WO2017170570A1 - 圧延ロール用外層及び圧延用複合ロール - Google Patents

圧延ロール用外層及び圧延用複合ロール Download PDF

Info

Publication number
WO2017170570A1
WO2017170570A1 PCT/JP2017/012682 JP2017012682W WO2017170570A1 WO 2017170570 A1 WO2017170570 A1 WO 2017170570A1 JP 2017012682 W JP2017012682 W JP 2017012682W WO 2017170570 A1 WO2017170570 A1 WO 2017170570A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer layer
mass
rolling
less
roll
Prior art date
Application number
PCT/JP2017/012682
Other languages
English (en)
French (fr)
Inventor
泰則 野崎
小田 望
志保 福元
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US16/089,204 priority Critical patent/US11052440B2/en
Priority to JP2018508083A priority patent/JP6908021B2/ja
Priority to EP17775107.0A priority patent/EP3437747B1/en
Priority to CN201780020759.8A priority patent/CN109070160B/zh
Publication of WO2017170570A1 publication Critical patent/WO2017170570A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/005Rolls with a roughened or textured surface; Methods for making same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • B21B27/032Rolls for sheets or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Definitions

  • the present invention is suitable for use in rolling rolls suitable for use in a post-stand of a hot sheet rolling finish or an extra-speed rolling shaped steel stand that is excellent in wear resistance, seizure resistance, and rough skin resistance, and is prone to seizure.
  • the present invention relates to a composite roll for rolling having a composite structure in which an outer layer and the outer layer are welded and integrated with a tough inner layer.
  • a heated slab with a thickness of several hundred mm manufactured by continuous casting or the like is rolled into a steel sheet with a thickness of several to several tens of mm by a hot strip mill having a roughing mill and a finish rolling mill.
  • a finishing mill is usually a series of 5 to 7 quadruple rolling mills arranged in series.
  • the first stand to the third stand are referred to as the front stand
  • the fourth stand to the seventh stand are referred to as the rear stand.
  • the work roll used for such a hot strip mill is composed of an outer layer in contact with the hot thin plate and an inner layer welded and integrated with the inner surface of the outer layer.
  • the high alloy grain cast iron roll has a structure composed of graphite, carbide and base, and is particularly excellent in seizure resistance. Therefore, even when encountering a squeeze accident, the occurrence and development of cracks are extremely small. That is, the high alloy grain cast iron roll has excellent accident resistance.
  • the carbides in the constituent elements are M 3 C (cementite)
  • the wear resistance is inferior compared to high speed materials. For this reason, various improvements have been made.
  • the present applicant previously disclosed in Japanese Patent Application Laid-Open No. 2005-169426 an MC system by containing Mg or Ca in the outer layer.
  • Japanese Patent Laid-Open No. 08-020837 describes C: 1.50 to 3.50% by weight, Si: 1.50.
  • 08-020837 describes that increasing the eutectic carbide in the structure of the outer layer of the roll can reduce the level difference between the granular carbide and the other parts, thereby reducing the friction coefficient.
  • B and N the friction coefficient at the roll contact surface is lowered.
  • it is required to further improve the seizure resistance of the outer layer of the composite roll for rolling.
  • Japanese Patent Laid-Open No. 2002-47529 is based on mass: C: 1.2 to 2.2%, Si: 0.1 to 0.6%, Mn: 0.1 to 0.6%, Cr: 6 to 12%, Mo: 3 to 6%, Ni: 0.3 to 1.5%, V: 3 to 8%, and Co: 1.0 to 8.00%, further satisfying 0 ⁇ [C ⁇ 0.236V ⁇ 0.129Nb] ⁇ 0.4 and 0.27 ⁇ Mo / Cr ⁇ 0.80, the balance Fe and An outer layer for a hot rolling roll having a composition composed of inevitable impurities is disclosed.
  • 2002-47529 is excellent in accident resistance by reducing the eutectic carbide generated in the net shape in the outer layer of the roll and reducing the propagation path of the crack in order to prevent the crack development at the occurrence of a squeeze accident. It describes that an outer layer for hot rolling is obtained. However, in the outer layer of JP-A-2002-47529, sufficient wear resistance and seizure resistance cannot be obtained.
  • WO 2016/031519 A1 is C: 1.8-2.5% by mass, Si: more than 0% and 1.0% or less, Mn: more than 0% and 1.0% or less, Ni: more than 0% and 0.5% or less, Cr: more than 3.0% 8.0 %: Mo: more than 2.0% and 10.0% or less, W: more than 0% and less than 10.0%, V: more than 0% and less than 10.0%, B: more than 0% and less than 0.01%, balance Fe and unavoidable impurities An outer layer material for the roll is disclosed.
  • WO 2016/031519 A1 can improve the strength of secondary eutectic carbide by adjusting the amount of B to reduce the amount of B contained in the secondary eutectic carbide, so about 1100 °C after solidification It is described that the secondary eutectic carbide can be prevented from being melted even when exposed to a high temperature, and the outer layer exhibits excellent skin roughness resistance. However, this outer layer cannot exhibit sufficient wear resistance and seizure resistance.
  • the outer layer of the composite roll exhibits excellent seizure resistance due to the carbonized boride in the structure, and exhibits sufficient wear resistance and seizure resistance.
  • B in the outer layer diffuses into the inner layer when the outer layer is welded and integrated with the inner layer made of ductile cast iron, the periphery of the graphite in the inner layer tends to become ferrite.
  • the wear resistance of the inner layer decreases.
  • the inner layer is not in direct contact with the thin sheet to be rolled, but is supported by a bearing. Therefore, if the inner layer is worn, vibration may occur during the rolling operation, which may adversely affect the quality of the steel sheet.
  • an outer layer for a rolling roll that can obtain a hot rolled steel sheet with high sheet thickness accuracy and surface quality even if the B content is less than 0.01% is desired. Yes.
  • an object of the present invention is to provide an outer layer for a roll having excellent wear resistance, seizure resistance and rough skin resistance, particularly for a roll having a B content of less than 0.01% in order to maintain the wear resistance of the inner layer. Is to provide an outer layer.
  • Another object of the present invention is to provide a composite roll for rolling having such an outer layer.
  • the outer layer for rolling rolls of the present invention is C: 1.3 to 2.8%, Si: 0.3 to 1.8%, Mn: 0.3 to 2.5%, Ni: 0 to 6.5%, Cr: 1 to 10%, Mo: 0.9 to 6%, W: 0 to 8 on a mass basis %, V: 0.5 to 6%, Nb: 0 to 3%, and B: 0% or more and less than 0.01%, with the balance being Fe and inevitable impurities, and the following formulas (1) and (2): (1): 1000 ⁇ 1177-52C + 14Si-11Mn + 6.8Cr + 1W + 0.65Mo + 12V + 15Nb ⁇ 1115 (2): 5 ⁇ Cr + Mo + 0.5W + V + 1.2Nb ⁇ 15 (However, C, Si, Mn, Cr, W, Mo, V, and Nb indicate mass% of each element.) And a structure containing eutectic carbide and not containing graphite.
  • the lowest solidification heat generation start temperature among the plurality of solidification heat generation start temperatures determined by differential thermal analysis is preferably 1100 ° C. or lower.
  • the outer layer for rolling rolls of the present invention further contains at least one selected from the group consisting of Co: 5% or less, Zr: 0.5% or less, Ti: 0.5% or less, and Al: 0.5% or less on a mass basis. Is preferred.
  • the rolling composite roll of the present invention is characterized by having a structure in which the outer layer is welded and integrated with the inner layer.
  • the inner layer is preferably made of ductile cast iron.
  • the outer layer for rolling rolls of the present invention not only has high wear resistance due to the eutectic carbide, but also has improved seizure resistance, little surface damage against rolling load, and excellent skin roughness resistance. Therefore, a smooth roll skin can be maintained even after rolling, which contributes to improving the quality of the rolled product. Moreover, since the outer layer for rolling rolls of the present invention contains only less than 0.01% B, it is possible to prevent a decrease in wear resistance of the inner layer.
  • the composite roll for rolling formed by welding and integrating the outer layer having such characteristics to the inner layer can respond to the improvement in the plate thickness accuracy and the surface quality of the steel plate recently required in the hot rolling field.
  • 2 is an optical micrograph (magnification: 100 times) showing a non-corrosive structure of the test material of Example 1.
  • 2 is an optical micrograph after etching the test piece of Example 1 with ammonium persulfate.
  • 3 is a graph showing the results of differential thermal analysis of the outer layer for rolling rolls of Example 1.
  • It is a disassembled sectional view which shows an example of the casting_mold
  • It is sectional drawing which shows an example of the casting_mold
  • It is the schematic which shows a rolling abrasion tester. It is the schematic which shows a friction thermal shock tester.
  • outer layer for rolling roll (A) Composition
  • the outer layer for rolling rolls of the present invention comprises 1.3 to 2.8% C, 0.3 to 1.8% Si, 0.3 to 2.5% Mn, 0 to 6.5% Ni, 1 to 10% Cr on a mass basis.
  • C 1.3 to 2.8% by mass C combines with V, Nb, Cr, Mo and W to form hard carbides, contributing to the improvement of the wear resistance of the outer layer. If C is less than 1.3% by mass, the amount of hard carbide crystallized is too small to provide sufficient wear resistance to the outer layer. On the other hand, if C exceeds 2.8% by mass, the toughness of the outer layer decreases due to crystallization of excess carbide, and crack resistance decreases, so that cracks due to rolling become deeper and roll loss increases.
  • the lower limit of the C content is preferably 1.5% by mass, more preferably 1.8% by mass.
  • the upper limit of the C content is preferably 2.6% by mass.
  • Si 0.3-1.8% by mass
  • Si has the effect of reducing oxide defects by deoxidation of the molten metal, improving the seizure resistance by solid solution in the base, and further improving the fluidity of the molten metal to prevent casting defects. If Si is less than 0.3% by mass, the deoxidation of the molten metal is insufficient, the fluidity of the molten metal is insufficient, and the defect rate is high. On the other hand, if Si exceeds 1.8% by mass, the alloy matrix becomes brittle and the toughness of the outer layer decreases.
  • the lower limit of the Si content is preferably 0.5% by mass.
  • the upper limit of the Si content is preferably 1.5% by mass, more preferably 1.2% by mass, and most preferably 1.0% by mass.
  • Mn 0.3-2.5% by mass
  • MnS has an action of fixing S as an impurity as MnS. Since MnS has a lubricating action and is effective in preventing seizure of the rolled material, it preferably contains a desired amount of MnS. If Mn is less than 0.3% by mass, the effect of addition is insufficient. On the other hand, even if Mn exceeds 2.5% by mass, further effects cannot be obtained.
  • the lower limit of the Mn content is preferably 0.5% by mass.
  • the upper limit of the Mn content is preferably 2.0% by mass, more preferably 1.5% by mass.
  • Ni 0 to 6.5% by mass Since Ni has the effect of improving the hardenability of the base, when Ni is added in the case of a large composite roll, the generation of pearlite during cooling can be prevented and the hardness of the outer layer can be improved. Further, if the amount of Ni added is too large, austenite will be overstabilized and it will be difficult to improve the hardness.
  • the Ni content is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, further preferably 0.5% by mass or more, further preferably 0.6% by mass or more, and further preferably 0.8% by mass or more. Preferably, 1.0% by mass or more is most preferable. Further, from the viewpoint of improving the hardness, the Ni content is preferably 5.5% by mass or less, and more preferably 4.5% by mass or less.
  • (e) Cr 1-10% by mass Cr is an element effective in maintaining the hardness by maintaining the hardness with bainite or martensite as the base, and forming carbides when the addition amount is large. If Cr is less than 1% by mass, the effect is insufficient. On the other hand, if the Cr content exceeds 10% by mass, the toughness of the base structure decreases.
  • the lower limit of the Cr content is preferably 1.5% by mass, more preferably 2% by mass.
  • the upper limit of the Cr content is preferably 9% by mass, more preferably 8.5% by mass.
  • Mo 0.9-6% by mass Mo combines with C to form hard carbides (M 6 C, M 2 C), increasing the hardness of the outer layer and improving the hardenability of the matrix. Mo also produces tough and hard MC carbides together with V and Nb to improve wear resistance. If Mo is less than 0.9% by mass, these effects are insufficient. On the other hand, if Mo exceeds 6% by mass, the toughness of the outer layer decreases.
  • the lower limit of the Mo content is preferably 1.5% by mass.
  • the upper limit of the Mo content is preferably 5% by mass.
  • W 0-8% by mass W combines with C to produce a hard carbide of M 6 C such rigid and contributes to improve wear resistance of the outer layer. It also has the effect of reducing the segregation by increasing the specific gravity by dissolving in MC carbide. However, when W exceeds 8% by mass, M 6 C carbides increase, the structure becomes inhomogeneous, and the skin becomes rough. Therefore, when adding W, it is 8 mass% or less. On the other hand, if W is less than 0.5% by mass, the effect of addition may be insufficient, so 0.5% by mass or more is preferable.
  • the upper limit of the W content is preferably 6% by mass, more preferably 4% by mass, and still more preferably 2% by mass.
  • V 0.5-6% by mass
  • V is an element that combines with C to form hard MC carbide.
  • MC carbide has a Vickers hardness Hv of 2500 to 3000, and is the hardest carbide.
  • Hv Vickers hardness
  • V exceeds 6% by mass
  • MC carbide with a low specific gravity is concentrated inside the outer layer due to the centrifugal force during centrifugal casting, and not only the radial segregation of MC carbide becomes significant, but also MC carbide becomes coarse.
  • the alloy structure becomes rough, and the surface becomes rough during rolling.
  • the lower limit of the V content is preferably 0.8% by mass, and more preferably 1.2% by mass.
  • the upper limit of the V content is preferably 5% by mass, more preferably 4% by mass, and further preferably 3% by mass.
  • Nb 0 to 3% by mass
  • Nb combines with C to form hard MC carbide.
  • Nb combined with V and Mo, solidifies in MC carbide and strengthens MC carbide, improving the wear resistance of the outer layer.
  • the NbC-based MC carbide has a smaller difference from the molten metal density than the VC-based MC carbide, thereby reducing the segregation of the MC carbide.
  • the lower limit of the Nb content is preferably 0.2% by mass.
  • the upper limit of the Nb content is preferably 2% by mass, more preferably 1.5% by mass, and further preferably 1% by mass.
  • B 0% by mass or more and less than 0.01% by mass If B is 0.01% by mass or more, there is a possibility that more than an allowable amount of B diffuses into the inner layer when integrated with the inner layer made of ductile cast iron. If B is excessively diffused into the inner layer, the periphery of the graphite in the inner layer is likely to become ferrite, and the ferrite area ratio of the inner layer increases, so that the wear resistance of the inner layer decreases. Although the inner layer does not come into direct contact with the hot thin plate, it is supported by the bearing, so if the inner layer is worn, vibrations may occur during the rolling operation, which may adversely affect the quality of the steel sheet. Therefore, B is made less than 0.01% by mass. The upper limit of B is preferably 0.008% by mass, and more preferably 0.007% by mass. In order to reduce the B content, it is preferable to use scrap or the like having as little B content as the raw material.
  • Co 5% by mass or less Co is an element effective for strengthening the base structure, but if it exceeds 5% by mass, the toughness of the outer layer is lowered.
  • the lower limit of the Co content is preferably 0.5% by mass, more preferably 1% by mass.
  • the upper limit of the Co content is more preferably 3% by mass.
  • Zr 0.5% by mass or less Zr combines with C to form MC carbide, improving wear resistance. Further, Zr generates an oxide in the molten metal, and this oxide acts as a crystal nucleus, so that the solidification structure becomes fine. Furthermore, Zr increases the specific gravity of MC carbide and is effective in preventing segregation. However, when Zr exceeds 0.5% by mass, inclusions are not preferable.
  • the upper limit of the Zr content is more preferably 0.3% by mass. In order to obtain a sufficient addition effect, the lower limit of the Zr content is more preferably 0.01% by mass.
  • Ti 0.5% by mass or less Ti combines with N in the molten metal to form a nitride.
  • the nitride is suspended in the molten metal to become nuclei, and the MC carbide is refined and homogenized.
  • the lower limit of the Ti content is preferably 0.005% by mass, and more preferably 0.01% by mass.
  • the upper limit of the Ti content is more preferably 0.3% by mass, and still more preferably 0.2% by mass.
  • Al 0.5% by mass or less Al combines with O in the molten metal to form an oxide.
  • O in the molten metal it is possible to prevent oxidation of carbide forming elements such as V and Cr, which are effective in wear resistance.
  • the lower limit of the Al content is preferably 0.001% by mass, more preferably 0.01% by mass.
  • the upper limit of the Al content is more preferably 0.3% by mass, and still more preferably 0.2% by mass.
  • Inevitable impurities The balance of the outer layer composition is substantially composed of Fe and inevitable impurities.
  • Inevitable impurities are P, S, N, Cu, rare earth elements (REM), etc., but P ⁇ 0.1% by mass, S ⁇ 0.1% by mass, N ⁇ 0.1% by mass, Cu ⁇ 0.1% by mass, and It is sufficient if REM ⁇ 0.1% by mass.
  • the outer layer for a roll according to the present invention has the following formulas (1) and (2): (1) 1000 ⁇ 1177-52C + 14Si-11Mn + 6.8Cr + 1W + 0.65Mo + 12V + 15Nb ⁇ 1115 (2) 5 ⁇ Cr + Mo + 0.5W + V + 1.2Nb ⁇ 15 (Where C, Si, Mn, Cr, W, Mo, V, and Nb represent mass% of each element), and satisfy the relationship expressed by
  • Parameter P1 1177-52C + 14Si-11Mn + 6.8Cr + 1W + 0.65Mo + 12V + 15Nb in Formula (1) is related to the melting point of the eutectic carbide with the lowest melting point among the eutectic carbides present in the outer layer. It is an indicator. By setting P1 to 1115 or less, the seizure resistance of the outer layer is improved. This is because when a rolling roll encounters a squeeze accident, the eutectic carbide with a low melting point melts due to frictional heat between the rolled material and the outer layer surface, improving the lubricity of the rolled material and the outer layer of the roll. It is believed that there is.
  • the upper limit of P1 is preferably 1110, more preferably 1105, and even more preferably 1100.
  • P1 is less than 1000, the melting point of the eutectic carbide becomes too low, and there is a possibility that shrinkage cavities may be generated at the boundary when welding and integrating with the inner layer to form a composite roll for rolling. If there is a shrinkage nest, cracks will start from there.
  • the lower limit of P1 is preferably 1010, more preferably 1020, still more preferably 1030, and most preferably 1040.
  • the parameter P2 Cr + Mo + 0.5W + V + 1.2Nb in Formula (2) is an index that represents the sum of elements that form carbides harder than cementite, which is a relatively soft carbide. Cr, Mo, W, V and Nb can be called carbide forming elements. The carbides of these elements not only improve the wear resistance of the matrix, but also form eutectic carbides with a low melting point. If P2 is less than 5, the proportion of carbides harder than cementite is low, and the wear resistance of the outer layer is reduced.
  • the melting point of the eutectic carbide having the lowest melting point becomes high, so that the effect of improving the lubricity between the rolled material and the outer roll layer cannot be obtained.
  • the lower limit of P2 is preferably 7, more preferably 8, and further preferably 9.
  • the upper limit of P2 is preferably 14, more preferably 13, and still more preferably 12.
  • the structure of the outer layer for rolling rolls of the present invention is characterized by containing eutectic carbide and not containing graphite.
  • the outer layer structure contains matrix, MC carbide and the like.
  • the base of the tissue is preferably composed of martensite and / or bainite.
  • Eutectic carbide is an eutectic of austenite, which becomes an iron base at normal temperature, and carbide (M2C, M6C, M7C3, M23C6, etc.) and contributes to both wear resistance and seizure resistance of the outer layer. To do. As shown in FIG. 3, which shows an optical micrograph (magnification: 400 times) after mirror-polishing a test piece collected from the outer layer of Example 1 and etching with ammonium persulfate, eutectic carbide with a wide carbide interval. There are two types of eutectic carbide B with a narrow spacing between A and carbide.
  • the outer layer structure does not contain graphite.
  • graphite When graphite is present in the outer layer, the rolling surface irregularities are likely to increase due to the lack of graphite when rolling the steel sheet, resulting in poor wear resistance and rough skin resistance.
  • Whether or not the outer layer structure contains graphite is determined by an optical microscope photograph (magnification: 100 times) taken without corroding a test piece collected from the outer layer after mirror polishing. Since black particles in the optical micrograph are either cavities or graphite particles, when black particles having a major axis of 20 ⁇ m or more are not present in the optical micrograph, graphite particles having a major axis of 20 ⁇ m or more are not present.
  • the outer layer structure does not contain graphite when black particles having a major axis of 20 ⁇ m or more are not present in an optical micrograph (magnification: 100 times) taken without corrosion. Since the outer layer for rolling rolls of the present invention has a high alloy composition as shown by the formula (2), not only does graphite not easily appear in the structure, but Si inoculation or the like for precipitating graphite is not performed.
  • the lowest solidification exothermic start temperature among a plurality of solidification exothermic start temperatures determined by differential thermal analysis is 1100 ° C. or lower.
  • the heat of solidification by suggestive thermal analysis means the heat generated when the liquid phase changes to the solid phase (the molten metal solidifies).
  • FIG. 4 showing the actually measured values of Example 1 there are mainly three types of solidification heat generation in the composition range of the outer layer for rolling rolls of the present invention. In Fig.
  • the heat generation at 1305 ° C is due to solidification of the base
  • the heat generation at 1165 ° C is due to solidification of eutectic carbide A with a wide carbide interval shown in Fig. 3 due to solidification of 1090 ° C (low temperature side).
  • the heat generation is due to the solidification of eutectic carbide B with a narrow interval between the carbides shown in FIG.
  • the outer layer solidification exotherm is measured as follows. Take a 5g sample from the outer layer and use a differential thermal analyzer to raise the temperature to 1500 ° C and dissolve the sample, and then measure the differential heat when cooled at a cooling rate of 10 ° C / min. As shown in FIG. 4, the solidification exothermic temperature is defined as the inflection point on the right side (high temperature side) of the exothermic peak. Specifically, the intersection of tangent lines before and after the high temperature side inflection point of the solidification exothermic peak.
  • the lowest solidification heat generation start temperature among the plurality of solidification heat generation start temperatures is preferably 1100 ° C. or less. This is because the seizure resistance of the outer layer is improved when the solidification temperature of the eutectic carbide having the lowest melting point is 1100 ° C. or lower.
  • the rolled material is baked on the surface of the outer roll layer in a narrowing accident, cracks may occur on the outer roll layer surface due to thermal and mechanical loads. If the roll is continuously used while the crack is left as it is, the crack may develop and cause roll breakage or roll breakage called spalling.
  • the lowest solidification exotherm starting temperature is preferably 1000 ° C. or higher.
  • the reason for this is that when the temperature is lower than 1000 ° C., the melting point of the eutectic carbide becomes too low, and when the inner layer is welded and integrated to form a composite roll for rolling, a shrinkage nest is generated at the boundary and can be used as a roll for rolling. It is because there is a risk of disappearing.
  • the upper limit of the lowest solidification exothermic start temperature is more preferably 1095 ° C, and further preferably 1090 ° C.
  • the lower limit of the lowest solidification heat generation start temperature is preferably 1010 ° C., more preferably 1020 ° C., further preferably 1030 ° C., and most preferably 1040 ° C.
  • WO / 032016/031519 A1 states that secondary eutectic carbides are prevented from erosion even when exposed to high temperatures of about 1100 ° C in order to exhibit excellent skin roughness resistance.
  • the roll surface temperature is about 800 ° C. or less, and the low melting point eutectic carbide does not melt, and the problem of rough skin does not occur.
  • high temperatures such as 1000 ° C or higher, excessive roll pressure or frictional heat is generated on the roll surface due to a squeezing accident, or the rolling operation stops abnormally when the rolled material is caught in the roll.
  • the present invention is based on the technical idea of preventing cracks by melting low-melting eutectic carbides in a narrowing accident while preventing roughening during normal rolling.
  • WO ⁇ 2016/031519 A1 It is the opposite of this idea.
  • FIG. 1 shows a composite roll 10 for hot rolling comprising an outer layer 1 formed by centrifugal casting and an inner layer 2 welded and integrated with the outer layer 1.
  • the inner layer 2 has a trunk core portion 21 welded to the outer layer 1 and shaft portions 22 and 23 extending integrally from both ends of the trunk core portion 21.
  • the inner layer 2 is preferably made of an Fe-based alloy having excellent toughness. From the viewpoint of toughness and castability, it is preferable to use cast iron having good castability, particularly ductile cast iron, for the inner layer 2.
  • the composition of ductile cast iron is C: 2.3-4.0%, Si: 1.5-3.5%, Mn: 0.2-2.0%, P: 0.1% or less, S: 0.1% or less, Ni: 0.3-5.0%, Cr on a mass basis : 0.01-1.0%, Mo: 0.01-1.0%, Mg: 0.01-0.08%, with the balance being substantially composed of Fe and inevitable impurities.
  • V 1% or less
  • Nb 0.7% or less
  • W 0.7% or less
  • Ductile cast iron is mainly composed of ferrite and pearlite in the iron base, and also contains graphite and a small amount of cementite.
  • An intermediate layer may be interposed between the outer layer and the inner layer for the purpose of suppressing component mixing or buffering.
  • FIG. 5 (a) and FIG. 5 (b) are for stationary casting used for casting the inner layer 2 after centrifugal casting of the outer layer 1 with the cylindrical mold 30 for centrifugal casting.
  • An example of a mold is shown.
  • the stationary casting mold 100 includes a cylindrical mold 30 and an upper mold 40 and a lower mold 50 provided at upper and lower ends thereof.
  • the outer layer 1 is formed on the inner surface of the cylindrical mold 30 to be assembled with the stationary casting mold 100 through the coating mold 32, and the cavity 60a for forming the trunk core portion 21 is formed inside the outer layer 1.
  • the upper mold 40 has a sand mold 42 on the inner surface of the upper mold body 41, and has a cavity 60b inside the sand mold 42.
  • the lower mold 50 has a sand mold 52 on the inner surface of the lower mold body 51, and has a cavity 60c inside the sand mold 52.
  • the lower mold 50 is provided with a bottom plate 53 for holding the inner layer molten metal.
  • the centrifugal casting method using the cylindrical mold 30 may be any of horizontal type, inclined type and vertical type.
  • the cavity 60a in the outer layer 1 communicates with the cavity 60b of the upper mold 40 and the cavity 60c of the lower mold 50.
  • the cavity 60 that integrally forms the entire inner layer 1 is formed.
  • a cylindrical mold 30 obtained by centrifugally casting the outer layer 1 is placed upright on the lower mold 50 for forming the shaft part 22, and an upper mold 40 for forming the shaft part 23 is installed on the cylindrical mold 30.
  • the stationary casting mold 100 for forming the inner layer 2 is configured.
  • the stationary casting mold 100 After the outer layer 1 formed by centrifugal casting is solidified, as the ductile cast iron melt for the inner layer 2 is injected into the cavity 60 from the upper opening 43 of the upper die 40, The surface of the molten metal gradually rises from the lower mold 50 to the upper mold 40, and the inner layer 2 including the shaft portion 22, the trunk core portion 21, and the shaft portion 23 is integrally cast.
  • a tempering treatment at 400 to 580 ° C. for the decomposition and distortion removal of the retained austenite on the rolling composite roll manufactured by the above method.
  • the base structure is martensite and / or bainite by heating to 850 to 1060 ° C. and P1 (or Ts) ⁇ 50 ° C. or less in order to change the base structure to austenite, 400 to 580 ° C. It is preferable to perform the tempering process.
  • the composite roll for rolling of the present invention is manufactured by the centrifugal casting method.
  • the composite roll for rolling of the present invention continuously injects molten metal for outer layer around the steel core and uses a high frequency coil. It can also be produced by a so-called continuous casting overlaying method in which an outer layer is formed on the surface.
  • Examples 1 to 5 and Comparative Examples 1 to 4 (1) Casting Using an experimental mold (inner diameter 90 mm, depth 95 mm), a test material was cast from each molten metal having the composition shown in Table 1 below and the values P1 and P2 shown in Table 2.
  • Example 1 (2) Evaluation of the presence or absence of graphite and eutectic carbide After each sample was tempered at 480 ° C, the test piece was cut out, the test piece was mirror-polished, and the structure without corrosion was optical microscope (magnification: 100 times) ) An optical micrograph (magnification: 100 times) of the test material of Example 1 is shown in FIG. In FIG. 2, G indicates black particles, and 20 indicates a square having a side of 20 ⁇ m surrounding the black particles G. As is apparent from FIG. 2, the test piece of Example 1 does not have black particles G having a long diameter of 20 ⁇ m or more. Since the black particles are fine cavities or graphite particles, even if they are graphite particles, they are extremely fine with a side of less than 20 ⁇ m.
  • a test roll having a sleeve structure having an outer diameter of 60 mm, an inner diameter of 40 mm, and a width of 40 mm was produced from each molten metal.
  • a wear test was performed on each test roll using a rolling wear tester shown in FIG.
  • the rolling wear tester includes a rolling mill 11, test rolls 12 and 13 incorporated in the rolling mill 11, a heating furnace 14 for preheating the rolled material 18, a cooling water tank 15 for cooling the rolled material 18, and a rolling And a controller 17 for adjusting the tension.
  • the rolling wear conditions were as follows. After rolling, the depth of wear generated on the surface of each test roll was measured with a stylus type surface roughness meter. Table 2 shows the measurement results of the wear depth.
  • the degree of seizure was evaluated by the seizing area ratio as follows. The results are shown in Table 2. The less seizure, the better the accident resistance. ⁇ : Area ratio of seizure is less than 40%. ⁇ : Area ratio of seizure is 40% or more and less than 60%. X: The seizing area ratio is 60% or more.
  • Example 6 and Comparative Example 5 A cylindrical mold 30 (inner diameter: 800 mm, length: 2500 mm) having the structure shown in FIG. 5 (a) is set in a horizontal centrifugal casting machine, and each molten metal having the same composition as in Example 1 and Comparative Example 4 is used. The outer layer 1 of Example 6 and Comparative Example 5 was centrifugally cast.
  • the cylindrical mold 30 with the outer layer 1 (thickness: 90 mm) formed on the inner surface is erected, and a hollow lower mold 50 (inner diameter 600 mm, length 1500 for forming the shaft portion 22) mm), and a hollow upper mold 40 (inner diameter 600 mm and length 2000 mm) for forming the shaft portion 23 is erected on the cylindrical mold 30 1490682096780_0
  • Example 6 For the test pieces cut out from the outer layer 1 of Example 6 and Comparative Example 5, the presence or absence of graphite and eutectic carbide was determined and differential thermal analysis was performed in the same manner as in Example 1. As a result, the outer layer 1 of Example 6 contained eutectic carbide but did not contain graphite, and the lowest solidification heat generation start temperature Ts was about the same as that of Example 1. Further, the outer layer 1 of Comparative Example 5 contained eutectic carbide but did not contain graphite, and the lowest solidification heat generation start temperature Ts was comparable to that of Comparative Example 4.

Abstract

質量基準でC:1.3~2.8%、Si:0.3~1.8%、Mn:0.3~2.5%、Ni:0~6.5%、Cr:1~10%、Mo:0.9~6%、W:0~8%、V:0.5~6%、Nb:0~3%、及びB:0%以上0.01%未満を含有し、残部がFe及び不可避的不純物からなるとともに、式(1):1000≦1177-52C+14Si-11Mn+6.8Cr+1W+0.65Mo+12V+15Nb≦1115、及び(2):5≦Cr+Mo+0.5W+V+1.2Nb≦15(ただし、C、Si、Mn、Cr、W、Mo、V及びNbはそれぞれの元素の質量%を示す。)を満足する化学組成を有し、かつ共晶炭化物を含有し、黒鉛を含有しない組織を有する圧延ロール用外層。

Description

圧延ロール用外層及び圧延用複合ロール
 本発明は、耐摩耗性、耐焼付き性及び耐肌荒れ性に優れ、焼付きが発生しやすい熱間薄板圧延仕上げ後段スタンドや異周速圧延形鋼スタンドなどに使用するのに好適な圧延ロール用外層、及びかかる外層が強靭な内層と溶着一体化した複合構造を有する圧延用複合ロールに関する。
 連続鋳造等で製造した厚さ数百mmの加熱スラブは、粗圧延機及び仕上げ圧延機を有するホットストリップミルで数~数十mmの厚さの鋼板に圧延される。仕上げ圧延機は通常、5~7スタンドの四重式圧延機を直列に配置したものである。7スタンドの仕上げ圧延機の場合、第一スタンドから第三スタンドまでを前段スタンドと呼び、第四スタンドから第七スタンドまでを後段スタンドと呼ぶ。このようなホットストリップミルに用いられるワークロールは、熱間薄板と接する外層と、外層の内面に溶着一体化した内層とからなる。
 近年熱間圧延鋼板の板厚精度向上や表面品質向上の要求が高まっており、高い耐摩耗性を有する圧延用ロールが求められ、薄鋼板を製造する熱間仕上圧延機の前段ではハイスロールが使用されるようになった。しかし、圧延材がスタンド間を移動するときに重なって上下ロール間に噛みこむいわゆる絞り込み事故に遭遇する確率が高い熱間仕上圧延機の後段では、従来から高合金グレン鋳鉄ロールが主に使用されている。
 このような絞り込み事故では圧延材がロール外層の表面に焼付くため、過大な熱的、機械的負荷が作用し、ロール外層表面にクラックが発生することがある。クラックを放置したままロールを使用し続けるとクラックが進展し、ロール折損やスポーリングと呼ばれるロール破損を起こすことがある。絞り込み(噛み止め)事故が発生した場合ロール表面を切削してクラックを除去しなければならないので、クラックが深いとロールの損失も大きくなり、ロールコストが増大する。従って、圧延事故が起きてもクラックによるダメージが少ない耐事故性に優れた圧延ロール用外層、及びかかる外層を有する圧延用複合ロールが望まれている。
 高合金グレン鋳鉄ロールは黒鉛、炭化物及び基地からなる組織を有し、特に耐焼付き性に優れているため、絞り事故に遭遇した際もクラックの発生・進展が極めて少ない。つまり、高合金グレン鋳鉄ロールは耐事故性に優れている。しかし、構成要素中の炭化物がM3C系(セメンタイト)であるので、ハイス材などに比較すると耐摩耗性が劣る。そのため、種々の改善が行われている。例えば、高合金グレン鋳鉄の外層を有する複合ロールの耐摩耗性を改善する技術として、本出願人は先に、特開2005-169426号で、外層にMgまたはCaを含有させることにより、MC系炭化物の形状を微細な粒状にするとともに、金属組織中に均一に分散できることを見いだし、耐摩耗性、耐肌荒れ性および耐事故性を向上させた圧延用複合ロールを提案した。しかし、この複合ロールの外層は黒鉛を含んでいるので、一般的なハイスロールに比べて、耐焼付き性に優れているものの耐摩耗性及び耐肌荒れ性劣るという問題があった。
 高い耐摩耗性を有する高速度鋼からなる外層を有する熱間圧延仕上げ前段用の複合ロールの外層として、例えば、特開平08-020837号は、重量比でC:1.50~3.50%、Si:1.50%以下、Mn:1.20%以下、Cr:5.50~12.00%、Mo:2.00~8.00%、V:3.00~10.00%、Nb:0.60~7.00%、B:0.01超~0.200%以下、及びN:0.08超~0.300%以下を含有し、かつV+1.8Nb≦7.5C-6.0、及び0.20≦Nb/V≦0.80を満足し、残部Fe及び不可避的不純物からなる摩擦係数の小さい高速度鋼系圧延用ロール外層を開示している。特開平08-020837号は、ロール外層の組織中に共晶炭化物を増加させることで粒状炭化物とそれ以外の部分の段差を少なくし、摩擦係数を低下できると記載している。B及びNの添加により、ロール接触面での摩擦係数は低下している。しかし、圧延用複合ロールの外層の耐焼付き性をさらに改善することが要求されている。
 特開2002-47529号は、質量基準でC:1.2~2.2%、Si:0.1~0.6%、Mn:0.1~0.6%、Cr:6~12%、Mo:3~6%、Ni:0.3~1.5%、V:3~8%、及びCo:1.0~8.00%を含み、さらに0≦[C-0.236V-0.129Nb]≦0.4、及び0.27≦Mo/Cr≦0.80を満足し、残部Fe及び不可避的不純物からなる組成を有する熱間圧延ロール用外層を開示している。特開2002-47529号は、絞り事故発生時のクラック進展を防止するために、ロール外層にネット状に生成する共晶炭化物を低減し、クラックの伝播経路を少なくすると、耐事故性に優れた熱間圧延用ロール外層が得られると記載している。しかし、特開2002-47529号の外層では、十分な耐摩耗性及び耐焼付き性が得られない。
 WO 2016/031519 A1は、質量基準でC:1.8~2.5%、Si:0%超1.0%以下、Mn:0%超1.0%以下、Ni:0%超0.5%以下、Cr:3.0%超8.0%以下、Mo:2.0%超10.0%以下、W:0%超10.0%以下、V:0%超10.0%以下、B:0%超0.01%未満、残部Fe及び不可避的不純物を含む圧延用複合ロールの外層材を開示している。WO 2016/031519 A1は、B量を調整して二次共晶炭化物に含まれるB量を低減することにより、二次共晶炭化物の強度の向上を図ることができるから、凝固後に1100℃程度の高温に晒されても二次共晶炭化物が溶損することを防止でき、外層は優れた耐肌荒れ性を発揮すると記載している。しかし、この外層では十分な耐摩耗性及び耐焼付き性を発揮できない。
 熱間圧延分野において近年要求されている鋼板の板厚精度向上や表面品質向上に答えるために、本出願人はWO 2015/045984 A1で、質量基準でC:1~3%、Si:0.4~3%、Mn:0.3~3%、Ni:1~5%、Cr:2~7%、Mo:3~8%、V:3~7%、及びB:0.01~0.12%を含有し、残部がFe及び不可避的不純物からなる化学組成を有し、かつ式(1):Cr/(Mo+0.5W)<-2/3[C-0.2(V+1.19Nb)]+11/6(ただし、任意成分であるW及びNbを含有しない場合、W=0及びNb=0である。)により表される関係を満足し、面積率で1~15%のMC炭化物、0.5~20%の炭ホウ化物、及び0.5~20%のMo系炭化物を含有する外層を有する熱間圧延用遠心鋳造複合ロールを提案した。この複合ロールの外層は、組織中の炭ホウ化物により優れた耐焼付き性を示し、十分な耐摩耗性及び耐焼付き性を発揮する。しかし、外層がダクタイル鋳鉄からなる内層と溶着一体化する際に、外層中のBが内層に拡散すると、内層中の黒鉛の周囲がフェライトになりやすくなる。内層中のフェライト面積率が増えると、内層の耐摩耗性は低下する。内層は、圧延する薄板と直接接触しないが、軸受で支持されるため、内層の摩耗が進むと、圧延作業中に振動が発生して鋼板品質に悪影響がでるおそれがある。
 従って、内層の耐摩耗性を維持するために、Bの含有量が0.01%未満であっても高い板厚精度及び表面品質の熱間圧延鋼板を得ることができる圧延ロール用外層が望まれている。
 従って、本発明の目的は、耐摩耗性、耐焼付き性及び耐肌荒れ性に優れた圧延ロール用外層、特に内層の耐摩耗性を維持するためにBの含有量が0.01%未満の圧延ロール用外層を提供することである。
 本発明のもう一つの目的は、かかる外層を有する圧延用複合ロールを提供することである。
 上記目的に鑑み鋭意研究の結果、本発明者らは、B含有量を0.01%未満に抑えた高速度鋼製の圧延ロール用外層において、黒鉛と同様の機能(耐焼付き性)を発揮する相を晶出させれば、優れた耐摩耗性、耐焼付き性及び耐肌荒れ性を発揮させることができることを発見し、本発明に想到した。
 すなわち、本発明の圧延ロール用外層は、
 質量基準でC:1.3~2.8%、Si:0.3~1.8%、Mn:0.3~2.5%、Ni:0~6.5%、Cr:1~10%、Mo:0.9~6%、W:0~8%、V:0.5~6%、Nb:0~3%、及びB:0%以上0.01%未満を含有し、残部がFe及び不可避的不純物からなるとともに、下記式(1) 及び(2): 
(1):1000≦1177-52C+14Si-11Mn+6.8Cr+1W+0.65Mo+12V+15Nb≦1115
(2):5≦Cr+Mo+0.5W+V+1.2Nb≦15
(ただし、C、Si、Mn、Cr、W、Mo、V及びNbはそれぞれの元素の質量%を示す。)
を満足する化学組成を有し、かつ
 共晶炭化物を含有し、黒鉛を含有しない組織を有することを特徴とする。
 本発明の圧延ロール用外層において、示差熱分析により求めた複数の凝固発熱開始温度のうち、最も低い凝固発熱開始温度は1100℃以下であるのが好ましい。
 本発明の圧延ロール用外層は、さらに質量基準でCo:5%以下、Zr:0.5%以下、Ti:0.5%以下、及びAl:0.5%以下からなる群から選ばれた少なくとも1種を含有するのが好ましい。
 本発明の圧延用複合ロールは、上記外層が内層に溶着一体化した構造を有することを特徴とする。前記内層がダクタイル鋳鉄からなるのが好ましい。
 本発明の圧延ロール用外層は、共晶炭化物により高い耐摩耗性を有するだけでなく、耐焼付き性も向上しており、圧延負荷に対する表面損傷が少なく、優れた耐肌荒れ性を有する。そのため、圧延後でもなめらかなロール肌を維持することができ、もって圧延製品の品質向上に寄与する。また、本発明の圧延ロール用外層は0.01%未満のBしか含有しないので、内層の耐摩耗性の低下を防ぐことができる。このような特徴を有する外層を内層に溶着一体化してなる圧延用複合ロールは、熱間圧延分野において近年要求される鋼板の板厚精度向上や表面品質向上にこたえることができる。
圧延用複合ロールを示す概略断面図である。 実施例1の試験材の無腐食の組織を示す光学顕微鏡写真(倍率:100倍)である。 実施例1の試験片の過硫酸アンモニウムでエッチングした後の光学顕微鏡写真である。 実施例1の圧延ロール用外層の示差熱分析結果を示すグラフである。 本発明の圧延用複合ロールの製造に用いる鋳型の一例を示す分解断面図である。 本発明の圧延用複合ロールの製造に用いる鋳型の一例を示す断面図である。 圧延摩耗試験機を示す概略図である。 摩擦熱衝撃試験機を示す概略図である。
 本発明の実施形態を以下詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で種々の変更をしても良い。特に断りがなければ、単に「%」と記載しているときは「質量%」を意味する。
[1] 圧延ロール用外層
(A) 組成
 本発明の圧延ロール用外層は、質量基準で1.3~2.8%のC、0.3~1.8%のSi、0.3~2.5%のMn、0~6.5%のNi、1~10%のCr、0.9~6%のMo、0~8%のW、0.5~6%のV、0~3%のNb、及び0%以上0.01%未満のBを含有し、残部が実質的にFe及び不可避的不純物からなるFe基合金により形成されている。
(1) 主要元素
(a) C:1.3~2.8質量%
 CはV、Nb、Cr、Mo及びWと結合して硬質炭化物を生成し、外層の耐摩耗性の向上に寄与する。Cが1.3質量%未満では硬質炭化物の晶出量が少なすぎて外層に十分な耐摩耗性を付与することができない。一方、Cが2.8質量%を超えると過剰な炭化物の晶出により外層の靱性が低下し、耐クラック性が低下するため、圧延によるクラックが深くなり、ロール損失が増加する。Cの含有量の下限は好ましくは1.5質量%であり、より好ましくは1.8質量%である。またCの含有量の上限は好ましくは2.6質量%である。
(b) Si:0.3~1.8質量%
  Siは溶湯の脱酸により酸化物の欠陥を減少させるとともに、基地に固溶して耐焼付き性を向上させ、さらに溶湯の流動性を向上させて鋳造欠陥を防止する作用を有する。Siが0.3質量%未満では溶湯の脱酸作用が不十分であり、溶湯の流動性も不足し、欠陥発生率が高い。一方、Siが1.8質量%を超えると合金基地が脆化し、外層の靱性は低下する。Si含有量の下限は好ましくは0.5質量%である。Si含有量の上限は好ましくは1.5質量%であり、より好ましくは1.2質量%であり、最も好ましくは1.0質量%である。
(c) Mn:0.3~2.5質量%
 Mnは溶湯の脱酸作用の他に、不純物であるSをMnSとして固定する作用を有する。MnSは潤滑作用を有し、圧延材の焼き付き防止に効果があるので、所望量のMnSを含有するのが好ましい。Mnが0.3質量%未満ではその添加効果は不十分である。一方、Mnが2.5質量%を超えてもさらなる効果は得られない。Mnの含有量の下限は好ましくは0.5質量%である。Mnの含有量の上限は好ましくは2.0質量%であり、より好ましくは1.5質量%である。
(d) Ni:0~6.5質量%
 Niは基地の焼き入れ性を向上させる作用を有するので、大型の複合ロールの場合にNiを添加すると、冷却中のパーライトの発生を防止し、外層の硬さを向上させることができる。またNiの添加量は多すぎるとオーステナイトが安定化しすぎ、硬さが向上しにくくなるため、6.5%以下とする。焼き入れ性を向上させる観点から、Ni含有量は0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上がさらに好ましく、0.6質量%以上がさらに好ましく、0.8質量%以上がさらに好ましく、1.0質量%以上が最も好ましい。また、硬さを向上させる観点から、Ni含有量は5.5質量%以下が好ましく、4.5質量%以下がより好ましい。
(e) Cr:1~10質量%
 Crは基地をベイナイト又はマルテンサイトにして硬さを保持し、また添加量が多いと炭化物を形成して耐摩耗性を維持するのに有効な元素である。Crが1質量%未満ではその効果が不十分である。一方、Crが10質量%を超えると、基地組織の靭性が低下する。Crの含有量の下限は好ましくは1.5質量%であり、より好ましくは2質量%である。Cr含有量の上限は好ましくは9質量%であり、より好ましくは8.5質量%である。
(f) Mo:0.9~6質量%
 MoはCと結合して硬質炭化物(M6C、M2C)を形成し、外層の硬さを増加させるとともに、基地の焼入れ性を向上させる。また、MoはV及びNbとともに強靭かつ硬質なMC炭化物を生成し、耐摩耗性を向上させる。Moが0.9質量%未満ではそれらの効果は不十分である。一方、Moが6質量%を超えると、外層の靭性が低下する。Mo含有量の下限は好ましくは1.5質量%である。また、Mo含有量の上限は好ましくは5質量%である。
(g) W:0~8質量%
 WはCと結合して硬質のM6C等の硬質炭化物を生成し、外層の耐摩耗性向上に寄与する。またMC炭化物にも固溶してその比重を増加させ、偏析を軽減させる作用を有する。しかし、Wが8質量%を超えると、M6C炭化物が多くなり、組織が不均質となり、肌荒れの原因となる。従って、Wを添加する場合、8質量%以下とする。一方、Wが0.5質量%未満ではその添加効果は不十分となることもあるため、0.5質量%以上が好ましい。Wの含有量の上限は好ましくは6質量%であり、より好ましくは4質量%であり、さらに好ましくは2質量%である。
(h) V:0.5~6質量%
 VはCと結合して硬質のMC炭化物を生成する元素である。MC炭化物は2500~3000のビッカース硬さHvを有し、炭化物の中で最も硬い。Vが0.5質量%未満では、MC炭化物の晶出量や析出量が不十分である。一方、Vが6質量%を超えると、比重の軽いMC炭化物が遠心鋳造中の遠心力により外層の内側に濃化し、MC炭化物の半径方向偏析が著しくなるだけでなく、MC炭化物が粗大化して合金組織が粗くなり、圧延時に肌荒れしやすくなる。V含有量の下限は好ましくは0.8質量%であり、より好ましくは1.2質量%である。V含有量の上限は好ましくは5質量%であり、より好ましくは4質量%であり、さらに好ましくは3質量%である。
(i) Nb:0~3質量%
 Vと同様に、NbもCと結合して硬質MC炭化物を生成する。NbはV及びMoとの複合添加により、MC炭化物に固溶してMC炭化物を強化し、外層の耐摩耗性を向上させる。NbC系のMC炭化物は、VC系のMC炭化物より溶湯密度との差が小さいので、MC炭化物の偏析を軽減させる。Nb含有量の下限は好ましくは0.2質量%である。Nb含有量の上限は好ましくは2質量%であり、より好ましくは1.5質量%であり、さらに好ましくは1質量%である。
(j) B:0質量%以上0.01質量%未満
 Bが0.01質量%以上になると、ダクタイル鋳鉄からなる内層と一体化する際に、許容量以上のBが内層に拡散するおそれがある。Bが過剰に内層に拡散すると、内層中の黒鉛の周囲がフェライトになりやすく、内層のフェライト面積率が増えるため、内層の耐摩耗性は低下する。内層は熱間薄板と直接接触しないが、軸受で支持されるので、内層の摩耗が進むと、圧延作業中に振動が発生し、鋼板品質に悪影響がでるおそれがある。そのため、Bを0.01質量%未満にする。Bの上限は好ましくは0.008質量%であり、より好ましくは0.007質量%である。なお、B含有量を低減するためには、B含有量が極力少ないスクラップ等を原材料として使用するのが好ましい。
(2) 追加元素
(a) Co:5質量%以下
 Coは基地組織の強化に有効な元素であるが、5質量%を超えると外層の靱性を低下させる。十分な基地組織強化効果を得るには、Co含有量の下限は0.5質量%が好ましく、1質量%がより好ましい。Co含有量の上限はより好ましくは3質量%である。
(b) Zr:0.5質量%以下
 ZrはCと結合してMC炭化物を生成し、耐摩耗性を向上させる。また、Zrは溶湯中で酸化物を生成し、この酸化物が結晶核として作用するために、凝固組織が微細になる。さらに、ZrはMC炭化物の比重を増加させ、偏析防止に効果がある。しかし、Zrが0.5質量%を超えると、介在物となるので好ましくない。Zr含有量の上限はより好ましくは0.3質量%である。また、十分な添加効果を得るためには、Zrの含有量の下限はより好ましくは0.01質量%である。
(c) Ti:0.5質量%以下
 Tiは溶湯中のNと結合して窒化物を形成する。窒化物は溶湯中に懸濁されて核となり、MC炭化物を微細化及び均質化する。しかし、Tiが0.5質量%を超えると、溶湯の粘性が増加し、鋳造欠陥が発生しやすくなる。十分な添加効果を得るには、Ti含有量の下限は0.005質量%が好ましく、0.01質量%がより好ましい。またTi含有量の上限はより好ましくは0.3質量%であり、さらに好ましくは0.2質量%である。
(d) Al:0.5質量%以下
 Alは溶湯中のOと結合して酸化物を形成する。溶湯中のOを減少させることにより、耐摩耗性に効果があるV、Cr等の炭化物形成元素の酸化を防ぐことができる。しかし、Alが0.5質量%を超えると、外層が脆くなり機械的性質の劣化を招く。十分な添加効果を得るには、Al含有量の下限は好ましくは0.001質量%であり、より好ましくは0.01質量%である。また、Al含有量の上限はより好ましくは0.3質量%であり、さらに好ましくは0.2質量%である。
(3) 不可避的不純物
 外層組成の残部は実質的にFe及び不可避的不純物からなる。不可避的不純物は、P、S、N、Cu、希土類元素(REM)等であるが、それぞれ、P<0.1質量%、S<0.1質量%、N<0.1質量%、Cu<0.1質量%、及びREM<0.1質量%であれば良い。
(4) 関係式
 本発明の圧延ロール用外層は、下記式(1) 及び(2):
(1) 1000≦1177-52C+14Si-11Mn+6.8Cr+1W+0.65Mo+12V+15Nb≦1115
(2) 5≦Cr+Mo+0.5W+V+1.2Nb≦15
(ただし、C、Si、Mn、Cr、W、Mo、V及びNbはそれぞれの元素の質量%を示す。)により表される関係を満足することを特徴とする。
(a) 式(1) について
 式(1) のパラメータP1=1177-52C+14Si-11Mn+6.8Cr+1W+0.65Mo+12V+15Nbは、外層中に存在する共晶炭化物のうちの最も融点の低い共晶炭化物の融点に関連する指標である。P1を1115以下とすることにより、外層の耐焼付き性が改善される。この理由は、圧延ロールが絞り事故に遭遇した際に、圧延材と外層表面との摩擦熱で、融点の低い共晶炭化物が融解して、圧延材とロール外層の潤滑性を改善するためであると考えられる。P1の上限は1110が好ましく、1105がより好ましく、1100がさらに好ましい。一方、P1が1000未満になると、共晶炭化物の融点が低くなりすぎて、内層と溶着一体化させて圧延用複合ロールとする際に、境界に引け巣が発生するおそれがあるためである。引け巣があると、そこを起点としてクラックが発生する。P1の下限は1010が好ましく、1020がより好ましく、1030がさらに好ましく、1040が最も好ましい。
(b) 式(2) について
 式(2) のパラメータP2=Cr+Mo+0.5W+V+1.2Nbは、比較的軟らかい炭化物であるセメンタイトより硬質な炭化物を形成する元素の総和を表す指標である。Cr、Mo、W、V及びNbは炭化物形成元素と呼ぶことができる。これらの元素の炭化物は、基地の耐摩耗性を向上させるだけでなく、融点の低い共晶炭化物を形成する。P2が5未満であると、セメンタイトより硬質な炭化物の割合が低く、外層の耐摩耗性が低下する。一方、P2が15を超えると最も低融点の共晶炭化物の融点が高くなるため、圧延材とロール外層との潤滑性を改善する効果が得られなくなる。P2の下限は好ましくは7であり、より好ましくは8であり、さらに好ましくは9である。P2の上限は好ましくは14であり、より好ましくは13であり、さらに好ましくは12である。
(B) 組織
 本発明の圧延ロール用外層の組織は共晶炭化物を含有し、黒鉛を含有しないことを特徴とする。その他に、外層組織は基地、MC炭化物等を含有する。耐摩耗性を確保する観点から、組織の基地はマルテンサイト及び/又はベイナイトからなるのが好ましい。
 共晶炭化物は、常温で鉄基地となるオ-ステナイトと炭化物(M2C系、M6C系、M7C3系、M23C6系等)との共晶であり、外層の耐摩耗性と耐焼付き性の両方に寄与する。実施例1の外層から採取した試験片を鏡面研磨した後、過硫酸アンモニウムでエッチングした後の光学顕微鏡写真(倍率:400倍)を示す図3から明らかなように、炭化物の間隔が広い共晶炭化物Aと炭化物の間隔の狭い共晶炭化物Bの二種類が存在する。
 外層組織は黒鉛を含有しない。外層中に黒鉛が存在すると、鋼板を圧延する際に黒鉛が欠落することによってロール表面の凹凸が大きくなりやすいので、耐摩耗性及び耐肌荒れ性に劣る。外層組織が黒鉛を含有するか否かは、外層から採取した試験片を鏡面研磨した後、腐食せずに撮影した光学顕微鏡写真(倍率:100倍)により判定する。光学顕微鏡写真での黒色粒子はキャビティー及び黒鉛粒子のいずれかであるので、上記光学顕微鏡写真に長径20μm以上の黒色粒子が存在しない場合、長径20μm以上の黒鉛粒子も存在しないことになる。従って、本明細書では、腐食せずに撮影した光学顕微鏡写真(倍率:100倍)において長径20μm以上の黒色粒子が存在しない場合に、外層組織が黒鉛を含有しないと判定する。本発明の圧延ロール用外層は、式(2) で示すように高合金組成としているために組織中に黒鉛が出にくいだけでなく、黒鉛を析出させるためのSi接種等を行っていない。
(C) 凝固発熱開始温度
 本発明の圧延ロール用外層において、示差熱分析により求めた複数の凝固発熱開始温度のうち最も低い凝固発熱開始温度は1100℃以下であるのが好ましい。示唆熱分析による凝固発熱とは、液相から固相に変化する(溶湯が凝固する)際の発熱を意味する。実施例1の実測値を示す図4から明らかなように、本発明の圧延ロール用外層の組成範囲の場合、主に3種類の凝固発熱がある。図4において、1305℃(高温側)の発熱は基地の凝固により、1165℃(中央)の発熱は図3に示す炭化物の間隔が広い共晶炭化物Aの凝固により、1090℃(低温側)の発熱は図3に示す炭化物の間隔が狭い共晶炭化物Bの凝固による。
 外層の凝固発熱は以下のように測定する。外層から5 gの試料を採取し、示差熱分析装置を用い、1500℃まで昇温して試料を溶解させた後、10℃/分の冷却速度で冷却した際の示差熱を計測する。図4に示すように、凝固発熱温度は、発熱ピークの右側(高温側)の屈曲点と定義する。具体的には、凝固発熱ピークの高温側屈曲点前後の接線の交点とする。
 本発明の圧延ロール用外層において、複数の凝固発熱開始温度のうち最も低い凝固発熱開始温度は1100℃以下が好ましい。その理由は、最も融点の低い共晶炭化物の凝固温度が1100℃以下であると、外層の耐焼付き性が改善されるからである。例えば、絞り込み事故で圧延材がロール外層の表面に焼付くと、熱的及び機械的負荷によりロール外層表面にクラックが発生するおそれがある。クラックを放置したままロールを使用し続けると、クラックが進展し、ロール折損やスポーリングと呼ばれるロール破損を引き起こすことがある。ロール表面の焼き付きが発生すると、その部分に圧延の応力が集中しやすく、この応力により焼き付き部のクラックの進展が加速される。共晶炭化物の溶融により、絞り込み事故の際のロール外層表面の焼き付きを防止でき、もって焼き付き部の応力集中がなく、クラック進展も防止できるため、クラックを研削除去するためのロール外層表面の「改削」を少なくすることもでき、さらにはスポーリングやロール折損と言った圧延操業に大きな損失をもたらす操業事故を防止することもできる。
 一方、最も低い凝固発熱開始温度は1000℃以上であるのが好ましい。その理由は、1000℃未満になると、共晶炭化物の融点が低くなりすぎて、内層と溶着一体化させて圧延用複合ロールとする際に境界に引け巣が発生し、圧延用ロールとして使用できなくなるおそれがあるからである。最も低い凝固発熱開始温度の上限は1095℃がより好ましく、1090℃がさらに好ましい。また、最も低い凝固発熱開始温度の下限は1010℃が好ましく、1020℃がより好ましく、1030℃がさらに好ましく、1040℃が最も好ましい。
 なお、WO 2016/031519 A1は、優れた耐肌荒れ性を発揮するために1100℃程度の高温に晒されても二次共晶炭化物の溶損を防止すると記載しているが、通常の圧延ではロール表面温度は800℃程度以下で、低融点共晶炭化物が溶融することなく、肌荒れの問題は起こらない。ロール表面が1000℃以上のような高温にさらされるのは、絞り込み事故でロール表面に過大な強圧や摩擦熱が発生したり、圧延材がロールに噛みこんだ状態で圧延操業が異常停止する噛み止め事故で高温の圧延材が冷却されずに長時間ロールに接触したりする異常圧延の時のみであり、正常圧延時にロール表面温度が1000℃以上の高温まで到達することはない。これに対して、本発明は、通常の圧延時の肌荒れを防止しつつ、絞り込み事故等では低融点共晶炭化物の溶融によりクラックを防止するという技術的思想に基づいており、WO 2016/031519 A1の思想と正反対である。
[2] 圧延用複合ロール
 本発明の圧延ロール用外層は、内層と溶着一体化することにより圧延用複合ロールとして使用することができる。図1は、遠心鋳造法により形成された外層1と、外層1に溶着一体化した内層2とからなる熱間圧延用複合ロール10を示す。内層2は、外層1に溶着した胴芯部21と、胴芯部21の両端から一体的に延出する軸部22,23とを有する。外層1は耐摩耗性を確保するために炭化物形成元素を多く含有しているので、内層2は強靭性に優れるFe基合金からなるのが好ましい。強靭性及び鋳造性の観点から、内層2に鋳造性の良い鋳鉄、特にダクタイル鋳鉄を使用するのが好ましい。
 ダクタイル鋳鉄の組成は、質量基準でC:2.3~4.0%、Si:1.5~3.5%、Mn:0.2~2.0%、P:0.1%以下、S:0.1%以下、Ni:0.3~5.0%、Cr:0.01~1.0%、Mo:0.01~1.0%、Mg:0.01~0.08%を含有し、残部が実質的にFe及び不可避的不純物からなるのが好ましい。上記元素の他に、V:1%以下、Nb:0.7%以下、及びW:0.7%以下を含有しても良い。ダクタイル鋳鉄は、鉄基地がフェライト及びパーライトを主体とし、その他に黒鉛及び微量のセメンタイトを含む。外層と内層との間に、成分混入の抑制や緩衝などの目的で、中間層を介在させても良い。
[3] 圧延用複合ロールの製造方法
 図5(a) 及び図5(b) は、遠心鋳造用円筒状鋳型30で外層1を遠心鋳造した後に内層2を鋳造するのに用いる静置鋳造用鋳型の一例を示す。この静置鋳造用鋳型100は、円筒状鋳型30と、その上下端に設けられた上型40及び下型50とからなる。静置鋳造用鋳型100に組み立てる円筒状鋳型30の内面には、塗型32を介して外層1が形成されており、外層1の内側に胴芯部21を形成するためのキャビティ60aが形成されている。上型40は、上型本体41の内面に砂型42を有し、砂型42の内側にキャビティ60bを有する。下型50は、下型本体51の内面に砂型52を有し、砂型52の内側にキャビティ60cを有する。下型50には、内層用溶湯を保持するための底板53が設けられている。円筒状鋳型30を用いる遠心鋳造法は水平型、傾斜型又は垂直型のいずれでも良い。
 図5(b) に示すように、円筒状鋳型30の上下に上型40及び下型50を組み立てると、外層1内のキャビティ60aは上型40のキャビティ60b及び下型50のキャビティ60cと連通し、内層1全体を一体的に形成するキャビティ60を構成する。軸部22形成用の下型50の上に、外層1を遠心鋳造した円筒状鋳型30を起立させて設置し、円筒状鋳型30の上に軸部23形成用の上型40を設置して、内層2形成用の静置鋳造用鋳型100を構成する。
 静置鋳造用鋳型100において、遠心鋳造法により形成した外層1の凝固後に、内層2用のダクタイル鋳鉄溶湯が上型40の上方開口部43からキャビティ60内に注入されるに従い、キャビティ60内の溶湯の湯面は下型50から上型40まで次第に上昇し、軸部22、胴芯部21及び軸部23からなる内層2が一体的に鋳造される。
 上記方法により製造された圧延用複合ロールに対して、残留オーステナイトの分解及び歪取りのため、400~580℃の焼き戻し処理を行うのが好ましい。また、基地をオーステナイト化させるために例えば850~1060℃かつP1(又はTs)-50℃以下に加熱した後に焼入れを行って、基地組織をマルテンサイト及び/又はベイナイトとした場合、400~580℃の焼き戻し処理を行うのが好ましい。
 本発明の圧延用複合ロールを遠心鋳造法により製造する場合を説明したが、本発明の圧延用複合ロールは、鋼製芯材の周囲に外層用溶湯を注入し、高周波コイルを用いて連続的に外層を形成する、いわゆる連続鋳掛け肉盛法でも製造することができる。
 本発明を以下の実施例により詳細に説明するが、本発明はそれらに限定されるものではない。
実施例1~5、及び比較例1~4
(1) 鋳造
 実験用鋳型(内径90 mm、深さ95 mm)を用いて、下記の表1に示す組成及び表2に示すP1及びP2の値を有する各溶湯から試験材を鋳造した。
(2) 黒鉛及び共晶炭化物の有無の評価
 各試験材を480℃で焼き戻した後、試験片を切り出し、試験片を鏡面研磨し、無腐食のままの組織を光学顕微鏡(倍率:100倍)で撮影した。実施例1の試験材の光学顕微鏡写真(倍率:100倍)を図2に示す。図2において、Gは黒色粒子を示し、20は黒色粒子Gを包囲する一辺20μmの正方形を示す。図2から明らかなように、実施例1の試験片には長径20μm以上の黒色粒子Gが存在しない。黒色粒子は微細なキャビティー又は黒鉛粒子であるので、仮に黒鉛粒子であったとしても、一辺20μm未満の極めて微細なものである。そのため、実施例及び比較例の光学顕微鏡写真において、長径20μm以上の黒色粒子が存在しない場合を外層組織が黒鉛を含有しないと判定した。さらに、各試験片の鏡面研磨面を過硫酸アンモニウムでエッチングした後、光学顕微鏡写真(倍率:400倍)を撮影し、共晶炭化物の有無を判定した。実施例1の光学顕微鏡写真(倍率:400倍)を図3に示す。各試験片の組織における黒鉛の有無及び共晶炭化物の有無を表2に示す。
(3) 凝固発熱開始温度の測定
 各試験材から切り出した試験片(5 g)に対して示差熱分析を行い、複数の凝固開始温度のうち最も低い凝固発熱開始温度Tsを求めた。各試験材の最も低い凝固発熱開始温度Tsを表2に示す。また、実施例1の試験片の示差熱分析結果を図4に示す。
(4) 摩耗試験
 各溶湯から、外径60 mm、内径40 mm及び幅40 mmのスリーブ構造の試験用ロールを作製した。耐摩耗性を評価するため、図6に示す圧延摩耗試験機を用いて、各試験用ロールに対して摩耗試験を行った。圧延摩耗試験機は、圧延機11と、圧延機11に組み込まれた試験用ロール12,13と、圧延材18を予熱する加熱炉14と、圧延材18を冷却する冷却水槽15と、圧延中に一定の張力を与える巻取機16と、張力を調節するコントローラ17とを具備する。圧延摩耗条件は以下の通りであった。圧延後、各試験用ロールの表面に生じた摩耗の深さを触針式表面粗さ計により測定した。摩耗深さの測定結果を表2に示す。
  圧延材の材質:SUS304
  圧延材の幅:20 mm
  圧延材の厚さ:1 mm
  圧下率:25%
  圧延速度:150 m/分
  圧延材の温度:900℃
  圧延距離:300 m/回
  ロール冷却:水冷
  ロール数:4重式
(5) 耐事故性(耐焼付き性)の評価
 耐事故性を評価するため、図7に示す摩擦熱衝撃試験機を用いて、各試験用ロールに対して焼付試験を行った。摩擦熱衝撃試験機は、ラック71に重り72を落下させることによりピニオン73を回動させ、試験材74に噛み込み材75を強く接触させるものである。この試験により試験材74に圧痕がつき、圧痕の一部又は全体に噛み込み材75が焼付き付着した。各供試材につき2回焼付き面積を測定し、平均することにより焼付き付着面積を求め、焼付き付着面積を圧痕面積で割ることにより焼付き面積率(%)とした。焼付きの程度を焼付き面積率により以下の通り評価した。結果を表2に示す。焼付きが少ないほど耐事故性が良い。
○:焼付き面積率が40%未満。
△:焼付き面積率が40%以上60%未満。
×:焼付き面積率が60%以上。
Figure JPOXMLDOC01-appb-T000001
注:(1) 残部:Fe及び不可避的不純物。
  (2) 0.021質量%のTiを含有。
  (3) 0.18質量%のS、0.02質量%のAl、及び0.029質量%のNを含有。
Figure JPOXMLDOC01-appb-T000002
注:(1) P1=1177-52C+14Si-11Mn+6.8Cr+1W+0.65Mo+12V+15Nb。
  (2) P2=Cr+Mo+0.5W+V+1.2Nb。
  (3) Tsは最も低い凝固発熱開始温度。
  (4) 測定せず。
実施例6及び比較例5
 図5(a) に示す構造の円筒状鋳型30(内径800 mm、及び長さ2500 mm)を水平型の遠心鋳造機に設置し、実施例1及び比較例4と同じ組成の各溶湯を用いてそれぞれ実施例6及び比較例5の外層1を遠心鋳造した。外層1が凝固した後、内面に外層1(厚さ:90 mm)が形成された円筒状鋳型30を起立させ、軸部22形成用の中空状下型50(内径600 mm、及び長さ1500 mm)の上に円筒状鋳型30を立設し、円筒状鋳型30の上に軸部23形成用の中空状上型40(内径600 mm、及び長さ2000 mm)を立設し、
1490682096780_0
に示す静置鋳造用鋳型100を構成した。
 静置鋳造用鋳型100のキャビティ60に、質量基準でC:3.0%、Si:2.6%、Mn:0.3%、Ni:1.4%、Cr:0.1%、Mo:0.2%、Mg:0.05%、P:0.03%、及びS:0.03%を含有し、残部が実質的にFe及び不可避不純物である化学組成を有するダクタイル鋳鉄溶湯を上方開口部43から注湯し、途中でSiを含む黒鉛化接種材を接種して、外層1の内面に内層2が一体的に溶着した複合ロールを製造した。その後500℃で焼き戻し処理を行った。
 実施例6及び比較例5の外層1から切出した試験片について、実施例1と同様にして、黒鉛及び共晶炭化物の有無を判定するとともに、示差熱分析を行った。その結果、実施例6の外層1は共晶炭化物を含有するが黒鉛を含有せず、また最も低い凝固発熱開始温度Tsも実施例1と同程度であった。また、比較例5の外層1は共晶炭化物を含有するが黒鉛を含有せず、また最も低い凝固発熱開始温度Tsも比較例4と同程度であった。
 また、実施例6及び比較例5の内層2の軸部22,23から試験片を切出し、組織観察した。その結果、実施例1と同じ外層1を用いた実施例6の内層2の軸部22,23では、組織中のフェライト面積率は15~25%程度と少なかった。従って、実施例6の複合ロールは耐摩耗性及び耐焼付き性に優れた外層とともに、耐摩耗性に優れた内層を有することが確認された。これに対して、比較例4と同じ外層1を用いた比較例5の内層2の軸部22,23では、組織中のほとんどの黒鉛の周囲に幅50μm~80μmのフェライトが存在し、フェライト面積率は30~40%程度と多かった。これは、外層が0.052質量%(0.01質量%以上)のBを含有しているので、それが内層2に拡散したためであると考えられる。
1・・・外層
2・・・内層
 21・・・胴芯部
 22,23・・・軸部
10・・・熱間圧延用複合ロール
11・・・圧延機
12,13・・・試験用ロール
14・・・加熱炉
15・・・冷却水槽
16・・・巻取機
17・・・コントローラ
18・・・圧延材
20・・・光学顕微鏡写真において黒色粒子を包囲する一辺20μmの正方形
30・・・遠心鋳造用円筒状鋳型
31・・・円筒状鋳型本体
32・・・塗型
42,52・・・砂型
40・・・上型
41・・・上型本体
43・・・上方開口部
50・・・下型
51・・・下型本体
53・・・底板
60,60a,60b,60c・・・キャビティ
100・・・静置鋳造用鋳型
G・・・黒色粒子

Claims (6)

  1.  質量基準でC:1.3~2.8%、Si:0.3~1.8%、Mn:0.3~2.5%、Ni:0~6.5%、Cr:1~10%、Mo:0.9~6%、W:0~8%、V:0.5~6%、Nb:0~3%、及びB:0%以上0.01%未満を含有し、残部がFe及び不可避的不純物からなるとともに、下記式(1) 及び(2):
    (1):1000≦1177-52C+14Si-11Mn+6.8Cr+1W+0.65Mo+12V+15Nb≦1115
    (2):5≦Cr+Mo+0.5W+V+1.2Nb≦15
    (ただし、C、Si、Mn、Cr、W、Mo、V及びNbはそれぞれの元素の質量%を示す。)
    を満足する化学組成を有し、かつ
     共晶炭化物を含有し、黒鉛を含有しない組織を有することを特徴とする圧延ロール用外層。
  2.  請求項1に記載の圧延ロール用外層において、示差熱分析により求めた複数の凝固発熱開始温度のうち、最も低い凝固発熱開始温度が1100℃以下であることを特徴とする圧延ロール用外層。
  3.  請求項1又は2に記載の圧延ロール用外層において、さらに質量基準でCo:5%以下、Zr:0.5%以下、Ti:0.5%以下、及びAl:0.5%以下からなる群から選ばれた少なくとも1種を含有することを特徴とする圧延ロール用外層。
  4.  請求項1~3のいずれかに記載の外層が内層に溶着一体化した構造を有することを特徴とする圧延用複合ロール。
  5.  請求項1に記載の圧延用複合ロールにおいて、前記内層がダクタイル鋳鉄からなることを特徴とする圧延用複合ロール。
  6.  請求項4又は5に記載の圧延用複合ロールにおいて、前記外層が遠心鋳造法により形成されたことを特徴とする圧延用複合ロール。
PCT/JP2017/012682 2016-03-31 2017-03-28 圧延ロール用外層及び圧延用複合ロール WO2017170570A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/089,204 US11052440B2 (en) 2016-03-31 2017-03-28 Outer layer of rolling roll and composite roll for rolling
JP2018508083A JP6908021B2 (ja) 2016-03-31 2017-03-28 圧延ロール用外層及び圧延用複合ロール
EP17775107.0A EP3437747B1 (en) 2016-03-31 2017-03-28 Composite roll for rolling
CN201780020759.8A CN109070160B (zh) 2016-03-31 2017-03-28 轧辊用外层和轧制用复合辊

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016073228 2016-03-31
JP2016-073228 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170570A1 true WO2017170570A1 (ja) 2017-10-05

Family

ID=59964654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012682 WO2017170570A1 (ja) 2016-03-31 2017-03-28 圧延ロール用外層及び圧延用複合ロール

Country Status (6)

Country Link
US (1) US11052440B2 (ja)
EP (1) EP3437747B1 (ja)
JP (1) JP6908021B2 (ja)
CN (1) CN109070160B (ja)
TW (1) TWI712697B (ja)
WO (1) WO2017170570A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110660A1 (ja) * 2018-11-28 2020-06-04 Jfeスチール株式会社 熱間圧延用ロール外層材および熱間圧延用複合ロール
CN112512709A (zh) * 2018-08-08 2021-03-16 日立金属株式会社 轧制用离心铸造复合辊及其制造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6313844B1 (ja) * 2016-12-28 2018-04-18 株式会社クボタ 圧延用複合ロール
CN109694996A (zh) * 2019-02-28 2019-04-30 常州市力创轧辊有限公司 一种无缝钢管连轧机用合金石墨钢轧辊及其制备方法
CN111485164B (zh) * 2020-06-08 2021-05-14 马鞍山常裕机械设备有限公司 一种强化低铬合金铸件耐磨性能的铸造方法
CN113249658B (zh) * 2021-07-06 2021-09-24 常州凯达重工科技有限公司 高速钢立辊环及其制备方法
CN113564495A (zh) * 2021-07-14 2021-10-29 四川省柏均机械制造有限责任公司 一种高铬铸铁及其高铬铸铁使用液体冷却方法
CN114561601A (zh) * 2022-02-28 2022-05-31 连云港德耀机械科技有限公司 一种轧辊用高速合金钢及其制备方法
CN114959507B (zh) * 2022-07-27 2022-11-11 江苏凯达重工股份有限公司 钨钒合金工具钢辊环及其制备方法
CN115679186A (zh) * 2022-11-10 2023-02-03 中钢集团邢台机械轧辊有限公司 一种热带宽幅铝轧机用工具钢轧辊的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178437A1 (ja) * 2013-05-02 2014-11-06 日立金属株式会社 遠心鋳造製熱間圧延用複合ロール
WO2015045720A1 (ja) * 2013-09-25 2015-04-02 日立金属株式会社 遠心鋳造製複合ロール及びその製造方法
WO2016031519A1 (ja) * 2014-08-25 2016-03-03 株式会社クボタ 圧延用複合ロールの外層材及び圧延用複合ロール

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546527A (en) 1981-12-01 1985-10-15 Kubota Ltd. Composite sleeve for use in rolling rolls for H-section steel and channel steel
JPS60152632A (ja) * 1984-01-23 1985-08-10 Kawasaki Steel Corp 高クロム鋳鉄ロ−ル材の製造方法
US5225007A (en) * 1990-02-28 1993-07-06 Hitachi Metals Ltd. Method for wear-resistant compound roll manufacture
US5316596A (en) * 1991-09-12 1994-05-31 Kawasaki Steel Corporation Roll shell material and centrifugal cast composite roll
JP3438336B2 (ja) 1994-07-07 2003-08-18 Jfeスチール株式会社 高速度鋼系圧延用ロール外層材
JPH08209299A (ja) * 1995-02-02 1996-08-13 Nippon Steel Corp 高耐焼付性熱間圧延用ロール材およびその製造方法
JP3343538B2 (ja) * 1999-12-20 2002-11-11 虹技株式会社 圧延ロール
JP3820853B2 (ja) 2000-07-31 2006-09-13 Jfeスチール株式会社 熱間圧延用ロール外層材および耐事故性および通板性に優れた遠心鋳造製熱間圧延用複合ロール
JP2005169426A (ja) 2003-12-09 2005-06-30 Hitachi Metals Ltd 圧延用複合ロール
CN101831590B (zh) * 2009-03-10 2011-07-06 江苏东冶轧辊有限公司 高硼低合金高速钢轧辊及其制造方法
CN105579156B (zh) 2013-09-25 2018-02-27 日立金属株式会社 离心铸造制热轧用复合辊
JP2017012682A (ja) 2015-07-06 2017-01-19 株式会社三共 スロットマシン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178437A1 (ja) * 2013-05-02 2014-11-06 日立金属株式会社 遠心鋳造製熱間圧延用複合ロール
WO2015045720A1 (ja) * 2013-09-25 2015-04-02 日立金属株式会社 遠心鋳造製複合ロール及びその製造方法
WO2016031519A1 (ja) * 2014-08-25 2016-03-03 株式会社クボタ 圧延用複合ロールの外層材及び圧延用複合ロール

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112512709A (zh) * 2018-08-08 2021-03-16 日立金属株式会社 轧制用离心铸造复合辊及其制造方法
EP3821992A4 (en) * 2018-08-08 2021-05-19 Hitachi Metals, Ltd. CENTRIFUGATION CAST COMPOSITE ROLLER FOR LAMINATION AND ITS MANUFACTURING PROCESS
US11389847B2 (en) 2018-08-08 2022-07-19 Hitachi Metals, Ltd. Centrifugally cast composite roll for rolling and its production method
CN112512709B (zh) * 2018-08-08 2023-06-02 株式会社博迈立铖 轧制用离心铸造复合辊及其制造方法
JP7400718B2 (ja) 2018-08-08 2023-12-19 株式会社プロテリアル 圧延用遠心鋳造複合ロール及びその製造方法
WO2020110660A1 (ja) * 2018-11-28 2020-06-04 Jfeスチール株式会社 熱間圧延用ロール外層材および熱間圧延用複合ロール
JPWO2020110660A1 (ja) * 2018-11-28 2021-02-15 Jfeスチール株式会社 熱間圧延用ロール外層材および熱間圧延用複合ロール
KR20210082226A (ko) * 2018-11-28 2021-07-02 제이에프이 스틸 가부시키가이샤 열간 압연용 롤 외층재 및 열간 압연용 복합 롤
CN113166864A (zh) * 2018-11-28 2021-07-23 杰富意钢铁株式会社 热轧用辊外层材料和热轧用复合辊
CN113166864B (zh) * 2018-11-28 2022-09-23 杰富意钢铁株式会社 热轧用辊外层材料和热轧用复合辊
KR102551616B1 (ko) * 2018-11-28 2023-07-04 제이에프이 스틸 가부시키가이샤 열간 압연용 롤 외층재 및 열간 압연용 복합 롤

Also Published As

Publication number Publication date
EP3437747B1 (en) 2020-11-25
CN109070160A (zh) 2018-12-21
JPWO2017170570A1 (ja) 2019-02-07
TWI712697B (zh) 2020-12-11
TW201739931A (zh) 2017-11-16
EP3437747A1 (en) 2019-02-06
EP3437747A4 (en) 2019-11-20
JP6908021B2 (ja) 2021-07-21
US20200298294A1 (en) 2020-09-24
US11052440B2 (en) 2021-07-06
CN109070160B (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
WO2017170570A1 (ja) 圧延ロール用外層及び圧延用複合ロール
JP5768947B2 (ja) 遠心鋳造製熱間圧延用複合ロール
JP5950048B2 (ja) 遠心鋳造製熱間圧延用複合ロール
JP5423930B2 (ja) 遠心鋳造製複合圧延ロール及びその製造方法
JP5950047B2 (ja) 遠心鋳造製熱間圧延用複合ロール
WO2013042528A1 (ja) 熱間圧延用遠心鋳造複合ロール及びその製造方法
WO2018147370A1 (ja) 圧延用複合ロール及びその製造方法
JP7400718B2 (ja) 圧延用遠心鋳造複合ロール及びその製造方法
JP7302232B2 (ja) 熱間圧延用遠心鋳造複合ロール及びその製造方法
JP6606977B2 (ja) 熱間圧延用複合ロールの製造方法
WO2021075561A1 (ja) 熱間圧延用遠心鋳造複合ロール
JP4650729B2 (ja) 圧延用複合ロール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508083

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775107

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775107

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775107

Country of ref document: EP

Kind code of ref document: A1