社 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP4123903B2 (ja) 2002-11-12 2008-07-23 Jfeスチール株式会社 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP4311073B2 (ja) 2003-04-28 2009-08-12 Jfeスチール株式会社 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP5024051B2 (ja) 2005-12-28 2012-09-12 日立金属株式会社 遠心鋳造複合ロール
CN102392178B (zh) 2011-11-16 2013-05-08 天津重型装备工程研究有限公司 离心复合铸造轧辊
US9221232B2 (en) * 2011-11-21 2015-12-29 Hitachi Metals, Ltd. Centrifugally cast composite roll and its production method
IN2014DN08041A (ja) * 2012-04-02 2015-05-01 Hitachi Metals Ltd
CN102615106B (zh) * 2012-04-05 2014-07-23 常熟市轧辊厂有限公司 一种含硼离心复合高速钢轧辊及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170041A (ja) 1995-12-19 1997-06-30 Kawasaki Steel Corp 遠心鋳造製ロールとその製造方法
JP2000160277A (ja) * 2000-01-01 2000-06-13 Kubota Corp 複合ロール
JP2002088444A (ja) 2001-07-12 2002-03-27 Kubota Corp 複合ロール
JP2002088445A (ja) * 2001-07-12 2002-03-27 Kubota Corp 複合ロール
JP2004082209A (ja) 2002-06-24 2004-03-18 Nippon Steel Corp 遠心鋳造製熱間圧延用複合ロール
JP2005105296A (ja) 2003-09-26 2005-04-21 Jfe Steel Kk 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP2009066633A (ja) * 2007-09-14 2009-04-02 Kubota Corp 圧延用複合ロール

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109070160B (zh) * 2016-03-31 2019-12-06 日立金属株式会社 轧辊用外层和轧制用复合辊
US11052440B2 (en) 2016-03-31 2021-07-06 Hitachi Metals, Ltd. Outer layer of rolling roll and composite roll for rolling
CN109070160A (zh) * 2016-03-31 2018-12-21 日立金属株式会社 轧辊用外层和轧制用复合辊
JPWO2017170570A1 (ja) * 2016-03-31 2019-02-07 日立金属株式会社 圧延ロール用外層及び圧延用複合ロール
WO2017170570A1 (ja) * 2016-03-31 2017-10-05 日立金属株式会社 圧延ロール用外層及び圧延用複合ロール
JP2018103245A (ja) * 2016-12-28 2018-07-05 株式会社クボタ 圧延用複合ロール
WO2018124101A1 (ja) * 2016-12-28 2018-07-05 株式会社クボタ 圧延用複合ロール
CN110114155A (zh) * 2016-12-28 2019-08-09 株式会社久保田 轧制用复合辊
JP6313844B1 (ja) * 2016-12-28 2018-04-18 株式会社クボタ 圧延用複合ロール
US10947611B2 (en) 2016-12-28 2021-03-16 Kubota Corporation Composite roll for rolling
JP2018118319A (ja) * 2018-03-22 2018-08-02 株式会社クボタ 圧延用複合ロール
JP2019183276A (ja) * 2018-03-30 2019-10-24 日立金属株式会社 熱間圧延用遠心鋳造複合ロール及びその製造方法
JP7302232B2 (ja) 2018-03-30 2023-07-04 株式会社プロテリアル 熱間圧延用遠心鋳造複合ロール及びその製造方法
JP7400718B2 (ja) 2018-08-08 2023-12-19 株式会社プロテリアル 圧延用遠心鋳造複合ロール及びその製造方法

Also Published As

Publication number Publication date
TW201505730A (zh) 2015-02-16
US9358758B2 (en) 2016-06-07
EP2902124B1 (en) 2017-12-06
JPWO2014178437A1 (ja) 2017-02-23
EP2902124B8 (en) 2018-01-17
KR20150052366A (ko) 2015-05-13
KR101587215B1 (ko) 2016-01-20
EP2902124A1 (en) 2015-08-05
JP5768947B2 (ja) 2015-08-26
EP2902124A4 (en) 2015-12-23
CN105121044A (zh) 2015-12-02
US20150336353A1 (en) 2015-11-26
TWI633945B (zh) 2018-09-01
CN105121044B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5768947B2 (ja) 遠心鋳造製熱間圧延用複合ロール
JP5423930B2 (ja) 遠心鋳造製複合圧延ロール及びその製造方法
JP6908021B2 (ja) 圧延ロール用外層及び圧延用複合ロール
JP5950048B2 (ja) 遠心鋳造製熱間圧延用複合ロール
JP6036698B2 (ja) 熱間圧延用遠心鋳造複合ロール及びその製造方法
JP5950047B2 (ja) 遠心鋳造製熱間圧延用複合ロール
JP6973416B2 (ja) 圧延用複合ロール及びその製造方法
JP6391043B2 (ja) 遠心鋳造製熱間圧延用複合ロール
JP6606977B2 (ja) 熱間圧延用複合ロールの製造方法
JP4123903B2 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
JP6852722B2 (ja) 熱間圧延粗圧延スタンド用ワークロール
JP5867143B2 (ja) 耐疲労性に優れた熱間圧延用遠心鋳造製ロール外層材および熱間圧延用遠心鋳造製複合ロール、ならびにそれらの製造方法
WO2021075561A1 (ja) 熱間圧延用遠心鋳造複合ロール
JPH09170041A (ja) 遠心鋳造製ロールとその製造方法
JPH09170042A (ja) 遠心鋳造製ロールとその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022521.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015503390

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014791769

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157011349

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14758694

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE