WO2014178130A1 - 角形電池及び組電池 - Google Patents

角形電池及び組電池 Download PDF

Info

Publication number
WO2014178130A1
WO2014178130A1 PCT/JP2013/062707 JP2013062707W WO2014178130A1 WO 2014178130 A1 WO2014178130 A1 WO 2014178130A1 JP 2013062707 W JP2013062707 W JP 2013062707W WO 2014178130 A1 WO2014178130 A1 WO 2014178130A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
battery
external terminal
end portion
welding surface
Prior art date
Application number
PCT/JP2013/062707
Other languages
English (en)
French (fr)
Inventor
柏野 博志
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to PCT/JP2013/062707 priority Critical patent/WO2014178130A1/ja
Priority to JP2015514724A priority patent/JP6043428B2/ja
Publication of WO2014178130A1 publication Critical patent/WO2014178130A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a rectangular battery and an assembled battery.
  • aqueous batteries such as lead batteries, nickel-cadmium batteries and nickel-hydrogen batteries have been mainstream.
  • lithium-ion secondary batteries having a high energy density have attracted attention, and their research, development, and commercialization have been promoted rapidly.
  • the assembled battery is configured by electrically connecting a plurality of prismatic batteries in series or in parallel, and the external terminals of each prismatic battery are connected to each other by a bus bar. Due to the vibration, a load of vibration is applied to a connection portion between the bus bar and the external terminal, and a load is also applied to a resin gasket provided adjacent to the external terminal and maintaining airtightness inside the battery. Therefore, when the vibration is continued for a long time, the load may affect the contact state and airtightness of the connection portion.
  • Patent Document 1 a technique has been proposed in which an elastic deformation portion is provided in a metal line connected to metal terminals of a plurality of adjacent unit cells.
  • the elastic deformation part provided in the metal line of Patent Document 1 absorbs this positional shift when the position in the height direction between adjacent batteries shifts due to assembly tolerances when manufacturing the assembled battery. It is not.
  • the height positions of the bus bar connection surfaces of each other are shifted due to assembly tolerances. There is. If the external terminals are forcibly connected in this state, the load is applied to the connection portion between the external terminals and the bus bar. Therefore, when the vibration continues for a long time due to traveling of the vehicle or the like, the load may affect the contact state and airtightness of the connection portion.
  • the present invention has been made in view of the above-described case, and when a battery pack is manufactured by connecting a plurality of batteries with a bus bar, the positional deviation due to the mounting tolerance between the batteries is absorbed, and the connection part is obtained. It is to provide a prismatic battery and an assembled battery that can reduce the load of the battery.
  • the prismatic battery of the present invention that solves the above problem is a prismatic battery having a pair of external terminals provided with a bus bar welding surface to which a bus bar is welded, wherein one external terminal of the pair of external terminals is the bus bar. It has a bent structure that is bent so as to be displaceable in a direction perpendicular to the welding surface.
  • the bus bar welding surface when connecting the external terminals of adjacent rectangular batteries with a bus bar, the bus bar welding surface can be displaced in the vertical direction, and the height positions of the mutual bus bar welding surfaces are the same height. Can be adjusted to the position. Therefore, it absorbs misalignment due to assembly tolerance, suppresses the load from acting on the connection part between the external terminal and the bus bar and the seal part between the battery cans, and maintains a good connection state and seal state over a long period of time. Can be maintained. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • the disassembled perspective view of the square battery shown in FIG. The external appearance perspective view of the state which developed a part of flat type winding electrode group. Schematic of an electrode.
  • the front view which shows the attachment state of the external terminal of a positive electrode and a negative electrode.
  • the side view which shows the attachment state of the external terminal of a positive electrode and a negative electrode.
  • the figure which shows the structural example of the bus-bar connection part of a negative electrode external terminal The figure which shows the structural example of the bus-bar connection part of a negative electrode external terminal.
  • the figure which shows the structural example of the bus-bar connection part of a negative electrode external terminal The figure which shows the state before the connection of a bus bar typically.
  • the figure which shows the connection state of a bus bar typically.
  • the figure which shows the state before the connection of a bus bar typically.
  • the figure which shows the connection state of a bus bar typically.
  • the figure which shows the modification of the attachment state of a negative electrode external terminal The perspective view of the square battery concerning 2nd Embodiment.
  • the side view which shows the attachment state of the external terminal of a positive electrode and a negative electrode The figure explaining the structure of a negative electrode external terminal.
  • the figure which shows the structural example of the bus-bar connection part of a negative electrode external terminal The figure which shows the structural example of the bus-bar connection part of a negative electrode external terminal.
  • the figure which shows the structural example of the bus-bar connection part of a negative electrode external terminal The figure which shows the structural example of the bus-bar connection part of a negative electrode external terminal.
  • the figure which shows the structural example of the bus-bar connection part of a negative electrode external terminal The figure which shows the state before the connection of a bus bar typically.
  • the figure which shows the connection state of a bus bar typically.
  • the figure which shows the connection state of a bus bar typically.
  • the figure which shows the modification of the attachment state of a negative electrode external terminal The figure which shows the structural example of a negative electrode external terminal.
  • the figure which shows the structural example of a negative electrode external terminal The figure which shows the structural example of a negative electrode external terminal.
  • the figure which shows the structural example of a negative electrode external terminal The figure which shows the structural example of a negative electrode external terminal
  • FIG. 1 is a perspective view of a prismatic battery according to the present embodiment
  • FIG. 2 is an exploded perspective view of the prismatic battery shown in FIG. 1
  • FIG. 3 is an external perspective view of a state in which a part of a flat wound electrode group is developed.
  • 4 and 4 are schematic views of the electrodes.
  • a rectangular battery 1 shown in FIG. 1 is a high-capacity, high-power lithium ion secondary battery (single battery) that constitutes an assembled battery used in, for example, an electric vehicle (EV) or a hybrid vehicle (HEV).
  • the power generation element 3 is housed in the battery container 2.
  • the battery container 2 includes a battery can 11 having an opening 11 a and a battery lid 21 that seals the opening 11 a of the battery can 11.
  • the power generation element 3 includes a flat wound electrode group 31 wound in a flat shape in a state where separators 33 and 35 are interposed between the positive electrode 34 and the negative electrode 32 and overlapped. Yes.
  • the battery can 11 and the battery lid 21 are both made of an aluminum alloy, and the battery lid 21 is welded to the battery can 11 by laser welding to seal the opening 11a.
  • the battery can 11 and the battery lid 21 constitute a sealed rectangular parallelepiped flat rectangular container.
  • the battery can 11 has a flat box shape having a pair of wide side surfaces PW, a pair of narrow side surfaces PN, and a bottom surface PB.
  • the battery lid 21 is provided with a positive electrode terminal 51 and a negative electrode terminal 61 (a pair of electrode terminals) via an insulating member, and constitutes a lid assembly.
  • the battery lid 21 has a gas discharge valve 71 that opens when the pressure in the battery container 2 rises above a predetermined value and discharges the gas in the battery container 2,
  • a liquid injection port 72 for injecting an electrolytic solution into the battery container 2 and a sealing plug 73 for sealing the liquid injection port 72 are disposed.
  • the positive electrode terminal 51 and the negative electrode terminal 61 are arranged at positions separated from each other on one side and the other side in the longitudinal direction of the battery lid 21.
  • the positive terminal 51 and the negative terminal 61 include external terminals 52 and 62 disposed outside the battery cover 21 and connection terminals 53 and 63 that penetrate the battery cover 21 and have one end electrically connected to the external terminals 52 and 62. Have.
  • a gasket (not shown) is interposed between the external terminals 52 and 62 and the battery cover 21 and sealed.
  • the positive external terminal 52 and the connection terminal 53 are made of an aluminum alloy, and the negative external terminal 62 and the connection terminal 63 are made of a copper alloy.
  • the positive external terminal 52 and the negative external terminal 62 have bus bar connecting portions 55 and 65 for welding and connecting the bus bars, respectively. The configuration of the bus bar connection portions 55 and 65 will be described later.
  • connection terminals 53, 63 and the external terminals 52, 62 are electrically insulated from the battery lid 21 by interposing insulating members (not shown) between the battery lid 21.
  • the connection terminals 53 and 63 have current collection terminals 54 and 64 that extend from the inside of the battery lid 21 toward the bottom surface PB of the battery can 11 and are conductively connected to the flat wound electrode group 31.
  • the flat wound electrode group 31 is disposed and supported between the current collecting terminal 54 of the positive electrode terminal 51 and the current collecting terminal 64 of the negative electrode terminal 61, and is supported by the lid assembly and the flat wound electrode group 31.
  • the power generation element assembly is configured.
  • the flat wound electrode group 31 is obtained by winding a strip-like laminate in which the negative electrode 32, the positive electrode 34, and the separators 33 and 35 are laminated in order into a flat shape. It is configured.
  • the flat wound electrode group 31 includes a pair of flat surfaces 31P extending in parallel and a pair of continuously formed between each one end and each other end of the pair of flat surfaces 31P. It has a curved surface 31T, and its cross-sectional shape is an oval shape connecting two semicircles with a straight line.
  • the flat wound electrode group 31 is inserted into the battery can 11 from one curved surface 31T side, as shown in FIG.
  • the pair of flat surfaces 31 ⁇ / b> P are opposed to the pair of wide side surfaces PW
  • the one curved surface 31 ⁇ / b> T is opposed to the bottom surface PB
  • the other curved surface 31 ⁇ / b> T is opposed to the battery lid 21. Retained.
  • the negative electrode 32 includes a negative electrode coating portion 32b in which a negative electrode mixture layer is formed on the front and back surfaces of the negative electrode metal foil, and a negative electrode uncoated negative electrode metal foil with a constant width exposed along the long side direction on one side in the width direction. It has a work part 32a.
  • the positive electrode 34 includes a positive electrode coating portion 34b having a positive electrode mixture layer formed on the front and back surfaces of the positive electrode metal foil, and a positive electrode in which the positive electrode metal foil is exposed with a constant width along the long side direction on the other side in the width direction. It has an uncoated portion 34a.
  • the separators 33 and 35 are made of, for example, an insulating material having a microporous property made of polyethylene and have a role of insulating the positive electrode 34 and the negative electrode 32.
  • the negative electrode coating part 32b of the negative electrode 32 is larger in the width direction than the positive electrode coating part 34b of the positive electrode 34, so that the positive electrode coating part 34b is always sandwiched between the negative electrode coating part 32b.
  • the positive electrode uncoated portion 34a and the negative electrode uncoated portion 32a are bundled by the flat surface 31P and connected to the current collecting terminals 54 and 64 connected to the external terminals 52 and 62 by welding or the like.
  • the separators 33 and 35 are wider than the negative electrode coated portion 32b in the width direction, but are bundled because they are wound at positions where the metal foil surface is exposed at the positive electrode uncoated portion 34a and the negative electrode uncoated portion 32a. This will not interfere with welding.
  • the positive electrode 34 and the negative electrode 32 are overlapped so that the positive electrode uncoated portion 34 a and the negative electrode uncoated portion 32 a are arranged at positions on one side and the other side in the winding axis direction. Is done.
  • the positive electrode 34 is prepared by mixing lithium-containing double oxide powder as a positive electrode active material, scaly graphite as a conductive material, and polyvinylidene fluoride (PVDF) as a binder in a weight ratio of 85: 10: 5.
  • a slurry obtained by adding and kneading a dispersion solvent N-methylpyrrolidone (NMP) was applied to both sides of an aluminum foil (positive electrode metal foil) having a thickness of 20 ⁇ m, dried, and then pressed and cut.
  • NMP dispersion solvent N-methylpyrrolidone
  • amorphous carbon powder as a negative electrode active material PVDF as a binder is added, NMP as a dispersion solvent is added thereto, and a kneaded slurry is applied to both sides of a rolled copper foil having a thickness of 10 ⁇ m. It was made by drying and then pressing and cutting. Note that the negative electrode uncoated portion 32a formed continuously on one side in the longitudinal direction of the rolled copper foil was used as the negative electrode lead.
  • amorphous carbon is exemplified as the negative electrode active material.
  • the present invention is not limited to this, and natural graphite capable of inserting and removing lithium ions, various artificial graphite materials, coke, etc.
  • the carbonaceous material or the like may be used, and the particle shape is not particularly limited to a scaly shape, a spherical shape, a fibrous shape, a massive shape, or the like.
  • the positive electrode 34 and the negative electrode 32 are sequentially overlapped with separators 33 and 35 interposed therebetween so that the two electrodes are not in direct contact with each other. Then, with the one side in the long side direction as the winding center, as shown in FIG. 3, the flat wound electrode group 31 is manufactured by flattening. During winding, both the positive electrode 34, the negative electrode 32, and the separators 33 and 35 are subjected to meandering control so that the electrode end face and the separator end face are in a fixed position while being applied with a load of 10 N in the electrode length and the separator long side direction. While making. At this time, the positive electrode uncoated portion 34a and the negative electrode uncoated portion 32a were wound in an overlapping manner so as to be positioned on opposite end surfaces of the flat wound electrode group 31.
  • the flat wound electrode group 31 is assembled to the lid assembly in which the positive electrode terminal 51 and the like are attached to the battery lid 21 in advance, and the positive electrode uncoated portion 34a, which is a positive electrode lead, and the positive electrode
  • the current collecting terminal 54 is joined and electrically conducted by ultrasonic welding, and similarly, the negative electrode uncoated portion 32a that is the negative electrode lead and the negative current collecting terminal 64 are joined by ultrasonic welding and are electrically connected.
  • Conducting to form a power generation element assembly Then, the battery can 11 and the power generation element assembly are brought close to each other, the flat wound electrode group 31 is inserted into the battery can 11 from the opening 11a of the battery can 11, and the flat wound electrode group 31 is attached. Accommodate.
  • An insulating resin sheet (not shown) is interposed between the battery can 11 and the flat wound electrode group 31. And the opening part 11a of the battery can 11 is obstruct
  • lithium hexafluorophosphate LiPF 6
  • LiPF 6 lithium hexafluorophosphate
  • PVDF is exemplified as the binder, but polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethylcellulose, various types Polymers such as latex, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof may be used.
  • PTFE polytetrafluoroethylene
  • polyethylene polystyrene
  • polybutadiene butyl rubber
  • nitrile rubber styrene / butadiene rubber
  • polysulfide rubber nitrocellulose
  • cyanoethylcellulose various types Polymers such as latex, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene
  • a non-aqueous electrolyte solution in which LiPF 6 is dissolved in a mixed solution of ethylene carbonate and dimethyl carbonate is exemplified, but non-aqueous electrolysis in which a general lithium salt is used as an electrolyte and this is dissolved in an organic solvent.
  • a liquid may be used, and the present invention is not particularly limited to the lithium salt or organic solvent used.
  • LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof can be used as the electrolyte.
  • organic solvent examples include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, Diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propiontonyl, etc., or a mixed solvent of two or more of these may be used, and the mixing ratio is not limited.
  • FIG. 5A is a view in the direction of arrow A in FIG. 1, and is a front view showing the mounting state of the positive and negative external terminals.
  • FIG. 5B is a view in the direction of arrow B in FIG.
  • FIG. 6A is a diagram for explaining the configuration of the negative external terminal, and FIGS. 6B to 6E are diagrams showing other specific examples of the bus bar connection portion 65.
  • the bus bar connection part 55 of the positive electrode external terminal 52 has a block shape having a substantially rectangular shape in plan view with a bus bar welding surface 55a provided on the upper surface.
  • the bus bar welding surface 55a is provided so as to extend in parallel with the battery lid 21 at a position of a preset height h0 from the upper surface of the battery lid 21, and the bus bar 80 (see FIG. 7) is placed thereon for laser welding. Are joined together.
  • the bus bar connecting portion 65 of the negative electrode external terminal 62 is provided with a bus bar welding surface 65d on the upper surface, and has a bent structure in which the bus bar welding surface 65d is bent so as to be displaceable in a direction perpendicular to the bus bar welding surface 65d. As shown in FIG. 6A, the bus bar connection portion 65 is provided separately from the base portion 62a of the negative electrode external terminal 62 extending in a flat plate shape along the upper surface of the battery lid 21, and is joined by laser welding. .
  • the bus bar connecting portion 65 is formed by bending a conductive plate-like member into a Z-shape, and a base end portion 65a joined to the base portion 62a, and an inclination that is turned up at the side end of the base end portion 65a. It has a portion 65b and a distal end portion 65c that is folded back at the upper end of the inclined portion 65b and arranged in parallel with the proximal end portion 65a.
  • a bus bar welding surface 65d is formed on the upper surface of the tip 65c.
  • the bus bar connecting portion 65 is manufactured using a clad material of a copper alloy and an aluminum alloy so that a bus bar 80 made of aluminum alloy can be connected.
  • the lower surface portion 65a1 of the base end portion 65a is made of a copper alloy
  • the upper surface portion 65a2 and the inclined portion 65b of the base end portion 65a, and the tip end portion 65c are made of an aluminum alloy.
  • the lower surface portion 65a1 and the upper surface portion 65a2 are clad-coupled.
  • the copper alloys are joined to each other.
  • the aluminum alloy bus bar 80 is joined to the bus bar welding surface 65d of the tip 65c, the aluminum alloy is joined. Therefore, an aluminum alloy bus bar that is less expensive than a copper alloy can be used, and the product cost can be kept low.
  • the structures of the copper alloy and aluminum alloy of the clad material are particularly limited except that the copper alloy is disposed on the welding surface with the base 62a of the negative electrode external terminal 62 and the aluminum alloy is disposed on the bus bar welding surface 65d.
  • other shapes may be used.
  • a copper alloy 62b of a clad material may be disposed on the entire bus bar connection portion 65.
  • the bus bar connecting portion 65 has a Z-shaped open cross-sectional shape, and the base end portion 65 a is joined to the base portion 62 a of the negative electrode external terminal 62. Therefore, when the front end portion 65c is pressed, it is deformed in a direction in which the overall height is lowered by elastic deformation or plastic deformation, and the bus bar welding surface 65d can be displaced in a direction perpendicular to the bus bar welding surface 65d.
  • the bus bar connection portion 65 shown in FIGS. 6B to 6D has a Z-shaped open cross-sectional shape as in FIG. 6A, but the configuration of the cladding material is different.
  • the bus bar connecting portion 65 in FIG. 6B is clad and bonded in the plate thickness direction so that the copper alloy portion and the aluminum alloy portion of the clad material are layered over the entire bus bar connecting portion 65, and the bottom surface of the base end portion 65a.
  • the portion 65a1 is a copper alloy portion
  • the upper surface portion 65c2 of the tip portion 65c having the bus bar weld surface 65d is an aluminum alloy portion.
  • the base end portion 65a and the inclined portion 65b are clad-coupled, the base end portion 65a is a copper alloy portion, and the inclined portion 65b and the distal end portion 65c are aluminum alloy portions.
  • 6D and 6E are clad-coupled at an intermediate position of the inclined portion 65b, and a copper alloy portion is formed from the base end portion 65a to the intermediate position of the inclined portion 65b, and from the intermediate position of the inclined portion 65b. It arrange
  • the bus bar connecting portion 65 shown in FIG. 6D since the clad coupling surface is formed obliquely with respect to the thickness direction, a larger coupling area can be secured compared with FIG. Strength can be obtained.
  • the clad coupling surface is formed in a zigzag folded shape that is folded back multiple times, so that a larger coupling area can be secured and high coupling strength can be obtained. Can do.
  • the bus bar connecting portion 65 is not used without using the clad material.
  • the whole may be made of a copper alloy that is the same material as the base portion 62a. In that case, the bus bar connecting portion 65 and the base portion 62a can be integrally formed.
  • the positive electrode external terminal 52 of the positive electrode terminal 51 and the negative electrode external terminal 62 of the negative electrode terminal 61 are higher in the bus bar weld surface of the negative electrode external terminal 62 than in the positive electrode external terminal 52 as shown in FIGS. That is, the bus bar welding surface 65d of the negative electrode external terminal 62 is disposed at a position where the height from the battery lid 21 is higher than the bus bar welding surface 55a of the positive electrode external terminal 52.
  • the height h1 is configured to be higher than the height h0 of the bus bar welding surface 55a.
  • the difference in height between the bus bar welded surface 55a of the positive external terminal 52 and the bus bar welded surface 65d of the negative external terminal 62 is such that when a plurality of rectangular batteries 1 are arranged to form an assembled battery, adjacent rectangular batteries 1 are connected to each other. It is set to be larger than the deviation in the height direction of the bus bar welding surface caused by the assembly tolerance. Therefore, when an assembled battery is manufactured by electrically connecting the adjacent square batteries with the bus bar 80, the bus bar 80 is pressed down to displace the height position of the bus bar welding surface 65d in the direction of lowering the adjacent battery. Therefore, it is possible to match the height position of the bus bar welding surface 55a of the rectangular battery, and the deviation of the height position of the bus bar welding surface due to the assembly tolerance can be absorbed.
  • FIG. 7A and FIG. 7B are diagrams schematically showing the connection state of the bus bars when the height of the adjacent rectangular battery is low with respect to one of the square batteries
  • FIG. 8A and FIG. It is a figure which shows typically the connection state of a bus bar in case the height of an adjacent square battery is high.
  • the assembled battery is configured by arranging and securing a plurality of rectangular batteries 1.
  • the plurality of prismatic batteries 1 are arranged such that the wide side surfaces PW of the prismatic batteries 1 adjacent to each other face each other, and the positive external terminals 52 and the negative external terminals 62 are alternately and continuously arranged in a line.
  • a deviation occurs due to an assembly tolerance in a battery height direction that is a direction orthogonal to the battery arrangement direction and that faces the battery lid 21, and FIG.
  • FIG. 8A when the height of the square battery 1B adjacent to one square battery 1A is lowered by the difference ⁇ 1, or as shown in FIG. 8A, the height of the square battery 1B adjacent to one square battery 1A. May be increased by the difference ⁇ 2.
  • the bus bar welding surface 65d is displaced from h1 to h2 so that the bus bar 80 is welded to the bus bar welding surface 65d of the bus bar connecting portion 65 and the bus bar welding portion 55.
  • the surface 55a is in contact with both surfaces. Therefore, welding can be performed without applying a load to the connection portion between the bus bar connection portion 65 and the bus bar 80.
  • the bus-bar connection part 65 can be displaced to a battery height direction after a connection, the load by a vibration can also be reduced in the state made into an assembled battery.
  • the positional deviation due to the assembly tolerance is absorbed, and a load is applied to a connection portion between the negative electrode external terminal 62 and the bus bar 80 and a gasket (seal portion) interposed between the negative electrode external terminal 62 and the battery lid 21 of the battery can 11. Can be suppressed, and a good connection state and a sealed state can be maintained over a long period of time.
  • the bus bar connecting portion 65 has a Z-shape, and the base end portion 65a and the tip end portion 65c are arranged in parallel, so that the bus bar 80 is pressed to move in the battery height direction.
  • the bus bar 80 can be easily moved in parallel, and can be easily brought into contact with the bus bar welding surface 55a of the bus bar connecting portion 55 of the positive electrode external terminal 52, thus ensuring the effect of reliable welding.
  • FIG. 9 is a diagram illustrating an example in which the direction of the bus bar connection unit 65 in FIG. 8B is changed.
  • the direction of the bus bar connection portion 65 is not limited to the configuration of the above-described embodiment, and various changes can be made.
  • the bus bar connecting portion 65 of the prismatic battery 1A is disposed at a position where the bent portion of the base end portion 65a and the inclined portion 65b is separated from the adjacent rectangular battery 1B, and the inclined portion 65b and the distal end portion. It is attached in a state where the bent portion with 65c is disposed at a position approaching the adjacent rectangular battery 1B.
  • the bus bar connecting portion 65 of the prismatic battery 1A is disposed at a position where the bent portion of the base end portion 65a and the inclined portion 65b approaches the adjacent rectangular battery 1B and the inclined portion.
  • tip part 65c is attached in the state arrange
  • the direction of the bus bar connection portion 65 may be attached 180 degrees opposite, and the direction rotated by 90 degrees, that is, one side in the longitudinal direction of the battery lid 21
  • the bent portion of the base end portion 65a and the inclined portion 65b may be disposed on the other side, and the bent portion of the inclined portion 65b and the distal end portion 65c may be disposed on the other side in the longitudinal direction.
  • a characteristic feature of this embodiment is that the bus bar connecting portion 66 of the negative external terminal 62 has a U-shaped open cross-sectional shape.
  • the configuration is the same as that of the first embodiment except that the shape of the bus bar connecting portion 66 is changed to a U-shape.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the bus bar connecting portion 66 of the negative electrode external terminal 62 has a bus bar welding surface 66d to which the bus bar 80 is welded on the upper surface, and a bent structure in which the bus bar welding surface 66d is bent so as to be displaceable in a direction perpendicular to the bus bar welding surface 66d.
  • the bus bar connection portion 66 is provided separately from the base portion 62a of the negative electrode external terminal 62 extending along the upper surface of the battery lid 21, and is joined by laser welding or the like.
  • the bus bar connecting portion 66 is formed by bending a conductive plate-like member into a U shape, and includes a base end portion 66a, a curved portion 66b that is bent and rises at a side end of the base end portion 66a, and a curved portion. It has the front-end
  • a bus bar welding surface 66d is formed on the top surface of the tip portion 66c.
  • the bus bar connecting portion 66 is manufactured using a clad material of a copper alloy and an aluminum alloy so that a bus bar 80 made of an aluminum alloy can be connected.
  • the lower surface portion 65a1 of the proximal end portion 66a is made of a copper alloy
  • the upper surface portion 66a2 and the curved portion 66b of the proximal end portion 66a, and the distal end portion 66c are made of an aluminum alloy.
  • the lower surface portion 66a1 and the upper surface portion 66a2 are clad-coupled.
  • the structure of the copper alloy and aluminum alloy of the clad material is particularly limited except that the copper alloy is disposed on the welding surface with the base portion 62a of the negative electrode external terminal 62 and the aluminum alloy is disposed on the bus bar welding surface 66d. It may not be another shape.
  • bus bar connection portion 66 since the bus bar connection portion 66 has a U shape, only the lower surface portion 66a1 of the base end portion 66a welded to the base portion 62a of the negative electrode external terminal 62 becomes a copper alloy portion. Has been placed.
  • 12B to 12E have a U-shaped open cross-sectional shape as in FIG. 12A, but the configuration of the clad material is different.
  • the base end portion 66a and the curved portion 66b are clad-coupled, the base end portion 66a is a copper alloy portion, and the curved portion 66b and the distal end portion 66c are aluminum alloy portions.
  • the curved portion 66b and the distal end portion 66c are clad-coupled so that the proximal end portion 66a and the curved portion 66b become a copper alloy portion, and the distal end portion 66c becomes an aluminum alloy portion. Has been placed.
  • the bus bar connecting portion 66 in FIG. 12D is formed in a zigzag shape in which the clad coupling surface between the base end portion 66a and the curved portion 66b is folded back multiple times, and the bus bar connecting portion 66 in FIG. 12E has the curved portion 66b.
  • a clad coupling surface between the tip portion 66c and the tip end portion 66c is formed in a zigzag manner that is folded back multiple times. Therefore, as compared with the configuration shown in FIGS. 12B and 12C, the coupling area of the clad junction can be further increased, and high coupling strength can be obtained.
  • the bus bar connection portion 66 and the base portion 62a are configured separately and joined by laser welding, but the bus bar connection portion 66 is not used without using the clad material.
  • the whole may be made of a copper alloy that is the same material as the base portion 62a. In that case, the bus bar connecting portion 66 and the base portion 62a may be integrally formed.
  • the positive electrode external terminal 52 of the positive electrode terminal 51 and the negative electrode external terminal 62 of the negative electrode terminal 61 are such that the bus bar weld surface 66d of the negative electrode external terminal 62 is the bus bar weld surface 55a of the positive electrode external terminal 52. It is arranged at a position where the height from below the battery lid 21 is higher. That is, the height h1 of the bus bar welding surface 66d is configured to be higher than the height h0 of the bus bar welding surface 55a.
  • the difference in height between the bus bar welded surface 55a of the positive external terminal 52 and the bus bar welded surface 66d of the negative external terminal 62 is such that when a plurality of rectangular batteries 1 are arranged to form an assembled battery, adjacent rectangular batteries 1 are connected to each other. Is set to be larger than the deviation in the height direction caused by the assembly tolerance.
  • FIG. 13A and FIG. 13B are diagrams schematically showing the connection state of the bus bars when the height of the adjacent square battery is low with respect to one of the square batteries
  • FIG. 14A and FIG. It is a figure which shows typically the connection state of a bus bar in case the height of an adjacent square battery is high.
  • a deviation occurs due to an assembly tolerance in a battery height direction that is a direction orthogonal to the battery arrangement direction and that faces the battery lid 21, and as shown in FIG.
  • the height of the prismatic battery 1B adjacent to one prismatic battery 1A is lowered by the difference ⁇ 1, or as shown in FIG. 14A, the height of the prismatic battery 1B adjacent to one prismatic battery 1A is the difference ⁇ 2. May only be higher.
  • the negative external terminal 62 of the negative external terminal 62 is connected to the positive external terminal 52 before the bus bar connecting portion 55. It contacts the bus bar connection part 66.
  • the bent portion 66b of the bus bar connecting portion 66 is deformed due to its bent structure, and is displaced in a direction perpendicular to the bus bar welding surface 66d, that is, in the battery height direction.
  • the bus bar welding surface 66d is displaced from h1 to h2 so that the bus bar 80 is welded between the bus bar welding surface 66d of the bus bar connection portion 66 and the bus bar connection portion 55.
  • the surface 55a is in contact with both surfaces. Therefore, welding can be performed without applying a load to the connection portion between the bus bar connecting portion 66 and the bus bar 80. Since the bus bar connecting portion 66 can be displaced in the battery height direction even after connection, the load caused by vibration can be reduced in the assembled battery state.
  • the bus bar connection portion 66 since the bus bar connection portion 66 has a U-shape, it has an effect of being more resistant to repeated stress and having higher resistance to vibration than the Z-shape of the first embodiment. Yes. Moreover, since it can manufacture by bending a clad material in U shape, it also has the effect that manufacture is comparatively easy.
  • FIG. 15 is a diagram showing an example in which the direction of the bus bar connecting portion 66 in FIG. 14B is changed.
  • the direction of the bus bar connection portion 66 is not limited to the configuration of the above-described embodiment, and various changes can be made.
  • the bus bar connection portion 65 of the prismatic battery 1 ⁇ / b> A is attached in a state where the curved portion 66 b is disposed at a position approaching the adjacent prismatic battery 1 ⁇ / b> B.
  • the bending portion 66b is attached in a state of being disposed at a position away from the adjacent rectangular battery 1B.
  • the direction of the bus bar connecting portion 66 may be attached 180 degrees opposite, and the direction rotated by 90 degrees, that is, one side in the longitudinal direction of the battery lid 21. Or you may attach so that the curved part 66b may be arrange
  • FIG. 16A to FIG. 16C are diagrams showing other configuration examples of the bus bar connecting portion used for the negative electrode external terminal 62.
  • the present invention is not limited to those having an open cross section, and any bus bar welding surface may be used as long as it has a bent structure that can be displaced in a direction perpendicular to the bus bar welding surfaces 65d, 66d.
  • a bus bar connecting portion 67 having a closed cross-sectional shape may be used.
  • the bus bar connecting portion 67 in FIG. 16A has a plate-like base end portion 67a and a tip end portion 67c arranged in parallel with each other, and a gap between the opposite ends of the base end portion 67a and the tip end portion 67c. It has a pair of bending part 67e bent in the direction which mutually approaches.
  • the bus bar connecting portion 67 in FIG. 16B has a pair of bent portions 67e that are formed in a U-shape that connects between the side ends of the base end portion 67a and the tip end portion 67c that are opposed to each other and are bent in directions away from each other. is doing.
  • 16C is curved in a semicircular arc shape between the opposed ends of the base end portion 67a and the distal end portion 67c in a direction away from each other, instead of the bent portion 67e in FIG. 16A. It has a pair of curved portions 67f.
  • 16A to 16C are manufactured using a clad material of a copper alloy and an aluminum alloy so that a bus bar made of an aluminum alloy can be connected. Specifically, most is made of an aluminum alloy, and the lower surface portion 67a1 of the copper alloy is clad-coupled to the upper surface portion 67a2 of the base end portion 67a. That is, the lower surface portion 67a1 of the base end portion 67a is a copper alloy portion, and the upper surface portion 67a2, the bent portion 67e, the curved portion 67f, and the distal end portion 67c of the base end portion 67a are aluminum alloy portions.
  • the copper alloys are bonded to each other.
  • the aluminum alloy bus bar 80 is joined to the bus bar welding surface 65d of the tip 65c, the aluminum alloy is joined. Therefore, an aluminum alloy bus bar that is less expensive than a copper alloy can be used, and the product cost can be kept low.
  • the lower surface portion 67a1 of the base end portion 67a is welded to the base portion 62a of the negative electrode external terminal 62, and the upper surface portion of the distal end portion 67c is welded to the bus bar 80 as a bus bar welding surface 67d.
  • tip part 67c with respect to the base end part 67a can be displaced by the bending of the bending part 67e and the curved part 67f.
  • the bus bar connecting portion 67 shown in FIGS. 16A to 16C is not likely to be inclined as compared with the Z-shaped or U-shaped open cross section in the first and second embodiments, and the base end portion 67a is not inclined.
  • the tip 67c can be displaced in parallel. Accordingly, when the bus bar 30 is pushed into the bus bar welding surface 67d which is the upper surface of the tip 67c, the bus bar 30 is moved in parallel so that the bus bar welding of the positive external terminal 52 of the adjacent rectangular battery 1 is performed.
  • the bus bar 80 can be brought into contact with the surface 55a so as to be in contact with both the bus bar welding surface 66d of the bus bar connection portion 66 and the bus bar welding surface 55a of the bus bar connection portion 55.
  • welding can be performed without applying a load to the connection portion between the bus bar connecting portion 66 and the bus bar 80.
  • the bus-bar connection part 67 can be displaced to a battery height direction even after connection, the load by vibration can also be reduced in the state made into an assembled battery.
  • bus bar connecting portion 67 shown in FIGS. 16A to 16C has a pair of bent portions 67e or a curved portion 67f. Therefore, as compared with those having an open cross section such as a Z shape or a U shape in the first and second embodiments, there are more paths through which electricity flows, and there is an effect that the energization resistance can be lowered.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Abstract

 本発明の課題は、複数の単電池をバスバーで電気的に接続して組電池を作製した場合に、組み付け公差による単電池間の位置ずれを吸収し、組電池における振動による負荷を軽減可能な構造を有する角形電池を得ることである。 本発明の課題を解決する角形電池(1)は、バスバー(80)が溶接されるバスバー溶接面(55a、65d)が設けられた一対の外部端子(51、61)を有する角形電池(1)であって、前記一対の外部端子(51、61)の一方の外部端子(61)が、前記バスバー溶接面(65d)に垂直な方向に変位可能に屈曲された屈曲構造を有している。

Description

角形電池及び組電池
 本発明は、角形電池及び組電池に関する。
 従来、再充電可能な二次電池の分野では、鉛電池、ニッケル-カドミウム電池、ニッケル-水素電池等の水溶液系電池が主流であった。しかしながら、電気機器の小型化、軽量化が進むにつれ、高エネルギー密度を有するリチウムイオン二次電池が着目され、その研究、開発及び商品化が急速に進められた。
 一方、地球温暖化や枯渇燃料の問題から電気自動車(EV)や駆動の一部を電気モーターで補助するハイブリッド電気自動車(HEV)が各自動車メーカーで開発され、その電源として高容量で高出力な二次電池が求められるようになってきた。このような要求に合致する電源として、高電圧を有する非水溶液系のリチウムイオン二次電池が注目されている。特に、角形のリチウムイオン二次電池は、複数個をまとめてパック化した際の体積効率が優れているため、HEV用あるいはEV用としての開発の期待が高まっている。
 組電池は、複数の角形電池を直列または並列に電気的に接続して構成されており、各々の角形電池の外部端子どうしがバスバーで接続されているので、例えば車載された状態では走行中の振動により、バスバーと外部端子との接続部分に振動の負荷がかかり、また、外部端子に隣接して設けられて電池内部の気密を保持する樹脂製のガスケットにも負荷がかかる。そのため、長期に渡って振動を受け続けた場合、その負荷によって接続部分の接触状態や気密性に影響を与えるおそれがあった。
 そして、従来より、隣接する複数の素電池の金属端子に接続される金属ラインに弾性変形部を設ける技術が提案されている(特許文献1)。
特開2007-323952号公報
 しかしながら、特許文献1の金属ラインに設けられた弾性変形部は、組電池を作製する際に組み付け公差によって隣接する電池間の高さ方向の位置がずれた場合に、この位置ずれを吸収する構造とはなっていない。
 例えば、複数の単電池を配列させて外部端子間を直列およびまたは並列にバスバーで電気的に接続して組電池を作製する際に、組み付け公差によって互いのバスバー接続面の高さ位置がずれることがある。この状態で強制的に外部端子間を接続すると、その負荷が外部端子とバスバーとの接続部分に作用した状態となる。したがって、車両走行等により長期に渡り振動を受け続けた場合に、その負荷によって接続部分の接触状態や気密性に影響を与えるおそれがある。
 本発明は、上記事案に鑑みてなされたものであり、複数の電池の間をバスバーで接続して組電池を作製する際に、電池間の組み付け公差による位置ずれを吸収して、接続部分への負荷を軽減可能な角形電池及び組電池を提供することである。
 上記課題を解決する本発明の角形電池は、バスバーが溶接されるバスバー溶接面が設けられた一対の外部端子を有する角形電池であって、前記一対の外部端子の一方の外部端子が、前記バスバー溶接面に垂直な方向に変位可能に屈曲された屈曲構造を有することを特徴としている。
 本発明によれば、隣接する角形電池の外部端子の間をバスバーで接続する際に、バスバー溶接面を垂直な方向に変位させることができ、互いのバスバー溶接面の高さ位置を同じ高さ位置に調整することができる。したがって、組み付け公差による位置ずれを吸収して、外部端子とバスバーとの接続部分及び電池缶との間のシール部分に負荷が作用するのを抑制し、良好な接続状態及びシール状態を長期に渡って維持することができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
第1の実施形態に係わる角形電池の斜視図。 図1に示す角形電池の分解斜視図。 扁平形捲回電極群の一部を展開した状態の外観斜視図。 電極の概略図。 正極及び負極の外部端子の取付状態を示す正面図。 正極及び負極の外部端子の取付状態を示す側面図。 負極外部端子の構成を説明する図。 負極外部端子のバスバー接続部の構成例を示す図。 負極外部端子のバスバー接続部の構成例を示す図。 負極外部端子のバスバー接続部の構成例を示す図。 負極外部端子のバスバー接続部の構成例を示す図。 バスバーの接続前の状態を模式的に示す図。 バスバーの接続状態を模式的に示す図。 バスバーの接続前の状態を模式的に示す図。 バスバーの接続状態を模式的に示す図。 負極外部端子の取付状態の変形例を示す図。 第2の実施形態に係わる角形電池の斜視図。 正極及び負極の外部端子の取付状態を示す正面図。 正極及び負極の外部端子の取付状態を示す側面図。 負極外部端子の構成を説明する図。 負極外部端子のバスバー接続部の構成例を示す図。 負極外部端子のバスバー接続部の構成例を示す図。 負極外部端子のバスバー接続部の構成例を示す図。 負極外部端子のバスバー接続部の構成例を示す図。 バスバーの接続前の状態を模式的に示す図。 バスバーの接続状態を模式的に示す図。 バスバーの接続前の状態を模式的に示す図。 バスバーの接続状態を模式的に示す図。 負極外部端子の取付状態の変形例を示す図。 負極外部端子の構成例を示す図。 負極外部端子の構成例を示す図。 負極外部端子の構成例を示す図。
 以下、図面を参照して、本発明の角形電池を角形のリチウムイオン二次電池の組電池に適用した実施形態について説明する。
<第1の実施形態>
 まず、各実施形態において共通して用いられる角形電池の構成について説明する。
 図1は、本実施形態に係わる角形電池の斜視図、図2は、図1に示す角形電池の分解斜視図、図3は、扁平形捲回電極群の一部を展開した状態の外観斜視図、図4は、電極の概略図である。
 図1に示す角形電池1は、例えば電気自動車(EV)やハイブリッド自動車(HEV)に用いられる組電池を構成する高容量で高出力のリチウムイオン二次電池(単電池)であり、扁平箱形の電池容器2内に発電要素3を収容した構成を有している。図2に示すように電池容器2は、開口部11aを有する電池缶11と、電池缶11の開口部11aを封口する電池蓋21とを有する。詳細は後述するが、発電要素3は、正極34と負極32との間にセパレータ33、35を介在させて重ね合わせた状態で扁平状に捲回した扁平形捲回電極群31を有している。
 電池缶11及び電池蓋21は、共にアルミニウム合金で製作されており、電池蓋21は、レーザ溶接によって電池缶11に溶接され、開口部11aを封口する。電池缶11と電池蓋21は、密閉された直方体形状の扁平角形容器を構成する。電池缶11は、一対の幅広側面PWと、一対の幅狭側面PNと、底面PBとを有する扁平箱形を有している。電池蓋21には、絶縁部材を介して正極端子51と負極端子61(一対の電極端子)が配設されており、蓋組立体を構成している。また、電池蓋21には、正極端子51及び負極端子61の他に、電池容器2内の圧力が所定値よりも上昇すると開放されて電池容器2内のガスを排出するガス排出弁71と、電池容器2内に電解液を注入するための注液口72と、注液口72を封止する封止栓73が配置されている。
 正極端子51及び負極端子61は、電池蓋21の長手方向一方側と他方側の互いに離れた位置に配置されている。正極端子51及び負極端子61は、電池蓋21の外側に配置される外部端子52、62と、電池蓋21を貫通して一端が外部端子52、62に導通接続される接続端子53、63を有している。外部端子52、62と電池蓋21との間には、図示していないガスケットが介在されてシールされている。
 正極の外部端子52と接続端子53は、アルミニウム合金で製作され、負極側の外部端子62と接続端子63は、銅合金で製作されている。正極外部端子52と負極外部端子62は、それぞれバスバーを溶接して接続するためのバスバー接続部55、65を有している。なお、バスバー接続部55、65の構成については、後述する。
 接続端子53、63と外部端子52、62は、それぞれ電池蓋21との間に図示していない絶縁部材が介在されており、電池蓋21から電気的に絶縁されている。接続端子53、63は、電池蓋21の内側から電池缶11の底面PBに向かって延出して扁平形捲回電極群31に導通接続される集電端子54、64を有している。扁平形捲回電極群31は、正極端子51の集電端子54と負極端子61の集電端子64との間に配置されて支持されており、蓋組立体及び扁平形捲回電極群31によって、発電要素組立体が構成されている。
 扁平形捲回電極群31は、図3及び図4に示すように、負極32と正極34とセパレータ33、35を順番に重ねて積層した帯状の積層体を、扁平形状に捲回することによって構成されている。扁平形捲回電極群31は、平行に延在する一対の平坦面31Pと、これら一対の平坦面31Pの各一方端部の間及び各他方端部の間に連続して形成された一対の湾曲面31Tとを有しており、その断面形状は、二つの半円を直線で結んだ長円形状をなす。
 扁平形捲回電極群31は、図2に示すように、一方の湾曲面31T側から電池缶11に挿入される。そして、電池缶11の内部で、一対の平坦面31Pが一対の幅広側面PWに対向し、一方の湾曲面31Tが底面PBに対向し、他方の湾曲面31Tが電池蓋21に対向する姿勢状態に保持される。
 負極32は、負極金属箔の表面と裏面に負極合剤層が形成された負極塗工部32bと、幅方向一方側で長辺方向に沿って一定幅で負極金属箔が露出した負極未塗工部32aを有している。そして、正極34は、正極金属箔の表面と裏面に正極合剤層が形成された正極塗工部34bと、幅方向他方側で長辺方向に沿って一定幅で正極金属箔が露出した正極未塗工部34aを有している。
 セパレータ33、35は、例えばポリエチレン製の微多孔性を有する絶縁材料からなり、正極34と負極32を絶縁する役割を有している。負極32の負極塗工部32bは、正極34の正極塗工部34bよりも幅方向に大きく、これにより正極塗工部34bは、必ず負極塗工部32bに挟まれるように構成されている。
 正極未塗工部34a、負極未塗工部32aは、平坦面31Pで束ねられて溶接等により外部端子52、62につながる各極の集電端子54、64に接続される。尚、セパレータ33、35は、幅方向で負極塗工部32bよりも広いが、正極未塗工部34a、負極未塗工部32aで金属箔面が露出する位置に捲回されるため、束ねて溶接する場合の支障にはならない。正極34と負極32は、図4に示すように、正極未塗工部34aと負極未塗工部32aが捲回軸方向一方側と他方側の位置に配置されるように重ねられて捲回される。
 正極34は、正極活物質としてリチウム含有複酸化物粉末と、導電材として鱗片状黒鉛と、結着剤としてポリフッ化ビニリデン(PVDF)と、を重量比85:10:5で混合し、これに分散溶媒のN-メチルピロリドン(NMP)を添加、混練したスラリを、厚さ20μmのアルミニウム箔(正極金属箔)の両面に塗布して乾燥し、その後プレス、裁断をすることにより作製された。なお、アルミニウム箔の長手方向一側に形成された正極未塗工部34aを正極リードとした。
 負極32は、負極活物質として非晶質炭素粉末に、結着剤としてPVDFを添加し、これに分散溶媒のNMPを添加、混練したスラリを、厚さ10μmの圧延銅箔の両面に塗布して乾燥し、その後プレス、裁断をすることにより作製された。なお、圧延銅箔の長手方向一側に連続して形成された負極未塗工部32aを負極リードとした。
 なお、本実施形態では、負極活物質に非晶質炭素を例示したが、これに限定されるものではなく、リチウムイオンを挿入、脱離可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料等でよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。
 上記した角形電池1を組み立てる場合は、まず、図4に示すように、正極34と負極32とを、これら両極が直接接触しないように間にセパレータ33、35を介在させて順番に重ね合わせる。そして、長辺方向一方側を捲回中心として、図3に示すように、扁平状に捲回して扁平形捲回電極群31を作製する。捲回時は、正極34、負極32、セパレータ33、35とも、電極長さおよびセパレータ長辺方向に10Nの荷重をかけて伸展しつつ、電極端面およびセパレータ端面が一定位置になるように蛇行制御しながら作製した。このとき、正極未塗工部34aと負極未塗工部32aとが、それぞれ扁平形捲回電極群31の互いに反対側の両端面に位置するように重ね合わせて捲回した。
 次に、予め電池蓋21に正極端子51等が取り付けられて組み立てられている蓋組立体に対して、扁平形捲回電極群31を組み付けて、正極リードである正極未塗工部34aと正極集電端子54とを超音波溶接により接合して電気的に導通させ、同様に、負極リードである負極未塗工部32aと負極集電端子64とを超音波溶接により接合して電気的に導通させて、発電要素組立体を形成する。そして、電池缶11と発電要素組立体とを接近させて、電池缶11の開口部11aから電池缶11の内部に扁平形捲回電極群31を挿入して、扁平形捲回電極群31を収容する。なお、電池缶11と扁平形捲回電極群31との間には、図示していない絶縁樹脂シートが介在されている。そして、電池缶11の開口部11aを電池蓋21で閉塞して、電池缶11と電池蓋21との間をレーザー溶接して封止する。
 次に、扁平形捲回電極群31全体を浸潤可能な所定量の非水電解液を、電池蓋21の注液口72から電池容器2内に注入して、その後に注液口72に封止栓73を取り付けてレーザー溶接し、密閉する。これにより、角形電池1は、図1に示すように、完成した状態とされる。
 非水電解液には、エチレンカーボネートとジメチルカーボネートとを体積比で1:2の割合で混合した混合溶液中へ六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解したものを用いた。
 また、本実施形態では、バインダとしてPVDFを例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体などを使用するようにしてもよい。
 更に、本実施形態では、エチレンカーボネートとジメチルカーボネートの混合溶液中にLiPFを溶解した非水電解液を例示したが、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いるようにしてもよく、本発明は用いられるリチウム塩や有機溶媒には特に制限されない。例えば、電解質としては、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いることができる。また、有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトニル等またはこれら2種類以上の混合溶媒を用いるようにしてもよく、混合配合比についても限定されるものではない。
 次に、正極外部端子52及び負極外部端子62のバスバー接続部55、65の構成について詳細に説明する。
 図5Aは、図1のA方向矢視図であり、正極及び負極の外部端子の取付状態を示す正面図、図5Bは、図1のB方向矢視図であり、正極及び負極の外部端子の取付状態を示す側面図、図6Aは、負極外部端子の構成を説明する図、図6Bから図6Eは、バスバー接続部65の他の具体例を示す図である。
 正極外部端子52のバスバー接続部55は、上面にバスバー溶接面55aが設けられた平面視略矩形のブロック形状を有している。バスバー溶接面55aは、電池蓋21の上面から予め設定された高さh0の位置で電池蓋21と平行に延在するように設けられており、バスバー80(図7参照)を載せてレーザー溶接により接合される。
 負極外部端子62のバスバー接続部65は、上面にバスバー溶接面65dが設けられており、バスバー溶接面65dをバスバー溶接面65dに垂直な方向に変位可能に屈曲された屈曲構造を有する。バスバー接続部65は、図6Aに示すように、電池蓋21の上面に沿って平板状に延在する負極外部端子62の基部62aとは別体に設けられており、レーザー溶接によって接合される。バスバー接続部65は、導電性の板状部材をZ字状に折り曲げることによって形成されており、基部62aに接合される基端部65aと、基端部65aの側端で折り返されて立ち上がる傾斜部65bと、傾斜部65bの上端で折り返されて基端部65aと平行に配置される先端部65cとを有している。先端部65cの上面には、バスバー溶接面65dが形成されている。
 本実施の形態では、バスバー接続部65は、銅合金とアルミニウム合金のクラッド材を用いて製作されており、アルミニウム合金製のバスバー80を接続できるようになっている。具体的には、基端部65aの下面部65a1が銅合金により構成され、基端部65aの上面部65a2及び傾斜部65b、先端部65cがアルミニウム合金により構成されており、基端部65aの下面部65a1と上面部65a2とがクラッド結合されている。
 したがって、負極外部端子62の基部62aに、基端部65aの下面部65a1を接合した場合に、銅合金同士の接合となる。そして、先端部65cのバスバー溶接面65dにアルミニウム合金製のバスバー80を接合した場合に、アルミニウム合金同士の接合となる。したがって、銅合金製よりも安価なアルミニウム合金製のバスバーを用いることができ、製品コストを低く抑えることができる。
 なお、クラッド材の銅合金とアルミニウム合金の構造は、負極外部端子62の基部62aとの溶接面に銅合金が配置され且つバスバー溶接面65dにアルミニウム合金が配置されていること以外は、特に限定されず、他の形状であってもよく、例えば、クラッド材の銅合金62bがバスバー接続部65全体に配置されていてもよい。
 上述のように、バスバー接続部65は、Z字状の開放断面形状を有しており、基端部65aが負極外部端子62の基部62aに接合されている。したがって、先端部65cを押圧した場合に、弾性変形もしくは塑性変形により全体高さが低くなる方向に変形し、バスバー溶接面65dをバスバー溶接面65dに垂直な方向に変位させることができる。
 図6B~図6Dに示すバスバー接続部65は、図6Aと同様にZ字状の開放断面形状を有しているが、クラッド材の構成が相違している。
 図6Bのバスバー接続部65は、クラッド材の銅合金部分とアルミニウム合金部分がバスバー接続部65の全体に亘って層状となるように板厚方向にクラッド結合されており、基端部65aの下面部65a1が銅合金部分となり、バスバー溶接面65dを有する先端部65cの上面部65c2がアルミニウム合金部分となるように配置されている。
 図6Cのバスバー接続部65は、基端部65aと傾斜部65bとの間がクラッド結合されており、基端部65aが銅合金部分となり、傾斜部65b及び先端部65cがアルミニウム合金部分となるように配置されている。
 図6D及び図6Eのバスバー接続部65は、傾斜部65bの中間位置でクラッド結合されており、基端部65aから傾斜部65bの中間位置までが銅合金部分となり、傾斜部65bの中間位置から先端部65cまでがアルミニウム合金部分となるように配置されている。図6Dに示すバスバー接続部65の場合は、クラッド結合面が、厚さ方向に対して斜めに形成されているので、図6Cと比較して結合面積をより大きく確保することができ、高い結合強度を得ることができる。そして、図6Eに示すバスバー接続部65の場合は、クラッド結合面が、複数回折り返されたつづら折り状に形成されているので、結合面積をさらに大きく確保することができ、高い結合強度を得ることができる。
 なお、本実施形態では、バスバー接続部65にクラッド材を用いて、基部62aと別体に構成してレーザー溶接により接合する場合を例に説明したが、クラッド材を用いずにバスバー接続部65全体を基部62aと同一の材料である銅合金で構成してもよく、その場合には、バスバー接続部65と基部62aとを一体に形成することができる。
 正極端子51の正極外部端子52と負極端子61の負極外部端子62は、図5A及び図5Bに示すように、負極外部端子62の方が正極外部端子52よりもバスバー溶接面の高さが高くなっており、すなわち、負極外部端子62のバスバー溶接面65dの方が正極外部端子52のバスバー溶接面55aよりも電池蓋21からの高さが高い位置に配置されており、バスバー溶接面65dの高さh1の方がバスバー溶接面55aの高さh0よりも高くなるように構成されている。
 正極外部端子52のバスバー溶接面55aと負極外部端子62のバスバー溶接面65dとの高さの差は、複数の角形電池1を配列させて組電池を形成したときに、隣接する角形電池1同士の組み付け公差により発生するバスバー溶接面の高さ方向のずれよりも大きくなるように設定されている。したがって、隣接する角形電池との間をバスバー80で電気的に接続して組電池を作製する際に、バスバー80で押さえつけてバスバー溶接面65dの高さ位置を低くなる方向に変位させて、隣接する角形電池のバスバー溶接面55aの高さ位置に一致させることができ、組み付け公差によるバスバー溶接面の高さ位置のズレを吸収することができる。
 次に、上記した角形電池1を複数用いて組電池を作成する場合について説明する。
 図7Aと図7Bは、一方の角形電池に対して隣接する角形電池の高さが低い場合におけるバスバーの接続状態を模式的に示す図、図8Aと図8Bは、一方の角形電池に対して隣接する角形電池の高さが高い場合におけるバスバーの接続状態を模式的に示す図である。
 組電池は、複数の角形電池1を配列して固縛することによって構成される。複数の角形電池1は、互いに隣り合う角形電池1の幅広側面PWどうしが対向し、かつ、正極外部端子52と負極外部端子62が交互に連続して一列に並ぶように配列される。
 例えば、隣り合う角形電池1A、1Bを配置したときに、電池の配列方向に直交する方向でかつ電池蓋21に対向する方向である電池高さ方向に組み付け公差によりズレが生じて、図7Aに示すように、一方の角形電池1Aに対して隣接する角形電池1Bの高さが差Δ1だけ低くなる場合や、図8Aに示すように一方の角形電池1Aに対して隣接する角形電池1Bの高さが差Δ2だけ高くなる場合がある。
 かかる状態で、バスバー80を溶接接合するために、バスバー接続部65及びバスバー接続部55の上方からバスバー80を接近させると、正極外部端子52のバスバー接続部55よりも先に負極外部端子62のバスバー接続部65に接触する。そして、バスバー80をさらに押し付けることにより、バスバー接続部65は、その屈曲構造により、バスバー溶接面65dに垂直な方向、すなわち電池高さ方向に変位する。
 そして、図7B又は図8Bに示すように、バスバー溶接面65dの高さがh1からh2に変位することにより、バスバー80は、バスバー接続部65のバスバー溶接面65dとバスバー接続部55のバスバー溶接面55aの両方に接面した状態とされる。したがって、バスバー接続部65とバスバー80との接続部分に負荷をかけることなく、溶接することができる。そして、接続後もバスバー接続部65は電池高さ方向に変位することができるので、組電池とした状態で振動による負荷も軽減することができる。
 したがって、組み付け公差による位置ずれを吸収して、負極外部端子62とバスバー80との接続部分及び負極外部端子62と電池缶11の電池蓋21との間に介在されるガスケット(シール部分)に負荷が作用するのを抑制し、良好な接続状態及びシール状態を長期に渡って維持することができる。
 特に、本実施形態では、バスバー接続部65がZ字状を有しており、基端部65aと先端部65cとが平行に配置されているので、バスバー80を押し付けて電池高さ方向に移動させる際に、バスバー80を平行に移動させやすく、正極外部端子52のバスバー接続部55のバスバー溶接面55aに容易に接面させることができ、確実に溶接することができるという効果を有する。
 図9は、図8Bにおけるバスバー接続部65の向きを変更した例を示す図である。バスバー接続部65の向きは、上述の実施形態の構成に限定されるものではなく、種々の変更が可能である。
 例えば図8に示す例では、角形電池1Aのバスバー接続部65は、基端部65aと傾斜部65bとの折り曲げ部分が隣接する角形電池1Bから離間する位置に配置され且つ傾斜部65bと先端部65cとの折り曲げ部分が隣接する角形電池1Bに接近する位置に配置された状態で取り付けられている。これに対して、図9に示す例では、角形電池1Aのバスバー接続部65は、基端部65aと傾斜部65bとの折り曲げ部分が隣接する角形電池1Bに接近する位置に配置され且つ傾斜部65bと先端部65cとの折り曲げ部分が隣接する角形電池1Bから離間する位置に配置された状態で取り付けられている。
 このように、図8と図9に示すように、バスバー接続部65の向きを180度反対に取り付けてもよく、また、90度だけ回転させた向き、すなわち、電池蓋21の長手方向一方側に基端部65aと傾斜部65bとの折り曲げ部分が配置され、長手方向他方側に傾斜部65bと先端部65cとの折り曲げ部分が配置されるように取り付けてもよい。
<第2の実施形態>
 次に、第2の実施形態について図10から図15を用いて説明する。
 本実施形態において特徴的なことは、負極外部端子62のバスバー接続部66がU字状の開放断面形状を有することである。バスバー接続部66の形状がU字状に変更されたこと以外は第1の実施形態と同様に構成されている。なお、第1の実施形態と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
 負極外部端子62のバスバー接続部66は、上面にバスバー80が溶接されるバスバー溶接面66dを有し、バスバー溶接面66dをバスバー溶接面66dに垂直な方向に変位可能に屈曲された屈曲構造を有する。
 バスバー接続部66は、図12Aに示すように、電池蓋21の上面に沿って延在する負極外部端子62の基部62aとは別体に設けられており、レーザー溶接等によって接合される。バスバー接続部66は、導電性の板状部材をU字状に屈曲することによって形成されており、基端部66aと、基端部66aの側端で屈曲されて立ち上がる湾曲部66bと、湾曲部66bの上端に連続して基端部66aと平行に配置される先端部66cとを有している。先端部66cの上面には、バスバー溶接面66dが形成されている。
 本実施の形態では、バスバー接続部66は、銅合金とアルミニウム合金のクラッド材を用いて製作されており、アルミニウム合金製のバスバー80を接続できるようになっている。具体的には、基端部66aの下面部65a1が銅合金により構成され、基端部66aの上面部66a2及び湾曲部66b、先端部66cがアルミニウム合金により構成されており、基端部66aの下面部66a1と上面部66a2とがクラッド結合されている。
 したがって、負極外部端子62の基部62aに、基端部66aの下面部66a1を接合した場合に、銅合金同士の接合となる。そして、先端部66cのバスバー溶接面66dにアルミニウム合金製のバスバー80を接合した場合に、アルミニウム合金同士の接合となる。したがって、銅合金製よりも安価なアルミニウム合金製のバスバーを用いることができ、製品コストを低く抑えることができる。
 なお、クラッド材の銅合金とアルミニウム合金の構造は、負極外部端子62の基部62aとの溶接面に銅合金が配置され且つバスバー溶接面66dにアルミニウム合金が配置されていること以外は、特に限定されず、他の形状であってもよい。
 但し、本実施形態では、バスバー接続部66がU字状を有しているので、負極外部端子62の基部62aに溶接される基端部66aの下面部66a1のみが銅合金部分となるように配置されている。
 図12B~図12Eに示すバスバー接続部66は、図12Aと同様にU字状の開放断面形状を有しているが、クラッド材の構成が相違している。
 図12Bのバスバー接続部66は、基端部66aと湾曲部66bとの間がクラッド結合されており、基端部66aが銅合金部分となり、湾曲部66b及び先端部66cがアルミニウム合金部分となるように配置されている。図12Cのバスバー接続部66は、湾曲部66bと先端部66cの間がクラッド結合されており、基端部66a及び湾曲部66bが銅合金部分となり、先端部66cがアルミニウム合金部分となるように配置されている。
 図12Dのバスバー接続部66は、基端部66aと湾曲部66bとの間のクラッド結合面が複数回折り返されたつづら折り状に形成されており、図12Eのバスバー接続部66は、湾曲部66bと先端部66cとの間のクラッド結合面が複数回折り返されたつづら折り状に形成されている。したがって、図12B及び図12Cに示される構成と比較して、クラッド接合の結合面積をさらに大きく確保することができ、高い結合強度を得ることができる。
 なお、本実施形態では、バスバー接続部66にクラッド材を用いて、基部62aと別体に構成してレーザー溶接により接合する場合を例に説明したが、クラッド材を用いずにバスバー接続部66全体を基部62aと同一の材料である銅合金で構成してもよく、その場合には、バスバー接続部66と基部62aとを一体に形成しても良い。
 正極端子51の正極外部端子52と負極端子61の負極外部端子62は、図11A及び図11Bに示すように、負極外部端子62のバスバー溶接面66dの方が正極外部端子52のバスバー溶接面55aよりも電池蓋21下からの高さが高い位置に配置されている。すなわち、バスバー溶接面66dの高さh1の方がバスバー溶接面55aの高さh0よりも高くなるように構成されている。正極外部端子52のバスバー溶接面55aと負極外部端子62のバスバー溶接面66dとの高さの差は、複数の角形電池1を配列させて組電池を形成したときに、隣接する角形電池1同士の組み付け公差により発生する高さ方向のずれよりも大きくなるように設定されている。
 バスバー溶接面66dの高さh1をバスバー溶接面55aの高さh0よりも高く配置することによって、バスバー80で電気的に接続して組電池を作製する際に、組み付け公差によるズレを吸収し、組電池における振動による負荷を軽減する構造を提供できる。
 次に、上記した角形電池1を複数用いて組電池を作成する場合について説明する。
 図13Aと図13Bは、一方の角形電池に対して隣接する角形電池の高さが低い場合におけるバスバーの接続状態を模式的に示す図、図14Aと図14Bは、一方の角形電池に対して隣接する角形電池の高さが高い場合におけるバスバーの接続状態を模式的に示す図である。
 例えば、隣り合う電池を配置したときに、電池の配列方向に直交する方向でかつ電池蓋21に対向する方向である電池高さ方向に組み付け公差によりズレが生じて、図13Aに示すように、一方の角形電池1Aに対して隣接する角形電池1Bの高さが差Δ1だけ低くなる場合や、図14Aに示すように一方の角形電池1Aに対して隣接する角形電池1Bの高さが差Δ2だけ高くなる場合がある。
 かかる状態で、バスバー80を溶接接合するために、バスバー接続部66及びバスバー接続部55の上方からバスバー80を接近させると、正極外部端子52のバスバー接続部55よりも先に負極外部端子62のバスバー接続部66に接触する。そして、バスバー80をさらに押し付けることにより、バスバー接続部66は、その屈曲構造により、湾曲部66bが変形してバスバー溶接面66dに垂直な方向、すなわち電池高さ方向に変位する。
 そして、図13B又は図14Bに示すように、バスバー溶接面66dの高さがh1からh2に変位することにより、バスバー80は、バスバー接続部66のバスバー溶接面66dとバスバー接続部55のバスバー溶接面55aの両方に接面した状態とされる。したがって、バスバー接続部66とバスバー80との接続部分に負荷をかけることなく、溶接することができる。そして、接続後もバスバー接続部66は電池高さ方向に変位することができるので、組電池とした状態で振動による負荷も軽減することができる。
 特に、本実施形態では、バスバー接続部66がU字状を有しているので、第1実施形態のZ字状と比較して繰り返し応力に強く、振動に対する耐性が高いという効果を有している。また、クラッド材をU字状に曲げることにより製造できるので、製造が比較的容易であるという効果も有する。
 図15は、図14Bにおけるバスバー接続部66の向きを変更した例を示す図である。バスバー接続部66の向きは、上述の実施形態の構成に限定されるものではなく、種々の変更が可能である。例えば図14に示す例では、角形電池1Aのバスバー接続部65は、湾曲部66bが隣接する角形電池1Bに接近する位置に配置された状態で取り付けられている。これに対して、図15に示す例では、湾曲部66bが隣接する角形電池1Bから離間する位置に配置された状態で取り付けられている。このように、図14と図15に示すように、バスバー接続部66の向きを180度反対に取り付けてもよく、また、90度だけ回転させた向き、すなわち、電池蓋21の長手方向一方側もしくは他方側に湾曲部66bが配置されるように取り付けてもよい。
 図16Aから図16Cは、負極外部端子62に用いられるバスバー接続部の他の構成例を示した図である。
 第1及び第2の実施形態では、バスバー接続部65、66の形状がZ字状もしくはU字状を有する場合について説明したが、Z字状やU字状のように、一部が開放された開放断面を有するものに限定されるものではなく、バスバー溶接面65d、66dをバスバー溶接面65d、66dに垂直な方向に変位可能に屈曲された屈曲構造を有するものであればよく、例えば図16Aから図16Cに示すように、閉断面形状を有するバスバー接続部67を用いてもよい。
 図16Aのバスバー接続部67は、互いに平行に配置される平板状の基端部67aと先端部67cと、基端部67aと先端部67cの互いに対向する端部間をくの字状で且つ互いに接近する方向に折曲された一対の折曲部67eを有している。図16Bのバスバー接続部67は、基端部67aと先端部67cの互いに対向する側端間を接続するくの字状で且つ互いに離間する方向に折曲された一対の折曲部67eを有している。そして、図16Cのバスバー接続部67は、図16Aの折曲部67eの代わりに、基端部67aと先端部67cの互いに対向する端部間を半円弧状で且つ互いに離間する方向に湾曲した一対の湾曲部67fを有している。
 図16Aから図16Cに示すバスバー接続部67は、銅合金とアルミニウム合金のクラッド材を用いて製造されており、アルミニウム合金製のバスバーを接続できるようになっている。具体的には、大部分がアルミニウム合金により構成され、基端部67aの上面部67a2に対して銅合金の下面部67a1がクラッド結合されている。すなわち、基端部67aの下面部67a1が銅合金部分となり、基端部67aの上面部67a2及び折曲部67e、湾曲部67f、先端部67cがアルミニウム合金部分となっている。
 したがって、負極外部端子62の基部62aに、基端部67aの下面部67a1を接合した場合に、銅合金同士の接合となる。そして、先端部65cのバスバー溶接面65dにアルミニウム合金製のバスバー80を接合した場合に、アルミニウム合金同士の接合となる。したがって、銅合金製よりも安価なアルミニウム合金製のバスバーを用いることができ、製品コストを低く抑えることができる。
 図16Aから図16Cのバスバー接続部67は、基端部67aの下面部67a1が負極外部端子62の基部62aに溶接され、先端部67cの上面部がバスバー溶接面67dとしてバスバー80に溶接される。そして、折曲部67e、湾曲部67fの屈曲により、基端部67aに対する先端部67cの高さ位置を変位させることができる。
 したがって、隣接する角形電池1の正極外部端子52のバスバー溶接面55aとの間にバスバー80を架け渡して溶接した場合に、バスバー接続部67とバスバー80との接続部分に負荷をかけることなく、溶接することができる。そして、接続後もバスバー接続部67は電池高さ方向に変位することができるので、組電池とした状態で振動による負荷も軽減することができる。
 図16Aから図16Cのバスバー接続部67は、第1及び第2の実施形態におけるZ字状もしくはU字状のような開放断面を有するものと比較して傾くおそれがなく、基端部67aに対して先端部67cを平行に変位させることができる。したがって、先端部67cの上面であるバスバー溶接面67dにバスバー30を接面させた状態で押し込んだ場合に、バスバー30を平行に移動させて、隣接する角形電池1の正極外部端子52のバスバー溶接面55aにバスバー80を接面させて、バスバー接続部66のバスバー溶接面66dとバスバー接続部55のバスバー溶接面55aの両方に接面した状態にできる。したがって、バスバー接続部66とバスバー80との接続部分に負荷をかけることなく、溶接することができる。そして、接続後もバスバー接続部67は電池高さ方向に変位することができるので、組電池とした状態で振動による負荷も軽減することができる。
 また、図16Aから図16Cのバスバー接続部67は、一対の折曲部67e、もしくは湾曲部67fを有している。したがって、第1及び第2の実施形態におけるZ字状もしくはU字状のような開放断面を有するものと比較して、電気が流れる経路が多く、通電抵抗を下げることができるという効果も有する。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1 角形電池
11 電池缶
21 電池蓋
31 扁平形捲回電極群
51 正極端子
52 正極外部端子
61 負極端子
62 負極外部端子
65 バスバー接続部
65d バスバー溶接面

Claims (9)

  1.  バスバーが溶接されるバスバー溶接面が設けられた一対の外部端子を有する角形電池であって、
     前記一対の外部端子の一方の外部端子が、前記バスバー溶接面に垂直な方向に変位可能に屈曲された屈曲構造を有することを特徴とする角形電池。
  2.  前記一方の外部端子の方が他方の外部端子よりも前記バスバー溶接面の高さが高いことを特徴とする請求項1に記載の角形電池。
  3.  前記一方の外部端子は、電池缶に設けられる基部と、該基部に接合されるバスバー接続部とを有し、該バスバー接続部に前記バスバー溶接面が形成されており、前記バスバー接続部がクラッド材を用いて構成されていることを特徴とする請求項2に記載の角形電池。
  4.  該バスバー接続部は、前記基部にレーザー溶接により接合されていることを特徴とする請求項3に記載の角形電池。
  5.  前記一方の外部端子は、負極外部端子であり、前記バスバー接続部は、銅合金とアルミニウム合金のクラッド材を用いて構成されていることを特徴とする請求項4に記載の角形電池。
  6.  前記バスバー接続部は、前記基部に対向する基端部と、該基端部の側端で折り返されて立ち上がる傾斜部と、該傾斜部の上端で折り返されて基端部と平行に配置されて上面に前記バスバー溶接面が形成された先端部とを有するZ字状の開放断面形状を有することを特徴とする請求項5に記載の角形電池。
  7.  前記バスバー接続部は、前記基部に対向する基端部と、該基端部の側端で屈曲されて立ち上がる湾曲部と、該湾曲部の上端に連続して基端部と平行に配置されて上面に前記バスバー溶接面が形成された先端部とを有するU字状の開放断面形状を有することを特徴とする請求項5に記載の角形電池。
  8.  前記バスバー接続部は、前記基部に対向する基端部と、該基部に平行に配置される先端部と、前記基端部と前記先端部の互いに対向する側端の間を接続する一対の折曲部もしくは一対の湾曲部とを有する閉断面形状を有することを特徴とする請求項5に記載の角形電池。
  9.  バスバーが溶接されるバスバー溶接面が設けられた一対の外部端子を有する角形電池を複数備えた組電池であって、
     前記角形電池は、前記一対の外部端子の一方の外部端子が、前記バスバー溶接面に垂直な方向に変位可能に屈曲された屈曲構造を有することを特徴とする組電池。
PCT/JP2013/062707 2013-05-01 2013-05-01 角形電池及び組電池 WO2014178130A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/062707 WO2014178130A1 (ja) 2013-05-01 2013-05-01 角形電池及び組電池
JP2015514724A JP6043428B2 (ja) 2013-05-01 2013-05-01 角形電池及び組電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/062707 WO2014178130A1 (ja) 2013-05-01 2013-05-01 角形電池及び組電池

Publications (1)

Publication Number Publication Date
WO2014178130A1 true WO2014178130A1 (ja) 2014-11-06

Family

ID=51843281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062707 WO2014178130A1 (ja) 2013-05-01 2013-05-01 角形電池及び組電池

Country Status (2)

Country Link
JP (1) JP6043428B2 (ja)
WO (1) WO2014178130A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056345A1 (ja) * 2016-09-26 2018-03-29 三洋電機株式会社 二次電池、二次電池の製造方法、及び二次電池用導電部材の製造方法
KR20190040248A (ko) * 2016-09-26 2019-04-17 닛산 지도우샤 가부시키가이샤 조전지
CN113328064A (zh) * 2021-05-31 2021-08-31 珠海冠宇电池股份有限公司 一种负极片及电池
CN113328133A (zh) * 2021-05-31 2021-08-31 珠海冠宇电池股份有限公司 一种电池
US11128016B2 (en) 2018-09-05 2021-09-21 Ford Global Technologies, Llc Battery assembly joint with Z-shaped weld bead
CN113839148A (zh) * 2020-06-05 2021-12-24 欣旺达电动汽车电池有限公司 电池模组及其汇流排焊接方法
WO2022014261A1 (ja) * 2020-07-13 2022-01-20 株式会社Gsユアサ 蓄電装置
JP2022064359A (ja) * 2020-10-14 2022-04-26 プライムアースEvエナジー株式会社 二次電池及び二次電池の製造方法
CN114649616A (zh) * 2020-12-17 2022-06-21 比亚迪股份有限公司 动力电池以及用于动力电池的折叠连接片
CN115117571A (zh) * 2021-03-22 2022-09-27 泰星能源解决方案有限公司 电池组

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255532B1 (ko) 2017-05-12 2021-05-25 주식회사 엘지에너지솔루션 이차전지 및 그러한 이차전지의 제조방법
KR102173754B1 (ko) 2017-05-25 2020-11-04 주식회사 엘지화학 이차전지 및 그러한 이차전지의 제조방법
KR102270266B1 (ko) * 2017-11-30 2021-06-28 주식회사 엘지에너지솔루션 버스바 어셈블리를 구비한 배터리 모듈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059362A (ja) * 2010-09-03 2012-03-22 Mitsubishi Heavy Ind Ltd 組電池
JP2012243646A (ja) * 2011-05-20 2012-12-10 Denso Corp 二次電池の接続構造
JP2013030468A (ja) * 2011-07-28 2013-02-07 Sb Limotive Co Ltd 2次電池
JP2013045602A (ja) * 2011-08-24 2013-03-04 Gs Yuasa Corp 蓄電装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2015DN00740A (ja) * 2012-08-01 2015-07-10 Toshiba Kk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059362A (ja) * 2010-09-03 2012-03-22 Mitsubishi Heavy Ind Ltd 組電池
JP2012243646A (ja) * 2011-05-20 2012-12-10 Denso Corp 二次電池の接続構造
JP2013030468A (ja) * 2011-07-28 2013-02-07 Sb Limotive Co Ltd 2次電池
JP2013045602A (ja) * 2011-08-24 2013-03-04 Gs Yuasa Corp 蓄電装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056345A1 (ja) * 2016-09-26 2018-03-29 三洋電機株式会社 二次電池、二次電池の製造方法、及び二次電池用導電部材の製造方法
KR20190040248A (ko) * 2016-09-26 2019-04-17 닛산 지도우샤 가부시키가이샤 조전지
CN109792030A (zh) * 2016-09-26 2019-05-21 三洋电机株式会社 二次电池、二次电池的制造方法及二次电池用导电构件的制造方法
CN109792023A (zh) * 2016-09-26 2019-05-21 日产自动车株式会社 组电池
JPWO2018055764A1 (ja) * 2016-09-26 2019-06-24 日産自動車株式会社 組電池
JPWO2018056345A1 (ja) * 2016-09-26 2019-07-04 三洋電機株式会社 二次電池、二次電池の製造方法、及び二次電池用導電部材の製造方法
EP3518320A4 (en) * 2016-09-26 2019-08-28 Nissan Motor Co., Ltd. BATTERY PACK
US10903471B2 (en) 2016-09-26 2021-01-26 Envision Aesc Japan Ltd. Battery pack
KR102272804B1 (ko) * 2016-09-26 2021-07-05 가부시키가이샤 인비젼 에이이에스씨 재팬 조전지
CN109792030B (zh) * 2016-09-26 2021-07-06 三洋电机株式会社 二次电池、二次电池的制造方法及二次电池用导电构件的制造方法
US11342618B2 (en) 2016-09-26 2022-05-24 Sanyo Electric Co., Ltd. Secondary battery, method of manufacturing the same, and method of manufacturing conductive member for the same
CN109792023B (zh) * 2016-09-26 2022-05-17 远景Aesc日本有限公司 组电池
US11128016B2 (en) 2018-09-05 2021-09-21 Ford Global Technologies, Llc Battery assembly joint with Z-shaped weld bead
CN113839148A (zh) * 2020-06-05 2021-12-24 欣旺达电动汽车电池有限公司 电池模组及其汇流排焊接方法
CN113839148B (zh) * 2020-06-05 2023-09-12 欣旺达电动汽车电池有限公司 电池模组及其汇流排焊接方法
WO2022014261A1 (ja) * 2020-07-13 2022-01-20 株式会社Gsユアサ 蓄電装置
JP7319952B2 (ja) 2020-10-14 2023-08-02 プライムアースEvエナジー株式会社 二次電池及び二次電池の製造方法
JP2022064359A (ja) * 2020-10-14 2022-04-26 プライムアースEvエナジー株式会社 二次電池及び二次電池の製造方法
CN114649616A (zh) * 2020-12-17 2022-06-21 比亚迪股份有限公司 动力电池以及用于动力电池的折叠连接片
JP7412384B2 (ja) 2021-03-22 2024-01-12 プライムプラネットエナジー&ソリューションズ株式会社 組電池
CN115117571A (zh) * 2021-03-22 2022-09-27 泰星能源解决方案有限公司 电池组
JP2022146272A (ja) * 2021-03-22 2022-10-05 プライムプラネットエナジー&ソリューションズ株式会社 組電池
CN113328133A (zh) * 2021-05-31 2021-08-31 珠海冠宇电池股份有限公司 一种电池
CN113328133B (zh) * 2021-05-31 2023-05-26 珠海冠宇电池股份有限公司 一种电池
CN113328064B (zh) * 2021-05-31 2023-05-26 珠海冠宇电池股份有限公司 一种负极片及电池
CN113328064A (zh) * 2021-05-31 2021-08-31 珠海冠宇电池股份有限公司 一种负极片及电池

Also Published As

Publication number Publication date
JPWO2014178130A1 (ja) 2017-02-23
JP6043428B2 (ja) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6043428B2 (ja) 角形電池及び組電池
JP5830953B2 (ja) 二次電池、バッテリユニットおよびバッテリモジュール
JP5889333B2 (ja) 組電池
JP5417241B2 (ja) 角形リチウムイオン二次電池および角形リチウムイオン二次電池の製造方法
JP6214758B2 (ja) 角形二次電池
US20190319301A1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP5456542B2 (ja) 角形二次電池および角形二次電池の製造方法
KR20070122370A (ko) 전지셀 제조용 전극판 및 그것의 제조방법
JP2014157722A (ja) 組電池
JP6757499B2 (ja) 二次電池
JP2010232164A (ja) 角形二次電池の製造方法
US20180123115A1 (en) Secondary battery
JP2014102915A (ja) 組電池
WO2018062231A1 (ja) 角形二次電池
JP4135474B2 (ja) ラミネート二次電池、複数のラミネート二次電池からなる組電池モジュール、複数の組電池モジュールからなる組電池ならびにこれらいずれかの電池を搭載した電気自動車
JP6184747B2 (ja) 角形二次電池
JP6186449B2 (ja) 組電池
JP6192992B2 (ja) 角形二次電池
US10158107B2 (en) Battery comprising insulative films
JP4075534B2 (ja) ラミネート二次電池、組電池モジュール、組電池ならびにこの電池を搭載した電気自動車
US20130323557A1 (en) Secondary battery and method for manufacturing same
JP5768002B2 (ja) 二次電池
JP2020149935A (ja) 電池モジュール
JP6752691B2 (ja) 二次電池
JP2005166353A (ja) 二次電池、組電池、複合組電池、車輌、及び、二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015514724

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883550

Country of ref document: EP

Kind code of ref document: A1