WO2014178264A1 - 車両制御装置及び車両制御方法 - Google Patents

車両制御装置及び車両制御方法 Download PDF

Info

Publication number
WO2014178264A1
WO2014178264A1 PCT/JP2014/060145 JP2014060145W WO2014178264A1 WO 2014178264 A1 WO2014178264 A1 WO 2014178264A1 JP 2014060145 W JP2014060145 W JP 2014060145W WO 2014178264 A1 WO2014178264 A1 WO 2014178264A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
control
target value
request
vehicle
Prior art date
Application number
PCT/JP2014/060145
Other languages
English (en)
French (fr)
Inventor
貴敬 田代
植村 誠
清水 弘一
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP14791466.7A priority Critical patent/EP2993092B1/en
Priority to CN201480024254.5A priority patent/CN105163989B/zh
Priority to US14/787,731 priority patent/US9725089B2/en
Priority to JP2015514797A priority patent/JP6044709B2/ja
Publication of WO2014178264A1 publication Critical patent/WO2014178264A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • B60K2031/0025Detecting position of target vehicle, e.g. vehicle driving ahead from host vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/08Coordination of integrated systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/263Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the program execution being modifiable by physical parameters

Definitions

  • the present invention relates to a vehicle control device and a vehicle control method.
  • an arbitration process is performed in which a plurality of input values (requests) are arbitrated to determine one control target value. Therefore, the control target value to the control object is determined by a time lag due to the arbitration process. Transmission may be delayed.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a vehicle control device and a vehicle control that have a function of arbitrating a plurality of requests and are capable of high-speed transmission of requests with high priority. Is to provide a method.
  • the vehicle control apparatus determines whether or not the priority of a request is high for each request when a plurality of requests for a physical quantity to be controlled in the vehicle is input.
  • the control target value is determined by arbitrating the plurality of requests. If there is a request determined to have a high priority, this request is transferred as a control target value. The transferred or adjusted control target value is output to the control object.
  • FIG. 1 is a block diagram showing a configuration of a vehicle control system including a vehicle control device according to the first embodiment.
  • FIG. 2 is a flowchart showing an example of the operation of the vehicle control device 3 shown in FIG. 1 as a vehicle control method according to the embodiment.
  • FIG. 3 is a block diagram illustrating a configuration of the output unit 37 according to the second embodiment.
  • FIG. 4 is a graph for explaining the effect of the second embodiment, and shows an example of the temporal change of the control target value Rm and the control target value Rt.
  • FIG. 5 is a graph for explaining the effect of the second embodiment, and shows an example of the time change of the control target value output to the VDC 5 in the example shown in FIG. FIG.
  • FIG. 6 is a flowchart showing an example of the operation of the vehicle control device 3 according to the second embodiment.
  • FIG. 7 is a block diagram illustrating a configuration of the output unit 37 according to the third embodiment.
  • FIG. 8 is a graph for explaining the effect according to the third embodiment, and shows an example of the time change of the control target value output to the VDC 5 in the example shown in FIG.
  • FIG. 9 is a flowchart showing an example of the operation of the vehicle control device 3 according to the third embodiment.
  • the vehicle control system is an advanced system that generates a plurality of requests for a physical quantity (for example, a braking amount) to be controlled in a vehicle based on information obtained from outside the vehicle (for example, information on other vehicles existing around the host vehicle). Requests generated based on the driving support system 1 and a plurality of requests generated by the advanced driving support system 1 and information obtained mainly from the vehicle (for example, vehicle speed, steering angle, pedal operation amount, planned travel route).
  • a physical quantity for example, a braking amount
  • the vehicle control device 3 that mediates and outputs the control target value
  • the VDC 5 Vehicle Dynamics Controller
  • the amount of braking of the vehicle will be described as an example of the physical amount to be controlled in the vehicle.
  • the advanced driving assistance system 1 is called, for example, an Advanced Driver Assistance System (ADAS), and is a control that generates a request for a braking amount of a vehicle based mainly on information obtained from outside the vehicle.
  • ADAS Advanced Driver Assistance System
  • a constant vehicle speed control unit 11 As the logic, a constant vehicle speed control unit 11, an inter-vehicle distance correction control unit 12, and a front collision related control unit 13 are provided.
  • the constant vehicle speed control unit 11 performs constant-speed running control that maintains the vehicle speed at a target value, and also performs constant vehicle speed control (Adaptive) that performs inter-vehicle distance control that controls the inter-vehicle distance by detecting the distance, relative speed, and the like with the preceding vehicle.
  • Adaptive constant vehicle speed control
  • a request based on Cruise Control (ACC) is generated.
  • the inter-vehicle distance correction control unit 12 detects the distance from the preceding vehicle, relative speed, and the like, prompts the driver to release the accelerator, depresses the brake, etc., and performs inter-vehicle distance correction as necessary.
  • a request based on control (Distance Control Assist: DCA) is generated.
  • the front collision-related control unit 13 receives a request based on a collision avoidance emergency brake control (Forward Collision Avoidance: FCA) that performs a brake control for avoiding a collision by using a detection value such as a distance to a front obstacle and a relative speed as an input.
  • FCA Forward Collision Avoidance
  • FCA Forward Collision Avoidance
  • IBA Intelligent Break Assist
  • the advanced driving support system 1 arbitrates the request generated by the constant vehicle speed control unit 11, the request generated by the inter-vehicle distance correction control unit 12, and the request generated by the front collision related control unit 13.
  • the arbitration unit 14 is provided.
  • the first arbitration unit 14 outputs one request to the vehicle control device 3 as a result of the arbitration.
  • the vehicle control device 3 is called, for example, an intelligent drivability module (IDM) and has a function of arbitrating a plurality of requests for the same physical quantity (braking quantity), and has a high degree of urgency.
  • IDM intelligent drivability module
  • a request based on a specific purpose (viewpoint) is transferred to the VDC 5 without arbitration.
  • the vehicle control device 3 is configured to input a plurality of requests for a physical quantity (braking amount) to be controlled in the vehicle, and whether the request priority is high for each input request.
  • the transfer unit 36 transfers the request as a control target value
  • the transfer unit 36 transfers the request.
  • the output part 37 which outputs the control target value determined by the 2nd arbitration part 34 with respect to VDC5 as a control object is provided.
  • the input unit 31 receives a request output from the advanced driving support system 1 and transmits it to the determination unit 32.
  • the determination unit 32 determines whether the priority of the input request is high. to decide. When the priority of the input request is high, the determination unit 32 determines that this should be the target of the transfer process, and when the priority of the input request is not high, this should be the target of the arbitration process Judge.
  • the determination unit 32 transmits a request (hereinafter referred to as a “general request”) determined to be the target of the arbitration process to the first abnormality diagnosis unit 33, and the request determined to be the target of the transfer process (Hereinafter referred to as “urgent request”) is transmitted to the transfer unit 36.
  • a request hereinafter referred to as a “general request”
  • the request determined to be the target of the transfer process hereinafter referred to as “urgent request”
  • a request type with a high priority and a request type with a low priority are classified in advance, a request based on constant vehicle speed control (ACC), and an inter-vehicle distance correction control (DCA).
  • ACC constant vehicle speed control
  • DCA inter-vehicle distance correction control
  • FCA collision avoidance emergency brake control
  • IBA front collision suppression brake control
  • general requests that do not have high priority include requests based on constant vehicle speed control (ACC), requests based on inter-vehicle distance correction control (DCA), requests based on skid prevention control (AVDC), and turning speed.
  • Requests based on control are included.
  • a parameter indicating the priority is assigned for each type of request, and whether the value of the parameter is larger or smaller than a threshold is compared.
  • a method may be used.
  • the first abnormality diagnosis unit 33 diagnoses whether or not there is an abnormality in the general request, and transmits a general request having no abnormality to the second arbitration unit 34.
  • the vehicle control device 3 includes an IDM control unit 35 that generates a request for a braking amount based on a purpose (viewpoint) different from the control logic (11 to 13) included in the advanced driving support system 1.
  • the IDM control unit 35 generates a request (general request) based on turning speed control (Cornering Break Assist: CBA).
  • Turning speed control (CBA) is braking control for maintaining the vehicle speed when the vehicle turns within an appropriate range.
  • the general request generated by the IDM control unit 35 is transmitted to the second arbitration unit 34. Therefore, the general request from the first abnormality diagnosis unit 33 and the general request from the IDM control unit 35 are input to the second arbitration unit 34.
  • the second arbitration unit 34 arbitrates the plurality of general requests and determines the control target value.
  • the determined control target value Rm is transmitted to the output unit 37 via the output processing unit 38.
  • a specific method of arbitration is not particularly limited, and a known method may be applied. Note that the plurality of general requests to be subjected to the arbitration process by the second arbitration unit 34 include not only the general request determined by the determination unit 32 but also the general request from the IDM control unit 35.
  • the transfer unit 36 receives the emergency request and transmits it to the output unit 37 as the control target value Rt.
  • the output unit 37 temporarily stores the control target value transferred from the transfer unit 36 or determined by the second arbitration unit 34 in a buffer (not shown), and the control target value from the buffer to the VDC 5 Is output.
  • the vehicle control device 3 makes the operation speed of the route through which the emergency request flows faster than the operation speed of the route through which the general request flows in order to transmit the emergency request to the VDC 5 at high speed.
  • the first abnormality diagnosing unit 33 and the IDM control unit surrounded by the dotted line Lw in FIG. 1 are the calculation cycles of the input unit 31, the determination unit 32, the transfer unit 36, and the output unit 37 surrounded by the dotted line Hg in FIG. 35 and the calculation period of the second arbitration unit 34 are made shorter.
  • the calculation cycle of the calculation units (31, 32, 36, 37) surrounded by the dotted line Hg in FIG. 1 is 1 ms
  • the VDC 5 includes an IBA & FCA input processing unit 52 to which the control target value Rt from the transfer unit 36 is input, an input processing unit 51 to which the control target value Rm from the second arbitration unit 34 is input, and collision avoidance emergency brake control.
  • An FCA operation permission processing unit 53 that determines the operation permission of (FCA), a second abnormality diagnosis unit 54, and a hydraulic pressure processing unit 55 that converts the control target value into the pressure value (bar) of the brake oil.
  • the IBA & FCA input processing unit 52 performs an input process for the control target value Rt based on the collision avoidance emergency brake control (FCA) or the front collision suppression brake control (IBA), and the input processing unit 51 includes a vehicle speed constant control (ACC), a vehicle An input process is performed on the control target value Rm based on the inter-vehicle distance correction control (DCA), the skid prevention control (AVDC), or the turning speed control (CBA).
  • the control target values (Rt, Rm) subjected to the input process are transmitted to the hydraulic pressure processing unit 55 after the second abnormality diagnosis unit 54 diagnoses the presence or absence of the abnormality.
  • the second abnormality diagnosis unit 54 controls the control target value Rt based on the collision avoidance emergency brake control (FCA) from the transfer unit 36 only when the FCA operation permission processing unit 53 has instructed the FCA operation permission. Is transmitted to the hydraulic pressure processing unit 55.
  • the hydraulic pressure processing unit 55 calculates the target pressure value (bar) of the brake oil based on the control target value (Rt, Rm) of the braking amount.
  • the target pressure value (bar) of the brake oil is transmitted to an actuator (not shown).
  • step S01 the input unit 31 receives a plurality of requests for the braking amount of the vehicle from the advanced driving support system 1.
  • step S ⁇ b> 03 the determination unit 32 determines whether the request priority is high for each request input to the input unit 31. If the priority is high (YES in S03), the process proceeds to the transfer process in step S07. If the priority is not high (NO in S03), the process proceeds to the arbitration process in step S05. Note that the input process of step S01 and the determination process of step S03 are executed with a calculation cycle of 1 ms.
  • step S05 the arbitration process by the second arbitration unit 34 is executed under a calculation period of 10 ms. Therefore, when a general request is input to the input unit 31 at a cycle shorter than 10 ms, a plurality of general requests are input as objects of arbitration by the second arbitration unit 34. When there are a plurality of general requests that are determined not to have high priority, the second arbitration unit 34 arbitrates the plurality of general requests and determines a control target value (Rm). Thereafter, the process proceeds to step S09.
  • Rm control target value
  • step S07 the transfer process of the emergency request by the transfer unit 36 is executed under the calculation cycle of 1 ms.
  • the transfer unit 36 bypasses the arbitration process and transfers the emergency request as a control target value (Rt). Thereafter, the process proceeds to step S09.
  • step S09 the output unit 37 temporarily stores the control target values (Rm, Rt) in a buffer in the output unit 37. Proceeding to step S11, the output unit 37 transmits the control target values (Rm, Rt) to the VDC under a calculation period of 1 ms.
  • the second arbitration unit 34 While having a function for arbitrating a plurality of requests, the second arbitration unit 34 is bypassed and transferred to the control target (VDC 5) as a control target value Rt without performing arbitration for an emergency request having a high priority. By doing so, high-speed transmission of emergency requests with high priority becomes possible. Further, by providing an arbitration function, the number of input lines to the control target object (VDC5) is reduced, and resources required for information processing in the control target object (VDC5) can be reduced. Improves.
  • the transfer process cycle is shorter than the arbitration process, and the transfer process can be speeded up.
  • the physical quantity to be controlled in the vehicle is the braking quantity of the vehicle
  • the general request that is not high in priority is a request based on the constant speed traveling control executed in the constant vehicle speed control (ACC), the constant vehicle speed control (ACC) or the vehicle.
  • These are at least two requests among a request based on the inter-vehicle distance control performed in the inter-vehicle distance correction control (DCA), a request based on the skid prevention control (AVDC), and a request based on the turning speed control (CBA).
  • DCA inter-vehicle distance control
  • AVDC skid prevention control
  • CBA turning speed control
  • the physical quantity to be controlled in the vehicle is the braking quantity of the vehicle
  • the emergency request having a high priority is at least one of a request based on the collision avoidance emergency brake control (FCA) and a request based on the front collision suppression brake control (IBA). It is a request. For this reason, an emergency request with a high priority is subject to a transfer process, so that the time lag due to the arbitration process is reduced.
  • the output unit 37 controls the control target value Rm determined by the second arbitration unit 34 and the control target transferred from the transfer unit 36. A case where one of the values Rt is output will be described.
  • the vehicle control device 3 according to the second embodiment is different from the first embodiment in the configuration of the output unit 37, but the other configurations are the same as those in the first embodiment, and thus the description and illustration thereof are omitted.
  • the output unit 37 includes a comparison unit 39 that compares the control target value Rm determined by the second arbitration unit 34 with the control target value Rt transferred from the transfer unit 36, and based on the comparison result by the comparison unit 39. Any one of the control target value Rm and the control target value Rt is output to the VDC 5.
  • the comparison unit 39 compares the control target value Rm and the control target value Rt, and outputs the larger one to the VDC 5.
  • the output unit 37 outputs the control target value Rm 0 determined by the second arbitration unit 34 to the VDC 5. This period is referred to as a regular arbitration period Nm.
  • control target value Rt 1 is transferred from the transfer unit 36, in the first embodiment, the control target value Rt 1 from the transfer unit 36 is transferred to the VDC 5 as it is. If the control target value Rt 1 is smaller than the control target value Rm 0, since become suddenly changes from the control target value Rm 0 to the control target value Rt 1, variation in the vehicle behavior becomes large.
  • the comparison unit 39 calculates the control target value Rm 1 and the control target value Rt 1 when the control target value Rt 1 is transferred.
  • the larger one (control target value Rm 1 ) is output to VDC 5.
  • control target value Rt is shown to increase monotonously with time.
  • the comparison unit 39 outputs control target values Rm 1 and Rm 2 during a period in which the control target value Rm is greater than the control target value Rt (this is referred to as a correction period Ad), and the control target value Rm is the control target value Rt.
  • Control target values Rt 3 , Rt 4 , Rt 5 , Rt 6 ,... Are output in a shorter period (this is referred to as transfer period Tr).
  • the time change of the control target value output to the VDC 5 is as shown in FIG.
  • the control target value Rm determined by the second arbitration unit 34 is output, and in the transfer period Tr, the control target value Rt transferred from the transfer unit 36 is Is output.
  • step S ⁇ b> 13 is further provided before step S ⁇ b> 09, but the other points are the same as FIG.
  • step S13 when the control target value Rm is input from the second arbitration unit 34 and the control target value Rt is transferred from the transfer unit 36 within a predetermined time, the comparison unit 39 sets the control target value Rm. And the control target value Rt are compared, and the larger one is selected. In step S11, the control target value selected by the comparison unit 39 is output to the VDC 5.
  • the comparison unit 39 compares the control target value Rm determined by the second arbitration unit 34 with the control target value Rt transferred from the transfer unit 36, and based on the comparison result, the control target value Rm is compared. Either one of the value Rm and the control target value Rt is output to the VDC 5. As a result, as described with reference to FIGS. 4 and 5, it is possible to moderate the variation in the vehicle behavior in the transition period in which the arbitration control and the transfer control are switched.
  • the output unit 37 differs between the control target value Rm determined by the second arbitration unit 34 and the control target value Rt transferred from the transfer unit 36. A case where data is temporarily stored in the buffer will be described.
  • the configuration of the output unit 37 is different from that of the first embodiment, but the other configurations are the same as those of the first embodiment, and thus the description and illustration thereof are omitted.
  • the output unit 37 includes an arbitration buffer 40 that stores the control target value Rm determined by the second arbitration unit 34, and a transfer buffer 41 that stores the control target value Rt transferred from the transfer unit 36.
  • the output unit 37 can output each of the control target value Rm and the control target value Rt to the VDC 5.
  • the motor on the basis of the control target value Rm 3 ⁇ Rm 6 by arbitration (vehicle drive unit) the amount of regenerative braking control of the control target value Rm 3 ⁇ Rm 6 by arbitration the control target value Rt 3 ⁇ Rt 6 by the transfer
  • the so-called regenerative cooperative control that controls the amount of friction brake braking based on the difference between the two is possible.
  • the output unit 37 controls both the control target values Rm 3 to Rm 6 by arbitration and the difference between the control target values Rt 3 to Rt 6 by transfer and the control target values Rm 3 to Rm 6 by arbitration. May be output to VDC5. Thereby, the resource for the difference calculation in VDC5 can be reduced.
  • step S15 and step S17 are provided instead of step S09, but the other points are the same as in FIG.
  • step S15 the arbitration buffer 40 temporarily stores the control target value Rm determined in step S05.
  • step S17 the transfer buffer 41 temporarily stores the control target value Rt transferred in step S07.
  • step S11 both the control target value Rm and the control target value Rt stored in the arbitration buffer 40 and the transfer buffer 41 are output to the VDC 5.
  • the output unit 37 includes the arbitration buffer 40 and the transfer buffer 41, thereby outputting both the control target value Rm by arbitration and the control target value Rt by transfer to the control object (VDC5). be able to.
  • the control object (VDC5) can perform braking control according to each control target value. For example, as shown in FIG. 8, it is possible to perform regenerative cooperative control using both the control target value Rm and the control target value Rt.
  • an upper ECU for example, ADAS1
  • a lower ECU for example, IDM3 or VDC5
  • the control object (VDC 5) cannot grasp whether the request is by the interrupt process.
  • the output unit 37 includes the arbitration buffer 40 and the transfer buffer 41, the control object (VDC 5) can grasp which request it is.
  • the transmission (IDM3) side transmits data for determining the request in the control object (VDC5) in a multiplexed manner, if there is one buffer for outputting the request, it is not possible to transmit the data ensuring the multiplicity. Can not. Since the output unit 37 includes the arbitration buffer 40 and the transfer buffer 41, it is possible to transmit data that ensures multiplicity.
  • the output unit 37 further includes a comparison unit 39.
  • the comparison unit 39 results in the transfer period Tr, the control target value Rm by arbitration and the control target value Rt by transfer are both sent, and the regenerative cooperative control is unnecessary.
  • the correction period Ad only the control target value Rm by arbitration can be sent, and the control target value can be transmitted efficiently.
  • VDC control object
  • Input unit Judgment unit
  • Second arbitration unit (arbitration unit)
  • Transfer unit 37
  • Comparison unit 40
  • Arbitration buffer 41

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 車両制御装置(3)は、車両において制御すべき物理量に対する複数の要求が入力される入力部(31)と、入力された要求毎に要求の優先度が高いか否かを判断する判断部(32)と、優先度が高くないと判断された複数の要求があった場合に、これらの複数の要求を調停して制御目標値(Rm)を決定する第2の調停部(34)と、優先度が高いと判断された要求があった場合に、この要求を制御目標値(Rt)として転送する転送部(36)と、転送部(36)から転送された、或いは第2の調停部(34)により決定された制御目標値(Rm、Rt)をVDC(5)に対して出力する出力部(37)とを備える。

Description

車両制御装置及び車両制御方法
 本発明は、車両制御装置及び車両制御方法に関するものである。
 従来から、車両において制御すべき制御量に対する、優先順位の定められた3つ以上の要求を調停して制御目標値を決定する車両制御方法が知られている(特許文献1参照)。
特開2008-169825号公報
 特許文献1記載の車両制御方法では、複数の入力値(要求)を調停して1つの制御目標値を決定する調停処理を行うため、この調停処理によるタイムラグによって制御対象物への制御目標値の送信が遅れてしまう場合がある。
 本発明は上記した課題に鑑みてなされたものであり、本発明の目的は、複数の要求を調停する機能を備え、且つ、優先順位の高い要求の高速伝送が可能な車両制御装置及び車両制御方法を提供することである。
 本発明の一態様に係わる車両制御装置は、車両において制御すべき物理量に対する複数の要求が入力された場合、要求毎に、要求の優先度が高いか否かを判断する。優先度が高くないと判断された複数の要求があった場合、これらの複数の要求を調停して制御目標値を決定する。優先度が高いと判断された要求があった場合、この要求を制御目標値として転送する。転送された、或いは調停された制御目標値を制御対象物に対して出力する。
図1は、第1実施形態に係わる車両制御装置を含む車両制御システムの構成を示すブロック図である。 図2は、実施形態に係わる車両制御方法として、図1に示す車両制御装置3の動作の一例を示すフローチャートである。 図3は、第2実施形態に係わる出力部37の構成を示すブロック図である。 図4は、第2実施形態による効果を説明するためのグラフであり、制御目標値Rm及び制御目標値Rtの時間変化の一例を示す。 図5は、第2実施形態による効果を説明するためのグラフであり、図4に示す例においてVDC5へ出力される制御目標値の時間変化の一例を示す。 図6は、第2実施形態に係わる車両制御装置3の動作の一例を示すフローチャートである。 図7は、第3実施形態に係わる出力部37の構成を示すブロック図である。 図8は、第3実施形態による効果を説明するためのグラフであり、図4に示す例においてVDC5へ出力される制御目標値の時間変化の一例を示す。 図9は、第3実施形態に係わる車両制御装置3の動作の一例を示すフローチャートである。
(第1実施形態)
 以下、図面を参照して、本発明の実施形態を説明する。図面の記載において同一部分には同一符号を付し説明を省略する。
 図1を参照して、本発明の第1実施形態に係わる車両制御装置を含む車両制御システムの構成を説明する。車両制御システムは、主に車外から得られる情報(例えば、自車周囲に存在する他車両に関する情報)に基づいて、車両において制御すべき物理量(例えば、制動量)に対する複数の要求を生成する先進運転支援システム1と、先進運転支援システム1により生成された複数の要求、及び主に車内から得られる情報(例えば、車速、操舵角、ペダル操作量、走行予定ルート)に基づいて生成される要求を調停して制御目標値を出力する車両制御装置3と、車両制御装置3から出力された制御目標値に基づいて、車両において制御すべき物理量を制御するVDC5(Vehicle Dynamics Controller)とを備える。なお、本発明の実施形態では、車両において制御すべき物理量として、車両の制動量を例に取り説明する。
 先進運転支援システム1は、例えば、アドバンスド・ドライバ・アシスタンス・システム(Advanced driver Assistance systems:ADAS)と呼ばれるものであり、主に車外から得られる情報に基づいて車両の制動量に対する要求を生成する制御ロジックとして、車速一定制御部11と、車車間距離補正制御部12と、前突関連制御部13とを備える。
 車速一定制御部11は、車速を目標値に維持する定速走行制御を行うと共に、前車との距離、相対速度等を検出して車間距離を制御する車間距離制御を行う車速一定制御(Adaptive Cruise Control:ACC)に基づく要求を生成する。車車間距離補正制御部12は、前車との距離、相対速度等を検出して、ドライバーに対してアクセル解放、ブレーキ踏込等を促すとともに、必要に応じて車間距離制御を行う車車間距離補正制御(Distance Control Assist:DCA)に基づく要求を生成する。前突関連制御部13は、前方障害物との距離、相対速度等の検出値を入力として、衝突を回避するためのブレーキ制御を行う衝突回避緊急ブレーキ制御(Forward Collision Avoidance:FCA)に基づく要求、及び衝突が避けられない場合に、衝突被害を可能な限り低減させる前突抑制ブレーキ制御(Intelligent Break Assist:IBA)に基づく要求を生成する。
 これらの制御ロジックは、互いに異なる目的(観点)から同一の物理量(制動量)に対する要求を生成するため、これらの制御ロジックにより生成される要求が互いに異なる場合がある。そこで、先進運転支援システム1は、車速一定制御部11により生成された要求、車車間距離補正制御部12により生成された要求、及び前突関連制御部13により生成された要求を調停する第1の調停部14を備える。第1の調停部14は、調停した結果として、1つの要求を車両制御装置3へ出力する。
 車両制御装置3は、例えば、インテリジェント・ドライバビリティ・モジュール(Intelligent Driveability Module:IDM)と呼ばれるものであり、同一の物理量(制動量)に対する複数の要求を調停する機能を備えつつ、緊急度の高い特定の目的(観点)に基づく要求については調停を行わずにVDC5へ転送する機能を実現する。
 上記機能を実現するため、車両制御装置3は、車両において制御すべき物理量(制動量)に対する複数の要求が入力される入力部31と、入力された要求毎に、要求の優先度が高いか否かを判断する判断部32と、優先度が高くないと判断部32により判断された複数の要求があった場合に、これらの複数の要求を調停して制御目標値を決定する第2の調停部34(調停部)と、優先度が高いと判断部32により判断された要求があった場合に、この要求を制御目標値として転送する転送部36と、転送部36から転送された、或いは第2の調停部34により決定された制御目標値を制御対象物としてのVDC5に対して出力する出力部37とを備える。
 入力部31は、先進運転支援システム1から出力される要求を受信して判断部32へ送信する。判断部32は、入力部31から受信した要求を調停処理の対象とするべきか、或いは転送処理の対象とするべきかを判断するため、入力された要求の優先度が、高いか否かを判断する。判断部32は、入力された要求の優先度が高い場合、これを転送処理の対象とするべきと判断し、入力された要求の優先度が高くない場合、これを調停処理の対象とするべきと判断する。そして、判断部32は、調停処理の対象とするべきと判断した要求(以後、「一般要求」という)を第1の異常診断部33へ送信し、転送処理の対象とするべきと判断した要求(以後、「緊急要求」という)を転送部36へ送信する。
 図1に示す実施形態では、優先度が高い要求の種類、優先度が高くない要求の種類があらかじめ類別されており、車速一定制御(ACC)に基づく要求、及び車車間距離補正制御(DCA)に基づく要求は、優先度が高くない一般要求と判断され、衝突回避緊急ブレーキ制御(FCA)に基づく要求、及び前突抑制ブレーキ制御(IBA)に基づく要求は、優先度が高い緊急要求と判断される。なお、優先度が高くない一般要求としては、車速一定制御(ACC)に基づく要求、車車間距離補正制御(DCA)に基づく要求の他に、横滑り防止制御(AVDC)に基づく要求、及び旋回速度制御(CBA)に基づく要求が含まれる。なお、入力された要求の優先度が高いか否かを判定する方法としては、要求の種類毎に優先度を表すパラメータを付与し、そのパラメータの値が閾値よりも大か小かを比較する方法を用いても良い。
 第1の異常診断部33は、一般要求に異常が有るか否かを診断し、異常が無い一般要求を第2の調停部34へ送信する。また、車両制御装置3は、先進運転支援システム1が備える制御ロジック(11~13)とは異なる目的(観点)に基づいて制動量に対する要求を生成するIDM制御部35を備える。IDM制御部35は、旋回速度制御(Cornering Break Assist:CBA)に基づく要求(一般要求)を生成する。旋回速度制御(CBA)とは、車両が旋回する時の車速を適正範囲内に維持するための制動制御である。IDM制御部35により生成された一般要求は、第2の調停部34に送信される。従って、第2の調停部34には、第1の異常診断部33からの一般要求と、IDM制御部35からの一般要求とが入力される。
 第2の調停部34は、優先度が高くないと判断部32により判断された複数の一般要求が入力された場合に、これらの複数の一般要求を調停して制御目標値を決定する。決定された制御目標値Rmは、出力処理部38を介して出力部37に送信される。調停の具体的な方法は特に限定されず、既知の方法を適用してもよい。なお、第2の調停部34による調停処理の対象となる複数の一般要求には、判断部32により判断された一般要求のみならず、IDM制御部35からの一般要求も含まれる。
 転送部36は、緊急要求を受信し、これを制御目標値Rtとして出力部37に送信する。出力部37は、転送部36から転送された、或いは第2の調停部34により決定された制御目標値をバッファ(図示せず)に一時的に格納し、バッファからVDC5に対して制御目標値を出力する。
 車両制御装置3は、緊急要求を高速でVDC5へ伝送するために、緊急要求が流れるルートの動作速度を、一般要求が流れるルートの動作速度よりも速くする。具体的には、図1の点線Hgで囲む入力部31、判断部32、転送部36、出力部37の演算周期を、図1の点線Lwで囲む第1の異常診断部33、IDM制御部35及び第2の調停部34の演算周期よりも短くする。例えば、図1の点線Hgで囲む演算部(31、32、36、37)の演算周期を1msとし、図1の点線Lwで囲む演算部(33、35、34)の演算周期を10msとすればよい。
 VDC5は、転送部36からの制御目標値Rtが入力されるIBA&FCA入力処理部52と、第2の調停部34からの制御目標値Rmが入力される入力処理部51と、衝突回避緊急ブレーキ制御(FCA)の作動許可を判断するFCA作動許可処理部53と、第2の異常診断部54と、制御目標値をブレーキオイルの圧力値(bar)へ変換する液圧処理部55とを備える。
 IBA&FCA入力処理部52は、衝突回避緊急ブレーキ制御(FCA)或いは前突抑制ブレーキ制御(IBA)に基づく制御目標値Rtに対する入力処理を施し、入力処理部51は、車速一定制御(ACC)、車車間距離補正制御(DCA)、横滑り防止制御(AVDC)、或いは旋回速度制御(CBA)に基づく制御目標値Rmに対する入力処理を施す。入力処理が施された制御目標値(Rt、Rm)は、第2の異常診断部54により異常の有無が診断された後、液圧処理部55に送信される。なお、第2の異常診断部54は、FCA作動許可処理部53からFCA作動許可の指示が有った場合に限り、転送部36からの衝突回避緊急ブレーキ制御(FCA)に基づく制御目標値Rtを液圧処理部55に送信する。液圧処理部55は、制動量の制御目標値(Rt、Rm)に基づいて、ブレーキオイルの目標圧力値(bar)を算出する。ブレーキオイルの目標圧力値(bar)は、アクチュエータ(図示せず)に対して送信される。
 図2を参照して、実施形態に係わる車両制御方法として、図1に示す車両制御装置3の動作の一例を説明する。先ず、ステップS01において、入力部31は、先進運転支援システム1から車両の制動量に対する複数の要求を受信する。ステップS03において、判断部32は、入力部31に入力された要求毎に、要求の優先度が高いか否かを判断する。優先度が高い場合(S03でYES)、ステップS07の転送処理に進み、優先度が高くない場合(S03でNO)、ステップS05の調停処理に進む。なお、このステップS01の入力処理及びステップS03の判断処理は、1msの演算周期で実行される。
 ステップS05では、10msの演算周期のもとで、第2の調停部34による調停処理が実行される。よって、10msよりも短い周期で入力部31に一般要求が入力される場合、第2の調停部34による調停対象として、複数の一般要求が入力される。第2の調停部34は、優先度が高くないと判断された複数の一般要求があった場合に、複数の一般要求を調停して制御目標値(Rm)を決定する。その後、ステップS09へ進む。
 一方、ステップS07では、1msの演算周期のもとで、転送部36による緊急要求の転送処理が実行される。転送部36は、優先度が高いと判断された緊急要求があった場合に、調停処理をバイパスして、緊急要求を制御目標値(Rt)として転送する。その後、ステップS09へ進む。
 ステップS09において、出力部37は、制御目標値(Rm、Rt)を出力部37内のバッファに一時的に格納する。ステップS11に進み、出力部37は、1msの演算周期のもとで、制御目標値(Rm、Rt)をVDCへ送信する。
 以上説明したように、第1実施形態によれば、以下の作用効果が得られる。
 複数の要求を調停する機能を備えつつも、優先度の高い緊急要求については調停を行わずに、第2の調停部34をバイパスして、制御対象物(VDC5)へ制御目標値Rtとして転送することにより、優先度の高い緊急要求の高速伝送が可能となる。更に、調停機能を備えることにより、制御対象物(VDC5)への入力ラインが減少し、制御対象物(VDC5)での情報処理に要するリソースを低減させることができるため、コストが低減し、汎用性が向上する。
 転送部36の演算周期が、第2の調停部34の演算周期よりも短いため、調停処理に比べて転送処理の周期が短くなり、転送処理の高速化が可能となる。
 車両において制御すべき物理量は、車両の制動量であり、優先度が高くない一般要求は、車速一定制御(ACC)で実施される定速走行制御に基づく要求、車速一定制御(ACC)や車車間距離補正制御(DCA)で実施される車間距離制御に基づく要求、横滑り防止制御(AVDC)に基づく要求、旋回速度制御(CBA)に基づく要求のうち少なくとも2つの要求である。このため、これらの一般要求は調停処理の対象となるので、制御対象物(VDC5)への入力ラインが減少し、制御対象物(VDC5)での情報処理に要するリソースを低減させることができる。
 車両において制御すべき物理量は車両の制動量であり、優先度が高い緊急要求は、衝突回避緊急ブレーキ制御(FCA)に基づく要求、前突抑制ブレーキ制御(IBA)に基づく要求のうち少なくとも1つの要求である。このため、優先度の高い緊急要求は転送処理の対象となるので、調停処理によるタイムラグが減少する。
 従来では、目的が異なる複数の制御アルゴリズムからの要求を調停しながら出力していた。よって、システム全体の演算負荷を下げても調停という機能が独立して作動しているため応答遅れが発生する。その結果、応答遅れが許容できない場合は、車両挙動が悪化してしまう。実施形態によれば、優先度の高い緊急要求は調停対象とならないため、応答遅れによる車両挙動の悪化を抑制できる。
 一方、総ての要求が転送処理により一方的に送信されてしまうと、車両挙動の変動が大きくなってしまうが、優先度の低い一般要求を調停の対象とすることにより、車両挙動の変動を緩やかにすることができる。
(第2実施形態)
 第2実施形態では、転送部36から制御目標値Rtが転送された場合に、出力部37が、第2の調停部34により決定された制御目標値Rmと転送部36から転送された制御目標値Rtのいずか一方を出力する場合について説明する。第2実施形態に係わる車両制御装置3は、出力部37の構成が第1実施形態と相違するが、その他の構成は第1実施形態と同じであるため、説明及び図示を省略する。
 図3を参照して、第2実施形態に係わる出力部37の構成を説明する。出力部37は、第2の調停部34により決定された制御目標値Rmと転送部36から転送された制御目標値Rtとを比較する比較部39を備え、比較部39による比較結果に基づいて、制御目標値Rm及び制御目標値Rtのいずれか一方をVDC5へ出力する。例えば、比較部39は、制御目標値Rm及び制御目標値Rtの大きさを比較し、大きい方をVDC5へ出力する。
 次に図4、図5を参照して第2実施形態の作用を説明する。転送部36から制御目標値Rtが転送されていない時、出力部37は、第2の調停部34により決定された制御目標値RmをVDC5へ出力する。この期間を定時調停期間Nmという。
 その後、転送部36から制御目標値Rtが転送された場合、第1実施形態では、転送部36からの制御目標値RtをそのままVDC5へ転送してしまう。制御目標値Rtが制御目標値Rmよりも小さい場合、制御目標値Rmから制御目標値Rtへ急激に変化してしまうため、車両挙動の変動が大きくなってしまう。
 第2実施形態では、転送部36から制御目標値Rtが転送された場合、比較部39が、制御目標値Rtが転送された時の制御目標値Rmと制御目標値Rtとを比較し、大きい方(制御目標値Rm)をVDC5へ出力する。
 図4に示す例では、制御目標値Rtが時間と共に単調に増加する場合を示している。第2の調停部34により決定された制御目標値Rmに時間変化が無い或いは少ない場合、制御目標値Rtと制御目標値Rmの大小関係が逆転する。比較部39は、制御目標値Rmが制御目標値Rtよりも大きい期間(これを、補正期間Adという)において、制御目標値Rm、Rmを出力し、制御目標値Rmが制御目標値Rtよりも小さい期間(これを、転送期間Trという)において、制御目標値Rt、Rt、Rt、Rt、・・・を出力する。
 これにより、VDC5へ出力される制御目標値の時間変化は、図5に示すようになる。図4の定時調停期間Nm及び補正期間Adにおいては、第2の調停部34により決定された制御目標値Rmが出力され、転送期間Trにおいては、転送部36から転送された制御目標値Rtが出力される。
 図6を参照して、第2実施形態に係わる車両制御装置3の動作の一例を説明する。図2のフローチャートと比べて、ステップS09の前に、ステップS13を更に備えている点が相違するが、その他の点について図2と同じであるため説明を省略する。
 ステップS13において、所定の時間内において、第2の調停部34から制御目標値Rmが入力され、且つ、転送部36から制御目標値Rtが転送された場合、比較部39は、制御目標値Rmと制御目標値Rtとを比較し、大きい方を選択する。ステップS11では、比較部39により選択された制御目標値をVDC5へ出力する。
 以上説明したように、比較部39は、第2の調停部34により決定された制御目標値Rmと転送部36から転送された制御目標値Rtとを比較し、比較結果に基づいて、制御目標値Rm及び制御目標値Rtのいずれか一方をVDC5へ出力する。これにより、図4及び図5を参照して説明したように、調停制御と転送制御とが切り替わる過渡期における車両挙動の変動を緩やかにすることができる。
(第3実施形態)
 第3実施形態では、図1の車両制御装置3において、出力部37が、第2の調停部34により決定された制御目標値Rmと、転送部36から転送された制御目標値Rtとを異なるバッファに一時的に格納する場合について説明する。第3実施形態に係わる車両制御装置3は、出力部37の構成が第1実施形態と相違するが、その他の構成は第1実施形態と同じであるため、説明及び図示を省略する。
 図7を参照して、第3実施形態に係わる出力部37の構成を説明する。出力部37は、第2の調停部34により決定された制御目標値Rmを格納する調停バッファ40と、転送部36から転送された制御目標値Rtを格納する転送バッファ41とを備える。出力部37は、制御目標値Rm及び制御目標値RtのそれぞれをVDC5へ出力することができる。
 図8を参照して、図4に示す例においてVDC5へ出力される制御目標値の時間変化の一例を説明する。図4の定時調停期間Nm及び補正期間Adにおいては、調停バッファ40から制御目標値Rm~RmがVDC5へ出力される。一方、転送期間Trにおいては、調停バッファ40及び転送バッファ41の各々から、制御目標値Rm~Rm及び制御目標値Rt~Rtの両方がVDC5へ出力される。これにより、転送期間Trにおいて、各制御目標値に応じた制動制御が可能となる。例えば、調停による制御目標値Rm~Rmに基づいてモータ(車両駆動手段)の回生制動量を制御し、転送による制御目標値Rt~Rtと調停による制御目標値Rm~Rmとの差分に基づいて、摩擦ブレーキ制動量を制御する、所謂、回生協調制御が可能となる。
 なお、出力部37は、転送期間Trにおいて、調停による制御目標値Rm~Rm、及び転送による制御目標値Rt~Rtと調停による制御目標値Rm~Rmとの差分の両方を、VDC5へ出力してもよい。これにより、VDC5における差分演算のためのリソースを低減することができる。
 図9を参照して、第3実施形態に係わる車両制御装置3の動作の一例を説明する。図2のフローチャートと比べて、ステップS09の代わりに、ステップS15及びステップS17を備えている点が相違するが、その他の点について図2と同じであるため説明を省略する。
 ステップS15において、調停バッファ40は、ステップS05で決定された制御目標値Rmを一時的に格納する。一方、ステップS17において、転送バッファ41は、ステップS07で転送された制御目標値Rtを一時的に格納する。ステップS11では、調停バッファ40及び転送バッファ41に格納されている制御目標値Rm及び制御目標値Rtの両方をVDC5へ出力する。
 以上説明したように、出力部37は、調停バッファ40と、転送バッファ41とを備えることにより、調停による制御目標値Rmと転送による制御目標値Rtの両方を制御対象物(VDC5)へ出力することができる。このため、制御対象物(VDC5)は、各制御目標値に応じた制動制御を行うことができる。例えば、図8に示したように、制御目標値Rmと制御目標値Rtの両方を用いて回生協調制御を行うことが可能となる。
 従来、車載コントローラエリアネットワーク(CAN)の様に同期が取れない場合は応答遅れを防止するため、上位ECU(例えば、ADAS1)が下位ECU(例えば、IDM3或いはVDC5)に対して割り込み処理を要求していた。割り込み処理により同じ要求を転送していたため、制御対象物(VDC5)は割り込み処理による要求なのか否かをを把握することができない。実施形態によれば、出力部37が、調停バッファ40と、転送バッファ41とを備えるため、制御対象物(VDC5)は、いずれの要求かを把握することができる。
 従来、制御対象物(VDC5)において要求を判別するためのデータを、送信(IDM3)側が多重に送信するため、要求を出力するバッファが1つだと多重性を確保したデータを送信することはできない。出力部37が、調停バッファ40と、転送バッファ41とを備えることにより、多重性を確保したデータを送信することができるようになる。
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、第3実施形態において、出力部37は比較部39を更に備えていることが望ましい。これにより、比較部39による比較の結果、転送期間Trである場合に限り、調停による制御目標値Rmと転送による制御目標値Rtの両方を送付し、回生協調制御が不要となる定時調停期間Nm及び補正期間Adでは、調停による制御目標値Rmのみを送付することができ、効率の良い制御目標値の伝送が可能となる。
 特願2013-095083号(出願日:2013年4月30日)の全内容は、ここに援用される。
 3 車両制御装置
 5 VDC(制御対象物)
 31 入力部
 32 判断部
 34 第2の調停部(調停部)
 36 転送部
 37 出力部
 39 比較部
 40 調停バッファ
 41 転送バッファ
 Rm、Rt 制御目標値

Claims (7)

  1.  車両において制御すべき物理量に対する複数の要求が入力される入力部と、
     入力された要求毎に、前記要求の優先度が高いか否かを判断する判断部と、
     前記優先度が高くないと前記判断部により判断された複数の要求があった場合に、前記複数の要求を調停して制御目標値を決定する調停部と、
     前記優先度が高いと前記判断部により判断された要求があった場合に、前記要求を制御目標値として転送する転送部と、
     前記転送部から転送された、或いは前記調停部により決定された前記制御目標値を制御対象物に対して出力する出力部と、
     を備える車両制御装置。
  2.  前記転送部の演算周期は、前記調停部の演算周期よりも短いことを特徴とする請求項1に記載の車両制御装置。
  3.  前記車両において制御すべき物理量は、車両の制動量であり、前記優先度が高くない要求は、定速走行制御に基づく要求、車間距離制御に基づく要求、横滑り防止制御に基づく要求、旋回速度制御に基づく要求のうち少なくとも2つの要求であることを特徴とする請求項1又は2に記載の車両制御装置。
  4.  前記車両において制御すべき物理量は車両の制動量であり、前記優先度が高い要求は、衝突回避緊急ブレーキ制御に基づく要求、前突抑制ブレーキ制御に基づく要求のうち少なくとも1つの要求であることを特徴とする請求項1~3の何れか一項に記載の車両制御装置。
  5.  前記出力部は、前記調停部により決定された制御目標値と、前記転送部から転送された制御目標値とを比較する比較部を備え、前記比較部による比較結果に基づいて、前記調停部により決定された制御目標値、及び前記転送部から転送された制御目標値の何れか一方を出力することを特徴とする請求項1~4の何れか一項に記載の車両制御装置。
  6.  前記出力部は、前記調停部により決定された制御目標値を格納する調停バッファと、前記転送部から転送された制御目標値を格納する転送バッファとを備えることを特徴とする請求項1~4の何れか一項に記載の車両制御装置。
  7.  車両において制御すべき物理量に対する複数の要求を受信し、
     受信した要求毎に、前記要求の優先度が高いか否かを判断し、
     前記優先度が高くないと判断した複数の要求があった場合に、前記複数の要求を調停して制御目標値を決定し、
     前記優先度が高いと判断した要求があった場合に、前記要求を制御目標値として転送し、
     前記転送された、或いは前記決定された前記制御目標値を制御対象物に対して出力する
     車両制御方法。
PCT/JP2014/060145 2013-04-30 2014-04-08 車両制御装置及び車両制御方法 WO2014178264A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14791466.7A EP2993092B1 (en) 2013-04-30 2014-04-08 Vehicle control device and vehicle control method
CN201480024254.5A CN105163989B (zh) 2013-04-30 2014-04-08 车辆控制装置及车辆控制方法
US14/787,731 US9725089B2 (en) 2013-04-30 2014-04-08 Vehicle control device and vehicle control method
JP2015514797A JP6044709B2 (ja) 2013-04-30 2014-04-08 車両制御装置及び車両制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013095083 2013-04-30
JP2013-095083 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178264A1 true WO2014178264A1 (ja) 2014-11-06

Family

ID=51843399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060145 WO2014178264A1 (ja) 2013-04-30 2014-04-08 車両制御装置及び車両制御方法

Country Status (5)

Country Link
US (1) US9725089B2 (ja)
EP (1) EP2993092B1 (ja)
JP (1) JP6044709B2 (ja)
CN (1) CN105163989B (ja)
WO (1) WO2014178264A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032892A (ja) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 制御装置
JP2020032891A (ja) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 車両制御装置
JP2021049991A (ja) * 2020-12-25 2021-04-01 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP7468496B2 (ja) 2021-11-30 2024-04-16 トヨタ自動車株式会社 運動マネージャ、自動運転装置、制御システム、車両、車両の制御方法およびプログラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10788990B2 (en) * 2017-02-16 2020-09-29 Toyota Jidosha Kabushiki Kaisha Vehicle with improved I/O latency of ADAS system features operating on an OS hypervisor
JP6809331B2 (ja) * 2017-03-28 2021-01-06 トヨタ自動車株式会社 車両制御装置
US10414393B2 (en) * 2017-09-08 2019-09-17 Robert Bosch Gmbh Systems and methods for stabilizing a vehicle
KR102448102B1 (ko) * 2017-12-05 2022-09-28 현대자동차주식회사 차량 및 그 제어 방법
KR102077201B1 (ko) * 2018-07-20 2020-02-13 현대모비스 주식회사 차량의 통합 제어 장치 및 방법
CN113715752B (zh) * 2020-05-25 2023-03-03 华为技术有限公司 车辆传感器数据的处理方法和系统
US11912279B2 (en) * 2021-09-08 2024-02-27 Ford Global Technologies, Llc Methods and system for vehicle function limiting

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203332A (ja) * 1997-01-27 1998-08-04 Mazda Motor Corp 車両の姿勢制御装置
JPH10211873A (ja) * 1997-01-30 1998-08-11 Mazda Motor Corp 車両の姿勢制御装置
JPH10217928A (ja) * 1997-02-06 1998-08-18 Mazda Motor Corp 車両の姿勢制御装置
JPH10273029A (ja) * 1997-03-31 1998-10-13 Mazda Motor Corp 車両の姿勢制御装置
JP2000142360A (ja) * 1998-11-05 2000-05-23 Mazda Motor Corp 車両の挙動制御装置
JP2008169825A (ja) 2006-12-14 2008-07-24 Toyota Motor Corp 車両制御方法および車両制御装置
JP2011063098A (ja) * 2009-09-16 2011-03-31 Denso Corp 制御要求調停装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10025493B4 (de) * 2000-05-23 2008-05-29 Daimler Ag Verfahren und Vorrichtung zur Koordination mehrerer Fahrsystemeinrichtungen eines Fahrzeugs
DE10050420A1 (de) * 2000-10-12 2003-03-27 Bayerische Motoren Werke Ag Fahrdynamik-Regelsystem eines Kraftfahrzeuges
DE10232875B4 (de) * 2002-07-19 2012-05-03 Robert Bosch Gmbh Verfahren und Steuereinheit zur Steuerung der Antriebseinheit eines Fahrzeugs
US7689337B2 (en) * 2003-09-30 2010-03-30 Honda Motor Co., Ltd. Cooperative vehicle control system
JP4483907B2 (ja) * 2007-08-21 2010-06-16 トヨタ自動車株式会社 車両制御方法および車両制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203332A (ja) * 1997-01-27 1998-08-04 Mazda Motor Corp 車両の姿勢制御装置
JPH10211873A (ja) * 1997-01-30 1998-08-11 Mazda Motor Corp 車両の姿勢制御装置
JPH10217928A (ja) * 1997-02-06 1998-08-18 Mazda Motor Corp 車両の姿勢制御装置
JPH10273029A (ja) * 1997-03-31 1998-10-13 Mazda Motor Corp 車両の姿勢制御装置
JP2000142360A (ja) * 1998-11-05 2000-05-23 Mazda Motor Corp 車両の挙動制御装置
JP2008169825A (ja) 2006-12-14 2008-07-24 Toyota Motor Corp 車両制御方法および車両制御装置
JP2011063098A (ja) * 2009-09-16 2011-03-31 Denso Corp 制御要求調停装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032892A (ja) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 制御装置
JP2020032891A (ja) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 車両制御装置
JP7091949B2 (ja) 2018-08-30 2022-06-28 トヨタ自動車株式会社 車両制御装置
JP7384554B2 (ja) 2018-08-30 2023-11-21 トヨタ自動車株式会社 ブレーキecu、システム、制御方法及び車両
JP2021049991A (ja) * 2020-12-25 2021-04-01 トヨタ自動車株式会社 制御装置、マネージャ、システム、制御方法及び車両
JP7163952B2 (ja) 2020-12-25 2022-11-01 トヨタ自動車株式会社 制御装置、システム、制御方法及び車両
JP7468496B2 (ja) 2021-11-30 2024-04-16 トヨタ自動車株式会社 運動マネージャ、自動運転装置、制御システム、車両、車両の制御方法およびプログラム

Also Published As

Publication number Publication date
EP2993092A4 (en) 2016-04-20
CN105163989A (zh) 2015-12-16
JPWO2014178264A1 (ja) 2017-02-23
US20160082961A1 (en) 2016-03-24
US9725089B2 (en) 2017-08-08
EP2993092A1 (en) 2016-03-09
JP6044709B2 (ja) 2016-12-14
CN105163989B (zh) 2018-05-08
EP2993092B1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6044709B2 (ja) 車両制御装置及び車両制御方法
CN110871788B (zh) 信息处理装置
CN108569287B (zh) 生成车辆控制命令的方法和装置、车辆控制器、存储介质
JP7384554B2 (ja) ブレーキecu、システム、制御方法及び車両
CN113276837B (zh) 控制装置、管理器、方法、非暂时性存储介质、致动器系统和车辆
JP2010158924A (ja) 車間距離制御装置
JP2015228093A (ja) 運転支援装置および運転支援プログラム
JP7139593B2 (ja) 走行制御装置、車両、および走行制御方法
JP5904157B2 (ja) 制御装置
JP7396429B2 (ja) 制御装置、制駆動力制御システム、方法、およびプログラム
JP7476910B2 (ja) 車両の制御システムおよび制御方法
JP2021049989A (ja) 制御装置、マネージャ、システム、制御方法及び車両
US20220274587A1 (en) Manager, electronic control unit, system, control method, non-transitory storage medium, and vehicle
JP7431186B2 (ja) マネージャ、システム、制御方法、制御プログラム、及び車両
JP7243895B2 (ja) 制御装置、マネージャ、システム、制御方法及び車両
US20220266843A1 (en) Control device, control method, storage medium, manager, and vehicle
JP2014213803A (ja) 制動制御装置、制動制御方法、プログラム及び媒体
JP2021104702A (ja) 運転制御システム
JP2022009422A (ja) 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022105527A (ja) 制御装置、マネージャ、システム、制御方法及び車両
JP2022009420A (ja) 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022009424A (ja) 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022009425A (ja) 制御装置、マネージャ、システム、制御方法、プログラム及び車両
JP2022009423A (ja) 制御装置、マネージャ、システム、制御方法、プログラム及び車両
CN115140031A (zh) 一种自动驾驶方法、装置及电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024254.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791466

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015514797

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14787731

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014791466

Country of ref document: EP