WO2019077995A1 - アルミニウム箔および電極用アルミニウム部材 - Google Patents

アルミニウム箔および電極用アルミニウム部材 Download PDF

Info

Publication number
WO2019077995A1
WO2019077995A1 PCT/JP2018/036858 JP2018036858W WO2019077995A1 WO 2019077995 A1 WO2019077995 A1 WO 2019077995A1 JP 2018036858 W JP2018036858 W JP 2018036858W WO 2019077995 A1 WO2019077995 A1 WO 2019077995A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
oxide film
aluminum foil
aluminum oxide
thickness
Prior art date
Application number
PCT/JP2018/036858
Other languages
English (en)
French (fr)
Inventor
澤田 宏和
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201880067332.8A priority Critical patent/CN111225997B/zh
Priority to JP2019549187A priority patent/JP6936864B2/ja
Publication of WO2019077995A1 publication Critical patent/WO2019077995A1/ja
Priority to US16/848,949 priority patent/US11527758B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/12Electrolytic coating other than with metals with inorganic materials by cathodic processes on light metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/14Etching locally
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an aluminum foil and an aluminum member for an electrode.
  • an aluminum plate is used as a current collector for an electrode (hereinafter, simply referred to as “current collector”) used for the positive electrode or the negative electrode of such a storage device.
  • an active material such as activated carbon is coated as an electrode material on the surface of a current collector made of this aluminum plate and used as an electrode of a positive electrode or a negative electrode.
  • a large amount of Li (lithium) ions are doped in advance in the electrode for the purpose of securing a capacity.
  • a doping method of Li ions a method is known in which excess Li ions are diffused to the electrode by inserting Li metal in the battery cell and promoting dissolution in the battery cell.
  • the electrode material is originally a porous material that transmits Li ions.
  • a metal foil is generally used as a current collector that serves as a support for the electrode material and serves as a conductive plate for taking in and out of electricity during charging and discharging, and electricity passes but not ions. Therefore, in order to spread Li ions to every corner of the electrode material in the battery cell, a through foil provided with a large number of through holes for letting Li ions pass through the metal foil is used.
  • Patent Document 1 discloses an aluminum plate having a plurality of through holes in the thickness direction, having a thickness of 40 ⁇ m or less, an average opening diameter of the through holes of 0.1 to 100 ⁇ m, and an average opening by the through holes.
  • the aluminum plate is described in which the percentage of Fe is 2 to 30%, the content of Fe is 0.03% by mass or more, and the ratio of the content of Fe to the content of Si is 1.0 or more. It is described that this aluminum plate is used as a current collector for a storage device.
  • the penetrating foil is required to have affinity with the electrode material in order to reduce the contact resistance with the electrode material.
  • affinity to the electrode material is high, the electrode material gets into the through holes, leading to high adhesion.
  • the high adhesion reduces contact resistance and can avoid the risk of the electrode material peeling from the current collector even when charging and discharging are performed many times, and exhibits excellent cycle characteristics.
  • the electrode material for the positive electrode in the next-generation secondary battery is prepared as a water-based coating solution, and is applied to a penetrating foil serving as a current collector. Therefore, it is desirable that the penetrating foil for the positive electrode be hydrophilic.
  • the metal exhibiting hydrophilicity aluminum and chromium are known, and among them, it is desirable to use aluminum with little environmental impact for the positive electrode current collector.
  • an object of the present invention is to provide an aluminum foil and an aluminum member for an electrode which have good adhesion to the electrode material and high conductivity with the electrode material.
  • the inventor of the present invention is an aluminum foil having through holes, which has an aluminum oxide film with a thickness of 25 nm or less on the surface of the aluminum foil, and further By having a hydrophilization layer in at least one part, it discovers that the said subject is solvable and completed this invention. That is, it discovered that the above-mentioned subject could be achieved by the following composition.
  • An aluminum foil having through holes An aluminum foil having an aluminum oxide film having a thickness of 25 nm or less on the surface of an aluminum foil, and further having a hydrophilization layer on at least a part of the surface of the aluminum oxide film.
  • the aluminum foil according to [1] or [2], wherein the aluminum oxide film having a thickness of 25 nm or less contains at least one of aluminum oxide, aluminum oxide monohydrate and aluminum oxide trihydrate.
  • the hydrophilized layer is selected from the group consisting of silicates, phosphates, sulfonic acids, sulfonates, phosphonic acids, phosphonates, phosphates, phosphates, phosphates, and fluorozirconates
  • the aluminum foil according to any one of [1] to [6] wherein the density of the through holes is 1 to 1000 / mm 2 .
  • an aluminum foil and an aluminum member for an electrode which have good adhesion to the electrode material and high conductivity with the electrode material.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the aluminum foil of the present invention is An aluminum foil having through holes, It is an aluminum foil which has an aluminum oxide film 25 nm or less in thickness on the surface of aluminum foil, and also has a hydrophilization layer in at least one copy of the surface of aluminum oxide film.
  • the structure of the aluminum foil of this invention is demonstrated using FIG.
  • FIG. 1 is a schematic cross-sectional view showing an example of a preferred embodiment of the aluminum foil of the present invention.
  • an aluminum oxide film 14 having a thickness of 25 nm or less is formed on each of the main surfaces of the aluminum base 3, and a hydrophilized layer 16 is further formed on the surface of the aluminum oxide film 14.
  • the aluminum foil 10 also has a plurality of through holes 5 penetrating the aluminum base 3 and the aluminum oxide film 14 in the thickness direction.
  • the aluminum foil 10 has a configuration in which an aluminum base 3 having a through hole penetrating in the thickness direction and an aluminum oxide film 14 having a through hole penetrating in the thickness direction are laminated, and the surface of the aluminum oxide film 14 There is a configuration in which the hydrophilized layer 16 is formed.
  • the hydrophilization layer 16 is formed on the main surface (maximum surface) of the aluminum oxide film 14 and the inner wall portion of the through hole 5, but is not limited thereto. It may be at least partially formed.
  • the aluminum foil of the present invention is used as a current collector, and an active material (electrode material) is coated on the surface to be used as a positive electrode or a negative electrode of a storage device.
  • an active material electrode material
  • the aluminum foil has a plurality of through holes penetrating in the thickness direction, movement of lithium ions can be facilitated when the aluminum foil is used as a current collector.
  • adhesiveness with an active material can be improved by having a large number of through holes.
  • the aluminum oxide film 14 having a thickness of 25 nm or less is composed of a nonporous oxide film alone or both of a nonporous oxide film and a thin porous (porous) oxide film.
  • the aluminum oxide film 14 having a thickness of 25 nm or less is a nonporous oxide film having a thickness of 15 nm or less alone, or a thin porous oxide film having a thickness of 10 nm or less on the nonporous oxide film. And have a total thickness of 25 nm or less.
  • the hydrophilized layer 16 is a layer having hydrophilicity, and is a layer that improves the hydrophilicity on the surface of the aluminum oxide film 14.
  • a large amount of Li ions are doped in advance in the electrode for the purpose of securing the capacity.
  • a doping method of Li ions a method is known in which excess Li ions are diffused to the electrode by inserting Li metal in the battery cell and promoting dissolution in the battery cell.
  • the electrode material is originally a porous material that transmits Li ions.
  • a metal foil is usually used as a current collector which serves as a support for the electrode material and serves as a conductive plate for taking in and out of electricity during charge and discharge. The metal foil conducts electricity but not ions. Therefore, in order to spread Li ions to every corner of the electrode material in the battery cell, a through foil provided with a large number of through holes for letting Li ions pass through the metal foil is used.
  • an electrode material for a positive electrode in a next-generation secondary battery is prepared as a water-based coating solution, and is applied to a penetrating foil as a current collector. Therefore, it is desirable that the penetrating foil for the positive electrode be hydrophilic.
  • Aluminum is known as a metal exhibiting hydrophilicity. Therefore, an aluminum foil is used as a current collector for the positive electrode.
  • the hydrophilized layer can be an electrical resistance, simply providing the hydrophilized layer may reduce the conductivity of the electrode material and the penetrating foil. For example, if the thickness of the aluminum oxide film present on the surface of the aluminum foil is more than 25 nm, it becomes a porous (porous) layer having a large number of pores, so the hydrophilized layer intrudes into the pores. Since a large amount of adhesion occurs to the aluminum oxide film, the hydrophilicity is improved but the electric resistance is increased, and the conductivity between the electrode material and the penetrating foil is lowered.
  • the aluminum foil 10 of the present invention has an aluminum oxide film 14 with a thickness of 25 nm or less on the surface, and further has a hydrophilized layer 16 on at least a part of the surface of the aluminum oxide film 14.
  • the hydrophilized layer 16 By having the hydrophilized layer 16, the affinity with the electrode material for the positive electrode can be increased.
  • the thickness of the aluminum oxide film on the surface to 25 nm or less, it is possible to make a layer without pores, or, although there is a layer with pores, it becomes a very thin layer.
  • the adhesion of a large amount of the hydrophilized layer 16 can be suppressed. Thereby, it can suppress that an electrical resistance with aluminum foil 10 and an electrode material becomes high, and conductivity can be secured.
  • the aluminum foil 10 since the aluminum foil 10 has high affinity to the electrode material, the electrode material penetrates into the through holes 5 to lead to high adhesion. High adhesion can reduce the contact resistance between the aluminum foil 10 and the electrode material. In addition, even when charging and discharging are performed many times, the risk of the electrode material peeling from the aluminum foil 10 (current collector) can be avoided, and excellent cycle characteristics can be obtained.
  • the aluminum foil of the present invention it is preferable density of the aluminum oxide film 14 is 2.7 ⁇ 4.1g / cm 3, preferably 2.7 ⁇ 4.1g / cm 3, 3.2 ⁇ 4.1 g / cm 3 is more preferred. Since aluminum is easily oxidized and oxidized when exposed to the air, it always has an oxide film. Since the oxide film has high insulating properties, the presence of a thick oxide film on the surface of the aluminum substrate may increase the electrical resistance between the aluminum substrate and the electrode material (active material).
  • the film density of the aluminum oxide film is 2.7 to 4.1 g / cm 3 , it is possible to prevent moisture from penetrating into the aluminum oxide film and reaching the aluminum substrate, so that the aluminum group is It is possible to suppress the progress of oxidation of the material and to suppress the increase in thickness of the aluminum oxide film. Thereby, the state where the electrical resistance is low can be stably maintained.
  • the film density of the aluminum oxide film is measured using a high resolution RBS analyzer (HRBS 500, High Resolution Rutherford Backscattering Spectrum; HR-RBS) manufactured by Kobe Steel, Ltd.
  • HRBS 500 High Resolution Rutherford Backscattering Spectrum
  • HR-RBS High Resolution Rutherford Backscattering Spectrum
  • He + ions with energy of 450 keV are incident on the sample at 62.5 degrees to the normal to the sample surface (the surface of the aluminum oxide film of aluminum foil), and scattered He + ions are deflected at a scattering angle of 55 degrees Detected by analyzer to obtain areal density.
  • the surface density (atoms / cm 2 ) obtained is converted to mass surface density (g / cm 2 ), and this value and the film thickness measured by transmission electron microscopy (TEM) give the density (g / cm) of the aluminum oxide film. 3 ) Calculate.
  • the thickness of the aluminum oxide film 14 is preferably 1 nm to 25 nm, more preferably 1 nm to 15 nm, and more preferably 1 nm, from the viewpoint of being able to lower the electrical resistance between the aluminum foil and the electrode material. More preferably, it is ⁇ 8 nm.
  • the film thickness of a non-porous oxide film observes a cross section with a transmission electron microscope (Transmission Electron Microscope: TEM), measures a film thickness in three places, and calculates an average value as a film thickness.
  • TEM Transmission Electron Microscope
  • the average opening diameter of the through holes is preferably 1 ⁇ m to 500 ⁇ m, more preferably 1 ⁇ m to less than 100 ⁇ m, still more preferably 1 ⁇ m to 80 ⁇ m, particularly preferably 3 ⁇ m to 40 ⁇ m, and most preferably 5 ⁇ m to 30 ⁇ m preferable.
  • the average opening diameter of the through holes was obtained by photographing the surface of the aluminum foil at a magnification of 200 times from one surface of the aluminum foil using a high resolution scanning electron microscope (SEM). In the photograph, at least 20 through holes whose circumference is continuous in an annular shape are extracted, the diameter of the opening is read, and the average value of these is calculated as the average opening diameter. Moreover, the opening diameter measured the maximum value of the distance between the ends of the through-hole part. That is, since the shape of the opening of the through hole is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the end portions of the through holes is taken as the opening diameter. Therefore, for example, even in the case of a through hole having a shape in which two or more through holes are integrated, this is regarded as one through hole, and the maximum value of the distance between the ends of the through hole portions is taken as the opening diameter. .
  • the pre-doping characteristic and adhesiveness improve, so that the hole density (number density) of a through-hole is large.
  • the smaller the size the better the tensile strength.
  • it is preferably 1 to 1000 / mm 2 , more preferably 3 to 900 / mm 2 , and further preferably 100 to 200 / mm 2. preferable.
  • the hole density (number density) of the through holes is determined by placing a parallel light optical unit on one main surface side of the aluminum foil and transmitting parallel light, and using the optical microscope from the other main surface of the aluminum foil Photograph the surface of the foil at a magnification of 100x to obtain a photo. In the range of 10 cm x 10 cm of the obtained photograph, the number of through holes is measured for 5 fields of 100 mm x 75 mm, converted to the number per mm 2 , and the average value of the values in each field (5 locations) Is calculated as the hole density of the through holes.
  • the thickness of the aluminum foil is not limited, but is preferably 5 ⁇ m to 100 ⁇ m, and more preferably 10 ⁇ m to 30 ⁇ m.
  • the aluminum base is not particularly limited, and, for example, a known aluminum base such as alloy No. 1085, 1N30, 3003 described in JIS Standard H4000 can be used.
  • an aluminum base material is an alloy plate which has aluminum as a main component and contains a trace amount of different elements.
  • the aluminum oxide film having a thickness of 25 nm or less is an oxide film consisting of a nonporous oxide film alone having a thickness of 15 nm or less alone, or both of a nonporous oxide film and a thin porous (porous) oxide film. It is preferable that the layer contains an aluminum oxide such as aluminum oxide (Al 2 O 3 ).
  • aluminum oxide is present as aluminum hydrate such as aluminum oxide monohydrate (Al 2 O 3 .1H 2 O), aluminum oxide trihydrate (Al 2 O 3 .3H 2 O), etc. sell.
  • the aluminum oxide film having a thickness of 25 nm or less includes aluminum oxide (Al 2 O 3 ), aluminum oxide monohydrate (Al 2 O 3 ⁇ 1H 2 O), and aluminum oxide trihydrate (Al 2 O). It is preferable that it is a layer containing at least one of 3 ⁇ 3H 2 O).
  • Such an aluminum oxide film having a thickness of 25 nm or less is formed by a natural oxide film formed under as low humidity as possible.
  • Patent Document 1 as a method of forming fine through holes in an aluminum foil, a method of subjecting an aluminum base to electrolytic dissolution treatment to form through holes is known. When such electrolytic dissolution treatment is performed, an aluminum hydroxide film is formed on the surface of the aluminum base. Therefore, when the aluminum substrate after the electrolytic dissolution treatment is dried, a thick aluminum oxide film is formed on the surface. Therefore, the electrical resistance is increased.
  • the aluminum hydroxide film formed in the electrolytic dissolution treatment for forming the through holes is removed, and then aluminum is formed on the surface of the aluminum substrate by natural oxidation or the like.
  • an oxide film By forming an oxide film, an aluminum oxide film having a thickness of 25 nm or less can be suitably formed.
  • the density of the aluminum oxide film having a thickness of 25 nm or less is preferably 2.7 to 4.1 g / cm 3 .
  • the density of aluminum oxide (Al 2 O 3) is about 4.1 g / cm 3
  • the density of the aluminum oxide monohydrate (Al 2 O 3 ⁇ 1H 2 O) is in the order of 3.07 g / cm 3
  • the density of aluminum oxide trihydrate (Al 2 O 3. 3H 2 O) is about 2.42 g / cm 3 . Therefore, the density of the aluminum oxide film having a thickness of 25 nm or less increases as the hydrate ratio decreases. For example, when the density of the aluminum oxide film having a thickness of 25 nm or less is less than 3.95 g / cm 3 , the aluminum oxide film having a thickness of 25 nm or less contains 3% or more of hydrate.
  • 70% or more is preferable, 80% or more is more preferable, and 90% or more is even more preferably 70% or more of aluminum oxide (Al 2 O 3 ) contained in the aluminum oxide film from the viewpoint of forming an aluminum oxide film having a high density 25 nm or less preferable.
  • aluminum oxide monohydrate (Al 2 O 3 ⁇ 1H 2 O) and aluminum oxide trihydrate (Al 2 O 3 ⁇ 3H 2 O) contained in an aluminum oxide film having a thickness of 25 nm or less are 45 % Or less is preferable, 30% or less is more preferable, and 15% or less is more preferable.
  • the said hydrophilization layer is a layer which provides hydrophilic property to the surface of aluminum foil, and it is preferable that it is a layer containing a hydrophilic component.
  • the hydrophilic component refers to a component that can improve the hydrophilicity of the surface by being present on the surface of the aluminum foil than when not present on the surface of the aluminum foil.
  • the hydrophilic component include, for example, silicates, phosphates, sulfonic acids, sulfonates, phosphonic acids, phosphonates, phosphates, phosphates, phosphates, and fluorozirconates.
  • Preferred are compounds having at least one selected structure, and among them, compounds having at least one structure selected from the group consisting of silicates, phosphoric esters, and phosphoric ester salts are preferred.
  • hydrophilization layer for example, a hydrophilization layer formed by hydrophilization treatment with an aqueous solution of sodium silicate, a hydrophilization layer formed by hydrophilization treatment with polyvinyl phosphonic acid described in Japanese Patent No. 3318031 Layer, a hydrophilized layer formed by immersing in a mixed solution of sodium fluoride zirconate solution and sodium hydrogen phosphate solution, beryllium, magnesium, aluminum, silicon, titanium described in JP-A-2001-199175.
  • Hydrophilized layer formed by applying a coating solution containing a colloid of an oxide or hydroxide of at least one element selected from boron, germanium, tin, zirconium, iron, vanadium, antimony and transition metals, Crosslinking or pseudo-crosslinking of the organic hydrophilic polymer described in JP-A-2002-79772 Hydrophilized layer having an organic hydrophilic matrix obtained by hydrolyzing, hydrophilized layer having an inorganic hydrophilic matrix obtained by sol-gel conversion comprising hydrolysis, condensation reaction of polyalkoxysilane, titanate, zirconate or aluminate, Or the hydrophilization layer which consists of an inorganic thin film which has the surface containing a metal oxide is mentioned. Hydrophilization treatment with an aqueous solution of sodium silicate is desirable in industrial production, since it is easy to treat flush water and waste liquid.
  • the thickness of the hydrophilized layer is preferably 0.1 nm to 5 nm, more preferably 0.2 nm to 3 nm, and still more preferably 0.3 nm to 1 nm.
  • the thickness of the hydrophilized layer can be measured by etching ESCA (Electron Spectroscopy for Chemical Analysis).
  • the hydrophilized layer is prepared by dissolving or dispersing the above components in water or a mixed solvent of water and an organic solvent to prepare a hydrophilized layer liquid, and the hydrophilized layer liquid having an aluminum oxide film having a thickness of 25 nm or less It can be formed on the surface of an aluminum substrate by a known method such as application, immersion and the like.
  • a coating method various known methods can be used. For example, bar coater coating, spin coating, spray coating, curtain coating, dip coating, air knife coating, blade coating, roll coating and the like can be mentioned.
  • the method for producing an aluminum foil of the present invention is Forming a through hole in the aluminum substrate; Forming an aluminum oxide film having a thickness of 25 nm or less on the aluminum base on which the through holes are formed; It is preferable to have the step of forming a hydrophilized layer on the surface of an aluminum base on which an aluminum oxide film having a thickness of 25 nm or less is formed.
  • the manufacturing method of aluminum foil is A film forming step of forming an aluminum hydroxide film on the surface of the aluminum base material by electrolytic treatment in a first acidic aqueous solution using the aluminum base material as a cathode; A through hole forming step of performing electrolytic treatment with a second acidic aqueous solution using the aluminum base as an anode and performing a through hole forming treatment on the aluminum base and the aluminum hydroxide film to form a through hole; A film removing step of removing the aluminum hydroxide film by immersing the aluminum substrate after the film forming step in an alkaline aqueous solution; An oxide film forming step of forming an aluminum oxide film having a thickness of 25 nm or less on the surface of the aluminum substrate after the film removing step by natural oxidation; It is preferable to have the hydrophilization layer formation process of forming a hydrophilization layer on the surface of an aluminum oxide film.
  • an aluminum oxide film having a thickness of 25 nm or less is formed on the aluminum substrate. Further, unnecessary film, oil and the like are removed by the film removing step to expose the aluminum base to facilitate formation of an aluminum oxide film having a thickness of 25 nm or less by natural oxidation.
  • a water washing process in which water washing is performed after completion of each of the film forming process, the through hole forming process, the film removing process, the oxide film forming process, and the hydrophilized layer forming process.
  • a drying step of drying treatment after the final water washing treatment, it is preferable to have a drying step of drying treatment.
  • FIG. 2 to 5 are schematic cross-sectional views showing an example of a preferred embodiment of the method for producing an aluminum foil.
  • a film forming process is performed on both main surfaces of the aluminum substrate 1 to form an aluminum hydroxide film 2 (FIG. 3) and an electrolytic solution treatment after the film forming step to form the through hole 5 to form an aluminum base 3 having a through hole and an aluminum hydroxide film 4 having a through hole (FIG. 3) 3 and FIG. 4), and a film removing step (FIGS.
  • an oxide film forming step of forming an aluminum oxide film 14 having a thickness of 25 nm or less on both main surfaces of the aluminum substrate 3 having through holes by natural oxidation (FIG. 5 and FIG. Figure 6), it is a manufacturing method having a hydrophilic layer formation step of forming a hydrophilic layer 16 on the surface after the oxide film formation step (Fig. 6 and Fig. 1), the.
  • the film forming step is a step of forming an aluminum hydroxide film on the surface of the aluminum substrate by subjecting the aluminum substrate to a cathode and electrolytic treatment (film forming treatment) in a first acidic aqueous solution.
  • the film formation process is not particularly limited, and, for example, the same process as the conventionally known aluminum hydroxide film formation process can be performed.
  • the film formation process for example, the conditions and apparatus described in paragraphs [0013] to [0026] of JP-A-2011-201123 can be appropriately adopted.
  • the conditions of the film formation treatment can not be determined indiscriminately because they vary depending on the electrolyte used, but generally, the electrolyte concentration is 1 to 80 mass%, the solution temperature is 5 to 70 ° C. It is appropriate that the current density is 0.5 to 60 A / dm 2 , the voltage is 1 to 100 V, and the electrolysis time is 1 second to 20 minutes, and it is adjusted to obtain a desired amount of film.
  • the electrochemical treatment it is preferable to carry out the electrochemical treatment using nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid or a mixture of two or more of these acids as the electrolytic solution (first acidic aqueous solution).
  • the electrochemical treatment is performed in an electrolytic solution containing nitric acid and hydrochloric acid, direct current may be applied between the aluminum base and the counter electrode, and alternating current may be applied.
  • the current density is preferably 1 to 60 A / dm 2 , more preferably 5 to 50 A / dm 2 .
  • the liquid electric power feeding system which supplies electric power through electrolyte solution.
  • the amount of the aluminum hydroxide film formed by the film forming treatment is preferably 0.05 to 50 g / m 2 , and more preferably 0.1 to 10 g / m 2 .
  • an electrolytic treatment electrolytic dissolution treatment
  • a second acidic aqueous solution using the aluminum base as an anode to form through holes in the aluminum base and the aluminum hydroxide coating It is.
  • the electrolytic dissolution treatment is not particularly limited, and an acidic solution (second acidic aqueous solution) can be used as an electrolytic solution using direct current or alternating current.
  • electrochemical treatment is preferably performed using at least one or more acids of nitric acid and hydrochloric acid, and electrochemical treatment is performed using a mixed acid of at least one or more of sulfuric acid, phosphoric acid and oxalic acid in addition to these acids. Is more preferred.
  • the concentration of the acidic solution is preferably 0.1 to 2.5% by mass, particularly preferably 0.2 to 2.0% by mass.
  • the liquid temperature of the acidic solution is preferably 20 to 80 ° C., and more preferably 30 to 60 ° C.
  • the aqueous solution mainly composed of the acid is a nitrate compound having nitrate ion such as aluminum nitrate, sodium nitrate and ammonium nitrate in an aqueous solution of acid having a concentration of 1 to 100 g / L or hydrochloric acid such as aluminum chloride, sodium chloride and ammonium chloride.
  • a hydrochloric acid compound having an ion and a sulfate compound having a sulfate ion such as aluminum sulfate, sodium sulfate and ammonium sulfate can be added and used in a range from 1 g / L to saturation.
  • the metal contained in aluminum alloys such as iron, copper, manganese, nickel, titanium, magnesium, and silicon, may be melt
  • a direct current is mainly used for the electrochemical dissolution process, but when an alternating current is used, the alternating current power source wave is not particularly limited, and a sine wave, a rectangular wave, a trapezoidal wave, a triangular wave or the like is used.
  • nitric acid electrolysis In the present invention, through holes having an average opening diameter of 0.1 ⁇ m or more and less than 100 ⁇ m can be easily obtained by electrochemical dissolution treatment using an electrolyte mainly composed of nitric acid (hereinafter also referred to as “nitric acid dissolution treatment”). Can be formed.
  • nitric acid dissolution treatment the condition that the average current density is 5 A / dm 2 or more and the amount of electricity is 50 C / dm 2 or more using a direct current because it is easy to control the dissolution point of through hole formation It is preferable that it is the electrolytic treatment given by.
  • the average current density is preferably 100 A / dm 2 or less, and the amount of electricity is preferably 10000 C / dm 2 or less.
  • concentration and temperature of the electrolyte in nitric acid electrolysis are not particularly limited, and electrolysis is performed at 30 to 60 ° C. using a high concentration nitric acid electrolyte having a nitric acid concentration of 15 to 35 mass%, for example.
  • the electrolysis can be performed at 30 to 80 ° C. using a 7 to 2% by mass nitric acid electrolyte.
  • electrolysis can be performed using an electrolytic solution obtained by mixing at least one of sulfuric acid, oxalic acid and phosphoric acid at a concentration of 0.1 to 50% by mass with the above nitric acid electrolytic solution.
  • the through holes having an average opening diameter of 1 ⁇ m or more and less than 100 ⁇ m can be easily obtained by electrochemical dissolution treatment using an electrolytic solution mainly composed of hydrochloric acid (hereinafter also abbreviated as “hydrochloric acid dissolution treatment”). It can be formed.
  • hydrochloric acid dissolution treatment the condition that the average current density is 5 A / dm 2 or more and the amount of electricity is 50 C / dm 2 or more using a direct current because it is easy to control the dissolution point of through hole formation It is preferable that it is the electrolytic treatment given by.
  • the average current density is preferably 100 A / dm 2 or less, and the amount of electricity is preferably 10000 C / dm 2 or less.
  • the concentration and temperature of the electrolytic solution in hydrochloric acid electrolysis are not particularly limited, and electrolysis is carried out at 30 to 60 ° C. using a high concentration, for example, a hydrochloric acid electrolytic solution having a hydrochloric acid concentration of 10 to 35 mass%.
  • the electrolysis can be performed at 30 to 80 ° C. using a 7 to 2% by mass hydrochloric acid electrolyte solution. Further, electrolysis can be performed using an electrolytic solution obtained by mixing at least one of sulfuric acid, oxalic acid and phosphoric acid at a concentration of 0.1 to 50% by mass with the above-mentioned hydrochloric acid electrolytic solution.
  • the film removal step is a step of chemical dissolution treatment to remove the aluminum hydroxide film.
  • the aluminum hydroxide film can be removed by performing an acid etching treatment or an alkali etching treatment described later.
  • the alkali etching treatment is a treatment in which the surface layer is dissolved by bringing the aluminum hydroxide film into contact with an alkali solution.
  • alkali used for the alkali solution examples include caustic alkali and alkali metal salts.
  • caustic alkali examples include sodium hydroxide (caustic soda) and caustic potash.
  • alkali metal salt for example, alkali metal silicates such as sodium metasilicate, sodium silicate, potassium metasilicate and potassium silicate; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium aluminate, aluminum Alkali metal aluminates such as potassium hydroxide; alkali metal aldonates such as sodium gluconate and potassium gluconate; sodium dibasic phosphate, potassium dibasic phosphate, sodium tribasic phosphate, potassium tribasic phosphate and the like And alkali metal hydrogen phosphates.
  • a solution of caustic alkali and a solution containing both caustic alkali and an alkali metal aluminate are preferable from the viewpoint of high etching rate and low cost.
  • an aqueous solution of sodium hydroxide is preferred.
  • the concentration of the alkaline solution is preferably 0.1 to 50% by mass, and more preferably 0.2 to 10% by mass.
  • concentration of aluminum ions is preferably 0.01 to 10% by mass, and more preferably 0.1 to 3% by mass.
  • the temperature of the alkaline solution is preferably 10 to 90.degree.
  • the treatment time is preferably 1 to 120 seconds.
  • a method of bringing an aluminum hydroxide film into contact with an alkaline solution for example, a method of passing an aluminum base on which an aluminum hydroxide film is formed through a tank containing an alkaline solution, aluminum on which an aluminum hydroxide film is formed There is a method of immersing the substrate in a bath containing an alkaline solution, and a method of spraying the alkaline solution onto the surface (aluminum hydroxide film) of the aluminum substrate on which the aluminum hydroxide film is formed.
  • the acid etching process is performed to completely remove the residue remaining on the surface after the alkali etching process. At the same time, in order to eliminate the possibility of the formation of an unnecessarily thick oxide film in the subsequent oxide film forming process, it is also necessary that the residue hardly remains after the acid etching process.
  • an acidic solution for example, nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid, chromium compound, zirconium compound, titanium compound, lithium salt, cerium salt, magnesium salt, sodium silicofluoride, zinc fluoride, manganese
  • An aqueous solution containing at least one selected from the group consisting of a compound, a molybdenum compound, a magnesium compound, a barium compound and a halogen alone is preferable.
  • chromium compound for example, chromium (III) oxide, chromium (VI) anhydride and the like can be mentioned.
  • zirconium-based compound include ammonium zirconium fluoride, zirconium fluoride and zirconium chloride.
  • titanium compounds include titanium oxide and titanium sulfide.
  • lithium salts include lithium fluoride and lithium chloride.
  • cerium salt include cerium fluoride and cerium chloride.
  • magnesium salt magnesium sulfide is mentioned, for example.
  • manganese compounds include sodium permanganate and calcium permanganate.
  • molybdenum compound sodium molybdate is mentioned, for example.
  • magnesium fluoride pentahydrate is mentioned, for example.
  • a barium compound for example, barium oxide, barium acetate, barium carbonate, barium chlorate, barium chloride, barium fluoride, barium iodide, barium lactate, barium oxalate, barium perchlorate, barium selenate, selenious acid
  • barium stearate, barium sulfite, barium titanate, barium hydroxide, barium nitrate, and hydrates of these barium oxide, barium acetate and barium carbonate are preferred, and barium oxide is particularly preferred.
  • the halogen alone include chlorine, fluorine and bromine.
  • the above acidic solution is preferably an aqueous solution containing the following acids, and examples of the acid include nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid and the like, and may be a mixture of two or more acids.
  • the acid concentration is preferably 0.01 mol / L or more, more preferably 0.05 mol / L or more, and still more preferably 0.1 mol / L or more.
  • the upper limit is not particularly limited, but generally 10 mol / L or less is preferable, and 5 mol / L or less is more preferable.
  • the dissolution treatment is carried out by bringing the aluminum base on which the aluminum hydroxide film is formed into contact with the above-mentioned solution.
  • the method for contacting is not particularly limited, and examples thereof include a dipping method and a spraying method. Among these, the spray method is preferred. After the acid etching treatment, it is preferable to carry out sufficient washing with water.
  • the oxide film forming step is a step of forming an aluminum oxide film having a thickness of 25 nm or less on both main surfaces of the aluminum substrate by naturally oxidizing the surface of the aluminum substrate from which the aluminum hydroxide film has been removed.
  • the aluminum hydroxide film formed on the surface of the aluminum substrate in the electrolytic dissolution treatment for forming the through holes is removed by alkali etching treatment, and the residue is further removed by acid etching treatment, Thereafter, by forming an oxide film on the surface of the aluminum base by natural oxidation or the like, an aluminum oxide film having a thickness of 25 nm or less can be suitably formed.
  • the thickness, density and the like of the aluminum oxide film can be changed, for example, by changing the storage method of the aluminum base after the film removing step, so as to change the thickness and the like of the aluminum oxide film formed on the aluminum surface.
  • the thickness or the like of the aluminum oxide film can be changed by changing the temperature, humidity, storage time or the like.
  • the hydrophilized layer forming step is a step of forming a hydrophilized layer on the surface of an aluminum oxide film having a thickness of 25 nm or less.
  • the hydrophilized layer is prepared by dissolving or dispersing a compound or the like to be the hydrophilized layer in water or a mixed solvent of water and an organic solvent to prepare a hydrophilized layer liquid, and adding the hydrophilized layer liquid to aluminum. It can be formed on the surface of an aluminum substrate having an oxide film by a known method such as application, immersion and the like.
  • the film forming process, the through hole forming process, the film removing process, the oxide film forming process, and the hydrophilized layer forming process described above have a water washing process for washing with water. Is preferred. Pure water, well water, tap water or the like can be used for washing. A nip device may be used to prevent the processing solution from being carried into the next process.
  • a drying treatment may be provided after the water washing step after each step.
  • known drying methods such as a method of blowing off water with an air knife or the like, a method by heating and the like can be appropriately used. Also, multiple drying methods may be performed.
  • the present invention is not limited thereto, and other known methods You may go there.
  • lithography is performed on the resist material and then etching is performed to form a through hole.
  • etchant to cause local dissolution from an intermetallic compound (precipitate or crystal) in the aluminum base to form a through hole.
  • the conditions may be described in advance for each material, and the conditions such as the etchant condition and the etching time may be adjusted.
  • the through holes can be formed by a machining method by physical contact such as punching and needle processing.
  • the aluminum foil of the present invention can be used as an aluminum member for an electrode, and can be used as a current collector for a storage device (hereinafter, also referred to as “current collector”).
  • current collector when the aluminum foil has a plurality of through holes in the thickness direction, for example, when used in a lithium ion capacitor, pre-doping of lithium in a short time becomes possible, making lithium more uniform. It becomes possible to disperse.
  • the adhesion to the active material layer and the activated carbon is improved, and an electricity storage device excellent in productivity such as cycle characteristics, output characteristics, and coating suitability can be manufactured.
  • the current collector using the aluminum foil of the present invention has a hydrophilized layer, the adhesion with the active material layer (electrode material) is good, peeling can be suppressed, and excellent cycle characteristics can be obtained.
  • the hydrophilized layer is formed on the surface of the thin aluminum oxide film, it is possible to suppress an increase in the electrical resistance with the active material layer, and an efficient power storage device can be manufactured.
  • ⁇ Active material layer> There is no limitation in particular as an active material layer, and the well-known active material layer used in the conventional electrical storage device can be utilized. Specifically, in the case of using an aluminum foil as a current collector of a positive electrode, the conductive material, the binder, the solvent, etc. which may be contained in the active material and the active material layer are disclosed in JP 2012-216513A. The materials described in paragraphs [0077] to [0088] may be suitably employed, the contents of which are incorporated herein by reference. Moreover, as an active material in the case of using an aluminum foil as a current collector of a negative electrode, the material described in paragraph [0089] of JP-A-2012-216513 can be appropriately adopted, and the content thereof is the present specification. Is taken as a reference in the book.
  • the electrode using the aluminum foil of the present invention as a current collector can be used as a positive electrode or a negative electrode of an electricity storage device.
  • the materials and applications described in paragraphs [0090] to [0123] of JP 2012-216513 A are suitably used. It may be employed, the contents of which are incorporated herein by reference.
  • the positive electrode using the aluminum foil of the present invention as a current collector is a positive electrode current collector using an aluminum foil for the positive electrode, and a layer containing a positive electrode active material formed on the surface of the positive electrode current collector (positive electrode active material layer) And a positive electrode having
  • the conductive material which may be contained in the above-mentioned positive electrode active material layer, the binder, the solvent and the like, see paragraphs [0077] to [0088] of JP 2012-216513A.
  • the materials described can be employed as appropriate, the contents of which are incorporated herein by reference.
  • the negative electrode using the aluminum foil of the present invention as a current collector is a negative electrode having a negative electrode current collector using an aluminum foil for the negative electrode and a layer containing a negative electrode active material formed on the surface of the negative electrode current collector.
  • the negative electrode active material the material described in paragraph [0089] of JP-A-2012-216513 can be appropriately adopted, and the contents thereof are incorporated herein by reference.
  • the aluminum foil of the present invention can be used as an aluminum member for an electrode for an electrolytic capacitor, in addition to a current collector for a storage device.
  • Example 1 ⁇ Production of aluminum foil> (Formation of through holes) With reference to Example 1 of JP-A-2011-208254, the conditions were adjusted as follows, and through holes were formed in the aluminum base by an electrolytic method.
  • Aluminum ingot with a purity of 99.99% is prepared by homogenization, hot rolling (temperature 400 ° C) and cold rolling, intermediate annealing, and cold rolling again to a thickness of 30 ⁇ m. Obtained. After cleaning the surface, annealing was performed at 500 ° C. for 10 hours in argon gas. By this annealing, the crystal orientations of aluminum can be aligned in substantially the same direction.
  • a hydrophilized layer is formed by immersing the aluminum base on which the aluminum oxide film is formed in an aqueous solution of sodium silicate at 60 ° C. for 5 seconds, and then the aluminum foil is washed with water for 20 seconds.
  • a sodium silicate aqueous solution an aqueous solution of No. 1 sodium silicate (JIS K 1408-1966) having a concentration of 5% was used.
  • the adhesion amount (Si adhesion amount) of silicon which is a constituent element of the hydrophilization layer was measured.
  • XRF fluorescent X-ray analyzer
  • Example 2 An aluminum foil was produced in the same manner as in Example 1 except that the method of forming the through holes was changed as follows, and the average opening diameter of the through holes was 11 ⁇ m and the hole density was 110 holes / mm 2 .
  • A Aluminum hydroxide film formation process (film formation process) An aluminum base (JIS H-4160, alloy No .: 1N30-H, aluminum purity: 99.30%) having an average thickness of 20 ⁇ m was prepared. Using the electrolytic solution (nitric acid concentration 1%, sulfuric acid concentration 0.2%, aluminum concentration 0.5%) kept at 50 ° C., the above aluminum base material as a cathode, and the total amount of electricity is 500 C / dm 2 Electrolytic treatment was performed to form an aluminum hydroxide film on the aluminum substrate. In addition, the electrolysis process was performed by direct-current power supply. The current density was 50 A / dm 2 . After the formation of the aluminum hydroxide film, washing with water by spraying was performed.
  • Electrolytic dissolution treatment (through hole forming step) Next, using an electrolytic solution kept at 50 ° C. (nitric acid concentration 1%, sulfuric acid concentration 0.2%, aluminum concentration 0.5%), the aluminum base material is used as an anode, and the total electric quantity is 500 C / dm 2 Under the electrolytic treatment, through holes were formed in the aluminum base and the aluminum hydroxide film. In addition, the electrolysis process was performed by direct-current power supply. The current density was 25 A / dm 2 . After the formation of the through holes, the plate was rinsed with a spray and dried.
  • Example 3 (A) above film-forming 1000 C-/ dm 2 amount of electricity summation in step, by changing the quantity of electricity summation in (b) above through hole forming step 1000C / dm 2, 20 ⁇ m average opening diameter of the through hole, pore density An aluminum foil was produced in the same manner as in Example 2 except that 160 pieces / mm 2 were used.
  • Example 4 An aluminum foil was produced in the same manner as in Example 1 except that the method of forming the through holes was changed as follows, and the average opening diameter of the through holes was 90 ⁇ m and the hole density was 8 holes / mm 2 .
  • An aluminum base (JIS H-4160, alloy No .: 1N30-H, aluminum purity: 99.30%) having an average thickness of 20 ⁇ m was prepared.
  • a negative resist solution (EF-100 manufactured by Shinwa Kogyo Co., Ltd.) was uniformly coated to a thickness of 10 ⁇ m with a bar coater on both main surfaces of the above aluminum substrate, and dried at 80 ° C. for 10 minutes. Subsequently, a negative film mask (150 ⁇ m) in which eight 80 ⁇ m diameter circles were formed per 1 mm 2 was prepared.
  • the negative film is vacuum adhered to one side of an aluminum base on which a resist is laminated, and ultraviolet rays of 300 mJ / cm 2 are irradiated from an ultraviolet exposing machine provided at a fixed distance therefrom to form a latent image in the resist layer did.
  • the other surface different from the surface on which the negative film mask was formed and adhered was exposed to ultraviolet light of 300 mJ / cm 2 without interposing the negative film mask. Subsequently, the unexposed area was removed by development with a 1% aqueous solution of sodium carbonate for 1 minute at 30 ° C.
  • the exposed aluminum surface was removed by etching after development. Specifically, a shower treatment was performed with a 2.2 mol / dm 3 FeCl 3 +1.0 mol / cm 3 aqueous HCl solution (temperature 40 ° C.) for 1 minute at a pressure of 0.15 MPa. After this, it was immediately washed with water and dried. Subsequently, the cured resist was peeled off. Specifically, shower processing was performed with a 3% aqueous sodium hydroxide solution (temperature 40 ° C.) for 1 minute under the condition of 0.15 MPa. Thereafter, water washing and drying were performed to obtain an aluminum base on which through holes were formed.
  • a shower treatment was performed with a 2.2 mol / dm 3 FeCl 3 +1.0 mol / cm 3 aqueous HCl solution (temperature 40 ° C.) for 1 minute at a pressure of 0.15 MPa. After this, it was immediately washed with water and dried. Subsequently, the
  • Example 5 An aluminum foil was produced in the same manner as in Example 1 except that the method of forming the through holes was changed as follows, and the average opening diameter of the through holes was 300 ⁇ m and the hole density was 3 / mm 2 .
  • Example 6 An aluminum foil was produced in the same manner as in Example 5 except that the die set was changed to a die set having a hole diameter of 500 ⁇ m, and the average opening diameter of the through holes was 500 ⁇ m and the hole density was 1 / mm 2 .
  • Example 7 The average total opening diameter of the through holes is 15 ⁇ m, the hole density is changed by changing the total amount of electricity in the (a) film forming step to 750 C / dm 2 and the total amount of electricity in the (b) through hole forming step to 750 C / dm 2. was 140 pieces / mm 2, except that by changing the oxide film formation process as described below and the thickness of the aluminum oxide film and 1nm in the same manner as in example 2, were produced aluminum foil.
  • Example 8 An aluminum foil was produced in the same manner as in Example 7 except that the thickness of the aluminum oxide film was changed to 4 nm by changing the oxide film formation step as follows.
  • Example 9 An aluminum foil was produced in the same manner as in Example 7 except that the thickness of the aluminum oxide film was changed to 8 nm by changing the oxide film formation step as follows.
  • Example 10 An aluminum foil was produced in the same manner as in Example 7 except that the thickness of the aluminum oxide film was changed to 12 nm by changing the oxide film formation step as follows.
  • Example 11 An aluminum foil was produced in the same manner as in Example 7 except that the oxide film formation step was changed as follows to make the thickness of the oxide film 25 nm.
  • Example 12 The (a) 750C / dm 2 amount of electricity sum of film forming process, by changing the quantity of electricity summation in (b) above through hole forming step 750C / dm 2, 11 [mu] m average opening diameter of the through hole, pore density was 140 pieces / mm 2, except that by changing the oxide film formation process as described below and the thickness of the aluminum oxide film and 3nm in the same manner as in example 7, was prepared aluminum foil.
  • Example 13 An aluminum foil was produced in the same manner as in Example 5 except that the die set was changed to a die set with a hole diameter of 300 ⁇ m, the average opening diameter of the through holes was 300 ⁇ m, and the hole density was 3 / mm 2 .
  • Example 14 and 15 An aluminum foil was produced in the same manner as in Examples 12 and 13 except that the step of forming a hydrophilized layer was changed as follows.
  • a hydrophilized layer is formed by immersing the aluminum base on which the aluminum oxide film is formed in an aqueous solution of sodium silicate at 60 ° C. for 5 seconds, and then the aluminum foil is washed with water for 20 seconds.
  • a sodium silicate aqueous solution a 3% strength aqueous solution of sodium silicate No. 3 (JIS K 1408-1966) was used.
  • Example 16 and 17 An aluminum foil was produced in the same manner as in Examples 12 and 13 except that the step of forming a hydrophilized layer was changed as follows.
  • a positive electrode active material containing LiCoO 2 as a positive electrode material was applied as an electrode material on both sides of the aluminum foil produced in the example and the comparative example to produce a positive electrode.
  • a slurry was prepared by adding 90 parts by mass of a powder of LiCoO 2 and 10 parts by mass of a binder (KF polymer manufactured by Kleha Co., Ltd.) as active materials for positive electrodes to water and dispersing. Next, the prepared slurry is coated on both sides of the produced aluminum foil by a die coater to a total thickness of 200 ⁇ m, dried at 120 ° C. for 30 minutes, and an active material layer is formed on the surface of the aluminum foil. The positive electrode was produced.
  • the adhesion between the aluminum foil and the active material layer was evaluated by a tape peeling test.
  • the tape peeling test used Nichiban double-sided tape "NI STACK" as an adhesive tape.
  • One side of an adhesive tape having a width of 15 mm was attached to the surface of the active material layer, and the other side was attached to a stainless steel block. When the stainless block was peeled off, the peeling state of the active material was evaluated.
  • B Exfoliated in the range of less than 10% of the whole.
  • C It peels 10% or more of the whole.
  • the examples of the present invention having an aluminum oxide film having a thickness of 25 nm or less and further having a hydrophilized layer on the surface of the aluminum oxide film have better adhesion than the comparative examples. It can be seen that the conductivity can also be increased. Further, it is understood from the comparison of Examples 1 to 6 that the average opening diameter of the through holes is preferably 1 ⁇ m to 500 ⁇ m, and more preferably 1 ⁇ m to less than 100 ⁇ m. Further, it is understood from the comparison of Examples 7 to 11 that the thickness of the aluminum oxide film is preferably 1 nm to 12 nm. Further, it is understood from the comparison of Examples 12 to 17 that the hydrophilized layer preferably contains a compound having a silicate. From the above, the effects of the present invention are clear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

電極材料との密着性が良好で、かつ、電極材料との導電性が高いアルミニウム箔および電極用アルミニウム部材を提供することを課題とする。貫通孔を有するアルミニウム箔であって、アルミニウム箔の表面に厚み25nm以下のアルミニウム酸化皮膜を有し、さらにアルミニウム酸化皮膜の表面の一部に親水化層を有する。

Description

アルミニウム箔および電極用アルミニウム部材
 本発明は、アルミニウム箔および電極用アルミニウム部材に関する。
 近年、パーソナルコンピュータ、携帯電話等のポータブル機器や、ハイブリッド自動車、電気自動車等の開発に伴い、その電源としての蓄電デバイス、特に、リチウムイオンキャパシタ、リチウムイオン二次電池、電気二重層キャパシタの需要が増大している。
 このような蓄電デバイスの正極または負極に用いられる電極用集電体(以下、単に「集電体」という。)としては、アルミニウム板を用いることが知られている。また、このアルミニウム板からなる集電体の表面に、電極材料として活性炭などの活物質を塗布され、正極または負極の電極として用いることが知られている。
 大容量の次世代二次電池では、電極材料の材質に応じて、容量確保を目的に、予め多量にLi(リチウム)イオンを電極にドーピングすることが行われる。Liイオンのドーピング方法は、電池セル内にLi金属を入れ、電池セル内での溶解を促すことで、過剰なLiイオンを電極に行きわたらせる方法が公知である。電極材料は元々Liイオンを透過するポーラスな材料である。一方、電極材料の支持体となり、かつ充放電時の電気の出し入れ用の導電板の役目を持つ集電体は通常、金属箔が使用され、電気は通すがイオンは通さない。そのため、電池セル内の電極材料の隅々までLiイオンを行きわたらせるためには、金属箔にLiイオンを通過させるための多数の貫通孔を設けた貫通箔が用いられる。
 例えば、特許文献1には、厚み方向に複数の貫通孔を有するアルミニウム板であって、厚みが40μm以下であり、貫通孔の平均開口径が0.1~100μmであり、貫通孔による平均開口率が2~30%であり、Feの含有量が0.03質量%以上であり、かつ、Siの含有量に対するFeの含有量の比率が1.0以上であるアルミニウム板が記載されている。このアルミニウム板は蓄電デバイス用集電体として用いられることが記載されている。
国際公開第2016/158245号
 ここで、貫通箔は、電極材料との接触抵抗を低減するために、電極材料との親和性が求められる。電極材料との親和性が高いと、貫通孔内に電極材料が入り込み、高い密着性に繋がる。高い密着性は、接触抵抗を低減させるとともに、充電と放電を多数回行ったときでも、電極材料が集電体から剥離するリスクを回避出来、優れたサイクル特性を示す。
 次世代二次電池における正極用の電極材料は、水系の塗布液として調製され、集電体となる貫通箔に塗布される。そのため正極用の貫通箔は、親水性であることが望ましい。親水性を示す金属としては、アルミニウムやクロムが公知であり、この内、環境影響が少ないアルミニウムを正極集電体に使用することが望ましい。
 しかしながら、正極用の電極材料との一層の親水性を得るためには、集電体となる貫通箔の材料としてアルミニウムを使用するだけでは不十分であった。そこで、貫通箔の表面に親水化層を設けることが考えられる。しかしながら、親水化層は、電気抵抗になりうるため、単純に親水化層を設けると、電極材料と貫通箔との導電性が低くなってしまうおそれがあった。
 そこで、本発明は、電極材料との密着性が良好で、かつ、電極材料との導電性が高いアルミニウム箔および電極用アルミニウム部材を提供することを課題とする。
 本発明者は、上記課題を達成すべく鋭意検討した結果、貫通孔を有するアルミニウム箔であって、アルミニウム箔の表面に厚さ25nm以下のアルミニウム酸化皮膜を有し、さらにアルミニウム酸化皮膜の表面の少なくとも一部に親水化層を有することにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
 [1] 貫通孔を有するアルミニウム箔であって、
 アルミニウム箔の表面に厚さ25nm以下のアルミニウム酸化皮膜を有し、さらにアルミニウム酸化皮膜の表面の少なくとも一部に親水化層を有するアルミニウム箔。
 [2] アルミニウム酸化皮膜の密度が2.7~4.1g/cm3である[1]に記載のアルミニウム箔。
 [3] 厚さ25nm以下のアルミ酸化皮膜が、酸化アルミニウム、酸化アルミニウム1水和物、および、酸化アルミニウム3水和物の少なくとも1つを含む[1]または[2]に記載のアルミニウム箔。
 [4] アルミニウム酸化皮膜の厚みが、1nm~15nmである[1]~[3]のいずれかに記載のアルミニウム箔。
 [5] 親水化層が、ケイ酸塩、リン酸塩、スルホン酸、スルホン酸塩、ホスホン酸、ホスホン酸塩、リン酸エステル、リン酸エステル塩、および、フッ化ジルコン酸からなる群から選択される構造を少なくとも1つ有する化合物を含む[1]~[4]のいずれかに記載のアルミニウム箔。
 [6] 貫通孔の平均開口径が1μm~500μmである[1]~[5]のいずれかに記載のアルミニウム箔。
 [7] 貫通孔の孔密度が1~1000個/mm2である[1]~[6]のいずれかに記載のアルミニウム箔。
 [8] アルミニウム箔の厚みが5μm~100μmである[1]~[7]のいずれかに記載のアルミニウム箔。
 [9] アルミニウム箔の両面にアルミニウム酸化皮膜を有し、さらに、両面のアルミニウム酸化皮膜それぞれの表面の少なくとも一部に親水化層を有する[1]~[8]のいずれかに記載のアルミニウム箔。
 [10] [1]~[9]のいずれかに記載のアルミニウム箔を用いた電極用アルミニウム部材。
 以下に説明するように、本発明によれば、電極材料との密着性が良好で、かつ、電極材料との導電性が高いアルミニウム箔および電極用アルミニウム部材を提供することができる。
本発明のアルミニウム箔の一例を模式的に示す断面図である。 本発明のアルミニウム箔の好適な製造方法の一例を説明するための模式的な断面図である。 本発明のアルミニウム箔の好適な製造方法の一例を説明するための模式的な断面図である。 本発明のアルミニウム箔の好適な製造方法の一例を説明するための模式的な断面図である。 本発明のアルミニウム箔の好適な製造方法の一例を説明するための模式的な断面図である。 本発明のアルミニウム箔の好適な製造方法の一例を説明するための模式的な断面図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[アルミニウム箔]
 本発明のアルミニウム箔は、
 貫通孔を有するアルミニウム箔であって、
 アルミニウム箔の表面に厚み25nm以下のアルミニウム酸化皮膜を有し、さらにアルミニウム酸化皮膜の表面の少なくとも一部に親水化層を有するアルミニウム箔である。
 次に、本発明のアルミニウム箔の構成について、図1を用いて説明する。
 図1は、本発明のアルミニウム箔の好適な実施態様の一例を示す模式的な断面図である。
 図1に示すように、アルミニウム箔10は、アルミニウム基材3の両主面それぞれに厚み25nm以下のアルミニウム酸化皮膜14が形成されており、さらに、アルミニウム酸化皮膜14の表面に親水化層16を有する。また、アルミニウム箔10は、アルミニウム基材3およびアルミニウム酸化皮膜14を厚み方向に貫通する複数の貫通孔5を有する。すなわち、アルミニウム箔10は、厚み方向に貫通する貫通孔を有するアルミニウム基材3と、厚み方向に貫通する貫通孔を有するアルミニウム酸化皮膜14とを積層した構成を有し、アルミニウム酸化皮膜14の表面には親水化層16が形成された構成を有する。
 なお、図1に示す例においては、親水化層16は、アルミニウム酸化皮膜14の主面(最大面)および貫通孔5の内壁部分に形成される構成としたが、これに限定はされず、少なくとも一部に形成されていればよい。
 また、図1に示す例においては、アルミニウム酸化皮膜14は、アルミニウム基材3の両主面に形成される構成としたが、これに限定はされず、一方の主面のみに形成される構成であってもよい。
 本発明のアルミニウム箔は、集電体として用いられ、表面に活物質(電極材料)を塗布されて蓄電デバイスの正極または負極として用いられる。
 アルミニウム箔が、厚み方向に貫通する複数の貫通孔を有することで、集電体として用いる場合に、リチウムイオンの移動を容易にすることができる。また、多数の貫通孔を有することで、活物質との密着性を向上することができる。
 ここで、本発明において、厚さ25nm以下のアルミニウム酸化皮膜14とは、無孔質の酸化皮膜単独、あるいは無孔質の酸化皮膜と薄いポーラス状(多孔質)の酸化皮膜の両方からなる。具体的には、厚さ25nm以下のアルミニウム酸化皮膜14は、厚さが15nm以下の無孔質の酸化皮膜単独、あるいは無孔質の酸化皮膜の上に10nm以下の薄いポーラス状の酸化皮膜が形成されており、合計の厚さが25nm以下で形成される。
 また、本発明において、親水化層16とは、親水性を有する層であり、アルミニウム酸化皮膜14表面における親水性を向上する層である。
 前述のとおり、大容量の次世代二次電池では、電極材料の材質に応じて、容量確保を目的に、予め多量にLiイオンを電極にドーピングすることが行われる。Liイオンのドーピング方法は、電池セル内にLi金属を入れ、電池セル内での溶解を促すことで、過剰なLiイオンを電極に行きわたらせる方法が公知である。電極材料は元々Liイオンを透過するポーラスな材料である。一方、電極材料の支持体となり、かつ充放電時の電気の出し入れ用の導電板の役目を持つ集電体は通常、金属箔が使用される。金属箔は、電気は通すがイオンは通さない。そのため、電池セル内の電極材料の隅々までLiイオンを行きわたらせるためには、金属箔にLiイオンを通過させるための多数の貫通孔を設けた貫通箔が用いられる。
 また、次世代二次電池における正極用の電極材料は、水系の塗布液として調製され、集電体となる貫通箔に塗布される。そのため正極用の貫通箔は、親水性であることが望ましい。親水性を示す金属として、アルミニウムが知られている。そのため、正極用の集電体としてアルミニウム箔が用いられている。
 しかしながら、正極用の電極材料との一層の親水性を得るためには、集電体となる貫通箔の材料としてアルミニウムを使用するだけでは不十分であった。そこで、貫通箔の表面に親水化層を設けることが考えられる。しかしながら、親水化層は、電気抵抗になりうるため、単純に親水化層を設けると、電極材料と貫通箔との導電性が低くなってしまうおそれがあった。
 例えば、アルミニウム箔の表面に存在するアルミニウム酸化皮膜の厚みが25nm超の場合には、空孔を多数有するポーラス状(多孔質)の層となるため、親水化層が空孔内に浸入してアルミニウム酸化皮膜に多量に付着するため、親水性は向上するが電気抵抗が高くなってしまい電極材料と貫通箔との導電性が低くなってしまう。
 これに対して本発明のアルミニウム箔10は、表面に厚み25nm以下のアルミニウム酸化皮膜14を有し、さらにアルミニウム酸化皮膜14の表面の少なくとも一部に親水化層16を有する。親水化層16を有することで、正極用の電極材料との親和性を高くすることができる。その際、表面のアルミニウム酸化皮膜の厚みを25nm以下とすることで、空孔を有さない層とすることができ、あるいは、空孔を有する層が存在するものの、非常に薄い層となるため、親水化層16が多量に付着するのを抑制できる。これにより、アルミニウム箔10と電極材料との電気抵抗が高くなるのを抑制して、導電性を確保することができる。
 また、アルミニウム箔10は、電極材料との親和性が高いため、貫通孔5内に電極材料が入り込み、高い密着性に繋がる。高い密着性は、アルミニウム箔10と電極材料との接触抵抗を低減させることができる。また、充電と放電を多数回行ったときでも、電極材料がアルミニウム箔10(集電体)から剥離するリスクを回避出来、優れたサイクル特性が得られる。
 ここで、本発明のアルミニウム箔において、アルミニウム酸化皮膜14の密度が2.7~4.1g/cm3であるのが好ましく、2.7~4.1g/cm3が好ましく、3.2~4.1g/cm3がより好ましい。
 アルミニウムは酸化され易く、大気にさらされると酸化してしまうため、常時、酸化皮膜を有する。酸化皮膜は絶縁性が高いため、アルミニウム基材の表面に厚い酸化皮膜が存在すると、アルミニウム基材と電極材料(活物質)との間の電気抵抗が増大するおそれがある。
 これに対して、アルミニウム酸化皮膜の膜密度を2.7~4.1g/cm3とすることにより、水分がアルミニウム酸化皮膜に浸透してアルミニウム基材に到達するのを抑制できるので、アルミニウム基材の酸化の進行を抑制してアルミニウム酸化皮膜の厚みが厚くなるのを抑制できる。これにより、電気抵抗が低い状態を安定して維持することができる。
 なお、アルミニウム酸化皮膜の膜密度は、株式会社神戸製鋼所製、高分解能RBS分析装置 HRBS500(High Resolution Rutherford Backscattering Spectrometry;HR-RBS)を使用して測定する。エネルギー450keVのHe+イオンを試料面(アルミニウム箔のアルミニウム酸化皮膜の表面)の法線に対し62.5度で試料に入射させ、散乱されたHe+イオンを散乱角55度の位置で偏向磁場型エネルギー分析器により検出して面密度を得る。得られた面密度(atoms/cm2)から質量面密度(g/cm2)に換算し、この値と透過型電子顕微鏡(TEM)により測定した膜厚からアルミニウム酸化皮膜の密度(g/cm3)を算出する。
 また、アルミニウム箔と電極材料との間の電気抵抗をより低くできる等の観点から、アルミニウム酸化皮膜14の厚みは、1nm~25nmであるのが好ましく、1nm~15nmであるのがより好ましく、1nm~8nmであるのがさらに好ましい。
 なお、無孔質酸化皮膜の膜厚は、透過型電子顕微鏡(Transmission Electron Microscope:TEM)により断面を観察して、3箇所で膜厚を測定して平均値を膜厚として算出する。
 また、貫通孔の平均開口径は、1μm以上500μm以下であることが好ましく、1μm以上100μm未満がより好ましく、1μm超80μm以下がさらに好ましく、3μm超40μm以下が特に好ましく、5μm以上30μm以下が最も好ましい。
 貫通孔の平均開口径を上記範囲とすることで、アルミニウム箔に電極材料を塗布する際に塗布液の裏抜けが発生するのを防止でき、また、塗布した電極材料活物質との密着性を向上できる。また、アルミニウム箔が多数の貫通孔を有するものとした場合でも、十分な引張強度を有するものとすることができる。
 なお、貫通孔の平均開口径は、アルミニウム箔の一方の面から、高分解能走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いてアルミニウム箔の表面を倍率200倍で撮影し、得られたSEM写真において、周囲が環状に連なっている貫通孔を少なくとも20個抽出し、その開口径を読み取って、これらの平均値を平均開口径として算出する。
 また、開口径は、貫通孔部分の端部間の距離の最大値を測定した。すなわち、貫通孔の開口部の形状は略円形状に限定はされないので、開口部の形状が非円形状の場合には、貫通孔部分の端部間の距離の最大値を開口径とする。従って、例えば、2以上の貫通孔が一体化したような形状の貫通孔の場合にも、これを1つの貫通孔とみなし、貫通孔部分の端部間の距離の最大値を開口径とする。
 また、貫通孔の孔密度(数密度)は、大きいほど、プレドープ特性や密着性が向上する。一方、小さいほど、引張強度が向上する。従って、プレドープ特性、密着性、および、引張強度等の観点から、1~1000個/mm2であるのが好ましく、3~900個/mm2がより好ましく、100~200個/mm2がさらに好ましい。
 貫通孔の孔密度(数密度)は、アルミニウム箔の一方の主面側に平行光光学ユニットを設置し、平行光を透過させて、アルミニウム箔の他方の主面から、光学顕微鏡を用いてアルミニウム箔の表面を倍率100倍で撮影し写真を取得する。得られた写真の10cm×10cmの範囲において、100mm×75mmの視野、5箇所について、貫通孔の個数を計測し、mm2あたりの個数に換算し、各視野(5箇所)における値の平均値を貫通孔の孔密度として算出する。
 アルミニウム箔の厚みとしては、限定はないが、5μm~100μmが好ましく、10μm~30μmがより好ましい。
 <アルミニウム基材>
 アルミニウム基材は、特に限定はされず、例えば、JIS規格H4000に記載されている合金番号1085、1N30、3003等の公知のアルミニウム基材を用いることができる。なお、アルミニウム基材は、アルミニウムを主成分とし、微量の異元素を含む合金板である。
 <厚さ25nm以下のアルミニウム酸化皮膜>
 上記厚さ25nm以下のアルミニウム酸化皮膜は、厚みが15nm以下の無孔質の酸化皮膜単独、あるいは、無孔質の酸化皮膜と薄いポーラス状(多孔質)の酸化皮膜の両方からなる酸化皮膜であり、酸化アルミニウム(Al23)等のアルミニウム酸化物を含有する層であることが好ましい。
 ここで、酸化アルミニウムは、酸化アルミニウム1水和物(Al23・1H2O)、酸化アルミニウム3水和物(Al23・3H2O)等のアルミニウムの水和物として存在しうる。
 従って、上記厚み25nm以下のアルミニウム酸化皮膜は、酸化アルミニウム(Al23)、酸化アルミニウム1水和物(Al23・1H2O)、および、酸化アルミニウム3水和物(Al23・3H2O)の少なくとも1つを含む層であることが好ましい。
 このような厚み25nm以下のアルミニウム酸化皮膜は、なるべく低湿度条件下で形成された自然酸化皮膜によって形成される。
 特許文献1にも記載されるように、微細な貫通孔をアルミニウム箔に形成する方法として、アルミニウム基材に電解溶解処理を施して、貫通孔を形成する方法が知られている。このような電解溶解処理を施す際には、アルミニウム基材の表面には水酸化アルミニウム皮膜が形成される。そのため、電解溶解処理後のアルミニウム基材を乾燥すると、その表面には厚い酸化アルミニウム皮膜が形成される。そのため電気抵抗が高くなってしまう。
 これに対して、後に詳述するように、貫通孔を形成するための電解溶解処理の際に形成された水酸化アルミニウム皮膜を除去し、その後、自然酸化等によって、アルミニウム基材の表面にアルミニウム酸化皮膜を形成することで、好適に厚み25nm以下のアルミニウム酸化皮膜を形成することができる。
 前述のとおり、厚み25nm以下のアルミニウム酸化皮膜の密度は、2.7~4.1g/cm3が好ましい。
 酸化アルミニウム(Al23)の密度は、4.1g/cm3程度であり、酸化アルミニウム1水和物(Al23・1H2O)の密度は、3.07g/cm3程度であり、酸化アルミニウム3水和物(Al23・3H2O)の密度は、2.42g/cm3程度である。
 従って、水和物の比率が低くなるほど厚み25nm以下のアルミニウム酸化皮膜の密度は高くなる。例えば、厚み25nm以下のアルミニウム酸化皮膜の密度が3.95g/cm3未満の場合は、厚み25nm以下のアルミニウム酸化皮膜は水和物を3%以上含んでいる。
 密度の高い厚み25nm以下のアルミニウム酸化皮膜とする観点から、アルミニウム酸化皮膜中に含まれる酸化アルミニウム(Al23)は、70%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましい。
 また、厚み25nm以下のアルミニウム酸化皮膜中に含まれる酸化アルミニウム1水和物(Al23・1H2O)および、酸化アルミニウム3水和物(Al23・3H2O)は、45%以下が好ましく、30%以下がより好ましく、15%以下がさらに好ましい。
 <親水化層>
 上記親水化層は、アルミニウム箔の表面に親水性を付与する層であり、親水性成分を含有する層であることが好ましい。
 ここで、親水性成分とは、アルミニウム箔の表面に存在することで、アルミニウム箔の表面に存在しなかった場合よりも、表面の親水性を向上させうる成分のことをいう。
 上記親水性成分としては、例えば、ケイ酸塩、リン酸塩、スルホン酸、スルホン酸塩、ホスホン酸、ホスホン酸塩、リン酸エステル、リン酸エステル塩、および、フッ化ジルコン酸からなる群から選択される構造を少なくとも1つ有する化合物が好適に挙げられ、中でも、ケイ酸塩、リン酸エステル、リン酸エステル塩からなる群から選択される構造を少なくとも1つ有する化合物が好ましい。
 親水化層としては、具体的には、例えば、ケイ酸ナトリウム水溶液による親水化処理によって形成される親水化層、特許第3318031号に記載の、ポリビニルホスホン酸による親水化処理によって形成される親水化層、フッ化ジルコン酸ナトリウム液と、リン酸水素ナトリウム液の混合液に浸漬することによって形成される親水化層、特開2001-199175号公報に記載の、ベリリウム、マグネシウム、アルミニウム、珪素、チタン、硼素、ゲルマニウム、スズ、ジルコニウム、鉄、バナジウム、アンチモンおよび遷移金属から選択される少なくとも一つの元素の酸化物または水酸化物のコロイドを含有する塗布液を塗布してなる親水化層、特開2002-79772号公報に記載の、有機親水性ポリマーを架橋あるいは疑似架橋することにより得られる有機親水性マトリックスを有する親水化層、ポリアルコキシシラン、チタネート、ジルコネートまたはアルミネートの加水分解、縮合反応からなるゾル-ゲル変換により得られる無機親水性マトリックスを有する親水化層、あるいは、金属酸化物を含有する表面を有する無機薄膜からなる親水化層が挙げられる。
 ケイ酸ナトリウム水溶液による親水化処理は、水洗水や廃液処理が容易なため、工業生産上望ましい。
 親水化層の厚みは、0.1nm~5nmが好ましく、0.2nm~3nmがより好ましく、0.3nm~1nmがさらに好ましい。
 親水化層の厚みは、エッチングESCA(Electron Spectroscopy for Chemical Analysis)で測定することができる。
 親水化層は、上記各成分を、水又は水と有機溶剤の混合溶剤に溶解又は分散して親水化層用液を調製し、この親水化層用液を厚み25nm以下のアルミニウム酸化皮膜を有するアルミニウム基材の表面に、塗布、浸漬等の公知の方法で形成することができる。塗布方法としては、公知の種々の方法を用いることができる。例えば、バーコーター塗布、回転塗布、スプレー塗布、カーテン塗布、ディップ塗布、エアーナイフ塗布、ブレード塗布、ロール塗布等を挙げられる。
[アルミニウム箔の製造方法]
 次に、本発明のアルミニウム箔の製造方法について説明する。
 本発明のアルミニウム箔の製造方法は、
 アルミニウム基材に貫通孔を形成する工程と、
 貫通孔が形成されたアルミニウム基材に厚み25nm以下のアルミニウム酸化皮膜を形成する工程と、
 厚み25nm以下のアルミニウム酸化皮膜が形成されたアルミニウム基材の表面に親水化層を形成する工程とを有するのが好ましい。
 以下、アルミニウム箔の製造方法の好適な一例について説明する。
 アルミニウム箔の製造方法は、
 アルミニウム基材を陰極として、第1の酸性水溶液中で電解処理を行い、アルミニウム基材の表面に水酸化アルミニウム皮膜を形成する皮膜形成工程と、
 アルミニウム基材を陽極として、第2の酸性水溶液で電解処理を行い、アルミニウム基材および水酸化アルミニウム皮膜に貫通孔形成処理を行って貫通孔を形成する貫通孔形成工程と、
 皮膜形成工程後のアルミニウム基材をアルカリ性水溶液に浸漬して水酸化アルミニウム皮膜を除去する皮膜除去工程と、
 皮膜除去工程後のアルミニウム基材の表面に自然酸化によって厚み25nm以下のアルミニウム酸化皮膜を形成する酸化皮膜形成工程と、
 アルミニウム酸化皮膜の表面に親水化層を形成する親水化層形成工程と、を有することが好ましい。
 酸化皮膜形成工程により、アルミニウム基材に、厚み25nm以下のアルミニウム酸化皮膜を形成する。
 また、皮膜除去工程により、不要な皮膜や油分等を除去し、アルミニウム基材を露出させて、自然酸化による厚み25nm以下のアルミニウム酸化皮膜の形成を容易にする。
 また、皮膜形成工程、貫通孔形成工程、皮膜除去工程、酸化皮膜形成工程、および、親水化層形成工程それぞれの工程終了後には水洗処理を行う水洗工程を有するのが好ましい。
 また、最終の水洗処理の後には、乾燥処理を行う乾燥工程を有するのが好ましい。
 以下、アルミニウム箔の製造方法の各工程を図2~図5を用いて説明した後に、各工程について詳述する。
 図2~図5は、アルミニウム箔の製造方法の好適な実施態様の一例を示す模式的な断面図である。
 アルミニウム箔の製造方法は、図2~図5に示すように、アルミニウム基材1の両方の主面に対して皮膜形成処理を施し、水酸化アルミニウム皮膜2を形成する皮膜形成工程(図2および図3)と、皮膜形成工程の後に電解溶解処理を施して貫通孔5を形成し、貫通孔を有するアルミニウム基材3および貫通孔を有する水酸化アルミニウム皮膜4を形成する貫通孔形成工程(図3および図4)と、貫通孔形成工程の後に、貫通孔を有する水酸化アルミニウム皮膜4を除去し、貫通孔を有するアルミニウム基材3を作製する皮膜除去工程(図4および図5)と、皮膜除去工程の後に、自然酸化によって、貫通孔を有するアルミニウム基材3の両方の主面に、厚み25nm以下のアルミニウム酸化皮膜14を形成する酸化皮膜形成工程(図5および図6)と、酸化皮膜形成工程の後の表面に親水化層16を形成する親水化層形成工程(図6および図1)と、を有する製造方法である。
 〔皮膜形成工程〕
 皮膜形成工程は、アルミニウム基材を陰極として、第1の酸性水溶液中で電解処理(皮膜形成処理)を施し、アルミニウム基材の表面に水酸化アルミニウム皮膜を形成する工程である。
 <皮膜形成処理>
 上記皮膜形成処理は特に限定されず、例えば、従来公知の水酸化アルミニウム皮膜の形成処理と同様の処理を施すことができる。
 皮膜形成処理としては、例えば、特開2011-201123号公報の[0013]~[0026]段落に記載された条件や装置を適宜採用することができる。
 本発明においては、皮膜形成処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度1~80質量%、液温5~70℃、電流密度0.5~60A/dm2、電圧1~100V、電解時間1秒~20分であるのが適当であり、所望の皮膜量となるように調整される。
 本発明においては、電解液(第1の酸性水溶液)として、硝酸、塩酸、硫酸、燐酸、シュウ酸、あるいは、これらの酸の2以上の混酸を用いて電気化学的処理を行うのが好ましい。
 硝酸、塩酸を含む電解液中で電気化学的処理を行う場合には、アルミニウム基材と対極との間に直流を印加してもよく、交流を印加してもよい。アルミニウム基材に直流を印加する場合においては、電流密度は、1~60A/dm2であるのが好ましく、5~50A/dm2であるのがより好ましい。連続的に電気化学的処理を行う場合には、アルミニウム基材に、電解液を介して給電する液給電方式により行うのが好ましい。
 本発明においては、皮膜形成処理により形成される水酸化アルミニウム皮膜の量は0.05~50g/m2であるのが好ましく、0.1~10g/m2であるのがより好ましい。
 〔貫通孔形成工程〕
 貫通孔形成工程は、皮膜形成工程の後に、アルミニウム基材を陽極として、第2の酸性水溶液で電解処理(電解溶解処理)を施し、アルミニウム基材および水酸化アルミニウム皮膜に貫通孔を形成する工程である。
 <電解溶解処理>
 上記電解溶解処理は特に限定されず、直流または交流を用い、酸性溶液(第2の酸性水溶液)を電解液に用いることができる。中でも、硝酸、塩酸の少なくとも1以上の酸を用いて電気化学処理を行うのが好ましく、これらの酸に加えて硫酸、燐酸、シュウ酸の少なくとも1以上の混酸を用いて電気化学的処理を行うのが更に好ましい。
 本発明においては、電解液である酸性溶液としては、上記酸のほかに、米国特許第4,671,859号、同第4,661,219号、同第4,618,405号、同第4,600,482号、同第4,566,960号、同第4,566,958号、同第4,566,959号、同第4,416,972号、同第4,374,710号、同第4,336,113号、同第4,184,932号の各明細書等に記載されている電解液を用いることもできる。
 酸性溶液の濃度は0.1~2.5質量%であるのが好ましく、0.2~2.0質量%であるのが特に好ましい。また、酸性溶液の液温は20~80℃であるのが好ましく、30~60℃であるのがより好ましい。
 また、上記酸を主体とする水溶液は、濃度1~100g/Lの酸の水溶液に、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウム等の硝酸イオンを有する硝酸化合物または塩化アルミニウム、塩化ナトリウム、塩化アンモニウム等の塩酸イオンを有する塩酸化合物、硫酸アルミニウム、硫酸ナトリウム、硫酸アンモニウム等の硫酸イオンを有する硫酸化合物少なくとも一つを1g/Lから飽和するまでの範囲で添加して使用することができる。
 また、上記酸を主体とする水溶液には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、シリコン等のアルミニウム合金中に含まれる金属が溶解していてもよい。好ましくは、酸の濃度0.1~2質量%の水溶液にアルミニウムイオンが1~100g/Lとなるように、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム等を添加した液を用いることが好ましい。
 電気化学的溶解処理には、主に直流電流が用いられるが、交流電流を使用する場合にはその交流電源波は特に限定されず、サイン波、矩形波、台形波、三角波等が用いられる。
 (硝酸電解)
 本発明においては、硝酸を主体とする電解液を用いた電気化学的溶解処理(以下、「硝酸溶解処理」とも略す。)により、容易に、平均開口径が0.1μm以上100μm未満の貫通孔を形成することができる。
 ここで、硝酸溶解処理は、貫通孔形成の溶解ポイントを制御しやすい理由から、直流電流を用い、平均電流密度を5A/dm2以上とし、かつ、電気量を50C/dm2以上とする条件で施す電解処理であるであるのが好ましい。なお、平均電流密度は100A/dm2以下であるのが好ましく、電気量は10000C/dm2以下であるのが好ましい。
 また、硝酸電解における電解液の濃度や温度は特に限定されず、高濃度、例えば、硝酸濃度15~35質量%の硝酸電解液を用いて30~60℃で電解を行ったり、硝酸濃度0.7~2質量%の硝酸電解液を用いて30~80℃で電解を行うことができる。
 また、上記硝酸電解液に濃度0.1~50質量%の硫酸、シュウ酸、燐酸の少なくとも1つを混ぜた電解液を用いて電解を行うことができる。
 (塩酸電解)
 本発明においては、塩酸を主体とする電解液を用いた電気化学的溶解処理(以下、「塩酸溶解処理」とも略す。)によっても、容易に、平均開口径が1μm以上100μm未満の貫通孔を形成することができる。
 ここで、塩酸溶解処理は、貫通孔形成の溶解ポイントを制御しやすい理由から、直流電流を用い、平均電流密度を5A/dm2以上とし、かつ、電気量を50C/dm2以上とする条件で施す電解処理であるであるのが好ましい。なお、平均電流密度は100A/dm2以下であるのが好ましく、電気量は10000C/dm2以下であるのが好ましい。
 また、塩酸電解における電解液の濃度や温度は特に限定されず、高濃度、例えば、塩酸濃度10~35質量%の塩酸電解液を用いて30~60℃で電解を行ったり、塩酸濃度0.7~2質量%の塩酸電解液を用い30~80℃で電解を行うことができる。
 また、上記塩酸電解液に濃度0.1~50質量%の硫酸、シュウ酸、燐酸の少なくとも1つを混ぜた電解液を用いて電解を行うことができる。
 〔皮膜除去工程〕
 皮膜除去工程は、化学的溶解処理を行って水酸化アルミニウム皮膜を除去する工程である。
 上記皮膜除去工程は、例えば、後述する酸エッチング処理やアルカリエッチング処理を施すことにより水酸化アルミニウム皮膜を除去することができる。
 <アルカリエッチング処理>
 アルカリエッチング処理は、上記水酸化アルミニウム皮膜をアルカリ溶液に接触させることにより、表層を溶解させる処理である。
 アルカリ溶液に用いられるアルカリとしては、例えば、カセイアルカリ、アルカリ金属塩が挙げられる。具体的には、カセイアルカリとしては、例えば、水酸化ナトリウム(カセイソーダ)、カセイカリが挙げられる。また、アルカリ金属塩としては、例えば、メタケイ酸ソーダ、ケイ酸ソーダ、メタケイ酸カリ、ケイ酸カリ等のアルカリ金属ケイ酸塩;炭酸ソーダ、炭酸カリ等のアルカリ金属炭酸塩;アルミン酸ソーダ、アルミン酸カリ等のアルカリ金属アルミン酸塩;グルコン酸ソーダ、グルコン酸カリ等のアルカリ金属アルドン酸塩;第二リン酸ソーダ、第二リン酸カリ、第三リン酸ソーダ、第三リン酸カリ等のアルカリ金属リン酸水素塩が挙げられる。中でも、エッチング速度が速い点および安価である点から、カセイアルカリの溶液、および、カセイアルカリとアルカリ金属アルミン酸塩との両者を含有する溶液が好ましい。特に、水酸化ナトリウムの水溶液が好ましい。
 アルカリ溶液の濃度は、0.1~50質量%であるのが好ましく、0.2~10質量%であるのがより好ましい。アルカリ溶液中にアルミニウムイオンが溶解している場合には、アルミニウムイオンの濃度は、0.01~10質量%であるのが好ましく、0.1~3質量%であるのがより好ましい。アルカリ溶液の温度は10~90℃であるのが好ましい。処理時間は1~120秒であるのが好ましい。
 水酸化アルミニウム皮膜をアルカリ溶液に接触させる方法としては、例えば、水酸化アルミニウム皮膜が形成されたアルミニウム基材をアルカリ溶液を入れた槽の中を通過させる方法、水酸化アルミニウム皮膜が形成されたアルミニウム基材をアルカリ溶液を入れた槽の中に浸せきさせる方法、アルカリ溶液を水酸化アルミニウム皮膜が形成されたアルミニウム基材の表面(水酸化アルミニウム皮膜)に噴きかける方法が挙げられる。
 <酸エッチング処理>
 酸エッチング処理は、前記アルカリエッチング処理後の表面に残った残渣を完全に除去するために行う。また、同時に、その後で行う酸化皮膜形成処理で、不要に厚い酸化皮膜が形成される可能性を排除するため、酸エッチング処理後に残渣が残りにくいことも必要である。
 ここで、酸性溶液としては、例えば、硝酸、塩酸、硫酸、燐酸、シュウ酸、クロム化合物、ジルコニウム系化合物、チタン系化合物、リチウム塩、セリウム塩、マグネシウム塩、ケイフッ化ナトリウム、フッ化亜鉛、マンガン化合物、モリブデン化合物、マグネシウム化合物、バリウム化合物およびハロゲン単体からなる群から選択される少なくとも1種を含有した水溶液が好ましい。
 具体的には、クロム化合物としては、例えば、酸化クロム(III)、無水クロム(VI)酸等が挙げられる。
 ジルコニウム系化合物としては、例えば、フッ化ジルコンアンモニウム、フッ化ジルコニウム、塩化ジルコニウムが挙げられる。
 チタン化合物としては、例えば、酸化チタン、硫化チタンが挙げられる。
 リチウム塩としては、例えば、フッ化リチウム、塩化リチウムが挙げられる。
 セリウム塩としては、例えば、フッ化セリウム、塩化セリウムが挙げられる。
 マグネシウム塩としては、例えば、硫化マグネシウムが挙げられる。
 マンガン化合物としては、例えば、過マンガン酸ナトリウム、過マンガン酸カルシウムが挙げられる。
 モリブデン化合物としては、例えば、モリブデン酸ナトリウムが挙げられる。
 マグネシウム化合物としては、例えば、フッ化マグネシウム・五水和物が挙げられる。
 バリウム化合物としては、例えば、酸化バリウム、酢酸バリウム、炭酸バリウム、塩素酸バリウム、塩化バリウム、フッ化バリウム、ヨウ化バリウム、乳酸バリウム、シュウ酸バリウム、過塩素酸バリウム、セレン酸バリウム、亜セレン酸バリウム、ステアリン酸バリウム、亜硫酸バリウム、チタン酸バリウム、水酸化バリウム、硝酸バリウム、あるいはこれらの水和物等が挙げられる。
 上記バリウム化合物の中でも、酸化バリウム、酢酸バリウム、炭酸バリウムが好ましく、酸化バリウムが特に好ましい。
 ハロゲン単体としては、例えば、塩素、フッ素、臭素が挙げられる。
 中でも、上記酸性溶液は、以下の酸を含有する水溶液であるのが好ましく、酸として、硝酸、塩酸、硫酸、燐酸、シュウ酸等が挙げられ、2種以上の酸の混合物であってもよい。
 酸濃度としては、0.01mol/L以上であるのが好ましく、0.05mol/L以上であるのがより好ましく、0.1mol/L以上であるのが更に好ましい。上限は特にないが、一般的には10mol/L以下であるのが好ましく、5mol/L以下であるのがより好ましい。
 溶解処理は、水酸化アルミニウム皮膜が形成されたアルミニウム基材を上述した溶解液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、スプレー法が好ましい。酸エッチング処理後は十分な水洗を行うことが好ましい。
 〔酸化皮膜形成工程〕
 酸化皮膜形成工程は、水酸化アルミニウム皮膜を除去したアルミニウム基材の表面を自然酸化させることで、アルミニウム基材の両主面に厚み25nm以下のアルミニウム酸化皮膜を形成する工程である。
 前述のとおり、貫通孔を形成するための電解溶解処理の際にアルミニウム基材の表面に形成された水酸化アルミニウム皮膜を、アルカリエッチング処理で除去し、更にその残渣を酸エッチング処理で除去し、その後、自然酸化等によって、アルミニウム基材の表面に酸化皮膜を形成することで、好適に厚み25nm以下のアルミニウム酸化皮膜を形成することができる。
 アルミニウム酸化皮膜の厚み、密度等は、皮膜除去工程の後の、アルミニウム基材の保管方法を変更することで、アルミニウム表面に形成されるアルミニウム酸化皮膜の厚み等を変えることができる。具体的には、温度、湿度、保管時間等を変えることでアルミニウム酸化皮膜の厚み等を変えることができる。
 〔親水化層形成工程〕
 親水化層形成工程は、厚み25nm以下のアルミニウム酸化皮膜の表面に親水化層を形成する工程である。
 前述のとおり、親水化層は、親水化層となる化合物等を、水又は水と有機溶剤の混合溶剤に溶解又は分散して親水化層用液を調製し、この親水化層用液をアルミニウム酸化皮膜を有するアルミニウム基材の表面に、塗布、浸漬等の公知の方法で形成することができる。
 〔水洗工程〕
 前述のとおり、本発明においては、上述した皮膜形成工程、貫通孔形成工程、皮膜除去工程、酸化皮膜形成工程、および、親水化層形成工程それぞれの工程終了後には水洗処理を行う水洗工程を有するのが好ましい。水洗には、純水、井水、水道水等を用いることができる。処理液の次工程への持ち込みを防ぐためにニップ装置を用いてもよい。
 〔乾燥工程〕
 前述のとおり、各工程後の水洗工程の後には、乾燥処理を設けてもよい。
 乾燥の方法には限定はなく、エアナイフ等により水分を吹き飛ばす方法、加熱による方法等の公知の乾燥方法が適宜利用可能である。また、複数の乾燥方法を行なってもよい。
 なお、上述した例においては、皮膜形成工程、貫通孔形成工程、および、皮膜除去工程を行うことで、アルミニウム基材に貫通孔を形成したが、これに限定はされず、他の公知の方法で行ってもよい。
 例えば、アルミニウム基材の表面にレジスト材料を塗布したのちに、レジスト材料にリソグラフィーを行い、その後、エッチング加工を行うことで、貫通孔を形成することができる。あるいは、アルミニウム基材をエッチャントに接触させて、アルミニウム基材中の金属間化合物(析出物あるいは晶出物)を起点に局所的に溶解を生じさせて貫通孔を形成する方法がある。この方法の場合、アルミニウム基材の材質ごとに金属間化合物の存在状況は異なるため、材質ごとに事前に条件出しを行い、エッチャントの条件、エッチングの時間等の条件を調整すればよい。
 また、パンチング、針加工などの物理的接触による機械加工方法で貫通孔を形成することができる。
[集電体]
 上述のとおり、本発明のアルミニウム箔は、電極用アルミニウム部材として利用可能であり、蓄電デバイス用集電体(以下、「集電体」ともいう)として利用可能である。
 集電体は、アルミニウム箔が厚み方向に複数の貫通孔を有していることにより、例えば、リチウムイオンキャパシタに用いた場合においては短時間でのリチウムのプレドープが可能となり、リチウムをより均一に分散させることが可能となる。また、活物質層や活性炭との密着性が良好となり、サイクル特性や出力特性、塗布適性等の生産性に優れる蓄電デバイスを作製することができる。
 また、本発明のアルミニウム箔を用いる集電体は、親水化層を有するので、活物質層(電極材料)との密着性が良好になり剥離を抑制でき優れたサイクル特性が得られる。一方で、親水化層を薄いアルミニウム酸化皮膜の表面に形成するので、活物質層との間の電気抵抗が高くなるのを抑制でき、効率の良い蓄電デバイスを作製することができる。
<活物質層>
 活物質層としては特に限定はなく、従来の蓄電デバイスにおいて用いられる公知の活物質層が利用可能である。
 具体的には、アルミニウム箔を正極の集電体として用いる場合の、活物質および活物質層に含有していてもよい導電材、結着剤、溶媒等については、特開2012-216513号公報の[0077]~[0088]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
 また、アルミニウム箔を負極の集電体として用いる場合の、活物質については、特開2012-216513号公報の[0089]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[蓄電デバイス]
 本発明のアルミニウム箔を集電体として利用する電極は、蓄電デバイスの正極あるいは負極として用いることができる。
 ここで、蓄電デバイス(特に、二次電池)の具体的な構成や適用される用途については、特開2012-216513号公報の[0090]~[0123]段落に記載された材料や用途を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[正極]
 本発明のアルミニウム箔を集電体として用いた正極は、アルミニウム箔を正極に用いた正極集電体と、正極集電体の表面に形成される正極活物質を含む層(正極活物質層)とを有する正極である。
 ここで、上記正極活物質や、上記正極活物質層に含有していてもよい導電材、結着剤、溶媒等については、特開2012-216513号公報の[0077]~[0088]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[負極]
 本発明のアルミニウム箔を集電体として用いた負極は、アルミニウム箔を負極に用いた負極集電体と、負極集電体の表面に形成される負極活物質を含む層とを有する負極である。
 ここで、上記負極活物質については、特開2012-216513号公報の[0089]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[その他の用途]
 本発明のアルミニウム箔は、蓄電デバイス用の集電体の他、電解コンデンサ用の電極用アルミニウム部材として用いることができる。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 [実施例1]
 <アルミニウム箔の作製>
 (貫通孔の形成)
 特開2011-208254の実施例1を参考に、以下のとおり、条件を調整し、電解法でアルミニウム基材に貫通孔を形成した。
 アルミニウム純度99.99%の鋳塊を作製し、均質化処理、熱間圧延(温度400℃)及び冷間圧延、中間焼鈍、再度の冷間圧延を施すことによって厚さ30μmのアルミニウム基材を得た。表面を洗浄した後、アルゴンガス中500℃で10時間の焼鈍を実施した。この焼鈍により、アルミの結晶方位をおおむね同一方向に揃えることが出来る。次いで、塩酸5%を含む水溶液を電解液として用い、直流エッチングを行うことにより、トンネルピットを形成し、貫通させることで、平均開口径1μm、孔密度900個/mm2の貫通孔を形成した。
 なお、平均開口径および孔密度は、上述の方法で測定した。
 (酸化皮膜の形成(酸化皮膜形成工程))
 次に、貫通孔を形成したアルミニウム基材を、温度25℃、湿度7%RHで3カ月保管して自然酸化させて、アルミニウム酸化皮膜を形成した。
 形成したアルミニウム酸化皮膜の厚みを上述した方法で測定したところ、5nmであった。
 (親水化層の形成(親水化層形成工程))
 次に、アルミニウム酸化皮膜を形成したアルミニウム基材を、60℃のケイ酸ナトリウム水溶液に、5秒間浸漬することで親水化層を形成し、その後、20秒間水洗処理を行なうことで、アルミニウム箔を作製した。ケイ酸ナトリウム水溶液として、濃度5%の1号ケイ酸ナトリウム(JIS K1408-1966)水溶液を使用した。
 また、親水化層の形成後、親水化層の構成元素であるシリコンの付着量(Si付着量)を測定した。Si付着量は、蛍光X線分析装置(XRF)を使用して、予めSi量を定量済みの材料の測定結果を元に、検量線を作成し、それを元にSi付着量を計量することが出来る。
 [実施例2]
 貫通孔の形成方法を以下のように変更して、貫通孔の平均開口径を11μm、孔密度を110個/mm2とした以外は実施例1と同様にして、アルミニウム箔を作製した。
 (a)水酸化アルミニウム皮膜形成処理(皮膜形成工程)
 平均厚さ20μmのアルミニウム基材(JIS H-4160、合金番号:1N30-H、アルミニウム純度:99.30%)を準備した。
 50℃に保温した電解液(硝酸濃度1%、硫酸濃度0.2%、アルミニウム濃度0.5%)を用いて、上記アルミニウム基材を陰極として、電気量総和が500C/dm2の条件下で電解処理を施し、アルミニウム基材に水酸化アルミニウム皮膜を形成した。なお、電解処理は、直流電源で行った。電流密度は、50A/dm2とした。
 水酸化アルミニウム皮膜形成後、スプレーによる水洗を行った。
 (b)電解溶解処理(貫通孔形成工程)
 次いで、50℃に保温した電解液(硝酸濃度1%、硫酸濃度0.2%、アルミニウム濃度0.5%)を用いて、アルミニウム基材を陽極として、電気量総和が500C/dm2の条件下で電解処理を施し、アルミニウム基材及び水酸化アルミニウム皮膜に貫通孔を形成した。なお、電解処理は、直流電源で行った。電流密度は、25A/dm2とした。
 貫通孔の形成後、スプレーによる水洗を行い、乾燥させた。
 (c)水酸化アルミニウム皮膜の除去処理(皮膜除去工程)
 次いで、電解溶解処理後のアルミニウム基材を、水酸化ナトリウム濃度5質量%、アルミニウムイオン濃度0.5質量%の水溶液(液温35℃)中に30秒間浸漬した後、水洗を行い、硝酸濃度30%、アルミイオン濃度0.5質量%の水溶液(液温50℃)中に20秒間浸漬してアルカリエッチング処理の残渣を除去した。
 その後、スプレーによる水洗を行い、乾燥させて、アルミニウム基材に貫通孔を形成した。
 [実施例3]
 上記(a)皮膜形成工程における電気量総和を1000C/dm2、上記(b)貫通孔形成工程における電気量総和を1000C/dm2に変更して、貫通孔の平均開口径を20μm、孔密度を160個/mm2とした以外は、実施例2と同様にしてアルミニウム箔を作製した。
 [実施例4]
 貫通孔の形成方法を以下のように変更して、貫通孔の平均開口径を90μm、孔密度を8個/mm2とした以外は実施例1と同様にして、アルミニウム箔を作製した。
 WO2016/060037に記載の比較例1を参考に、アルミニウム基材にレジストを塗布し露光した後にエッチングを行い貫通孔を形成した。
 平均厚さ20μmのアルミニウム基材(JIS H-4160、合金番号:1N30-H、アルミニウム純度:99.30%)を準備した。
 上記アルミニウム基材の両主面に、ネガ型レジスト液(進和工業株式会社製、EF-100)をバーコーターで10μm厚に均一塗布し、80℃で10分乾燥した。続いて、80μm径の円を、1mm2あたり8個形成したネガフィルムマスク(150μm)を用意した。そのネガフィルムをレジストが積層されたアルミニウム基材の片面に真空密着させ、そこから一定の距離を置いて設けた紫外線露光機から300mJ/cm2の紫外線を照射し、レジスト層に潜像を形成した。一方、ネガフィルムマスクを形成密着させた面と異なる他方の面は、ネガフィルムマスクを介在させず全面を300mJ/cm2の紫外線で露光した。続いて、未露光箇所を1%炭酸ナトリウム水溶液により1分間/30℃の条件で現像することで除去した。
 続いて、現像後にむき出しになったアルミニウム面をエッチング除去した。具体的には、2.2mol/dm3 FeCl3+1.0mol/cm3 HCl水溶液(温度40℃)により1分間、0.15MPaの圧力でシャワー処理を行った。この後、直ちに水洗及び乾燥した。続いて、硬化させたレジストを剥離除去した。具体的には3%水酸化ナトリウム水溶液(温度40℃)により1分間、0.15MPaの条件でシャワー処理を行った。この後、水洗及び乾燥を行い貫通孔が形成されたアルミニウム基材を得た。
 [実施例5]
 貫通孔の形成方法を以下のように変更して、貫通孔の平均開口径を300μm、孔密度を3個/mm2とした以外は実施例1と同様にして、アルミニウム箔を作製した。
 特開2008-218559号に記載の実施例1を参考に、条件を変えてアルミニウム基材に貫通孔を形成した。厚さ20μmのアルミニウム基材に、孔径300μmのダイセットを用いてパンチング加工で貫通孔を形成した。
 [実施例6]
 ダイセットを孔径500μmのダイセットに変更して、貫通孔の平均開口径を500μm、孔密度を1個/mm2とした以外は、実施例5と同様にしてアルミニウム箔を作製した。
 [実施例7]
 上記(a)皮膜形成工程における電気量総和を750C/dm2、上記(b)貫通孔形成工程における電気量総和を750C/dm2に変更して、貫通孔の平均開口径を15μm、孔密度を140個/mm2とし、酸化皮膜形成工程を下記のように変更してアルミニウム酸化皮膜の厚みを1nmとした以外は実施例2と同様にして、アルミニウム箔を作製した。
 (酸化皮膜の形成(酸化皮膜形成工程))
 次に、貫通孔を形成したアルミニウム基材を、温度25℃、湿度7%RHで1カ月保管して自然酸化させて、アルミニウム酸化皮膜を形成した。
 [実施例8]
 酸化皮膜形成工程を下記のように変更してアルミニウム酸化皮膜の厚みを4nmとした以外は実施例7と同様にして、アルミニウム箔を作製した。
 (酸化皮膜の形成(酸化皮膜形成工程))
 次に、貫通孔を形成したアルミニウム基材を、温度25℃、湿度7%RHで2カ月保管して自然酸化させて、アルミニウム酸化皮膜を形成した。
 [実施例9]
 酸化皮膜形成工程を下記のように変更してアルミニウム酸化皮膜の厚みを8nmとした以外は実施例7と同様にして、アルミニウム箔を作製した。
 (酸化皮膜の形成(酸化皮膜形成工程))
 次に、貫通孔を形成したアルミニウム基材を、温度25℃、湿度15%RHで3カ月保管して自然酸化させて、アルミニウム酸化皮膜を形成した。
 [実施例10]
 酸化皮膜形成工程を下記のように変更してアルミニウム酸化皮膜の厚みを12nmとした以外は実施例7と同様にして、アルミニウム箔を作製した。
 (酸化皮膜の形成(酸化皮膜形成工程))
 次に、貫通孔を形成したアルミニウム基材を、温度25℃、湿度20%RHで3カ月保管して自然酸化させて、アルミニウム酸化皮膜を形成した。
 [実施例11]
 酸化皮膜形成工程を下記のように変更して酸化皮膜の厚みを25nmとした以外は実施例7と同様にして、アルミニウム箔を作製した。
 (酸化皮膜の形成(酸化皮膜形成工程))
 次に、貫通孔を形成したアルミニウム基材を、温度25℃、湿度30%RHで3カ月保管して自然酸化させて、アルミニウム酸化皮膜を形成した。
 [実施例12]
 上記(a)皮膜形成工程における電気量総和を750C/dm2、上記(b)貫通孔形成工程における電気量総和を750C/dm2に変更して、貫通孔の平均開口径を11μm、孔密度を140個/mm2とし、酸化皮膜形成工程を下記のように変更してアルミニウム酸化皮膜の厚みを3nmとした以外は実施例7と同様にして、アルミニウム箔を作製した。
 (酸化皮膜の形成(酸化皮膜形成工程))
 次に、貫通孔を形成したアルミニウム基材を、温度25℃、湿度7%RHで1.5カ月保管して自然酸化させて、アルミニウム酸化皮膜を形成した。
 [実施例13]
 ダイセットを孔径300μmのダイセットに変更して、貫通孔の平均開口径を300μm、孔密度を3個/mm2とした以外は、実施例5と同様にしてアルミニウム箔を作製した。
 [実施例14および15]
 親水化層形成工程を下記のように変更した以外は実施例12および13と同様にして、アルミニウム箔を作製した。
 (親水化層の形成(親水化層形成工程))
 次に、アルミニウム酸化皮膜を形成したアルミニウム基材を、60℃のケイ酸ナトリウム水溶液に、5秒間浸漬することで親水化層を形成し、その後、20秒間水洗処理を行なうことで、アルミニウム箔を作製した。ケイ酸ナトリウム水溶液として、濃度3%の3号ケイ酸ナトリウム(JIS K1408-1966)水溶液を使用した。
 [比較例1および2]
 親水化層形成工程を施さなかった(親水化層を形成しなかった)以外は実施例3および13と同様にして、アルミニウム箔を作製した。
 [実施例16および17]
 親水化層形成工程を下記のように変更した以外は実施例12および13と同様にして、アルミニウム箔を作製した。
 (親水化層の形成(親水化層形成工程))
 次に、アルミニウム酸化皮膜を形成したアルミニウム基材にポリビニルホスホン酸による親水化処理を施した。
 ポリビニルホスホン酸による親水化処理は、特許第3318031号の実施例(1-a)を参考にして実施した。具体的には、酸化皮膜形成工程の後に、アルミニウム基材を60℃でポリビニルホスホン酸の0.2%水溶液中に30秒間浸漬し水洗した。
 [評価]
 実施例および比較例で作製したアルミニウム箔の両面に、電極材料として、LiCoO2を正極材として含む正極用活物質を塗布し、正極電極を作製した。
 正極用活物質として、LiCoO2の粉末90質量部と、バインダー((株)クレハ製 KFポリマー)10質量部とを、水に添加して分散することにより、スラリーを調製した。
 次に、調製したスラリーを、作製したアルミニウム箔の両面に、ダイコーターによって合計200μmの厚みになるように塗工し、120℃で30分間乾燥し、アルミニウム箔の表面に活物質層を形成し正極電極を作製した。
 <密着性>
 アルミニウム箔と活物質層との密着性をテープ剥離試験により評価した。
 テープ剥離試験は、粘着テープとしてニチバン製両面テープ『ナイスタック』を用いた。幅15mmの粘着テープの片面を活物質層の表面に貼り、もう片面をステンレス製のブロックに貼り、ステンレスブロックをはがす際に、活物質の剥離状態を評価した。
  A:剥離しない
  B:全体の10%未満の範囲で剥離する。
  C:全体の10%以上剥離する。
 <導電性>
 上記で作製した正極電極の表裏面にφ2.8cmの銅プローブを0.20MPaの荷重を掛けて密着させて、抵抗計(RESISTANCE HiTESTER 3541、日置電気株式会社)を用いて電気抵抗値を測定し、導電性を評価した。
 評価結果を表1~表3に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 表1~表3から、厚み25nm以下のアルミニウム酸化皮膜を有し、さらに、アルミニウム酸化皮膜の表面に親水化層を有する本発明の実施例は、比較例に比べて、密着性が良好で、導電性も高くできることがわかる。
 また、実施例1~6の対比から、貫通孔の平均開口径は、1μm以上500μm以下が好ましく、1μm以上100μm未満がより好ましいことがわかる。
 また、実施例7~11の対比から、アルミニウム酸化皮膜の厚みは、1nm~12nmであるのが好ましいことがわかる。
 また、実施例12~17の対比から、親水化層は、ケイ酸塩を有する化合物を含むことが好ましいことがわかる。
 以上より本発明の効果は明らかである。
 1 アルミニウム基材
 2 水酸化アルミニウム皮膜
 3 貫通孔を有するアルミニウム基材
 4 貫通孔を有する水酸化アルミニウム皮膜
 5 貫通孔
 10 アルミニウム箔
 14 アルミニウム酸化皮膜
 16 親水化層

Claims (10)

  1.  貫通孔を有するアルミニウム箔であって、
     前記アルミニウム箔の表面に厚み25nm以下のアルミニウム酸化皮膜を有し、さらに前記アルミニウム酸化皮膜の表面の少なくとも一部に親水化層を有するアルミニウム箔。
  2.  前記アルミニウム酸化皮膜の密度が2.7~4.1g/cm3である請求項1に記載のアルミニウム箔。
  3.  前記厚さ25nm以下のアルミ酸化皮膜が、酸化アルミニウム、酸化アルミニウム1水和物、および、酸化アルミニウム3水和物の少なくとも1つを含む請求項1または2に記載のアルミニウム箔。
  4.  前記アルミニウム酸化皮膜の厚みが、1nm~15nmである請求項1~3のいずれか一項に記載のアルミニウム箔。
  5.  前記親水化層が、ケイ酸塩、リン酸塩、スルホン酸、スルホン酸塩、ホスホン酸、ホスホン酸塩、リン酸エステル、リン酸エステル塩、および、フッ化ジルコン酸からなる群から選択される構造を少なくとも1つ有する化合物を含む請求項1~4のいずれか一項に記載のアルミニウム箔。
  6.  前記貫通孔の平均開口径が1μm~500μmである請求項1~5のいずれか一項に記載のアルミニウム箔。
  7.  前記貫通孔の孔密度が1~1000個/mm2である請求項1~6のいずれか一項に記載のアルミニウム箔。
  8.  前記アルミニウム箔の厚みが5μm~100μmである請求項1~7のいずれか一項に記載のアルミニウム箔。
  9.  前記アルミニウム箔の両面に前記アルミニウム酸化皮膜を有し、さらに、両面の前記アルミニウム酸化皮膜それぞれの表面の少なくとも一部に親水化層を有する請求項1~8のいずれか一項に記載のアルミニウム箔。
  10.  請求項1~9のいずれか一項に記載のアルミニウム箔を用いた電極用アルミニウム部材。
PCT/JP2018/036858 2017-10-16 2018-10-02 アルミニウム箔および電極用アルミニウム部材 WO2019077995A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880067332.8A CN111225997B (zh) 2017-10-16 2018-10-02 铝箔及电极用铝部件
JP2019549187A JP6936864B2 (ja) 2017-10-16 2018-10-02 アルミニウム箔および電極用アルミニウム部材
US16/848,949 US11527758B2 (en) 2017-10-16 2020-04-15 Aluminum foil and aluminum member for electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-200347 2017-10-16
JP2017200347 2017-10-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/848,949 Continuation US11527758B2 (en) 2017-10-16 2020-04-15 Aluminum foil and aluminum member for electrodes

Publications (1)

Publication Number Publication Date
WO2019077995A1 true WO2019077995A1 (ja) 2019-04-25

Family

ID=66174363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036858 WO2019077995A1 (ja) 2017-10-16 2018-10-02 アルミニウム箔および電極用アルミニウム部材

Country Status (4)

Country Link
US (1) US11527758B2 (ja)
JP (1) JP6936864B2 (ja)
CN (1) CN111225997B (ja)
WO (1) WO2019077995A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023514760A (ja) * 2019-12-05 2023-04-10 エムシーティ ホールディングス リミテッド 金属用保護コーティング

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114730666A (zh) * 2019-11-29 2022-07-08 松下知识产权经营株式会社 电解电容器用阴极箔、电解电容器、及它们的制造方法
CN111957542A (zh) * 2020-08-11 2020-11-20 江苏万源新材料股份有限公司 一种具有保湿功能的涂层铝箔及其制备工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158245A1 (ja) * 2015-03-31 2016-10-06 富士フイルム株式会社 アルミニウム板および蓄電デバイス用集電体
WO2017163913A1 (ja) * 2016-03-25 2017-09-28 富士フイルム株式会社 アルミニウム板の製造方法、及び、アルミニウム板の製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100102C (zh) * 1997-10-20 2003-01-29 常州市兴荣机电制造有限公司 亲水性耐蚀性兼优膜的成膜剂及其预涂膜铝箔和成膜方法
JP4730405B2 (ja) * 2008-07-11 2011-07-20 トヨタ自動車株式会社 リチウムイオン電池の正電極板に用いる電池用電極箔、リチウムイオン電池用の正電極板、リチウムイオン電池、車両、電池搭載機器、リチウムイオン電池の正電極板に用いる電池用電極箔の製造方法、及び、リチウムイオン電池用の正電極板の製造方法
US8703381B2 (en) 2011-08-31 2014-04-22 Eastman Kodak Company Lithographic printing plate precursors for on-press development
JP5917242B2 (ja) * 2012-04-05 2016-05-11 株式会社Uacj 二次電池電極用アルミニウム合金箔、及びその製造方法
EP3202957B1 (en) * 2014-09-30 2020-07-29 Fujifilm Corporation Aluminum plate
WO2017018462A1 (ja) * 2015-07-30 2017-02-02 富士フイルム株式会社 アルミニウム板およびアルミニウム板の製造方法
EP3138691B1 (en) 2015-09-02 2020-08-12 Agfa Nv Inkjet printing device with dimpled vacuum belt
JP6486867B2 (ja) * 2016-06-02 2019-03-20 太陽誘電株式会社 電気化学デバイス用電極及び電気化学デバイス用電極の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158245A1 (ja) * 2015-03-31 2016-10-06 富士フイルム株式会社 アルミニウム板および蓄電デバイス用集電体
WO2017163913A1 (ja) * 2016-03-25 2017-09-28 富士フイルム株式会社 アルミニウム板の製造方法、及び、アルミニウム板の製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023514760A (ja) * 2019-12-05 2023-04-10 エムシーティ ホールディングス リミテッド 金属用保護コーティング
JP7442641B2 (ja) 2019-12-05 2024-03-04 エムシーティ ホールディングス リミテッド 金属用保護コーティング

Also Published As

Publication number Publication date
US20200243865A1 (en) 2020-07-30
CN111225997A (zh) 2020-06-02
CN111225997B (zh) 2022-06-07
US11527758B2 (en) 2022-12-13
JP6936864B2 (ja) 2021-09-22
JPWO2019077995A1 (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
US10593989B2 (en) Method for manufacturing aluminum plate, aluminum plate, collector for storage device, and storage device
JP6374013B2 (ja) アルミニウム板
US11527758B2 (en) Aluminum foil and aluminum member for electrodes
WO2016060037A1 (ja) アルミニウム板およびアルミニウム板の製造方法
US11527760B2 (en) Aluminum member for electrodes and method of producing aluminum member for electrodes
WO2016017380A1 (ja) アルミニウム板
WO2017018462A1 (ja) アルミニウム板およびアルミニウム板の製造方法
WO2022185778A1 (ja) 集電体用アルミニウム基材、キャパシタ、二次電池、および、集電体用アルミニウム基材の製造方法
CN113646460B (zh) 铝箔、铝箔的制造方法、集电体、锂离子电容器及锂离子电池
JP7526800B2 (ja) 集電体用アルミニウム部材、ならびに、リチウムイオンキャパシタ、電気二重層キャパシタ、半固体電池、固体電池、および、非水電解液を使用する二次電池
JP7190582B2 (ja) アルミニウム箔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549187

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867858

Country of ref document: EP

Kind code of ref document: A1