WO2014178327A1 - リチウムイオン二次電池負極集電体用銅箔 - Google Patents

リチウムイオン二次電池負極集電体用銅箔 Download PDF

Info

Publication number
WO2014178327A1
WO2014178327A1 PCT/JP2014/061567 JP2014061567W WO2014178327A1 WO 2014178327 A1 WO2014178327 A1 WO 2014178327A1 JP 2014061567 W JP2014061567 W JP 2014061567W WO 2014178327 A1 WO2014178327 A1 WO 2014178327A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
negative electrode
secondary battery
less
ion secondary
Prior art date
Application number
PCT/JP2014/061567
Other languages
English (en)
French (fr)
Inventor
隆宏 鶴田
健作 篠崎
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2014531014A priority Critical patent/JP5625141B1/ja
Priority to CN201480001959.5A priority patent/CN104508878B/zh
Publication of WO2014178327A1 publication Critical patent/WO2014178327A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a copper foil for a negative electrode current collector of a lithium ion secondary battery. More specifically, this invention relates to the copper foil for lithium ion secondary battery negative electrode electrical power collectors in which the organic rust preventive film is formed in the copper foil surface.
  • Lithium ion secondary batteries are characterized by high energy density and the ability to obtain relatively high voltages. For example, they are frequently used as power sources for small electronic devices such as notebook computers, video cameras, digital cameras, and mobile phones. Yes. Also, for example, use as a power source for large equipment such as an electric vehicle and a distributed power source for general households has begun. Thus, lithium ion secondary batteries are widely used in devices that require various power sources because they are lighter and have a higher energy density than other secondary batteries.
  • One of the characteristics required for a copper foil used as a negative electrode current collector of a lithium ion secondary battery is adhesion to a negative electrode active material that affects the cycle characteristics of the lithium ion secondary battery.
  • a negative electrode active material that affects the cycle characteristics of the lithium ion secondary battery.
  • the active material layer peels off and falls off, and the desired performance cannot be obtained. Life may be reduced.
  • the thickness of the active material layer is insufficiently uniform, lithium deposition and dendrite are generated at the portion, short circuit is likely to occur, and charging in a short time becomes difficult.
  • the surface of the copper foil is roughened and physically improved, or the surface of the copper foil is rust-prevented and a silane coupling layer is formed.
  • a method of providing and improving chemically There is a method of providing and improving chemically.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-212528 discloses a copper foil as an electrolytic copper foil for a negative electrode current collector of a secondary battery having a good balance between adhesion to a negative electrode active material, ultrasonic weldability, and rust prevention.
  • a surface treatment layer having an azole compound and C ⁇ O is formed on at least a part of the surface, and nitrogen (N) and carbon (C) are detected by depth direction analysis by XPS (X-ray photoelectron spectroscopy),
  • An electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery having an average value D 0 in a depth range in which N and C detection amounts are larger than the background level is 2.0 to 5.0 nm is disclosed.
  • the electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery disclosed in Patent Document 1 has not been analyzed for the total content of inevitable impurities contained in the copper foil, and is slightly nitrogenous. Only (N) and carbon (C) are considered as problems, and other impurities such as sulfur (S), oxygen (O), and chlorine (Cl) are not pursued.
  • the negative electrode of the lithium ion secondary battery is coated with an active material slurry paste obtained by mixing an active material and a binder with a solvent on a conductive carrier (copper foil, etc.), then dried, and the density If necessary, the active material layer is formed by pressing and binding.
  • the surface of the copper foil is rustproofed by an organic rustproofing treatment using an azole derivative or a chromate treatment using a chromium compound solution.
  • NMP N-methylpyrrolidone
  • water or the like is used as a solvent for forming the paste.
  • NMP N-methylpyrrolidone
  • the copper foil serving as the negative electrode carrier has poor wettability with NMP and requires special measures such as thick coating.
  • the active material and binder contained in the paste have poor affinity with the copper surface and low adhesion.
  • a negative electrode composed of an active material layer with poor adhesion to the copper foil surface the active material layer peels off and falls off when the electrode is sized, bent, or wound, and the desired performance cannot be obtained. Problems with durability and lifetime. As described above, when the active material film has a non-uniform thickness and a thin layer is formed, lithium deposition and dendrite are generated at that portion, and a short circuit is likely to occur. Become.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-251469 discloses a method for improving the adhesion between the copper foil and the active material by forming a film containing an azole compound having a carbonyl group on the surface of the copper foil.
  • the copper foil which made NMP contact angle 19 degrees or less is disclosed.
  • Patent Document 2 a rolled copper foil using 99.90% or more of tough pitch copper is immersed for 5 seconds in a solution obtained by adding a predetermined amount of carboxybenzotriazole to isopropyl alcohol, normal paraffin, or a mixture thereof. It is described that it is blown and dried, and further treated with monoethylamine or 1,2,3 benzotriazole.
  • Patent Document 2 also does not describe analysis of inevitable impurities contained in the copper foil, and does not pursue the wettability of the copper foil surface by inevitable impurities. That is, in the copper foil described in Patent Document 2, when the total amount of inevitable impurities contained in the copper foil is large, the wettability between the copper foil and the active material layer is poor, and the function as a current collector cannot be satisfied. There are no considerations for possible cases.
  • This inventor is an impurity contained in copper foil as a result of earnest research and development about the adhesiveness with the active material of copper foil used as a negative electrode collector of a lithium ion secondary battery, and rust prevention improvement.
  • the amount of carbon (C), sulfur (S), oxygen (O), nitrogen (N), chlorine (Cl), and the thickness of the rust preventive film are determined by the current collector (copper foil) and the active material layer. The inventors have found out that the adhesiveness is greatly affected, and completed the present invention.
  • the present invention improves the adhesion between a copper foil and an active material and the rust preventive property of the copper foil, the surface-treated copper foil for a negative electrode current collector of a lithium ion secondary battery, and the surface-treated copper foil as a current collector It is to provide a lithium ion secondary battery.
  • the surface-treated copper foil for the negative electrode current collector of the lithium ion secondary battery of the present invention has a total content of carbon, sulfur, oxygen, nitrogen and chlorine contained in the copper foil of 20 ppm or less, and XPS (X The depth range which is detected to be larger than the background level of nitrogen and carbon by linear photoelectron spectroscopy is 0.2 nm or more and less than 2.0 nm.
  • the copper foil for lithium ion secondary battery negative electrode collectors includes any one of an electrolytic copper foil, an electrolytic copper alloy foil, a rolled copper foil, and a rolled copper alloy foil.
  • the total content of carbon, sulfur, oxygen, nitrogen and chlorine contained in the copper foil is 20 ppm or less, particularly preferably 10 ppm or less.
  • the depth range detected by the XPS (X-ray photoelectron spectroscopy) to be larger than the background level of nitrogen and carbon is 0.2 nm or more and less than 2.0 nm, and particularly preferably 0.2 nm. It is 1.0 nm or less.
  • the copper foil which concerns on this invention, adhesiveness with a negative electrode active material improves by using this copper foil as a collector.
  • the copper foil of this invention can be used conveniently as a collector of a lithium ion secondary battery, for example.
  • the copper foil for the negative electrode current collector of the lithium ion secondary battery of the present invention has a total content of carbon, sulfur, oxygen, nitrogen and chlorine contained in the copper foil of 20 ppm or less, and nitrogen and carbon by XPS.
  • the depth range that is detected to be larger than the background level is 0.2 nm or more and less than 2.0 nm.
  • the “copper foil” may be any of an electrolytic copper foil, an electrolytic copper alloy foil, a rolled copper foil, and a rolled copper alloy foil.
  • the copper foil may be any of an electrolytic copper foil, an electrolytic copper alloy foil, a rolled copper foil, and a rolled copper alloy foil.
  • the negative electrode of the lithium ion secondary battery of the present embodiment is coated with an active material, for example, an active material slurry paste in which a carbon material and a binder are mixed with a solvent, and then dried on a current collector (copper foil). If necessary, the active material layer is formed by pressing and binding. At this time, the adhesion between the active material slurry paste using NMP (N-methylpyrrolidone) as a solvent for preparing the paste and the copper foil surface becomes a problem.
  • NMP N-methylpyrrolidone
  • the amount of impurities contained in the copper foil is defined.
  • the total content of impurities C, S, O, N, and Cl (hereinafter sometimes simply referred to as inevitable impurities) is set to 20 ppm or less.
  • the amount of inevitable impurities contained in the copper foil is set to 20 ppm or less.
  • the content of inevitable impurities is preferably small, but the allowable value is preferably 15 ppm or less, more preferably 10 ppm or less.
  • the organic rust prevention layer of the copper foil of the present embodiment has a depth range of 0.2 nm or more and 2 which is detected to be larger than the background level of nitrogen (N) and carbon (C) by XPS (X-ray photoelectron spectroscopy). Less than 0.0 nm.
  • the elemental analysis in the depth direction of the copper foil is performed by combining an X-ray photoelectron spectrometer (XPS apparatus) and argon sputtering, and the thickness of the organic rust preventive layer is determined. That is, N and C in the organic rust preventive layer are detected by the XPS apparatus, and the depth range in which the detected amount of N and C is larger than the background level is set as the thickness of the surface treatment layer.
  • the thickness of the surface treatment layer is preferably 0.2 nm or more and less than 2.0 nm, more preferably 0.5 nm or more and 1.0 nm or less from the viewpoint of adhesion and rust prevention.
  • the thickness of the surface treatment layer is 2.0 nm or more, a part of the rust preventive component appears as a powder in the drying process after applying the rust preventive agent, and the adhesion to the active material is impaired. There is a fear.
  • the organic rust preventive film applied to the copper foil surface has a uniform film thickness and a high density.
  • a coating method using a hydrophilizing roll is employed as a method for uniformly coating the surface of the copper foil with the organic rust preventive film adhesion amount.
  • hydrophilicity is applied to both the front and back sides of the copper foil immersed in an organic rust preventive solution (for example, triazole solution) and coated with the organic rust preventive solution on the surface.
  • a roll is set, and the solution applied to the copper foil surface with the hydrophilizing roll is leveled (treated) so that the solution is uniform.
  • an organic rust preventive agent can be uniformly apply
  • a hydrophilizing roll when applying an organic rust inhibitor to the copper foil surface, when the copper foil and the treatment liquid come into contact, the droplets of the treatment liquid are crushed. Since it can form, even if it is a thin film like this invention, sufficient rust prevention performance can be exhibited.
  • a method other than coating by a hydrophilic roll may be used.
  • the thickness of the film can be made uniform and the resistivity of the copper foil surface can be lowered, so that resistance welding is performed when the negative electrode is assembled.
  • the consumption of Joule heat in the rust preventive film is suppressed, and Joule heat is appropriately supplied to the inside of the laminated foils, so that good resistance weldability can be obtained.
  • the rubber roll is hydrophilized by a technique such as UV ozone treatment, plasma treatment, chemical modification with a hydrophilic functional group, or the like.
  • a technique such as UV ozone treatment, plasma treatment, chemical modification with a hydrophilic functional group, or the like.
  • Examples of the organic rust preventive film include triazole compounds such as benzotriazole, tolyltriazole, carboxybenzotriazole, chlorobenzotriazole, ethylbenzotriazole, and naphthotriazole, and complex compounds thereof.
  • concentration of an organic rust-preventing compound solution (hereinafter sometimes referred to as a triazole compound solution) composed of a triazole-based compound that forms an organic rust-proof coating on the copper foil surface and / or a complex compound thereof is 50 to 1000 ppm. It is desirable. If it is less than 50 ppm, the organic rust preventive film is not thick enough to maintain the rust preventive function. On the other hand, if it exceeds 1000 ppm, the organic rust preventive film becomes excessively thick, and the ultrasonic welding function as described above. This is because there is a possibility that adverse effects may occur.
  • the temperature of the triazole compound solution when forming the organic rust preventive film on the copper foil surface is 35 ° C. to 55 ° C. This is because when the temperature is lower than 35 ° C., the organic rust preventive film has a density sufficient to maintain the antirust function, and when the temperature is higher than 55 ° C., the density of the organic rust preventive film becomes excessively high.
  • the pH of the triazole compound solution is preferably 6.5 to 8.0 in order to ensure the stability of the triazole component.
  • Conditions such as the concentration of the triazole compound solution to be applied to the copper foil, the solution temperature, pH, the immersion time of the copper foil, and the like can be appropriately determined in relation to the thickness of the organic rust preventive film to be formed.
  • the immersion time is usually about 0.5 to 30 seconds.
  • the description regarding these rust prevention treatment conditions is an illustration, and does not restrain the content of a specification and a claim.
  • the electrolytic copper foil immediately after the electrolytic copper foil is made, it is immersed in an organic rust preventive solution to form a rust preventive film, but if the rust preventive treatment is not possible immediately after the foil is made, pickling or degreasing is performed as a pretreatment.
  • the copper foil is used as a current collector, a negative electrode active material layer is formed thereon to produce a negative electrode, and the negative electrode is incorporated to produce a lithium ion secondary battery.
  • the negative electrode active material include, but are not limited to, carbon, silicon, tin, germanium, lead, antimony, aluminum, indium, lithium, tin oxide, lithium titanate, lithium nitride, indium-tin oxide, indium Examples thereof include a tin alloy, a lithium-aluminum alloy, and a lithium-indium alloy.
  • Comparative Examples 7 to 8 In Comparative Examples 7 to 8, the addition amount of the low molecular weight glue (molecular weight 3,000) in Examples 1 to 9 and Comparative Examples 1 to 6 was changed to a range of more than 50 ppm and 500 ppm or less. Using a noble metal oxide-coated titanium electrode and a titanium rotating drum as the cathode, an electrolytic copper foil having a current density of 50 to 100 A / dm 2 and a thickness of 10 ⁇ m was produced.
  • the low molecular weight glue molecular weight 3,000
  • Examples 1 to 9 [Organic rust prevention film formation]
  • commercially available SUS304 obtained by immediately immersing an electrolytically formed copper foil in a benzotriazole rust-preventing solution having a concentration of 50 to less than 1000 ppm and plasma-treating it using NVC-R1500 manufactured by Nikkiso Co., Ltd. Two rolls (diameter: 120 mm, surface length: 1000 mm, wall thickness: 15 mm) were applied on both sides, the amount of the organic film was controlled to a constant amount, and an organic rust preventive film was applied to the copper foil surface.
  • the liquid temperature was 35 to 55 ° C., and the pH was 6.5 to 8.0.
  • Comparative Examples 1 and 2 In Comparative Examples 1 and 2, a commercially available SUS304 roll (diameter: 120 mm, surface length) in which the electrolytically formed copper foil was immediately immersed in a benzotriazole rust preventive solution having a concentration of 50 to less than 1000 ppm and was not hydrophilized by plasma. 1000 mm, thickness 15 mm) were used on both sides, the amount of the organic film was controlled to a fixed amount, and an organic rust preventive film was applied to the copper foil surface. The liquid temperature was 35 to 55 ° C., and the pH was 6.5 to 8.0.
  • Comparative Examples 3 to 4 are commercially available SUS304 rolls obtained by immediately immersing electrolytically produced copper foil in a benzotriazole rust-preventing solution having a concentration of 10 to 50 ppm and plasma-treating it using NVC-R1500 manufactured by Nikkiso Co., Ltd. Two surfaces (diameter 120 mm, surface length 1000 mm, wall thickness 15 mm) were used to apply both surfaces, the amount of the organic film was controlled to a constant amount, and an organic rust preventive film was applied to the copper foil surface. The liquid temperature was 35 to 55 ° C., and the pH was 6.5 to 8.0.
  • Comparative Examples 5 to 6 are commercially available SUS304 rolls obtained by immediately immersing an electrolytically produced copper foil in a benzotriazole rust-preventing solution having a concentration of 1000 to 5000 ppm, and plasma-treating using NVC-R1500 manufactured by Nikkiso Co., Ltd. Two surfaces (diameter 120 mm, surface length 1000 mm, wall thickness 15 mm) were used to apply both surfaces, the amount of the organic film was controlled to a constant amount, and an organic rust preventive film was applied to the copper foil surface. The liquid temperature was 35 to 55 ° C., and the pH was 6.5 to 8.0.
  • Comparative Examples 7 to 8 Commercially available SUS304 obtained by directly immersing an electrolytically formed copper foil in a benzotriazole rust preventive solution having a concentration of less than 50 to 1000 ppm and using NVC-R1500 manufactured by Nikkiso Co., Ltd. Two rolls (diameter: 120 mm, surface length: 1000 mm, wall thickness: 15 mm) were applied on both sides, the amount of the organic film was controlled to a constant amount, and an organic rust preventive film was applied to the copper foil surface. The liquid temperature was 35 to 55 ° C., and the pH was 6.5 to 8.0.
  • the active material slurry paste which consists of the following carbon material was used for the surface of the surface treatment copper foil created by each Example and each comparative example mentioned above, and the adhesiveness of copper foil and an active material was evaluated by the following. The results are shown in Table 1 (Examples) and Table 2 (Comparative Examples).
  • the carbon material massive artificial graphite is used, and the massive artificial graphite is mixed with a solution obtained by dissolving 8% PVDF (polyvinylidene fluoride) powder in NMP to form a paste.
  • the paste is formed on the surface of the copper foil with a thickness of about 50 ⁇ m. Then, it was dried at 80 ° C.
  • Double-sided tape was affixed to this active material application surface, double-sided tape was also affixed to the support plate, and the double-sided tapes were bonded together.
  • the peeling strength was measured by the method according to JISC6471 at the peeling angle of 90 degree
  • those having an adhesive strength exceeding 4000 g / cm are: ⁇ , those having 3000 g / cm or more and less than 4000 g / cm, ⁇ , those having 1000 g / cm or more and less than 3000 g / cm, ⁇ , 1000 g / cm Those less than 2 were marked with x.
  • the detection depth range of nitrogen and carbon was measured under the following conditions using an XPS measuring device 5600MC manufactured by ULVAC-PHI CORPORATION. Ultimate vacuum 1 ⁇ 10 ⁇ 10 Torr (1 ⁇ 10 ⁇ 8 Torr when Ar gas is introduced), X-ray: X-ray type monochromated Al-k ⁇ ray, 300W output, Detection area 800 ⁇ m ⁇ , Ion beam: Ion species Ar +, Acceleration voltage 3kV, Sweep area 3 ⁇ 3mm 2 , Sample incident angle 45 ° (angle formed between sample and detector), Sputtering rate 2.3 nm / min (SiO 2 conversion)
  • the oxidation resistance of the copper foil was evaluated by the following method.
  • a copper foil (70 mm ⁇ 300 mm) was wound around a PVC pipe (inner diameter: 32 mm, outer diameter: 38 mm, length: 10 cm) to prepare a sample.
  • the sample prepared by the treatment in (1) was set in a thermo-hygrostat (60 ° C., 90 RH%) and held for 5 days (120 hours).
  • the sample was taken out from the testing machine that performs the treatment of (2), and the color tone of the portion of the copper foil surface where the copper foils overlapped was confirmed.
  • the color tone does not change compared to the evaluation method and before the test, it was marked as x when the color changed markedly ⁇ , blue or purple.
  • the total amount of impurities is suppressed to 10 ppm or less, and the range of detection depth of nitrogen and carbon is limited to a range of 0.2 nm or more and less than 2.0 nm. Is good.
  • the total amount of impurities exceeds 10 ppm, it is suppressed to 20 ppm or less, and the detection depth range of nitrogen and carbon is suppressed to a range of 0.2 nm to less than 2.0 nm. The adhesion of the substance is almost good.
  • Comparative Examples 1 and 2 use rolls hydrophilized with plasma, but the film thickness of the antirust component is 0.1 nm, which is insufficient. For this reason, since the oxide film on the copper foil surface in the drying step after the application of the active material grows greatly, the adhesion of the active material is somewhat poor.
  • Comparative Examples 3 to 4 the film thickness of the anticorrosive component is excessive, exceeding 2.0 nm, and the uniformity of the film cannot be secured even when using a roll hydrophilized by plasma. The active material paste cannot be uniformly applied. For this reason, the adhesion of the active material is somewhat poor.
  • the surface-treated copper foil having a surface-treated film on the surface of the copper foil of the present invention has a total content of carbon, sulfur, oxygen, nitrogen, and chlorine, which are impurities contained in the copper foil, of 20 ppm.
  • the depth range detected by XPS (X-ray photoelectron spectroscopy) to be greater than the background level of nitrogen and carbon is 0.2 nm or more and less than 2.0 nm. Adhesiveness is improved.
  • the total content of carbon, sulfur, oxygen, nitrogen and chlorine, which are impurities contained in the copper foil is 10 ppm or less, and from the background level of nitrogen and carbon by XPS (X-ray photoelectron spectroscopy)
  • XPS X-ray photoelectron spectroscopy
  • the depth range in which the depth is greatly detected is 0.2 nm or more and less than 2.0 nm, adhesion to the negative electrode active material is improved.
  • the total content of carbon, sulfur, oxygen, nitrogen, and chlorine contained in the copper foil is 20 ppm or less, and it is detected by XPS (X-ray photoelectron spectroscopy) to be larger than the background level of nitrogen and carbon.
  • the adhesion with the negative electrode active material is improved.
  • the total content of carbon, sulfur, oxygen, nitrogen and chlorine, which are impurities contained in the copper foil is 10 ppm or less, and from the background level of nitrogen and carbon by XPS (X-ray photoelectron spectroscopy) If the depth range in which the depth is detected is 0.2 nm or more and 1.0 nm or less, the adhesion with the negative electrode active material is improved.
  • the copper foil of the present invention of the present invention can be suitably used as, for example, a current collector of a lithium ion secondary battery.

Abstract

 銅箔(集電体)と活物質との密着性と銅箔の防錆性を改良し、リチウムイオン二次電池負極集電体用電解銅箔、並びに、該銅箔を負極集電体としたリチウムイオン二次電池を提供する。銅箔は、当該銅箔中に含まれる不純物である炭素、硫黄、酸素、窒素、塩素の含有量の合計が20ppm以下、より好ましくは10ppm以下であり、かつ、XPS(X線光電子分光分析)により窒素および炭素のバックグラウンドレベルよりも大きく検出される深さ範囲が0.2nm以上2.0nm未満、より好ましくは0.2nm以上1.0nm以下である。当該銅箔は、銅箔表面に有機防錆皮膜が形成され、NMP(N-メチルピロリドン)接触角が15°以下である。

Description

リチウムイオン二次電池負極集電体用銅箔
 本発明はリチウムイオン二次電池負極集電体用銅箔に関するものである。
 より特定的には、本発明は、銅箔表面に、有機防錆皮膜が形成されているリチウムイオン二次電池負極集電体用銅箔に関する。
 リチウムイオン二次電池はエネルギー密度が高く、比較的高い電圧を得ることができるという特徴を有し、たとえば、ノートパソコン、ビデオカメラ、デジタルカメラ、携帯電話等の小型電子機器の電源として多用されている。また、たとえば、電気自動車や一般家庭の分散配置型電源といった大型機器の電源としての利用も始まっている。
 このように、リチウムイオン二次電池は、他の二次電池と比較して軽量でエネルギー密度が高いことから、各種の電源を必要とする機器で広く使用されている。
 リチウムイオン二次電池の負極用集電体として使用される銅箔に要求される特性の一つとして、リチウムイオン二次電池のサイクル特性に影響する負極活物質との密着性が挙げられる。
 銅箔表面との密着性に劣る活物質層では、銅箔をサイジングしたり、折り曲げたり、巻回した場合に活物質層が剥離、脱落して、目的の性能が得られず、耐久性や寿命が低下する場合がある。
 また、活物質層の厚みの均一性が不十分に形成されると、その部分でリチウム析出・デンドライト発生が生じ、短絡が生じやすくなり、短時間での充電が困難となる。
 活物質層との密着性を改善するための一般的な方法としては、銅箔表面を粗化処理し、物理的に改善する方法、あるいは、銅箔表面を防錆し、シランカップリング層を設けて化学的に改善する方法等がある。
 特許文献1(特開2012-212528号公報)は、負極活物質との接着性、超音波溶接性、防錆性がバランス良く向上した二次電池負極集電体用電解銅箔として、銅箔表面の少なくとも一部にアゾール系化合物及びC=Oを有する表面処理層が形成され、XPS(X線光電子分光分析)による深さ方向分析で、窒素(N)及び炭素(C)を検出し、且つ、N及びC検出量がバックグラウンドレベルよりも大きい深さ範囲の平均値D0が2.0~5.0nmであるリチウムイオン二次電池負極集電体用電解銅箔を開示する。
 しかし、特許文献1に開示されているリチウムイオン二次電池負極集電体用電解銅箔では銅箔に含まれる不可避的不純物の全体の含有量についての解析が行われておらず、僅かに窒素(N)と炭素(C)についてのみ問題視しており、他の不純物、たとえば、硫黄(S)、酸素(O)、塩素(Cl)については追及していない。
 また、リチウムイオン二次電池の負極電極は、活物質材料と結着剤を溶媒と混合して得られる活物質スラリーペーストを導電性担体(銅箔等)に塗布後、乾燥し、そして、密度を上げる必要があればプレスして結着させて活物質層を形成する。上記銅箔の表面には、アゾール系誘導体を用いる有機防錆処理又はクロム化合物系の溶液を用いるクロメート処理で防錆加工されている。
 前記ペーストを形成する溶媒には、一般に、N-メチルピロリドン(NMP)、水等が使用されている。
 しかしながら、溶媒に水を用いるとバインダーとのわずかな混合比の違いで電池特性が変化する等の問題がある。
 一方、NMPは、沸点(202℃)が比較的低いため回収して再利用しやすく、カルボニル基を有する非プロトン性極性溶媒であるため高い溶解性を持ち、様々な溶媒と混ざり合うことができるため好ましく使用されている。しかし、負極電極の担体となる銅箔はNMPとの濡れ性が悪く、厚塗りする等の特別な対策を必要としている。
 上記ペーストに含まれる活物質材料や、バインダーは、銅表面との親和力に乏しく密着性が低い。
 銅箔表面との密着性に劣る活物質層で構成した負極電極では、電極をサイジングしたり、折り曲げたり、巻回しした場合に活物質層が剥離、脱落して、目的の性能が得られず、耐久性や寿命に問題が発生する。
 前述したように活物質膜の厚みが不均一で厚さの薄い層が形成されると、その部分でリチウム析出・デンドライト発生が生じ、短絡が生じやすくなるため、短時間での充電が困難となる。
 特許文献2(特開2008-251469号公報)は、このような銅箔と活物質との密着性を改善する方法として、銅箔表面に、カルボニル基を有するアゾール化合物を含有する皮膜を形成し、NMP接触角を19°以下とした銅箔を開示する。
 特許文献2には、99.90%以上のタフピッチ銅を用いた圧延銅箔を、イソプロピルアルコールやノルマルパラフィン、またはこれらの混合液へ所定量のカルボキシベンゾトリアゾールを添加した溶液へ5秒間浸漬した後、送風乾燥させ、更にモノエチルアミン又は1,2,3ベンゾトリアゾールを添加して同様に処理することが記載されている。
 しかし、特許文献2にも、銅箔に含まれる不可避的不純物についての解析は記載されておらず、不可避的不純物による銅箔表面の濡れ性については追及されていない。つまり、特許文献2に記載の銅箔では、銅箔に含まれる不可避的不純物の全体量が多い場合には、銅箔と活物質層と濡れ性が悪く、集電体としての機能を満足できない場合がある点については検討されていない。
特開2012-212528号公報 特開2008-251469号公報
 本発明者は、リチウムイオン二次電池の負極集電体として使用される銅箔の活物質との密着性及び防錆性向上につき鋭意研究開発を行った結果、銅箔に含まれる不純物である炭素(C)、硫黄(S)、酸素(O)、窒素(N)、塩素(Cl)の量、および、防錆皮膜の厚さが、集電体(銅箔)と活物質層との密着性に大きく影響することを突き止め、本発明を完成させた。
 本発明は、銅箔と活物質との密着性と銅箔の防錆性を改良し、リチウムイオン二次電池負極集電体用表面処理銅箔、並びに、該表面処理銅箔を集電体としたリチウムイオン二次電池を提供することにある。
 本発明のリチウムイオン二次電池負極集電体用表面処理銅箔は、銅箔中に含まれる炭素、硫黄、酸素、窒素、塩素の含有量の合計が20ppm以下であり、かつ、XPS(X線光電子分光分析)により窒素および炭素のバックグラウンドレベルよりも大きく検出される深さ範囲が0.2nm以上2.0nm未満であることを特徴とする。
 なお、リチウムイオン二次電池負極集電体用銅箔は、電解銅箔、電解銅合金箔及び圧延銅箔及び圧延銅合金箔のいずれかを含む。
 すなわち、前記銅箔中に含まれる炭素、硫黄、酸素、窒素、塩素の含有量の合計は20ppm以下であり、特に好ましくは10ppm以下である。
 また、好ましくは、前記XPS(X線光電子分光分析)により窒素および炭素のバックグラウンドレベルよりも大きく検出される深さ範囲は0.2nm以上2.0nm未満であり、特に好ましくは、0.2nm以上1.0nm以下である。
 本発明に係る銅箔によれば、該銅箔を集電体とすることで負極活物質との接着性が向上する。
 その結果、本発明の銅箔を、たとえば、リチウムイオン二次電池の集電体として好適に使用することができる。
 以下、本発明の実施形態につき詳細に説明する。
 本発明のリチウムイオン二次電池負極集電体用銅箔は、銅箔中に含まれる炭素、硫黄、酸素、窒素、塩素の含有量の合計が20ppm以下であり、かつ、XPSにより窒素および炭素のバックグラウンドレベルよりも大きく検出される深さ範囲が0.2nm以上2.0nm未満であることを特徴とする。
(銅箔基材)
 本発明において、「銅箔」は、電解銅箔、電解銅合金箔及び圧延銅箔及び圧延銅合金箔のいずれでもよい。以下でこれらの銅箔を区別する必要がない時は単に「銅箔」と表現する。
 銅箔にはその製箔工程の如何に係らず炭素(C)、硫黄(S)、酸素(O)、窒素 (N)、塩素(Cl)の全てが、或いはその一部が不可避的不純物として含まれる。
 この不純物の量が多くなると、銅箔表面に塗布する有機防錆皮膜との間で濡れ性が悪くなり、防錆皮膜を均一に塗布することが困難となる。
 本実施形態では、銅箔の表面に必要により粗化処理を施し、その上に有機防錆皮膜を塗布する。
 本発明のリチウムイオン二次電池負極集電体用銅箔に要求される特性の一つに活物質層との密着性がある。本実施形態のリチウムイオン二次電池の負極電極は、活物質、たとえば、カーボン材料と結着剤を溶媒とともに混合した活物質スラリーペーストを集電体(銅箔)に塗布後、乾燥し、密度を上げる必要があればプレスして結着させて活物質層を形成する。このとき、ペーストを作製する溶媒にNMP(N-メチルピロリドン)を使用した活物質スラリーペーストと銅箔表面との密着性が問題となる。
 本実施形態の集電体用銅箔において、銅箔中に含まれる不純物の量を規定している。特に、不純物であるC、S、O、N、Cl(以下、これらを単に不可避的不純物と表現する場合がある。)の含有量の合計を20ppm以下とする。
 メカニズムは完全に解明されていないが、銅箔に含まれる不可避的不純物の量を20ppm以下とするのは、不可避的不純物が20ppm以上含有すると、銅箔内部の不可避的不純物の元素と、活物質スラリーペーストに含まれるNMPなどの有機溶媒との間で電気的な斥力が生じ、活物質スラリーペーストに対する銅箔の表面張力が大きくなるために活物質スラリーペーストとの濡れ性が悪く、リチウムイオン二次電池の負極として仕上げた際の集電体と活物質層との密着性が悪くなる、と考えられる。
 不可避的不純物の含有量は、少ないほうが良いが、許容値としては、好ましくは15ppm以下、更に好ましくは10ppm以下である。
 本実施形態の銅箔の有機防錆層は、XPS(X線光電子分光分析)により窒素(N)および炭素(C)のバックグラウンドレベルよりも大きく検出される深さ範囲が0.2nm以上2.0nm未満である。
 本実施形態ではX線光電子分光分析装置(XPS装置)とアルゴンスパッタとを組み合わせて、銅箔の深さ方向の元素分析を行い、有機防錆層の厚みを決定する。即ち、XPS装置にて有機防錆層中のN及びCを検出し、且つ、N及びC検出量がバックグラウンドレベルよりも大きい深さ範囲を表面処理層の厚みとする。
 表面処理層の厚みは、密着性、防錆性の観点から0.2nm以上2.0nm未満とすることが好ましく、より好ましくは0.5nm以上1.0nm以下である。
 表面処理層の厚みが2.0nm以上であると、防錆処理剤を塗布した後の乾燥工程などに防錆成分の一部が粉状となって表出し、活物質との密着性を損なうおそれがある。
 集電体(銅箔)に設ける活物質層の密着性を向上するためには銅箔表面に塗布する有機防錆皮膜の膜厚が均一であり、かつ密度の高い皮膜であることが好ましい。銅箔表面に、有機防錆皮膜付着量を均一に塗布する方法として、本実施形態では親水化ロールによる塗布方法を採用する。
 銅箔表面に有機防錆皮膜を均一に塗布する方法としては、有機防錆処理液(例えばトリアゾール溶液)に浸漬され表面に有機防錆処理液が塗布された銅箔の表裏両面に、親水化ロールをセットし、該親水化ロールで銅箔表面に塗布された溶液が均一になるように均す(処理する)。
 このように親水化ロールを使用することで銅箔表面に有機防錆剤を均一に塗布することができる。
 銅箔表面に有機防錆剤を塗布する時に親水化ロールを使用することで、銅箔と処理液の接触時に、処理液の液滴がつぶれ、同じ付着量でも密度の高い有機防錆皮膜を形成することができるため、本発明のような薄い皮膜であっても、十分な防錆性能を発揮することができる。なお、密度が高く厚さの均一な有機防錆皮膜を形成できるのであれば、親水化ロールによる塗布以外の方法であってもよい。
 また、このように親水化ロ-ルで皮膜を形成することで皮膜の厚さを均一にでき、銅箔表面の抵抗率を下げることができるため、負極電極を組み立てる際に抵抗溶接を行う場合でも、防錆皮膜におけるジュール熱の消費が抑制され、重ね合わせた箔の内部にジュール熱が適切に供給されることから、良好な抵抗溶接性が得られる。
 親水化ロールは、例えばゴムロールをUVオゾン処理、プラズマ処理、親水官能基による化学修飾等の手法でロール表面を親水化処理する。このようなロールを使用して有機防錆処理液を塗布することで、有機防錆剤付着量のバラツキが極めて少ない塗膜を形成することができる。
 銅箔表面に有機防錆剤を親水化処理していないロールで塗布すると、銅箔と処理液の接触時、処理液の液滴のサイズが大きく、液滴内に処理液成分が拡散するため、均一に塗布することが難しくなり、単位面積当たり同じ付着量でもその中での付着量のバラツキが大きくなる場合がある。付着量のバラツキが大きい銅箔においては、皮膜の厚さが薄いところでは皮膜の一部に空孔(ピンホール)が発生して保管・輸送環境下で局所的な錆(点錆)が発生する惧れがあり、他方、厚く付着したところでは、皮膜の除去に必要となる熱や振動によるエネルギーが大きくなるため、後工程の負極電極を組み立てる超音波溶接に悪影響が生ずる惧れがある。
 有機防錆皮膜としては、ベンゾトリアゾール、トリルトリアゾール、カルボキシベンゾトリアゾール、クロロベンゾトリアゾール、エチルベンゾトリアゾール、ナフトトリアゾール等のトリアゾール化合物、およびこれらの錯体化合物が挙げられる。
 銅箔表面に有機防錆皮膜を形成するトリアゾール系化合物、または/および、その錯体化合物からなる有機防錆化合物溶液(以下、トリアゾール化合物溶液と云うことがある)の濃度は、50~1000ppmとすることが望ましい。50ppmを下回ると防錆機能を保持できるほどの厚さの有機防錆皮膜とならず、他方、1000ppmを超えると有機防錆皮膜の厚さが過剰に大きくなり、上記したように超音波溶接機能等に悪影響が生じる惧れがあるためである。
 また、銅箔表面に有機防錆皮膜を形成する際のトリアゾール化合物溶液の温度は、35℃~55℃とすることが望ましい。35℃を下回ると、防錆機能を保持できるほどの密度の有機防錆皮膜とならず、他方、55℃を上回ると有機防錆皮膜の密度が過剰に高くなるためである。
 さらに、トリアゾール化合物溶液のpHはトリアゾール成分の安定性を確保するため、溶液のpHを6.5~8.0とすることが好ましい。
 銅箔に塗布するトリアゾール化合物溶液の濃度、溶液温度、pH等の条件、銅箔の浸漬時間等は形成する有機防錆皮膜の厚みとの関係で適宜に決めることができる。なお、浸漬時間は通常0.5~30秒程度であればよい。
 ただし、これらの防錆処理条件に関する記述は例示であり、明細書・請求項の内容を拘束するものではない。
 本実施形態においては、電解銅箔製箔後ただちに有機防錆剤溶液に浸漬して防錆皮膜を形成するが、製箔後ただちに防錆処理できない場合は、前処理として酸洗い、または脱脂を施す。
 酸洗いをする場合は、H2SO4=5~200g/1(リットル)、温度=10℃~80℃の希硫酸に浸漬する酸洗い方法が効果的である。
 また、脱脂の場合は、NaOH=5~200g/1、温度=10℃~80℃の水溶液中で、電流密度=1~10A/dm2、0.1分~5分で陰極又は/及び陽極電解脱脂を行うのが効果的である。
 本実施形態では上記銅箔を集電体とし、その上に負極活物質層を形成して負極電極を作製し、該負極電極を組み込み、リチウムイオン二次電池を作製する。
 負極活物質としては、限定的ではないが、炭素、珪素、スズ、ゲルマニウム、鉛、アンチモン、アルミニウム、インジウム、リチウム、酸化スズ、チタン酸リチウム、窒化リチウム、インジウムを固溶した酸化錫、インジウム-錫合金、リチウム-アルミニウム合金、リチウム-インジウム合金等が挙げられる。
 以下、本発明を実施例1~9、比較例1~6により具体的に説明する。
〔銅箔の製箔〕
〔実施例1~9〕
〔比較例1~6〕
 実施例1~9および比較例1~6は、次に示す条件で、アノードには貴金属酸化物被覆チタン電極、カソードにはチタン製回転ドラムを用いて、電流密度=50~100A/dm2で、厚さ10μmの電解銅箔を製造した。
  銅:    70~130g/1
  硫酸:   80~140g/1
  添加剤:  3-メルカプト1-プロパンスルホン酸ナトリウム=1~10ppm
        ヒドロキシエチルセルロース=1~100ppm
        低分子量膠(分子量3,000)=1~50ppm
        塩化物イオン濃度=10~50ppm
  温度:   50~60℃
〔比較例7~8〕
 比較例7~8は、実施例1~9、および、比較例1~6の低分子膠(分子量3,000)の添加量を、50ppmを超えて500ppm以下となる範囲に変更し、アノードには貴金属酸化物被覆チタン電極、カソードにはチタン製回転ドラムを用いて、電流密度=50~100A/dm2で、厚さ10μmの電解銅箔を製造した。
〔有機防錆皮膜形成〕
〔実施例1~9〕
 実施例1~9は、電解製箔された銅箔をただちに濃度50~1000ppm未満のベンゾトリアゾール防錆溶液に浸漬し、株式会社日放電子製NVC-R1500を使用してプラズマ処理した市販のSUS304ロール(直径120mm、面長1000mm、肉厚15mm)を2本使用して両面の塗布を行い、有機皮膜量を一定量にコントロールし、銅箔表面に有機防錆皮膜を施した。なお、液温は35~55℃、pHは6.5~8.0とした。
〔比較例1~2〕
 比較例1~2は、電解製箔された銅箔をただちに濃度50~1000ppm未満のベンゾトリアゾール防錆溶液に浸漬し、プラズマによる親水化処理を行っていない市販のSUS304ロール(直径120mm、面長1000mm、肉厚15mm)を2本使用して両面の塗布を行い、有機皮膜量を一定量にコントロールし、銅箔表面に有機防錆皮膜を施した。なお、液温は35~55℃、pHは6.5~8.0とした。
〔比較例3~4〕
 比較例3~4は、電解製箔された銅箔をただちに濃度10~50ppmのベンゾトリアゾール防錆溶液に浸漬し、株式会社日放電子製NVC-R1500を使用してプラズマ処理した市販のSUS304ロール(直径120mm、面長1000mm、肉厚15mm)を2本使用して両面の塗布を行い、有機皮膜量を一定量にコントロールし、銅箔表面に有機防錆皮膜を施した。なお、液温は35~55℃、pHは6.5~8.0とした。
〔比較例5~6〕
 比較例5~6は、電解製箔された銅箔をただちに濃度1000~5000ppmのベンゾトリアゾール防錆溶液に浸漬し、株式会社日放電子製NVC-R1500を使用してプラズマ処理した市販のSUS304ロール(直径120mm、面長1000mm、肉厚15mm)を2本使用して両面の塗布を行い、有機皮膜量を一定量にコントロールし、銅箔表面に有機防錆皮膜を施した。なお、液温は35~55℃、pHは6.5~8.0とした。
〔比較例7~8〕
 比較例7~8は、電解製箔された銅箔をただちに濃度50~1000ppm未満のベンゾトリアゾール防錆溶液に浸漬し、株式会社日放電子製NVC-R1500を使用してプラズマ処理した市販のSUS304ロール(直径120mm、面長1000mm、肉厚15mm)を2本使用して両面の塗布を行い、有機皮膜量を一定量にコントロールし、銅箔表面に有機防錆皮膜を施した。なお、液温は35~55℃、pHは6.5~8.0とした。
〔活物質層の形成と密着性の評価〕
 上述した、各実施例、各比較例で作成した表面処理銅箔の表面に下記炭素材料からなる活物質スラリーペーストを用い、銅箔と活物質の密着性を下記により評価した。
 その結果を表1(実施例)および表2(比較例)に示す。
 炭素材料としては、塊状人造黒鉛を用い、該塊状人造黒鉛をNMPに8%PVDF(ポリフッ化ビニリデン)粉を溶かした溶液と混合してペースト状とし、このペーストを銅箔表面に約50μmの厚さに塗布して、80℃で3時間乾燥後圧延によるプレスを行い、さらに真空乾燥した。
 この活物質塗布面に両面テープを貼り付け、支持板にも両面テープを貼り付け、両面テープ同士を張り合わせた。そして、JISC6471に準じる方法で引き剥がし角度90度にて剥離強度を測定した。
 表1および表2において、接着強度が4000g/cmを超えるものを◎、3000g/cm以上4000g/cm未満となるものを○、1000g/cm以上3000g/cm未満となるものを△、1000g/cmに未満のものを×とした。
〔窒素及び炭素の検出深さ範囲の測定〕
 窒素及び炭素の検出深さ範囲を、アルバック・ファイ株式会社製XPS測定装置5600MCを使用し下記条件で測定した。
  到達真空度1×10-10Torr(Arガス導入時1×10-8Torr)、
  X線:X線種単色化Al-kα線、
  出力300W、
  検出面積800μmφ、
  イオン線:イオン種Ar+、
  加速電圧3kV、
  掃引面積3×3mm2
  試料入射角45°(試料と検出器とのなす角)、
  スパッタリングレート2.3nm/分(SiO2換算)
〔不純物量の測定〕
 銅箔中に含まれる不純物元素について、以下の測定手法、及び測定機器を用いて測定した。
  C、S:燃焼-赤外線吸収法、CS844(LECO社製)、
  O、N:不活性ガス融解-熱伝導度法、ONH836(LECO社製)、
  Cl:熱加水分解-イオンクロマトグラフ法、DX-500(日本ダイオネクス製)
〔耐酸化性の評価〕
 以下の手法により、銅箔の耐酸化性を評価した。
 (1) 塩ビパイプ(内径32mm、外径38mm、長さ10cm)に、銅箔(70mm×300mm)をまきつけて、試料を作成した。
 (2) (1)の処理で作成した試料を恒温恒湿機(60℃、90RH%)にセットし、5日間(120時間)保持した。
 (3) 試料を(2)の処理を行う試験機から取り出し、銅箔表面の、銅箔同士が重なり合っていた部分の色調を確認した。
 (4) 評価方法、試験前と比較して色調に変化がなければ○、青もしくは紫色の著しい変色となった場合には×とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~5は、不純物量の合計が10ppm以下に抑えられ、窒素及び炭素の検出深さの範囲が0.2nm以上2.0nm未満の範囲に抑えられているため、活物質の密着性は良好なものとなっている。
 実施例6~9は、不純物量の合計が10ppmを超えるものの20ppm以下に抑えられ、窒素及び炭素の検出深さの範囲が0.2nm以上2.0nm未満の範囲に抑えられているため、活物質の密着性はほぼ良好なものとなっている。
 比較例1~2は、プラズマによる親水化を行ったロールを使用しているものの、0.1nmと防錆成分の皮膜厚さが不足している。このため、活物質塗布後の乾燥工程における銅箔表面の酸化膜が大きく成長するため、活物質の密着性はやや不良なものとなっている。
 比較例3~4は、防錆成分の皮膜厚さが2.0nmを超えた過剰なものとなっており、プラズマによる親水化を行ったロールを使用しても皮膜の均一性を確保できず、活物質ペーストの均一な塗布ができない。このため、活物質の密着性はやや不良なものとなっている。
 比較例5~6は、箔中の不純物量が55ppm以上と過剰となっているため、銅箔表面の防錆成分の皮膜厚さを最適化し、プラズマによる親水化処理を行ったロールにより処理を行っても防錆皮膜の均一性が確保できず、活物質ペーストの均一な塗布ができない。このため、活物質の密着性はやや不良なものとなっている。
 以上述べたように、本発明の銅箔の表面に表面処理皮膜を有する表面処理銅箔は、銅箔中に含まれる不純物である炭素、硫黄、酸素、窒素、塩素の含有量の合計が20ppm以下であり、かつ、XPS(X線光電子分光分析)により窒素および炭素のバックグラウンドレベルよりも大きく検出される深さ範囲が0.2nm以上2.0nm未満であるとすることにより、負極活物質との接着性が向上する。
 また、銅箔中に含まれる不純物である炭素、硫黄、酸素、窒素、塩素の含有量の合計が10ppm以下であり、かつ、XPS(X線光電子分光分析)により窒素および炭素のバックグラウンドレベルよりも大きく検出される深さ範囲が0.2nm以上2.0nm未満であるとすることにより、負極活物質との接着性が向上する。
 また、銅箔中に含まれる炭素、硫黄、酸素、窒素、塩素の含有量の合計が20ppm以下であり、かつ、XPS(X線光電子分光分析)により窒素および炭素のバックグラウンドレベルよりも大きく検出される深さ範囲が0.2nm以上1.0nm以下とすることにより、負極活物質との接着性が向上する。
 また、銅箔中に含まれる不純物である炭素、硫黄、酸素、窒素、塩素の含有量の合計が10ppm以下であり、かつ、XPS(X線光電子分光分析)により窒素および炭素のバックグラウンドレベルよりも大きく検出される深さ範囲が0.2nm以上1.0nm以下であるとすることにより、負極活物質との接着性が向上する。
産業上の利用分野
 本発明の本発明の銅箔は、たとえば、リチウムイオン二次電池の集電体として好適に使用することができる。

Claims (6)

  1.  銅箔の表面に表面処理皮膜を有する表面処理銅箔であって、
     当該銅箔中に含まれる炭素、硫黄、酸素、窒素、塩素の含有量の合計が20ppm以下であり、かつ、XPS(X線光電子分光分析)により窒素および炭素のバックグラウンドレベルよりも大きく検出される深さ範囲が0.2nm以上2.0nm未満である、
     リチウムイオン二次電池負極集電体用表面処理銅箔。
  2.  当該銅箔中に含まれる炭素、硫黄、酸素、窒素、塩素の含有量の合計が10ppm以下である、
     請求項1に記載のリチウムイオン二次電池負極集電体用表面処理銅箔。
  3.  前記XPS(X線光電子分光分析)により窒素および炭素のバックグラウンドレベルよりも大きく検出される深さ範囲が0.2nm以上1.0nm以下である、
     請求項1に記載のリチウムイオン二次電池負極集電体用表面処理銅箔。
  4.  前記銅箔中に含まれる炭素・硫黄・酸素・窒素・塩素の含有量の合計が10ppm以下である、
     請求項3に記載のリチウムイオン二次電池負極集電体用表面処理銅箔。
  5.  前記銅箔表面に、親水化法による有機防錆皮膜が均一な膜厚で形成されている、
     請求項1~4のいずれかに記載のリチウムイオン二次電池負極集電体用銅箔。
  6.  前記銅箔は、電解銅箔、電解銅合金箔及び圧延銅箔及び圧延銅合金箔のいずれかである、
     請求項1~5のいずれかに記載のリチウムイオン二次電池負極集電体用銅箔。
PCT/JP2014/061567 2013-04-30 2014-04-24 リチウムイオン二次電池負極集電体用銅箔 WO2014178327A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014531014A JP5625141B1 (ja) 2013-04-30 2014-04-24 リチウムイオン二次電池負極集電体用銅箔
CN201480001959.5A CN104508878B (zh) 2013-04-30 2014-04-24 锂离子二次电池负极集电体用铜箔

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-095164 2013-04-30
JP2013095164 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178327A1 true WO2014178327A1 (ja) 2014-11-06

Family

ID=51843459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061567 WO2014178327A1 (ja) 2013-04-30 2014-04-24 リチウムイオン二次電池負極集電体用銅箔

Country Status (5)

Country Link
JP (1) JP5625141B1 (ja)
KR (1) KR20150086222A (ja)
CN (1) CN104508878B (ja)
TW (1) TWI593826B (ja)
WO (1) WO2014178327A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211916A1 (ja) * 2017-05-18 2018-11-22 富士フイルム株式会社 孔あき金属箔、孔あき金属箔の製造方法、二次電池用負極および二次電池用正極
WO2020090195A1 (ja) * 2018-10-29 2020-05-07 Jx金属株式会社 リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池
CN113166960A (zh) * 2018-12-10 2021-07-23 日本电解株式会社 电解铜箔及其制造方法
US11984606B2 (en) 2018-10-29 2024-05-14 Jx Metals Corporation Rolled copper foil for lithium ion battery current collector, and lithium ion battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6440656B2 (ja) * 2016-07-12 2018-12-19 古河電気工業株式会社 電解銅箔
KR102136794B1 (ko) 2017-03-09 2020-07-22 케이씨에프테크놀로지스 주식회사 우수한 밀착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
KR102184170B1 (ko) 2017-07-25 2020-11-27 주식회사 엘지화학 이차전지용 동박, 그 제조 방법 및 이를 포함하는 이차전지
KR102473030B1 (ko) 2017-08-30 2022-11-30 에스케이넥실리스 주식회사 전해동박, 그의 제조방법 및 그것을 포함하는 고용량 Li 이차전지용 음극
JP2019175802A (ja) * 2018-03-29 2019-10-10 Jx金属株式会社 リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池
US11365486B2 (en) * 2018-10-16 2022-06-21 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil, electrode comprising the same, and lithium ion battery comprising the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251469A (ja) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk 濡れ性に優れた銅箔及びその製造方法
JP2011023303A (ja) * 2009-07-17 2011-02-03 Jx Nippon Mining & Metals Corp リチウムイオン電池集電体用銅箔
WO2011030626A1 (ja) * 2009-09-11 2011-03-17 Jx日鉱日石金属株式会社 リチウムイオン電池集電体用銅箔
JP2012099351A (ja) * 2010-11-02 2012-05-24 Jx Nippon Mining & Metals Corp リチウムイオン電池集電体用銅箔
JP2012212528A (ja) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp 銅箔及びそれを用いたリチウムイオン二次電池用負極集電体及び負極材、ならびにリチウムイオン二次電池
JP2013133514A (ja) * 2011-12-27 2013-07-08 Furukawa Electric Co Ltd:The 銅箔、二次電池の電極、二次電池、並びにプリント回路基板
JP2013151730A (ja) * 2011-12-27 2013-08-08 Furukawa Electric Co Ltd:The 銅箔、二次電池の負極電極、二次電池、並びにプリント回路基板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3850155B2 (ja) * 1998-12-11 2006-11-29 日本電解株式会社 電解銅箔、二次電池の集電体用銅箔及び二次電池
JP3850321B2 (ja) * 2002-03-19 2006-11-29 日本電解株式会社 二次電池
JP4943370B2 (ja) * 2008-04-09 2012-05-30 日本電信電話株式会社 コンテンツ視聴時の印象度推定方法及び装置及びプログラム及びコンピュータ読取可能な記録媒体
JP2012051768A (ja) * 2010-09-02 2012-03-15 Toshimichi Ito ダイヤモンド半導体
JP5148726B2 (ja) * 2011-03-30 2013-02-20 Jx日鉱日石金属株式会社 電解銅箔及び電解銅箔の製造方法
JP2012212558A (ja) * 2011-03-31 2012-11-01 Panasonic Corp 電池モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251469A (ja) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk 濡れ性に優れた銅箔及びその製造方法
JP2011023303A (ja) * 2009-07-17 2011-02-03 Jx Nippon Mining & Metals Corp リチウムイオン電池集電体用銅箔
WO2011030626A1 (ja) * 2009-09-11 2011-03-17 Jx日鉱日石金属株式会社 リチウムイオン電池集電体用銅箔
JP2012099351A (ja) * 2010-11-02 2012-05-24 Jx Nippon Mining & Metals Corp リチウムイオン電池集電体用銅箔
JP2012212528A (ja) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp 銅箔及びそれを用いたリチウムイオン二次電池用負極集電体及び負極材、ならびにリチウムイオン二次電池
JP2013133514A (ja) * 2011-12-27 2013-07-08 Furukawa Electric Co Ltd:The 銅箔、二次電池の電極、二次電池、並びにプリント回路基板
JP2013151730A (ja) * 2011-12-27 2013-08-08 Furukawa Electric Co Ltd:The 銅箔、二次電池の負極電極、二次電池、並びにプリント回路基板

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211916A1 (ja) * 2017-05-18 2018-11-22 富士フイルム株式会社 孔あき金属箔、孔あき金属箔の製造方法、二次電池用負極および二次電池用正極
JPWO2018211916A1 (ja) * 2017-05-18 2020-03-12 富士フイルム株式会社 孔あき金属箔、孔あき金属箔の製造方法、二次電池用負極および二次電池用正極
WO2020090195A1 (ja) * 2018-10-29 2020-05-07 Jx金属株式会社 リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池
JP2020071927A (ja) * 2018-10-29 2020-05-07 Jx金属株式会社 リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池
US20210399309A1 (en) * 2018-10-29 2021-12-23 Jx Nippon Mining & Metals Corporation Rolled copper foil for lithium ion battery current collector, and lithium ion battery
JP7100560B2 (ja) 2018-10-29 2022-07-13 Jx金属株式会社 リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池
US11984606B2 (en) 2018-10-29 2024-05-14 Jx Metals Corporation Rolled copper foil for lithium ion battery current collector, and lithium ion battery
CN113166960A (zh) * 2018-12-10 2021-07-23 日本电解株式会社 电解铜箔及其制造方法
JP7450932B2 (ja) 2018-12-10 2024-03-18 日本電解株式会社 電解銅箔及びその製造方法

Also Published As

Publication number Publication date
CN104508878B (zh) 2016-06-29
TW201510277A (zh) 2015-03-16
TWI593826B (zh) 2017-08-01
JP5625141B1 (ja) 2014-11-12
KR20150086222A (ko) 2015-07-27
JPWO2014178327A1 (ja) 2017-02-23
CN104508878A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5625141B1 (ja) リチウムイオン二次電池負極集電体用銅箔
KR101555090B1 (ko) 2차 전지용 음극, 음극집전체 및 이의 제조 방법, 및 2차 전지
KR101827241B1 (ko) 알루미늄박의 제조방법
JP3933573B2 (ja) リチウムイオン電池の集電体用アルミニウム箔、リチウムイオン電池の集電体およびリチウムイオン電池
JP6012913B1 (ja) リチウムイオン二次電池用表面処理電解銅箔、これを用いたリチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2011134623A (ja) 非水電解質二次電池及びその製造方法
JP4210556B2 (ja) アルミニウム箔の製造方法
JP5081481B2 (ja) 濡れ性に優れた銅箔及びその製造方法
WO2011078356A1 (ja) 非水溶媒二次電池に用いる負極集電体用銅箔、その製造方法及び非水溶媒二次電池負極電極の製造方法
KR20120094020A (ko) 탄소성 입자가 분산 담지되어서 이루어지는 알루미늄박
JP5437155B2 (ja) 2次電池用負極、電極用銅箔、2次電池および2次電池用負極の製造方法
WO2019077995A1 (ja) アルミニウム箔および電極用アルミニウム部材
WO2020090195A1 (ja) リチウムイオン電池集電体用圧延銅箔及びリチウムイオン電池
JPH11158652A (ja) 二次電池用電極材料の製造方法
JP4460058B2 (ja) リチウム2次電池電極用銅箔およびその製造方法、該銅箔を用いたリチウム2次電池用電極およびリチウム2次電池
JP4460055B2 (ja) リチウム2次電池電極用銅箔およびその製造方法、該銅箔を用いたリチウム2次電池用電極およびリチウム2次電池
JP2005063764A (ja) リチウムイオン二次電池用銅箔及びその製造方法
JP2005197096A (ja) 非水電解液二次電池用負極及びその製造方法
JPH11293444A (ja) コーティング層との密着性に優れた銅箔
TWI508359B (zh) Surface-treated copper foil and method for manufacturing the same, lithium ion secondary battery electrode, and lithium ion secondary battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014531014

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157002564

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791982

Country of ref document: EP

Kind code of ref document: A1